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We show that Dzyaloshinskii-Moriya (DM) interactions can substantially modify the phase diagram of
spin-1=2 Heisenberg ladders in a magnetic field provided they compete with exchange. For nonfrustrated
ladders, they induce a local magnetization along the DM vector that turns the gapless intermediate phase
into an Ising phase with broken translational symmetry, while for frustrated ladders, they extend the Ising
order of the half-integer plateau to the surrounding gapless phases of the purely Heisenberg case.
Implications for experimental ladder and dimer systems are discussed.
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Spin ladders [1] have played an important role in the
field of strongly correlated systems over the past 15 years.
They are among the best studied spin-gap systems, thanks
to the numerous experimental realizations in transition
metal oxides [2] and organometallic compounds [3]; their
intermediate phase in a magnetic field is one of the sim-
plest realizations of a Luttinger liquid [4] and frustrating
them with diagonal rungs opens a magnetization plateau at
half-saturation [5], a simple example of noninteger mag-
netization plateaux [6].

All this is true for purely SU(2) Heisenberg interactions,
but in actual systems, anisotropic terms such as the
Dzyaloshinskii-Moriya (DM) interaction are often present.
In ordered antiferromagnets, they open a small gap in the
spin-wave spectrum and may induce a small canting, but
otherwise they can be neglected for most purposes. One
may thus be tempted to conjecture that, for gapped anti-
ferromagnets, their effect will be negligible except in the
gapless phase induced by a magnetic field, where they will
open a gap. The intriguing properties of the famous plateau
system SrCu2�BO3�2 [7], in particular, the recent report
that the translational symmetry remains broken above the
1=8 plateau [8], suggest this might not, however, be so
simple. Indeed, significant DM interactions have been
identified in this system, and the role they may play be-
tween the plateaux remains to be investigated. In the same
spirit, the nature of the phase transition of the intermediate
phase of the spin-gap system Cu2�C5H12N2�2Cl4 [9] is still
an open issue, and the recent identification of DM inter-
actions in that system [10] opens new perspectives that
remain to be explored.

In this Letter, we report on an extensive investigation of
the effect of DM interactions in gapped systems in the
context of spin ladders, and we show that even very small
DM interactions can induce Ising phase transitions with
broken translational symmetry in all spin ladders, frus-
trated or not, under appropriate conditions. To cover all
aspects of the problem, we concentrate on a fairly general

model depicted in Fig. 1. Its Hamiltonian can be split into
single-rung exchange, DM, and Zeeman energies,

 

H rung � J
X
j

Sj;1 � Sj;2 �
X
j

D � �Sj;1 � Sj;2�

�
X
j

H � �Sj;1 � Sj;2� (1)

and Heisenberg interactions between adjacent rungs,

 

H int � Jk
X
j

�Sj;1 � Sj�1;1 � Sj;2 � Sj�1;2�

� JX
X
j

�Sj;1 � Sj�1;2 � Sj;2 � Sj�1;1�: (2)

In this work, the magnetic field H � �0; 0; H� is applied
perpendicular to the DM vector D � �0; D; 0�, which is
taken to be uniform, the relevant configuration for ladders
that are translationally invariant but have no inversion
center in the middles of the rungs. The full symmetry group
of the system can be generated from three symmetry
operations: T�yz, C2�z�, and T�xz, as shown in Fig. 1,
where the additional time-reversal operator T is needed
to compensate for the presence of the magnetic field. The
symmetry operations act both in spin and real space.
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FIG. 1 (color online). Sketch of the frustrated ladder of
Eqs. (1) and (2). The thick solid lines stand for J, the thin
ones for Jk, the dashed ones for JX, and the arrows for D. We
have also shown the 3 generators of the space group: the �xz and
�yz mirror planes and a twofold rotation axis C2�z�.
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The physics of this model is controlled by two factors.
(i) The level of frustration of the Heisenberg exchange.
Indeed, when D � 0, a magnetization plateau at half the
saturation has been shown to open in strongly frustrated
ladders (1=3< JX=Jk < 3), corresponding to a gapped
phase with a broken translational symmetry [5]. By con-
trast, nonfrustrated ladders (JX � 0 or Jk � 0) and weakly
frustrated ladders (0< JX=Jk < 1=3 or 0< Jk=JX < 1=3)
remain in a gapless Luttinger liquid phase from zero
magnetization to full polarization. (ii) The possible com-
petition between exchange and DM interactions [11]. In
the present context, this can be understood as follows.
Because of the DM interaction, an isolated rung in a field
develops opposite moments along D�H, on the two sites
of the dimer [12]. If such dimers are coupled in a ladder
geometry, an antiferromagnetic inter-rung coupling Jk will
compete with the DM interaction because Jk tends to align
the moments antiparallel along a leg. By contrast, an anti-
ferromagnetic inter-rung coupling JX will not compete
since both JX and the DM interactions induce antiparallel
moments along the diagonals.

The noncompeting case (JX=Jk > 1) has been studied
previously [13]. The DM interaction opens a gap in the
gapless incommensurate phase, as expected, but only in-
duces a small shift of the Ising plateau transition in
strongly frustrated ladders. In the following, we will con-
centrate on the competing case (JX=Jk < 1).

The simplest way to map out the phase diagram is to use
a Hartree variational function of the form

  �
Y
j

�
cos

�j
2
jTi � ei’j sin

�j
2
jSi
�
; (3)

with jTi � j "1"2i and jSi � �j #1"2i � j "1#2i�=
���
2
p

on the
jth rung [14]. The trial state is characterized by the sym-
metric and antisymmetric magnetizations of a rung,
mj� � hSj;1 � Sj;2i. The nonzero components are

 mx
j;� � im

y
j;� � sin�je

i’j=
���
2
p
; mz

j;� � cos2��j=2�:

(4)

The variational phase diagram without DM interaction is
shown in Fig. 2(a). It is symmetric with respect to the
exchange of JX and Jk and contains all the phases found
previously [13]: two fully symmetric integer plateau states
with mz

j;� � 0 and 1; a half-integer plateau phase with a
broken Z2 translational symmetry, mz

j;� � 1=2 / ��1�j,
and a gapless phase with a spontaneously broken O(2)
symmetry [the broken O(2) being an artifact of the
mean-field approximation].

The variational phase diagram in the presence of the DM
interaction is shown in Fig. 2(b). It is clearly related to the
O(2)-symmetric case: some of the transition lines lie close
to their D � 0 counterparts. However, there are some
notable differences. In the noncompeting regime, JX=Jk >
1, the phase transitions between the integer plateaux and
the intermediate gapless phase are replaced with cross-
overs, in agreement with previous work [13].

Far more dramatic changes can be seen in the competing
regime, JX=Jk < 1. At strong frustration, 1=3< JX=Jk <
1, the Ising-ordered phase has substantially expanded its
boundaries by absorbing the incommensurate phases. A
distinct Ising order appears for zero or weak frustration,
0 	 JX=Jk < 1=3. In the upper Ising phase, the order
parameter is the staggered component of the magnetiza-
tions mz

j;� and mx
j;�. It breaks T�xz. In the lower Ising

phase, the order parameter is the staggered component of
my
j;�. It breaks T�yz. Since T�yzC2�z�T�xz is the trans-

lation operator, both phases break the translational invari-
ance as well. In any of the two phases, only one generator
of the space group is broken; thus, the transitions from the
uniform phase into these phases are continuous. At the
variational level, the transition between the two Ising
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FIG. 2 (color online). Variational phase diagram for (a) D � 0
and (b) D=�JX � Jk� � 0:1. On the left and bottom axes, JX and
H�H0, where H0 � J� �JX � Jk�=2, are given in the units of
JX � Jk. In (a), the spins forming singlets and triplets in the
gapped phase are represented by open and solid circles. In the
gapless O�2� phase the arrows show a typical mean-field ground
state. In (b), the O�2� symmetry is broken by finite D: a unique
state is selected in the nonfrustrated case, a twofold degeneracy
is found in the frustrated case. The Ising phase of the plateau
in (a) develops continuously by turning on D. Along the red
dashed line the site-factorized wave function is an exact wave
function in the large-J limit. R and R0 denote the tricritical
points.
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phases is first order, but numerical results and field-theory
arguments suggest that the transition is made continuous
by quantum critical fluctuations (see below).

To test the reliability of the variational approach, we
have obtained the ground state and magnetization distribu-
tions for the ladder model (1) and (2) using the density
matrix renormalization group (DMRG) for two represen-
tative cases: the unfrustrated ladder (JX � 0) and a
strongly frustrated one (JX=Jk � 2=3), and we have ob-
tained strong evidence for the existence of the two Ising
phases. The results for relevant local magnetizations are
compared with the variational results in Figs. 3 and 4. In the
upper Ising phase (JX=Jk � 2=3, Fig. 3), the agreement is
nearly perfect and the presence of a broken symmetry far
outside the half-integer magnetization plateau is well es-
tablished: magnetizations mz

j;� of two neighboring rungs
exhibit a finite difference in almost the entire range of
fields between the two integer magnetization plateaux.
For JX=Jk � 0 (see Fig. 4), we have included a small
staggered field to allow the finite system to maintain a
nonzero staggered magnetization along the D vector. We
find a qualitative agreement between the variational

and numerical results. Quantitatively, the mean-field ap-
proach overestimates the order parameter by as much as a
factor of 2, presumably the result of neglecting quantum
fluctuations.

To understand the physics of the ordered states and
phase transitions between them we turn to the strong-
coupling limit where the rung exchange J of Eq. (1) domi-
nates. The low-energy physics of the model then reduces to
that of a spin-1=2 XXZ chain [5],
 

H eff � j
X
i

��xi�
x
i�1 � �

y
i�

y
i�1 ���zi�

z
i�1�

�
X
i

�hx�
x
i � hz�

z
i �; (5)

with j � Jk � JX and � � �JX � Jk�=2�Jk � JX�. The
longitudinal field is related to the field in the original
problem, hz � H� J� �JX � Jk�=2, while the transverse
field comes from the DM interactions, hx � D=

���
2
p

, as
discussed previously [15]. The spin-1=2 operators � are
related to the original spin operators in the following way:

 ��j � P
S�j;1 � S

�
j;2���

2
p P; �zj � P

�
Szj;1 � S

z
j;2 �

1

2

�
P;

where � � x, y and P � �S�j;1 � S
�
j;2��S

�
j;1 � S

�
j;2�=2 is the

projector onto the subspace fjSi; jTig. Nonzero averages
h�xji and h�yji signal the appearance of antisymmetric
magnetizations mx

j;� and my
j;�, while h�zi translates into

the symmetric magnetization mz
j;� � 1=2; cf. Eq. (4).

The XXZ model in a tilted uniform field (5) has been
studied previously [16,17]. The magnetic order is lost
across the line of Ising transitions, hz 
 ��� 1�j, into
the fully magnetized plateaux. The two Ising phases are
separated by the Heisenberg line � � 1 along which the
system has an axial symmetry. For h � jhj< 2j, the sys-
tem is gapless and can be viewed as a Luttinger liquid of
magnons, whose dimensionless compressibility K [4]
varies between 1 (a dilute magnon gas near the fully
magnetized state) and 1=2 (a dense magnon fluid at low
magnetization) [18].

To discuss the physics away from the Heisenberg point,
it is convenient to make a global rotation in the xz plane,
defining a new quantization axis z0 aligned with the total
field h. When � � 1, this rotation generates new terms in
the Hamiltonian. The nature of the phase transitions be-
comes particularly transparent in the vicinity of the tricrit-
ical points R and R0 located at � � 1, h � �2j, where the
system can be described as a dilute magnon gas. Then the
main effect is the lowering of the axial symmetry by a weak
anisotropy induced in the x0y plane,

 �
X
j

��x
0

j �
x0
j�1 � �

y
j�

y
j�1� �

�
2

X
j

���j �
�
j�1 � �

�
j �

�
j�1�;

(6)

where �� ��� 1�h2
x=8j. The magnon Luttinger liquid

becomes gapped by developing a staggered magnetization
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FIG. 3 (color online). (a) Uniform magnetizations of neighbor-
ing rungs (mz

0� and mz
1�) and average (m) in the upper Ising

phase and (b) staggered magnetizations mx
0� and mx

1�. Solid
lines: variational approach; symbols and dotted lines: DMRG for
58 sites; shaded area: plateau phase when D � 0.

0.6 0.8 1 1.2 1.4 1.6
H/J

0

0.2

0.4

0.6

0.8

1

m
x
−

m
y
−

m
z
+

JX=0
J||=0.2J
D=0.02J

FIG. 4 (color online). Magnetizations in the lower Ising phase.
Solid lines: variational approach; symbols and dotted lines:
DMRG for 80 sites.
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along y if �< 1 (breaking T�xy [19]) or along x0 if �> 1
(breaking T�xz [19]), see Fig. 5. The anisotropy (6) repre-
sents a pairing field for the magnons. From the scaling
dimension of the pairing operator we infer that the energy
gap in the magnon spectrum should scale as Eg / j�j� with
a nonuniversal exponent � � K=�2K � 1�.

The global rotation also generates a 3-body term [16],

 

��� 1�hx
4

X
j

���j � �
�
j ���

�
j�1�

�
j�1 � �

�
j�1�

�
j�1�: (7)

which has only a minor effect on the physics near the
critical line separating the Ising phases. While low-energy
magnons live near lattice momentum �, this term creates
1- and 3-magnon states with a total momentum 0, which
are thus high-energy excitations. Therefore the 3-body
term does not affect the low-energy physics to the first
order. In the second order it generates 2- and 4-magnon
terms that simply renormalize the magnon velocity, com-
pressibility K, and pairing field � but do not change the
physics qualitatively. The existence of two distinct ordered
phases is confirmed by an exact solution on a special line in
the phase diagram where the mean-field approach yields
the correct result [16]. The Heisenberg line � � 1 is
guaranteed to be critical by the O(2) symmetry.

To summarize, we have shown that even a weak DM
interaction can substantially alter the phase diagram of
ladders, provided that it competes with exchange. For
strongly frustrated ladders, the phase with a broken trans-
lational symmetry expands to include the incommensurate
regions surrounding the fractional plateau, while for un-
frustrated and weakly frustrated ladders, the gapless phase
undergoes an Ising transition that also breaks translation,
but with a different symmetry. Beyond ladders, we expect
to find similar effects in higher dimensional models of
coupled spin-1=2 dimers, whenever DM and exchange

compete. In fact, the broken translational symmetry above
the 1=8 plateau of SrCu2�BO3�2 might be an example of the
frustrated case, and the ordered intermediate phase of
Cu2�C5H12N2�2Cl4 of the unfrustrated one. However, tak-
ing into account the specific (and complex) geometries of
these systems is necessary to go beyond these qualitative
observations.
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J.-B. Fouet, S. Miyahara, F. Mila, B. Chiari, and O.
Piovesana, Phys. Rev. Lett. 97, 167204 (2006).

[11] M. Sato and M. Oshikawa, Phys. Rev. B 69, 054406
(2004).

[12] S. Miyahara, J.-B. Fouet, S. R. Manmana, R. M. Noack,
H. Mayaffre, I. Sheikin, C. Berthier, and F. Mila, Phys.
Rev. B 75, 184402 (2007).

[13] J.-B. Fouet, F. Mila, D. Clarke, H. Youk, O. Tchernyshyov,
P. Fendley, and R. M. Noack, Phys. Rev. B 73, 214405
(2006). Note that in this reference, the DM vector is taken
to alternate from one rung to the other, so that the weakly
frustrated regime corresponds to weak diagonal interac-
tions.

[14] T. Momoi and K. Totsuka, Phys. Rev. B 62, 15 067 (2000).
[15] M. Oshikawa and I. Affleck, Phys. Rev. B 65, 134410

(2002).
[16] A. A. Ovchinnikov, D. V. Dmitriev, V. Y. Krivnov, and

V. O. Cheranovskii, Phys. Rev. B 68, 214406 (2003);
D. V. Dmitriev and V. Y. Krivnov, Phys. Rev. B 70,
144414 (2004).

[17] J.-S. Caux, F. H. L. Essler, and U. Löw, Phys. Rev. B 68,
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