000267674 001__ 267674
000267674 005__ 20190827140338.0
000267674 0247_ $$2doi$$a10.1109/ICASSP.2019.8683214
000267674 037__ $$aCONF
000267674 245__ $$aSolving Continuous-Domain Problems Exactly with Multiresolution B-Splines
000267674 260__ $$c2019
000267674 269__ $$a2019
000267674 300__ $$a5
000267674 336__ $$aConference Papers
000267674 520__ $$aWe propose a discretization method for continuous-domain linear inverse problems with multiple-order total-variation (TV) regularization. It is based on a recent result that proves that such inverse problems have sparse polynomial-spline solutions. Our method consists in restricting the search space to splines with knots on a uniform grid, which results in a standard convex finite-dimensional problem. As basis functions for this search space, we use the B-splines matched to the regularization order, which are optimally localized. This leads to a well-conditioned, computationally feasible optimization task. Our proposed iterative multiresolution algorithm then refines the grid size until a desired level of accuracy is met and converges to sparse solutions of our inverse problem. Finally, we present experimental results that validate our approach.
000267674 700__ $$0251416$$aDebarre, Thomas Jean$$g284270
000267674 700__ $$0246860$$aFageot, Julien René$$g214902
000267674 700__ $$0249236$$aGupta, Harshit$$g246035
000267674 700__ $$0240182$$aUnser, Michaël$$g115227
000267674 7112_ $$aForty-Fourth IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'19)$$cBrighton, United Kingdom$$dMay 12-17, 2019
000267674 773__ $$tProceedings of the Forty-Fourth IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'19)
000267674 8564_ $$s266628$$uhttps://infoscience.epfl.ch/record/267674/files/debarre1902p.pdf$$zPREPRINT
000267674 8560_ $$fbeatrice.marselli@epfl.ch
000267674 909C0 $$pLIB$$mphilippe.thevenaz@epfl.ch$$0252054$$zMarselli, Béatrice$$xU10347
000267674 909CO $$pconf$$pSTI$$ooai:infoscience.epfl.ch:267674
000267674 960__ $$aphilippe.thevenaz@epfl.ch
000267674 961__ $$avalerie.charbonnier@epfl.ch
000267674 973__ $$aEPFL$$rREVIEWED
000267674 980__ $$aCONF
000267674 981__ $$aoverwrite