Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Beyond Bouma's window: How to explain global aspects of crowding?
 
research article

Beyond Bouma's window: How to explain global aspects of crowding?

Doerig, Adrien  
•
Bornet, Alban  
•
Rosenholtz, Ruth
Show more
May 1, 2019
PLoS Computational Biology

In crowding, perception of an object deteriorates in the presence of nearby elements. Although crowding is a ubiquitous phenomenon, since elements are rarely seen in isolation, to date there exists no consensus on how to model it. Previous experiments showed that the global configuration of the entire stimulus must be taken into account. These findings rule out simple pooling or substitution models and favor models sensitive to global spatial aspects. In order to investigate how to incorporate global aspects into models, we tested a large number of models with a database of forty stimuli tailored for the global aspects of crowding. Our results show that incorporating grouping like components strongly improves model performance. Author summary Visual crowding highlights interactions between elements in the visual field. For example, an object is more difficult to recognize if it is presented in clutter. Crowding is one of the most fundamental aspects of vision, playing crucial roles in object recognition, reading and visual perception in general, and is therefore an essential tool to understand how the visual system encodes information based on its retinal input. Hence, classic models of crowding have focused only on local interactions between neighboring visual elements. However, abundant experimental evidence argues against local processing, suggesting that the global configuration of visual elements strongly modulates crowding. Here, we tested all available models of crowding that are able to capture global processing across the entire visual field. We tested 12 models including the Texture Tiling Model, a Deep Convolutional Neural Network and the LAMINART neural network with large scale computer simulations. We found that models incorporating a grouping component are best suited to explain the data. Our results suggest that in order to understand vision in general, mid-level, contextual processing is inevitable.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Final_Version.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

4.48 MB

Format

Adobe PDF

Checksum (MD5)

2b04c12cc9915783d9a2ea2a18aecbf9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés