Abstract

- We investigate how Geometric Deep Learning can be applied to Fluid flow simulations.
- We propose an end-to-end differentiable architecture that allow object-to-mesh predictions of fluid simulations.
- We provide comparisons with a baseline and visual results on three datasets:
 - Airfoils
 - Backward Facing Step
 - Fixed-wing drones
- Applications range from the initialization of iterative numerical solvers and smart mesh initialization to engineering design and the animation industry.

Theory on Graph Convolutions

- In “standard” convolutions (i.e. on euclidean domains) the discrete convolution of a signal by a finite support filter g is given by:

 $$ (f * g)[n] = \sum_{m=-M}^{M} f[n-m]g[m] $$

- One possible generalization to non-euclidean domain presented in [1] consists in extracting a local patch of data $D_j(x)$:

 $$ D_j(x) = \int f(x') v_j(x,x') dx' , \quad j = 1, ..., J $$

 where the v_j are suitably chosen weighting functions such as gaussians

 $$ v_j(u) = \exp \left(-\frac{1}{2} (u - \mu_j)^T \Sigma^{-1} (u - \mu_j) \right) $$

 with learnable mean and covariance matrix. The convolution is then defined as

 $$ (f \ast g)(x) = \sum_j g_j(x) f $$

Datasets

- Shapes were given (Airfoils & drone) or automatically generated using gmsh (Backward Facing Step).
- The data has been created by running Computational Fluid Dynamics simulation using OpenFOAM which uses the Finite Volume Method. We solved Reynolds Averaged Navier-Stokes equations with turbulence models $k-\epsilon$ and $k-\omega$.

Representations

The architecture we propose combines the positive aspects of 3 representations of 3D objects: Voxelisation, Point Clouds, Meshes.

- **Voxels**
- **Pointcloud**
- **Mesh**

Backward Facing Step

Predictions on a backward facing step with different steps and viscosity. The three main fields are shown: U_x, U_y and Pressure.

Airfoils

Using the same model it is possible to predict any field of interest — here the turbulent viscosity ν^t.

Drones

Prediction and groundtruth of fields (U_x, U_y, U_z, Pressure) on the drone dataset, in which we can see the artifacts of a projection error.

What about the recirculation zone?

The quality of the recirculation zone can give us a hint about the understanding of the underlying physical phenomena.

The vortex is globally similar but we can see some discrepancies due to the non-conservation of mass. For more "physical" predictions, the conservation of mass could be enforced in the model.

Acknowledgement & References

We rely on previous work by Baqué et al. [2] and its continuation by EPFL’s DeepShape project. We build on top of their code base for geometric Deep Learning. We thank Neural Concept for collaboration and Pierre Baqué & Michaël Defferrard for their magnificent support.
