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A family of models is proposed to describe the motion of holes in a fluctuating quantum dimer background
on the square lattice. Following Castelnovo et al. �Ann. Phys. �N.Y.� 318, 316 �2005��, a generalized Rokhsar-
Kivelson Hamiltonian at finite doping which can be mapped on a doped interacting classical dimer model is
constructed. A simple physical extension of this model is also considered. Using numerical computations and
simple considerations based on the above exact mapping, we determine the phase diagram of the model
showing a number of quantum phases typical of a doped Mott insulator. The two-hole correlation function
generically exhibits short-range or long-range algebraic correlations in the solid �columnar� and liquid �critical�
phases of the model, respectively. Evidence for an extended region of a doped valence bond solid phase
exhibiting holon pairing but no phase separation is given. In contrast, we show that hole deconfinement occurs
in the staggered dimer phase.
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Soon after the discovery of cuprate superconductors with
high critical temperatures, Anderson suggested that the reso-
nating valence bond �RVB� state is the relevant insulating
parent state that becomes superconducting under �arbitrary
small� hole doping.1 Such a state can alternatively be viewed
as a spin liquid �SL�, as it has no magnetic order and it does
not break any lattice symmetry. Since then, the search for
exotic SL in microscopic or effective models has been very
active.

In quantum spin models, where magnetic frustration sup-
presses long-range magnetic order, spin liquids often com-
pete with quantum disordered states named “valence bond
solids” �VBS� which break translation symmetry.2 This is,
e.g., the case in the frustrated Heisenberg model with
extended-range antiferromagnetic �AF� interactions.3 In a
VBS, nearest-neighbor spins pair up in bond singlets which
order, e.g., along columns or in a staggered arrangement.
Hole doping has also been extensively studied in Mott
insulators4 and AF fluctuations have been identified as the
glue for pairing. Unconventional pairing upon doping mod-
els exhibiting a VBS ground state has also been found.5

In a pioneering work Rokhsar and Kivelson introduced a
quantum dimer model �QDM�, a Hamiltonian acting in the
space of two-dimensional fully packed dimer configurations6

�generically called �c��. The dimer interaction V and the
dimer-flip process J are schematically depicted in Fig. 1�a�.
As discussed in Ref. 6, the QDM can be considered as the
simplest effective model to describe quantum disordered
phases similar to the pseudogap phase of the cuprate super-
conductors. In that respect, one might think of the dimer flip
term as originated directly from superexchange between cop-
per spins. At the special point V /J=1, named Rokhsar-
Kivelson �RK� point, the ground state �GS� is exactly known
and can be mapped onto the partition function of a classical
dimer model.6 On the square lattice, the dimer-dimer corre-
lations are algebraic, decaying as 1/r2. This “algebraic SL”
at the RK point is believed to be rather singular on the V /J
axis since, as shown, e.g., by numerical calculations,7 the GS
is a VBS on both sides of it, a staggered phase for V /J�1, a

columnar phase at attractive V �i.e., V�0�, separated from
the RK point by a small region of plaquette phase. The case
of nonbipartite lattices, where the RK point has a gapped GS
that shows fractional excitations,8 is also of great interest.
Doping was introduced in Ref. 6 and studied further later by
Syljuåsen9 who computed dimer correlations and the energy
of two static monomers in a background of dimers and dy-
namic holes. However, hole correlations of the dynamic
holes themselves, have not been investigated so far.

In this paper we construct various models of doped quan-
tum dimers with the aim to study these correlations as accu-
rately as possible. Like the more “microscopic” t-J model,
the lightly doped QDM also provides a realistic description
of relevant quantum disordered phases �which, in fact, would
be stabilized only at finite doping in the t-J model�, while
being much easier to handle numerically.10 A generalized RK
Hamiltonian is introduced at finite doping. This model can be

FIG. 1. �Color online� Pictures of the two quantum processes
considered in this paper. �a� Dimer flip J within a plaquette. A dimer
repulsion V is defined for all flippable plaquettes. �b� Hole hopping
along a plaquette diagonal. In this process a dimer “rotates” from a
vertical �horizontal� to a horizontal �vertical� bond. The hole-dimer
repulsion Vhd is defined on all the dashed lines.
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mapped onto a doped interacting classical dimer model en-
abling an efficient use of classical Monte Carlo �MC�.11 In
addition, it offers a controllable parameter �the effective tem-
perature� to smoothly tune the system from a VBS to a liquid
phase �even at zero doping�. We also extend this model to an
enlarged physical space away from this so-called RK axis,
where such a mapping is no longer valid12 and where full
quantum computations such as Lanczos exact diagonaliza-
tion �ED� and Green’s function Monte Carlo �GFMC� are
required. We provide evidence for hole deconfinement13 in
the algebraic dimer phase. However, we also argue that
phase separation occurs for low hole kinetic energy and, last,
provide a complete phase diagram of the model.

Let us first assume that holes are introduced by pairs on
some of the dimer bonds. Next, the simplest way to account
for their motion6,9 is to consider processes like the one de-
picted in Fig. 1�b� where a hole hops along a plaquette diag-
onal with some amplitude t. Note that here holes are really
thought of as new charge degrees of freedom originating,
e.g., from doping a Mott insulator. A general form of doped
QDM which operates in a Hilbert space with a fixed hole
number can then be written as

H = �
c

�c�c��c� − J �
�c,c��

�c���c� − t �
�c,c��

�c���c� , �1�

where the sum over �c� includes all configurations with arbi-
trary hole positions. The sum over �c� and �c�� extends on all
pairs of doped dimer coverings �only� differing by a single
plaquette flip �shown in Fig. 1�a��. Similarly, the sum over
�c� and �c�� extends to all pairs of doped dimer coverings
differing �only� by a single hole hopping along a diagonal of
a plaquette and a single dimer “hop” from a vertical �hori-
zontal� bond to a horizontal �vertical� bond. Such a process
between two configurations �c� and �c�� is depicted in Fig.
1�b�. As shown below, the role of the diagonal energies �c is
crucial and various choices will be discussed. Whether

mobile holes remain confined14 or not �or whether they form
bound states� is the central issue of this study.

Following Ref. 6, we first start with the simple dimer
interaction introduced above, namely �c=�c

0=VNc where
Nc corresponds to the number of flippable plaquettes in
configuration �c�. The properties of two holes15 in such a
t-J-V model9 are studied here by ED and GFMC �Ref. 16� on
finite clusters and the mean-squared hole-hole distance
Rhh=	�r2� is shown in Fig. 2 as a function of the dimer
repulsion V /J for fixed ratios t /J. A very abrupt variation is
observed at V /J=1 �especially at small t� showing a clear
confinement14 at V /J�1, as expected in a VBS, and a large
value of the hole-hole separation for V /J�1, which scales
linearly with system size �see inset of Fig. 2�. In this case,
the undoped system is also a VBS, but a pure staggered
dimer state with no quantum fluctuations. It is therefore easy
to see that the two holes can freely move away from each
other in opposite directions along the same diagonal creating
a string of dimers at 90° from the background at no energy
cost.17 On the contrary, in a plaquette or columnar VBS the
energy cost grows linearly with the string length leading to
confinement. Note that it was argued that confinement is lost
for a sufficiently high fraction of holes �monomers�.9

In order to construct more general doped QDM, we
briefly reexamine the undoped case �i.e., zero doping for
which the t term of Eq. �1� is irrelevant� and introduce a
simple construction that extends the undoped RK point to an
infinite axis. Following Castelnovo et al.,18 we define the
J-� Hamiltonian by introducing diagonal energies as

�c = �c
flip = V �

c��c�

exp
−
1

2
�Vcl�Nc� − Nc�� , �2�

where the sum extends on the dimer covering �c�� differing
from �c� by a single plaquette flip �shown on Fig. 1�a��. In
the �→0 limit, the expression of �c

flip reduces to �c
0 and the

significance of V becomes clear. Hereafter, V=1 sets the en-
ergy scale. Vcl corresponds to a classical dimer-dimer inter-
action. We restrict ourselves to the attractive case and use
units for � such that Vcl=−1. A cartoon of the Hamiltonian
manifold parametrized by �J ,�� is shown in Fig. 3�a�. For
J=1 it is easy to check that the GS is simply given by

FIG. 2. �Color online� Mean-squared separation Rhh between
two holes in the t-J-V model as a function of the ratio V /J. Calcu-
lations are done on a periodic 6�6 cluster for two values of the
hopping t /J. Inset, size dependence of Rhh obtained from GFMC on
L�L clusters for t /J=0.5 and two typical values of V /J showing
hole-hole deconfinement and confinement, respectively.

FIG. 3. Schematic picture of the parameter space of the models
considered here; �a� J-� model �undoped� and �b� t-J-� model
�doped�. The RK axes �thick lines parametrized by �� are defined
by J=1 �undoped case� and by J= t=Vhd=1 �doped case�. The
points P and R correspond to the origins at �=0 on these axes.

POILBLANC et al. PHYSICAL REVIEW B 74, 014437 �2006�

014437-2



1
	Z

�c exp�− 1
2�VclNc��c� with energy E0=0, where the normal-

ization factor Z=�c exp�−�VclNc� can be considered as a
partition function of a classical interacting dimer model.19

We have checked by ED data of a 8�8 cluster within its
fully symmetric space-group irreducible representation, that
the specific heat �defined as �2��Nc

2�− �Nc�2�� is very close to
the MC results obtained for a very large cluster �not shown�.
The model displays a Kosterlitz-Thouless �KT� transition20

at �=�KT�1.536 between a critical phase at ���KT �with
� varying exponents� and a columnar dimer phase.19 Inde-
pendently from our investigation, a similar mapping was de-
rived and the properties of this critical phase were investi-
gated with transfer-matrix techniques.21

To investigate the expected confinement-deconfinement
transition13 for holes at the KT transition, let us now gener-
alize the construction by Castelnovo et al.18 to finite doping.
We define the t-J-� Hamiltonian by adding a second
diagonal term to the one �2� of the J-� Hamiltonian,
�c=�c

flip+�c
hop,

�c
hop = Vhd �

c��c�

exp
−
1

2
�Vcl�Nc� − Nc�� , �3�

where the sum now extends on the doped dimer coverings
�c�� connected to �c� by a t process �see again Fig. 1�b��.
Note that this new term, as the t term of �1�, scales like the
hole concentration. Vhd is a new energy scale which naturally
makes sense in the �→0 limit discussed below. The term �3�
is of central importance as for t=Vhd and J=1 the GS can
again be written as 1

	Z
�c exp�− 1

2�VclNc��c�. In analogy with
the undoped case, we can again define a RK axis which runs
along an orthogonal direction to the three-dimensional pa-
rameter space spanned by J, t, and Vhd. This RK axis is given
by J=1, t=Vhd and parametrized by �. A cartoon picture of
this set of Hamiltonians is shown in Fig. 3�b�. Since the
hopping term �for t�0� couples all topological symmetry
sectors the GS with energy E0=0 becomes unique. Interest-
ingly, the procedure followed here can be generalized to
more complicated dimer or hole kinetic off-diagonal pro-
cesses.

The �→0 limit is of special interest. As seen above, the
diagonal term �2� reduces to a dimer-dimer repulsion of mag-
nitude V �set to 1� and the undoped RK point is recovered for
J=1 �when holes are not present�. Similarly, the second di-
agonal contribution �3� reduces to a dimer-hole interaction
on a plaquette �with definition given pictorially in Fig. 1�b��
of magnitude Vhd. The �=0 limit therefore gives rise to a
large class of physical Hamiltonians parametrized by arbi-
trary magnitudes of J, t, and Vhd �measured in units of
V=1�. A complete investigation of this model is left for a
future study22 and, in the following, we restrict ourselves to
J=V �=1 for convenience� so that the “distance” from the
RK axis will be controlled by the deviation of t from Vhd.

We first start with the case of two holes in the t-J-�
model. The hole-hole correlations have been computed by
ED of a 6�6 cluster for arbitrary t and, for convenience, for
Vhd=1. Results are shown in Fig. 4. The ED results show a
rather smooth variation of Rhh across the transition at �KT.
However, the finite size scaling at t=1 obtained by classical

MC in Fig. 5�a� shows a clear qualitative change of behavior
at the KT transition: while Rhh remains finite in the confined
phase, it diverges as a power law in the critical phase in
agreement with Ref. 19. For t=0.5 and t=0.6 we observe a
kink in the ED data of Fig. 4. Moreover, for t�0.25 Rhh
remains always very close to 1, even when �→0 �not
shown�. This signals the appearance of a two-hole bound
state within the critical SL phase for � below �KT. This
scenario is supported by the GFMC data on larger systems
shown in Fig. 5�b�. We have checked by GFMC that this
bound state, in fact, persists up to t=1 �=Vhd�. These results
are summarized in a phase diagram for two holes in Fig.
5�c�.

FIG. 4. �Color online� Mean-squared separation between two
holes in the t-J-� model as a function of �. ED data obtained on a
6�6 periodic cluster are shown for several values of the hopping t
and J=1. The dashed line denotes the location of the KT transition
at �KT
1.536. For t=0.5 and t=0.6 the “kinks” signal the appear-
ance of a two-hole bound state.

FIG. 5. �Color online� Results for two holes in the t-J-� model
�J=V�=1�� for Vhd=V�=1�. Size dependence of Rhh by �a� classical
MC at t=1 for various values of � �log-log scale�, �b� GFMC at
�=0.8 and t=0.5 �linear scale�. �c� Conjectured phase diagram for
two holes in the thermodynamic limit for J=V=Vhd�=1� vs � and t.
The dashed region corresponds to the confined phase for ���KT.
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Next, using simple arguments, we construct the phase dia-
gram of the doped QDM for V=J �and bosonic holes�. The
previous finding that two holes pair up in some region of
parameter space implies that either �i� a Q=2e superconduct-
ing state or �ii� a phase separated state occurs at finite dop-
ing. For Vht= t, the inverse compressibility �−1 �proportional
to the second derivative of the energy per site with respect to
the hole density� identically vanishes since the GS energy
vanishes on the RK axis for all number of holes. In addition,
since Vhd acts effectively as an attraction between holes �or
dimers�, �−1 should be a monotonous function of the ratio
Vhd / t as checked numerically.22 These simple considerations
imply that �−1�0 ��0� for t�Vhd �t�Vhd� and, then, the
phase separation boundary is exactly given by t=Vhd for all
hole density and �. Figure 6 shows the phase diagram of the
model for J=V as a function of t, Vhd and hole density. For
���KT, holons are deconfined in the SL phase. We also
expect a similar phase diagram for ���KT �Fig. 6�b�� al-
though the critical line �at nh=0� should be replaced by an
extended �hole pair� region with VBS columnar order which
survives up to a critical doping. However, the boundary of
the phase separated region remains unchanged. The exact
curve for the VBS/SF boundary remains to be investigated in
more details.

Last, we would like to comment briefly on the case
V /J�1. In fact, we expect some qualitative similarities be-
tween the phase diagram of the “standard” �i.e., �=0� QDM
at V /J�1 which exhibits a �plaquette or columnar� VBS and
the low temperature VBS phase studied here at V /J=1.
However, we believe that the phase separation line of Fig.
6�b� should be curved instead of vertical. Further investiga-
tions are needed to clarify this point. On the contrary, for
V /J�1 �and �=0�, in the staggered dimer phase, one would
not expect any phase separation since deconfinement occurs
even for two mobile holes.

In conclusion, we have introduced a class of simple doped
QDM on the square lattice which, we believe, provide in-
sights on the physical quantum disordered phases of real
materials. An exact mapping onto a doped classical dimer
model �characterized by an inverse temperature �� can be
realized along a one-dimensional manifold of this multidi-
mensional space. Using numerical computations and simple
considerations based on the above exact mapping, we deter-
mine the complete phase diagram of the model �at V=J�
showing a number of interesting physical phenomena that,
we believe, could be generic in the vicinity of a Mott insu-
lator, beyond the framework of QDM. It is found that two
doped holons are confined in the columnar VBS phase. At
finite doping, evidence for an extended region of a metallic
VBS phase exhibiting holon pairing without phase separation
is given. In contrast, we find that the algebraic dimer-dimer
correlations of the critical �quasiordered� phase do not pro-
vide holon confinement. Furthermore, as shown in the case
of the staggered dimer phase, we point out that holon decon-
finement can even occur in a VBS.
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