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Abstract—In modern power systems, the Rate-of-Change-of-
Frequency (ROCOF) may be largely employed in Wide Area
Monitoring, Protection and Control (WAMPAC) applications.
However, a standard approach towards ROCOF measurements
is still missing. In this paper, we investigate the feasibility of
Phasor Measurement Units (PMUs) deployment in ROCOF-
based applications, with a specific focus on Under-Frequency
Load-Shedding (UFLS). For this analysis, we select three state-
of-the-art window-based synchrophasor estimation algorithms
and compare different signal models, ROCOF estimation
techniques and window lengths in datasets inspired by real-world
acquisitions. In this sense, we are able to carry out a sensitivity
analysis of the behavior of a PMU-based UFLS control scheme.
Based on the proposed results, PMUs prove to be accurate
ROCOF meters, as long as the harmonic and inter-harmonic
distortion within the measurement pass-bandwidth is scarce. In
the presence of transient events, the synchrophasor model looses
its appropriateness as the signal energy spreads over the entire
spectrum and cannot be approximated as a sequence of narrow-
band components. Finally, we validate the actual feasibility of
PMU-based UFLS in a real-time simulated scenario where we
compare two different ROCOF estimation techniques with a
frequency-based control scheme and we show their impact on
the successful grid restoration.

Index Terms—Rate of Change of Frequency (ROCOF), Phasor
Measurement Units (PMUs), Taylor-Fourier, interpolated DFT,
Wide Area Monitoring Protection and Control (WAMPAC)

I. INTRODUCTION

In modern power systems, the frequency first time-derivative
associated to the signal fundamental component, also referred
to as Rate-of-Change-of-Frequency (ROCOF), may be largely
employed in Wide Area Monitoring, Protection and Control
(WAMPAC) applications, like load shedding [1], islanding
detection [2], and distributed generation control [3]. However,
a standard approach towards ROCOF measurement is still
missing: most applications adopt estimation algorithms and
signal models designed ad hoc to suitably meet the operating
conditions and requirements [4].

The recent literature has been considering the adoption
of Phasor Measurement Units (PMUs) in ROCOF-based
applications because of two main advantages. First, PMUs
are able to perform ROCOF measurements characterized by
fast reporting rates and responsiveness [5], as well as strict
accuracy limits. In this regard, in compliance with the IEEE
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Std. C.37.118.1 (IEEE Std), PMUs are expected to provide an
updated ROCOF estimate at reporting rates of tens of frames
per second (fps), limiting the uncertainty level to 0.01 Hz/s in
steady-state conditions, 6 Hz/s in the presence of harmonic
distortion, and 3 Hz/s in dynamic conditions [6]. Second,
PMUs allow for a distributed measurement infrastructure that
provides a grid-state awareness by means of synchronous
monitoring of voltage and current phasors in different grid
nodes [7]–[9].

Based on the adopted synchrophasor estimation technique,
it is possible to identify four main PMU algorithmic classes:
demodulation, window-based, time-domain, and recursive
filtering [10]. In particular, for the sake of applicability and of
replicability of results, we focus on window-based algorithms,
that divide the signal into partially overlapped finite-length
segments and consider their spectral representation by
computing the Discrete Fourier Transform (DFT). In this
context, many factors limit the actual accuracy of ROCOF
estimates, as provided by PMUs. First, the IEEE Std models
the signal fundamental component through a synchrophasor
representation in the frequency domain: the signal DFT can
be approximated by a term associated to the fundamental
component, plus a restricted set of coefficients associated to
eventual harmonic or inter-harmonic contributions. However,
this finite-spectrum model cannot account for rapid variations
of signal parameters with a satisfying level of accuracy [11].
In this case, a parametric ROCOF estimation (as provided
by window-based techniques) becomes model-dependent and
cannot be considered as a unique property of the signal [12].

Second, current synchrophasor- and ROCOF-based
applications should comply with different requirements in
terms of update rate and measurement reliability. Typically,
PMUs consider reduced window lengths to keep the reporting
latency within some tens of milliseconds, whereas ROCOF-
based relays adopt longer windows [2]. It is worth pointing
out that PMUs instead do not employ averaging to limit
the uncertainty contributions due to measurement noise
[13], unbalance [14], and signal distortion [15]. Based on
these considerations, the recent IEEE Std amendment has
significantly relaxed ROCOF error (RFE) requirements:
the harmonic distortion test has been suspended for class
M, whereas the class P limit has been relaxed up to 0.4
Hz/s [16]. In practice, though, such uncertainty level makes
ROCOF estimates totally unreliable and, thus, useless for
the aforementioned applications [17]. In this regard, it is
interesting to consider that real-world WAMPAC applications
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might deal with sudden variations and ROCOF values largely
exceeding the IEEE Std limits [18].

In a previous publication [19], we compared the ROCOF
estimation accuracy as provided by three window-based
algorithms [20]–[22] taken from the recent synchrophasor
estimation literature. In this context, we evaluated how
static and dynamic signal models represent plausible time-
varying ROCOF trends, inspired from real experimental
acquisitions. This paper further evaluates how different
ROCOF computation techniques can influence the actual
uncertainty of ROCOF measurements. Indeed, since PMU-
based measurements prove to be signal model-dependent, it is
necessary to carry out a sensitivity analysis, which takes into
account non only the algorithm parameters, but the cumulative
non-linear effect of synchrophasor estimation, as function of
the network dynamic response and adopted control scheme. As
a consequence, for this analysis, we do not reproduce the static
and dynamic test conditions defined in IEEE Std, but realistic
operating conditions, inspired by real-world networks, like the
frequency excursions typical of islanded grids (e.g. Hydro-
Quebec grid [29]), the effect of large inter-area oscillations in
the Pan-Europe transmission network [30], and the islanding
maneuver of an active distribution network characterized by
reduced inertia [31]. It is worth to point that the two last
datasets were already considered in [19], whereas the first one
was specifically synthesized for the present publication.

As an extension of the above-mentioned research, this paper
further investigates the feasibility of PMU-based ROCOF
measurement in a real-world operating scenario, i.e. an
Under-Frequency Load-Shedding (UFLS) application [17].
In reduced-inertia power systems, UFLS techniques allow
for minimizing the risk of uncontrolled separation, loss of
generation, or shutdown, when the energy demand exceeds
what the primary power source can supply [23]. Traditionally,
the amount and the sequence of loads to be shed is
determined based only on frequency measurements [24]–[26].
Nevertheless, recent literature has suggested the adoption
of ROCOF-based relays to guarantee a prompter and more
effective response in the presence of fast variations [27],
[28]. In that sense, the simulation platform presented in [17],
representing a ROCOF-based UFLS plan, can be regarded as a
benchmark for testing the effectiveness of ROCOF estimations
in power systems applications.

In this regard, we also present a real-time simulation of
an UFLS scheme, where we employ both static and dynamic
model-based PMUs, and we compare them with a traditional
frequency-based control scheme. The obtained results confirm
how ROCOF-based relays might represent an effective solution
for a successful grid restoration.

The paper is organized as follows. In Section II, we
introduce the processing approach of current ROCOF-
based relays and the comparison with PMU-based ROCOF
measurements. Section III briefly describes the three
synchrophasor estimation algorithms and presents the
considered ROCOF estimation techniques. In Section IV,
we introduce the parameters of the numerically simulated
scenarios: we characterize the algorithms’ performance (in
terms of RFE) in three different datasets, inspired by real-
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Fig. 1. Block scheme of the typical operational sequence of a ROCOF relay
employed in power system applications [34].

world experimental acquisitions. Section V presents a real-
time simulated scenario of an UFLS application relying on
PMU-based ROCOF measurements. Finally, in Section VI we
provide some closing remarks.

II. ROCOF-BASED RELAY

In this Section, we briefly describe the traditional approach
towards ROCOF measurement, as implemented by most
modern ROCOF-based relays [23].

In the context of transmission networks, Fig. 1 represents
the main processing stages of a generic control scheme based
on the ROCOF estimates [34]:

• first, we extract the fundamental frequency information.
Typically, this stage employs an extended window length,
in the order of seconds, in order to optimize the frequency
resolution and estimation accuracy;

• then, we compute ROCOF as the first-order time-
derivative of frequency, typically implemented as
the incremental ratio between consecutive frequency
estimates;

• a low-pass filtering stage allows for removing fast
ROCOF dynamics and thus providing a smoother trend.
In general, we apply a moving average filter, whose
window length has to be suitably scaled based on the
expected variation range and bandwidth of ROCOF
estimates;

• finally, we compare the obtained measurements with
given threshold levels (based on the specific network
inertia properties), whose excess produces the control
action to be activated.

Typically, ROCOF relay performance is characterized in
terms of measurement resolution and detection time [32].
In this sense, the adoption of extended window lengths
and averaging filters might improve the ROCOF estimation,
but significantly deteriorate the responsiveness. In the time-
sensitive scenario of ROCOF-based applications [33], PMUs
might represent a promising measurement infrastructure to
provide synchronized estimates, with high estimation accuracy
and low reporting latency.

Indeed, in a PMU-based measurement scenario, the IEEE
Std requirements affect or even prevent the implementation
of the same processing procedure. First of all, the limitations
in terms of reporting latency make difficult to perform the
frequency (and ROCOF) estimation over window length that
exceed three and five nominal cycles, i.e. 60 and 100 ms at
50 Hz, for P- and M-class, respectively [6].
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As regards the estimation accuracy, the IEEE Std requires
RFE to not exceed 0.01 Hz/s in steady-state conditions, and
6 Hz/s in the presence of harmonic distortion [6], [16].
However, in order to apply ROCOF measurements in real-
world scenarios, we need a metering infrastructure more
resilient against interfering components and characterized by
a wider dynamic range. In other words, the PMU should be
able to provide reduced RFE independently from the variation
speed of the fundamental frequency or the distortion level [35].

Furthermore, the PMU relies on the synchrophasor signal
model, that assumes the fundamental component to be
approximated by a narrow-band spectral component. During
transient events, though, the power signal is characterized
by a continuous spectrum, and an analysis limited to the
PMU pass-bandwidth provides only a partial and inconsistent
representation of the grid state1. For this reason, it is
reasonable to say that PMU-based measurements are not
reliable in the correspondence of sudden amplitude or phase
changes, like islanding or fault events [36].

It should also be noticed that PMUs are metering
devices specifically designed to produce frequently updated
measurements with a reporting rate in the order of tens fps.
Typically, they consider short window lengths and they do not
apply any moving average compensation. As a consequence,
PMU estimates account for the quasi-instantaneous voltage
and current variations, but their accuracy tends to deteriorate
in the presence of dynamic trends or disturbances.

III. SELECTED ROCOF ESTIMATION ALGORITHMS

The IEEE Std refers to synchrophasor measurements in
power systems, and introduces the accuracy and latency
requirements for PMUs in terms of synchrophasor, frequency
and ROCOF estimation. In this regard, ROCOF is defined as
the estimated frequency first derivative associated to the signal
fundamental component. In the IEEE Std Annex C, two signal
processing models are presented as the reference estimation
methods for class M and P, respectively. Both classes compute
ROCOF as the incremental ratio between two consecutive
frequency estimates [6].

In this paper, we compare the accuracy and reliability
provided by four different ROCOF estimation techniques,
based on three consolidated state-of-the-art algorithms, namely
the Compressive Sensing-based Taylor-Fourier Model (cs-
TFM) [20], the Enhanced Interpolated DFT (e-IpDFT)
[21], and the Iterative Interpolated DFT (i-IpDFT) [22].
The proposed analysis enables us to evaluate the ROCOF
estimates’ dependence from the algorithm parameters, like the
adopted signal model and window length.

It is worth noticing that the selected algorithms are
representative of window-based approaches relying on static
and dynamic synchrophasor formulations. On one side, cs-
TFM relies on a dynamic signal model that accounts also
for the frequency first time-derivative, and is thus capable to
estimate ROCOF along with the other fundamental component
parameters, i.e. amplitude, initial phase and frequency. On the

1If the signal under investigation cannot be even approximated as periodic
and band-limited, even the Fourier series representation looses its significance.

other side, both IpDFT approaches rely on a static signal
model, and exploit interpolation techniques to enhance the
frequency resolution and reduce spectral leakage effects. In
particular, e-IpDFT algorithm applies an iterative routine to
mitigate the long-range spectral leakage due to the image of
the fundamental component at the negative frequency, whereas
i-IpDFT attempts to compensate also the short-range spectral
leakage caused by harmonic or inter-harmonic components.

Static estimation techniques, like e-IpDFT and i-IpDFT, can
compute ROCOF only as the incremental ratio between two
consecutive frequency estimates. It is thus reasonable to expect
that the ROCOF estimates are partially delayed and smoothed
depending on the adopted reporting period. Conversely, the
dynamic estimation techniques, like cs-TFM, enable us to
directly compute the instantaneous ROCOF, but it is still
possible to apply also the finite difference formulation, in
coherence with the static estimation techniques. The adoption
of a dynamic signal model allows for tracking possible time-
varying trends, but at the same time suffers from higher
sensitivity to uncompensated disturbances [37], [38].

IV. ROCOF ERROR ANALYSIS

In this Section, we characterize the estimation accuracy of
the considered algorithms in three datasets, that reproduce
realistic operating scenarios. For this analysis, we consider
waveforms inspired by real-world experimental acquisitions,
rather than IEEE Std test conditions, as available in [20]–[22].

In theory, it is possible to interpret any synchrophasor
estimation algorithm as a generic unbiased estimator. In this
sense, it is possible to define the expected accuracy limits in
the presence of uncertainty contributions, like measurement
noise or phase unbalance. As regards the measurement
noise, the worst-case RFE depends on the Equivalent Noise
Bandwidth (ENBW) of the adopted window [13]. Similarly,
as regards the phase unbalance, the ROCOF estimation
accuracy depends on the algorithm capability of identifying
and mitigating the equivalent harmonic disturbances [14].
By considering these uncertainty sources as separate and
independent contributions, the dynamic estimation techniques
are proven to outperform the static counterparts. In this paper,
instead, we carry out a performance assessment in real-world
operating conditions, where several non-linear effects are
mixed together, like distortion and inter-modulation effects,
network dynamic behavior and control schemes.

For this analysis, we numerically simulate in Matlab a
plausible synchrophasor estimation context, with sampling
frequency and reporting rate equal to 5 kHz and 50 fps,
respectively. Given a nominal system frequency of 50 Hz,
we consider two window lengths, namely 60 and 100
ms, as representative of protection and measurement PMU
application classes. In particular, the three-cycle window
proves to be compliant with class P requirements in terms
of reporting latency2, whereas longer window lengths are
typically associated to M-class applications.

2PMU estimates are typically referred to the observation interval midpoint.
Therefore, in order to meet the P-class latency requirement of 40 ms, the
window length cannot exceed four nominal cycles, i.e. 80 ms.
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The M-class configuration is expected to outperform the
P-class counterpart in terms of estimation accuracy, as a
longer window length corresponds to an enhanced frequency
resolution. Nevertheless, we include also P-class configuration
in this analysis in order to assess whether UFLS application
might benefit from their faster response in relay’s operation.

For each dataset, we characterize the RFEs provided by both
static (e-IpDFT, i-IpDFT) and dynamic (cs-TFM) approaches.
In this last case, we compare the results obtained with
derivative and finite-difference formulations, in order to assess
which one provides the most reliable ROCOF estimation.

The proposed analysis provides a statistical description
of the considered algorithms’ estimation accuracy. For this
reason, we compute the RFE cumulative distribution function
(CDF) and we characterize it in terms of mean value, standard
deviation and 95th quantile (as the errors are not normally
distributed). In this way, we are able to determine not only
the estimator worst-case performance, but also its range of
variability. In the presence of small ROCOF variations, though,
a reduced RFE is not sufficient to guarantee a sufficient
resolution capability. As a consequence, we compute also
the Pearson’s correlation coefficient between the estimated
and ground-truth values. In this way, we assess whether the
estimation technique operates as a linear predictor and the
ROCOF estimates preserve the original information content.

a) Dataset I: The first dataset has been inspired by a
real-world operating scenario: the Hydro-Québec grid [24].
In fact, this grid represents a significant test-bench for
evaluating the robustness and accuracy of the synchrophasor
estimation algorithms and ROCOF-based applications as it
presents many technical and processing challenges [35]. In
particular, the Hydro-Québec grid is characterized by large
frequency excursions and affected by several harmonic and
inter-harmonic interferences (further details in [29]).

Based on the signal model proposed in [39], we design
a test waveform that presents a realistic variation trend of
the fundamental frequency and ROCOF3. As shown in Fig.
2(a), in the time-domain the waveform is characterized by
a significant distortion level with THD and SINAD equal to
11.18% and 16.94 dB, respectively, as result of the interference
components visible in the spectral representation of Fig. 2(b).

In this case, we define the test waveform as the combination
of a steady-state fundamental component with different kinds
of disturbances, whose harmonic indexes and normalized
amplitudes are reported in Table I.

It is worth noticing that the fundamental tone is surrounded
by two asymmetrical inter-modulation components, that differ
in terms of normalized amplitude and deviation with respect to
the system frequency. Since these three components lay within
the fundamental range [45, 55] Hz, it is reasonable to expect
that the PMU cannot distinguish them as separate tones, but
only measure their combined contribution [40]. In this regard,
Fig. 3(a) presents the instantaneous frequency associated to
the sum of fundamental and inter-modulation components. In

3For the sake of consistency with the other datasets, we consider a system
frequency of 50 Hz, and we accordingly scale the inter-harmonic and inter-
modulation component frequencies. Comparable results can be obtained in
the original Hydro-Québec scenario, where the system frequency is 60 Hz.
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Fig. 2. Representation of the simulated test waveform in time- and frequency-
domain in (a) and (b), respectively. The measurement noise is reproduced by
an uncorrelated white Gaussian variable, such that SNR is equal to 60 dB.

TABLE I
DATASET I: WAVEFORM COMPONENTS PARAMETERS

Component Harm. Index Norm. Amplitude

fundamental 1 1

inter-modulation 0.936 0.01
1.082 0.005

harmonics from 2 to 6 0.05
from 7 to 10 0.02

inter-harmonic 1.625 0.075

sub-harmonic 0.243 0.02

fact, given the cosine sum formula, we are able to define the
instantaneous frequency at each sampling time, i.e. at each
200 µs. Coherently with the adopted reporting rate of 50 fps,
we define the corresponding ground-truth of ROCOF value
as the incremental ratio between two consecutive frequency
estimates at intervals of 20 ms.
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Fig. 3. In (a), the ground-truth frequency associated to the signal fundamental
component. In (b), the corresponding ROCOF defined as finite-difference
derivative of two consecutive estimates at intervals of 20 ms.
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In addition, the fundamental tone is also affected by narrow-
band disturbances, namely nine harmonics (up to 500 Hz),
an inter-harmonic at 81.25 Hz, and a sub-harmonic at 12.15
Hz. In this case, the spectral components are located outside
the PMU pass-bandwidth [25, 75] Hz, and thus the PMU is
expected to reject their injections in its final ROCOF estimates.

Finally, in order to model the measurement uncertainty, we
corrupt the test waveform with an additive and uncorrelated
white Gaussian noise, characterized by a SNR of 60 dB, that
corresponds to a resolution of nearly 10 bits.

In summary, the simulated scenario presents two main
challenges in terms of ROCOF measurements. First, the
ground-truth ROCOF exhibits fast and irregular oscillations
within a rather wide variation range, i.e. ±1.5 Hz/s. Second,
the estimation of fundamental component parameters is
affected by the spectral leakage caused by harmonic, sub-
and inter-harmonic components. For this reason, the adopted
signal model can be considered as a representative test-bench
for ROCOF estimation techniques, even if it neglects some
features of the original Hydro-Québec grid.

For this analysis, we consider a waveform duration of
5 s. Given a reporting rate of 50 fps, the P- and M-
class configurations produce 248 and 246 ROCOF estimates,
respectively. By comparing the estimated values with the
previously defined ROCOF ground-truth, we are able to
determine the estimation error RFE and infer its statistical
properties. In this regard, since we do not know a priori the
RFE statistical distribution, we compare the error CDFs as
provided by each estimation technique.

In Fig. 4 we consider the error CDFs associated to the P-
class configuration for static (a) and dynamic (b) approaches.
In the static case, both algorithms do not succeed in rejecting
the spectral leakage effects from interfering tones. Indeed, the
harmonic and interharmonic content is so severe that the DFT
bins related to the fundamental tone are largely biased [22].
As a result, the maximum RFE is limited to 11 and 6 Hz/s for
e-IpDFT and i-IpDFT, respectively, i.e. it exceeds the expected
variation range by almost one order of magnitude. In the
dynamic case, instead, the performance is rather independent
from the adopted ROCOF formulation (either finite difference
or derivative). However, the obtained RFEs still exceed 1 Hz/s.

Besides providing the statistical representation
characteristics by means of CDF, we also synthetically
present the error distribution parameters in Table II, in terms
of error mean, standard deviation, and 95-th percentile. In
addition, we compute also the Pearson’s correlation index
between estimated and ground-truth ROCOF, that is limited
to just 2.64% for P-class best case. As a consequence, even if
cs-TFM approaches guarantee a performance enhancement in
terms of maximum error, the corresponding estimates do not
provide any information regarding the ground-truth ROCOF.

Fig. 5 represents the error CDFs associated to the
M-class configuration for static (a) and dynamic (b)
approaches. The increased window length corresponds to
an enhanced frequency resolution and a reduced spectral
leakage. Accordingly, it is reasonable to expect a significant
improvement for all the considered estimation techniques.

In the upper graph, the i-IpDFT mitigates the injections
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Fig. 4. Given a window length of 60 ms (P-class configuration), comparison
of the cumulative distribution functions associated to the RFEs as produced
by static (a) and dynamic model-based algorithms (b).

TABLE II
DATASET I: RFE STATISTICAL PROPERTIES

Estimator Class Mean Std Dev 95% Corr

e-IpDFT P -2.45·10−2 6.76 10.51 0.77%
M 6.25·10−4 0.89 2.03 50.31%

i-IpDFT P -1.90·10−2 2.63 5.59 2.22%
M 1.73·10−4 0.28 0.57 88.78%

cs-TFM P -2.10·10−3 0.52 1.12 2.60%
(fin) M 2.92·10−4 0.15 0.38 96.29%

cs-TFM P -1.51·10−1 0.48 1.11 2.64%
(der) M 1.20·10−2 0.21 0.56 92.59%

from sub- and inter-harmonic disturbances, and thus reduces
the error range up to ±0.7 Hz/s. Conversely, e-IpDFT
compensates only the leakage contribution of the fundamental
image at negative frequency. As a results, the corresponding
maximum estimation error still exceeds 2.1 Hz/s.

In the lower graph, instead, the cs-TFM dynamic model
allows for a more accurate tracking of the ROCOF time-
varying trend, with an error range limited to ±0.5 Hz/s. It
is also worth noticing that the finite difference formulation
provides a further performance enhancement since its inherent
smoothing effect limits the spurious oscillations induced by the
interfering components, whereas the derivative formulation is
more easily affected by uncompensated disturbances.

Similar considerations hold also for the correlation index
between estimated and ground-truth values. Among the
static approaches, the i-IpDFT outperforms the e-IpDFT and
achieves a correlation of 88.78% thanks to the mitigation
of spectral leakage due to out-of-band interferences. On the
other hand, the dynamic approaches provide a nearly optimal
result, with a correlation exceeding 96% for both formulations.
Accordingly, it is reasonable to say that the dynamic signal
model allows for better tracking the ROCOF time-varying
trend. In more detail, the best performance is provided by
the finite difference formulation, as it partially filters out the
residual spurious injections from the interfering components.
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Fig. 5. Given a window length of 100 ms (M-class configuration), comparison
of the cumulative distribution functions associated to the RFEs as produced
by static (a) and dynamic model-based algorithms (b).

b) Dataset II: The second dataset refers to a real-world
network event, recorded on December 1, 2016, when an
unexpected opening of a line in the French transmission
network caused an inter-area oscillation in the Continental
Europe electricity system [30]. In particular, the test waveform
derives from the estimates of a PMU employed by the grid
operator of the city of Lausanne, i.e. Services industriels de
Lausanne (SiL). Further details are available in [41].

Based on PMU estimates of fundamental frequency,
amplitude and initial phase, we can recover the time-domain
waveform as sampled at 5 kHz, through the approach
described in [42]. Since the acquired signal is affected by
simultaneous dynamic trends, PMU estimates might exhibit
abrupt changes that produce amplitude and phase steps
in the recovered waveform. Furthermore, the fundamental
component parameters are updated every 20 ms, in accordance
with the PMU reporting rate of 50 fps.

In order to obtain a smoother and more realistic trend, we
develop a non-linear model that reproduce the acquired signal
fluctuations through the combined effect of test conditions
provided by IEEE Std, and is defined as follows:

y(t) = A · (1 + kA · cos(2πfAt)) · (1)
cos(2πft+ ϕ+ kϕ · cos(2πfϕt) +Rf t

2)

The non-linear model parameters are summarized in Tab. III.
We approximate amplitude and phase fluctuations through
modulation terms compliant with IEEE Std measurement
bandwidth test. In particular, the amplitude modulation term
is characterized by a depth kA and frequency fA, equal to
13.6% and 153.1 mHz, respectively. In a similar way, the phase
modulation term is characterized by a depth kϕ and frequency
fϕ, equal to 56.4 mrad and 152.6 mHz.

Frequency increasing and decreasing trends are modeled as
a sequence of positive and negative linear ramps compliant
with IEEE Std frequency ramp test. For the sake of
completeness, Tab. IV reports the time-duration of each
waveform segment, and the corresponding ramp parameter
Rf , whose value varies within the restricted range [-2.30,
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Fig. 6. In (a), comparison between frequency raw measurement and
the corresponding nonlinear fitted model, related to the large inter-area
oscillation event reported in [30]. In (b), discrepancy between fitted model
and measurement.

TABLE III
DATASET II: NON-LINEAR FIT MODEL PARAMETERS

A f ϕ kA fA kϕ fϕ
[kV] [Hz] [rad] [%] [mHz] [mrad] [mHz]

71.45 50.02 -1.80 13.6 153.1 56.4 152.6

2.55] mHz/s. In this regard, Fig. 6(a) compares the frequency
values measured by the PMU (blue) with the corresponding
non-linear fitted model (red). It is worth noticing that the
proposed approach enables us to limit the discrepancy between
measurement data and mathematical model, and at the same
time to guarantee a smooth trend of fundamental component
(Fig. 6(b)). Finally, we reproduce a more realistic measurement
noise scenario by adding a white Gaussian noise with SNR
equal to 60 dB.

Based on model (1) and parameters of Tab. III, we are able
to define the ground-truth ROCOF at each sampling time. With
respect to this reference value, we thoroughly characterize the
ROCOF estimation accuracy of csTFM, eIpDFT and iIpDFT.

In Fig. 7 we present the error CDFs associated to the P-class
configuration for static (a) and dynamic (b) approaches. It is
interesting to observe that the static approaches as well as the
derivative formulation of cs-TFM provide a nearly coincident
performance, with an estimation error ranging within ±0.2
Hz/s. Conversely, the finite-difference formulation of cs-TFM
enables us to further reduce the maximum estimation error
up to 0.1 Hz/s. As reported in Table V, though, none of
the considered estimation techniques provides a sufficient
correlation with the ground-truth values.

TABLE IV
DATASET II: NON-LINEAR FIT RAMP PARAMETER VALUES

Segment 1 2 3 4 5 6 7

tstart[s] 0 30.5 78.5 98.5 140.5 180.5 204.5
tstop[s] 30.5 78.5 98.5 140.5 180.5 204.5 220.5

Rf [mHz/s] - 2.28 -2.29 -2.05 2.53 -1.42 -
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Fig. 7. Given a window length of 60 ms (P-class configuration), comparison
of the cumulative distribution functions associated to the RFEs as produced
by static (a) and dynamic model-based algorithms (b).

TABLE V
DATASET II: RFE STATISTICAL PROPERTIES

Estimator Class Mean Std Dev 95% Corr

e-IpDFT P 2.51·10−6 0.10 0.24 5.65%
M 2.80·10−6 0.04 0.09 14.58%

i-IpDFT P -4.48·10−6 0.09 0.20 6.80%
M -3.24·10−6 0.03 0.07 18.24%

cs-TFM P 2.07·10−6 0.04 0.09 15.64%
(fin) M -1.68·10−6 0.01 0.03 39.56%

cs-TFM P 9.68·10−5 0.07 0.16 8.38%
(der) M -3.00·10−6 0.02 0.04 29.19%

Fig. 8 represents the error CDFs associated to the
M-class configuration for static (a) and dynamic (b)
approaches. Differently from the previous dataset, the
increased window length does not produce a remarkable
performance enhancement. As regards the static approaches,
the RFE variation range is almost halved, with a maximum
estimation error of 0.1 Hz/s. The dynamic approaches, instead,
provide a similar performance with RFE limited within ±0.05
Hz/s. Once more, the finite difference formulation provides
the most accurate solution, exploiting both the dynamic signal
model and the filter smoothing effect. However, despite this
error reduction, the estimated values prove to be very poorly
correlated with the ground-truth reference (just 39.56% in the
best case).

A motivation could be found in the peculiar variational
trend of the fundamental frequency. Both oscillatory and linear
trends are characterized by time constants in the order of
tens of seconds. The strict requirements in terms of reporting
rate and latency force the PMUs to consider short observation
periods where these phenomena can be hardly discriminated
from steady-state conditions. In this sense, the employment of
canonical PMUs for similar scenarios should probably require
a close analysis of the most suitable estimation approaches,
observation window lengths and reporting rates.

c) Dataset III: The third dataset consists of the
waveforms acquired by an oscilloscope during an intentional
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Fig. 8. Given a window length of 100 ms (M-class configuration), comparison
of the cumulative distribution functions associated to the RFEs as produced
by static (a) and dynamic model-based algorithms (b).
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Fig. 9. In (a), time-domain acquisition in correspondence of the islanding
operation at 14 s. In (b), the corresponding spectrogram expressed in dB.

islanding maneuver of an urban medium voltage power
network, carried out in Imola, Italy, on August 13, 2009
[31]. In this regard, Fig. 9(a) represents the waveform portion
of interest, where the islanding operation occurs around
14 s, whereas Fig. 9(b) shows the spectrogram (i.e. Short
Time Fourier Transform as function of time) computed over
windows of 1024 samples. Before the islanding maneuver,
the signal consists in the fundamental tone only. Once the
operation has started, instead, the signal energy is no more
limited around the fundamental tone, but spreads among over
500 Hz. In such conditions, the nominal PMU pass-band is
exceeded and even the synchrophasor definition, relying on a
finite spectrum assumption, lacks of appropriateness.

In this case, we do not have any direct measurement
or a priori information regarding the frequency reference
value. In order to extract the waveform parameters before and
after the islanding maneuver, we apply the non-linear fitting
routine presented in [42]. Given the signal model of IEEE Std
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TABLE VI
DATASET III: FITTED WAVEFORM PARAMETERS

Segment Amplitude [kV] Frequency [Hz] Phase [rad]

pre-islanding 77.66 50.07 1.032(t < 14 s)

post-islanding 80.14 50.07 0.884(t ≥ 14 s)

SNR = 46.24 dB, THD = 2.31%, SINAD = 33.49 dB

Step change test, we are able to detect a quasi-instantaneous
variation of 3.19% and 0.148 rad for amplitude and phase,
respectively, as given by the waveform parameters reported in
Table VI. In Matlab, we also quantify the noise and distortion
level by computing the SNR, THD and SINAD indexes, that
are equal to 46.24 dB, 2.03% and 33.49 dB, respectively.

Since the adopted signal model does not account for
frequency variations, the corresponding ROCOF reference
value is fixed at 0 Hz/s. In this scenario, the performance
evaluation based only on the RFE assessment does not provide
any information regarding the estimator behavior during
the transient. Therefore, we consider a time-based metric,
introduced and further discussed in [42], i.e. the normalized
root-mean-squared error (nRMSE). At each reporting time,
the synchrophasor estimation algorithms provide an updated
estimate of amplitude, phase, frequency and ROCOF. Based
on this information, we recover the fundamental component
trend in the time domain, and compute the root-mean-squared
error with respect to the sample window considered during
the estimation process. Finally, we normalize the obtained
RMSE by the sample window energy. In this way, the new
metric accounts for the portion of signal energy that has been
neglected or misrepresented by algorithm estimates.

In real test conditions, the nRMSE value depends on many
variables, like the signal model and parameters, the noise
and distortion level, and the algorithm estimation error. As a
consequence, it is not possible to define a universal criterion of
measurement reliability. Nevertheless, in a controlled scenario,
it is possible to characterize the distribution of nRMSE
values in the expected operating conditions and thus set
a suitable threshold for transient detection. In the present
case, based on the parameters reported in Table VI, it is
possible to infer the expected distribution of nRMSE value
before and after the islanding maneuver. In Matlab, we
reproduce a test waveforms with the same model parameters
and distortion levels. Over a test duration of 1 s, we compute
the corresponding nRMSE as provided by the three algorithms.
In Table VII, we report the statistical description of the
nRMSE distribution in terms of mean, standard deviation and
maximum value. It is interesting to observe how these values
nearly coincide with the experimental results. Based on this
preliminary characterization, it is thus possible to suitably
define a detection threshold that is triggered only by large
and unexpected variations.

In Fig. 10(a) we report the ROCOF estimates in three-cycle
configuration, in correspondence of the islanding maneuver.
Fig. 10(b) presents the corresponding normalized nRMSEs

TABLE VII
DATASET III: NRMSE STATISTICAL DISTRIBUTION

Segment Class Mean Std Dev Max
[ppm] [ppm] [ppm]

pre-islanding P 81.94 1.34 85.70
(t < 14 s) M 52.40 0.77 54.31

post-islanding P 48.89 1.35 52.94
(t ≥ 14 s) M 29.98 0.69 32.07
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Fig. 10. In P-class configuration (window length of 60 ms), ROCOF estimates
as measured during the islanding maneuver (a), and estimation uncertainty as
quantified by nRMSE (b).

that can be considered as a measure of algorithms’ reliability.
Both static and dynamic ROCOF estimates exhibit a rapid
and significant increase, up to maximum values around 20
Hz/s. Nevertheless, the similar increase of normalized RMSE
suggests that a significant portion of signal energy has been
neglected or misrepresented, e.g. in the presence of high
distortion levels or transient events. In the latter case, the finite
spectrum assumption is not satisfied and the PMU estimation
accuracy is not guaranteed anymore.

Similar considerations can be made for the five-cycle
configuration in Fig. 11(a). A longer window allows for a more
accurate ROCOF estimation, though still totally unreliable as
shown by the large nRMSE values in Fig. 11(b).

Given the synchrophasor model inconsistency in non-
stationary conditions, it is reasonable to expect high RFE
during transient events. For this reason, many practical
implementation of PMU-based ROCOF meters provide a
blocking scheme that prevents unrealistic ROCOF values to be
propagated to the control schemes. Once detected a transient
event (e.g. by means of a metric similar to nRMSE), one
of the most common solutions consists in fixing the ROCOF
estimate to the last valid value, i.e. to the last estimate before
the event occurrence. In this paper, though, such mechanism
is not implemented as the proposed analysis aims at assessing
the ROCOF estimation accuracy. In this context, the evaluation
of the actual behavior during a transient event might provide
interesting insights for the design and development of more
accurate and robust estimators.
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Fig. 11. In M-class configuration (window length of 100 ms), ROCOF
estimates as measured during the islanding maneuver (a), and estimation
uncertainty as quantified by nRMSE (b).

d) Result discussion: As a performance summary, Table
VIII collects the estimation accuracy limits provided by each
ROCOF estimation technique in the three considered datasets.
In this context, we compare the obtained results with the most
severe requirements of the IEEE Std tests [6], [16] that better
approximate the considered operating scenarios.

As regards the Hydro-Québec grid, the term of comparison
is given by the Harmonic distortion test, whose maximum
RFE is set equal to 0.4 Hz/s for P-class, whereas it is
currently suspended for M-class. Given a window length
of 60 ms, none of the considered algorithm proves to be
compliant with the IEEE Std requirement. Nevertheless, it
should be noticed that the simulated scenario represents a
much more challenging test-bench as it includes several
narrow-band disturbances as well as fundamental time-varying
parameters. In M-class configuration, the increased window
length produces a significant performance enhancement for
the algorithms capable of mitigating out-of-band disturbances
(i-IpDFT) and accounting for dynamic trends (cs-TFM).

The inter-area oscillation is compared to the Frequency
ramp test, that requires RFE not to exceed 0.4 and 0.2 Hz/s
for P- and M-class, respectively. In this case, all the estimation
techniques satisfy these requirements for both window lengths.
As previously discussed, though, the achieved accuracy level
is not sufficient to suitably track the ROCOF long-term
oscillations. Before being deployed in such a scenario, PMUs
are required to improve their resolution power, i.e. their
capability to accurately detect even reduced variations of
ROCOF as typical of normal operating conditions. On the
other hand, it should be noticed that the simulated condition is
further complicated by the additive measurement noise, whose
level is comparable with the quantities to be measured.

For the islanding maneuver, the closest IEEE Std test
condition is the Amplitude or Phase step change. However,
none of these tests define any limit regarding the ROCOF
overshoot, but only a maximum response time equal to 120
and 280 ms for P- and M-class, respectively. Within these
time windows, the PMU-based measurements are allowed to

vary without any correlation with precedent or subsequent
ROCOF values [12]. Indeed, during transient events, the
signal spectrum is continuous and cannot be represented
by the synchrophasor signal model conventionally employed
by window-based techniques. Conversely, the proposed
performance metric, nRMSE, accounts for the amount of
energy that is discarded by the estimated solution. In general, it
can be interpreted as a measure of the estimates reliability, but
it is worth noticing that the entire synchrophasor representation
looses its mathematical consistency during a transient event.

Based on the obtained results, it is possible to infer some
recommendations for PMU-based ROCOF measurements.
First, the employment of a dynamic signal model allows for
a more accurate tracking of time-varying trends, like linear
ramps or oscillations. On the other hand, a direct computation
of the frequency first time-derivative proves to be gravely
affected by spurious injections from measurement noise or
uncompensated disturbances. Therefore, it is preferable to
adopt a finite difference formulation that produces a smoothing
effect on the final ROCOF estimates, at the cost of a slightly
performance deterioration in the presence of transient events.

V. UNDER-FREQUENCY LOAD-SHEDDING APPLICATION

In this Section, we test the actual feasibility of PMU-based
ROCOF measurements by considering a realistic scenario
of Under-Frequency Load-Shedding application [17]. For
this analysis, we adopt the Opal-RT eMEGAsim PowerGrid
Real Time Simulator [43] to implement a suitably modified
dynamic model of the IEEE 39-bus power system [44], that
is extensively illustrated in [17] and displayed in Fig. 13.

The grid consists of 39 buses, 10 conventional generators,
and 19 loads, with a nominal voltage of 345 kV. The inclusion
of 4 wind farms accounts for the effects of large-scale
renewable generation. Both generation and load profiles are
not constant, but inferred from real-world measurements [46].
In order to account for the dynamic behavior of the loads, the
EPRI LOADSYN model has been adopted [47].

In each load bus, we alternatively place a Phase-Locked
Loop (PLL) or two PMUs, in the following referred to as
PMU-1 and PMU-2. In particular, the PLL (as implemented in
the Matlab library [48], according to the block scheme in Fig.
12) is characterized by a proportional and integral gain equal
to 180 and 3200, respectively, PMU-1 is a P-class PMU that
relies on a static signal model, and PMU-2 is a M-class PMU
that is based on a dynamic signal model and computes ROCOF
as the instantaneous time-derivative of frequency. In the real-
time simulation, we develop and compare two different UFLS
schemes: one based on the frequency estimate provided by the
PLL, and the other based on the ROCOF estimates provided by
the PMUs. The frequency-based scheme is directly inferred by
ENTSO-E guidelines [45], whereas the ROCOF-based scheme
has been designed with specific reference to the low-inertia
properties of the simulated grid (further details in [17]).

Within the simulated scenario, we evaluate two operational
aspects. On one side, we investigate whether the employment
of PMU-based ROCOF relays provides a significant
improvement with respect to traditional frequency-based
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TABLE VIII
ROCOF ESTIMATION ACCURACY VS IEEE STD REQUIREMENTS

Performance Test Window e-IpDFT i-IpDFT cs-TFM cs-TFM IEEE Std.
Metric Waveform Length (finite) (finite) (finite) (derivative) Limit

RFE [Hz/s]

Hydro-Quebec class P - 60 ms 10.51 5.59 1.12 1.11 0.4
Power System class M - 100 ms 2.03 0.57 0.38 0.56 suspended

Inter-Area class P - 60 ms 0.24 0.20 0.09 0.16 0.4
Oscillation class M - 100 ms 0.09 0.07 0.03 0.04 0.2

nRMSE [ppm] Islanding class P - 60 ms 263 297 112 146 -
Maneuver class M - 100 ms 161 180 62 84 -

-
+ Kp

Ki +
+

+
+ +
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phase 

estimation 
frequency 
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UFLS 
scheme 

PI LOOP INTEGRATOR

Fig. 12. Block scheme of the adopted PLL-based frequency estimator.

Fig. 13. Simulated network configuration with 10 synchronous generators
(blue circles), 4 wind farms (green circles), and 19 loads (orange arrows).

approaches. On the other side, we experimentally validate
the sensitivity analysis of Section IV. In particular, we assess
whether the performance class (i.e. the window length) and
the signal model (i.e. static or dynamic) affect significantly
the UFLS scheme outcomes.

For this analysis, we simulate the outage of three generators
(G4, G6 and G7) for a total tripped power of 1.5 GW. Fig. 14
presents the corresponding raw voltage waveform as acquired
by the PMUs placed in the node 23. Such a contingency might
result in an unavoidable blackout, in case the UFLS does not
provide an adequate countermeasure in terms of response time
and amount of shed loads. Compared to the frequency-based
solutions, the predictive effect of ROCOF measurements might
allow for a prompt and decisive and response.

The outage occurs at t = 180 s and produces a noticeable
step change that is followed by a long-term oscillating trend
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Fig. 14. Time-domain trend of the voltage waveform acquired by the PMUs
in the node 23 (SNR = 80 dB).

due to the grid inertia properties and the gradual load shedding
and reconnection. In order to model a plausible level of
measurement noise, the acquired waveform is intentionally
corrupted by an additive and uncorrelated white Gaussian
noise (SNR = 80 dB). As a consequence, the ROCOF
estimation techniques face two main challenges: on one side,
the non-stationary conditions with both fast transients and slow
modulations, on the other side, the wide-band additive noise.

Fig. 15 presents the evolution of the control variables for
the considered UFLS schemes in correspondence of the outage
occurrence. In the upper graph, the frequency estimated by the
PLL is characterized by a sequence of dampened oscillations,
whereas the lower graph4 shows the ROCOF estimated by
PMU-1 and PMU-2. In this regard, it is worth observing that
the estimates of the two PMUs differ significantly in terms
of both absolute value and polarity, in confirmation of the
algorithm-dependency of PMU-based ROCOF measurements.

In Fig. 16, instead, we show the active power profile at
load 23 as result of the UFLS schemes based on PLL-
based frequency and PMU-based ROCOF measurements. The
frequency-based control scheme is not able to avoid the
system blackout that occurs already at t = 182 s. Due to
the closed-loop filtering stage, the PLL-based estimates of
frequency prove to be excessively smoothed and delayed. As
a consequence, the amount of shed loads is too limited, the

4It should be noticed that the ROCOF estimates in Fig. 15(b) are discrete-
time, since both PMUs adopt a reporting rate of 50 fps.
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Fig. 16. Power profile at load 23 as result of the UFLS based on
PLL frequency measurements, as well as PMU-1 and PMU-2 ROCOF
measurements in green, red and blue line, respectively. The green circle
identifies the time instant when the entire system collapses due to the
insufficient load-shedding action.

system frequency rapidly decreases, and the protection relays
trip the remaining generators.

On the contrary, both ROCOF-based control schemes are
able to restore the system stability, even if with different
amounts of loads to be shed. In particular, PMU-2 allows for a
more accurate ROCOF estimation and thus for an optimization
of the load shedding scheme (e.g. avoiding unnecessary load
disconnections). If we extend this analysis to the entire grid,
we can characterize the algorithms’ performance in terms of
Expected Energy Not Served (EENS) that is equal to 13.87
and 11.56 MWh for PMU-1 and PMU-2, respectively.

VI. CONCLUSIONS

In this paper, we investigate the feasibility of PMU-
based ROCOF analysis, with specific reference to UFLS
applications. To this end, we compare the estimation accuracy
provided by four algorithms, relying on different signal
models and ROCOF definitions. For this analysis, we consider
two window lengths, namely 60 and 100 ms, representative
of typical P- and M-class applications, respectively, and
we evaluate their performance in numerically simulated

scenarios, inspired by real-world acquisitions. As PMU-based
measurements prove to be algorithm-dependent, a sensitivity
analysis allows for identifying the most suitable modeling
and estimation approach, that guarantees accurate and robust
results even in dynamic operating conditions.

The obtained results have experimentally validated that
synchrophasor estimation algorithms guarantee enhanced
accuracy, as long as the harmonic and inter-harmonic
distortion within the measurement pass-band is reduced.
Another critical condition is represented by transient events,
when the synchrophasor model looses its appropriateness, and
a PMU-based approach towards WAMPAC applications might
become questionable. By contrast, PMUs provide optimal
performance in the presence of slow fluctuations, as typical
of inter-area oscillations.

From this analysis it is possible to deduce some practical
recommendations for PMU-based ROCOF measurements.
These concepts can be directly inferred by the mathematical
formulation of the adopted estimators, but have been rarely
experimentally validated in a power system scenario. In
particular, the employment of a dynamic signal model allows
for a more accurate tracking of time-varying trends, like linear
ramps or oscillations. On the other hand, a direct computation
of the frequency first time-derivative proves to be gravely
affected by spurious injections from measurement noise or
uncompensated disturbances. Therefore, it is preferable to
adopt a finite difference formulation that produces a smoothing
effect on the final ROCOF estimates, at the cost of a slightly
performance deterioration in the presence of transient events.

In the last Section, we evaluate the actual feasibility of
PMU-based ROCOF measurement by simulating a realistic
scenario of UFLS application. As a term of comparison,
we simulate also a more traditional control relying on the
frequency estimate provided by a PLL. Based on the obtained
results, the PMUs prove to be valuable alternatives to current
nadir-based load-shedding relays as they allow for an accurate
and prompt monitoring of the fundamental frequency and
its first-time derivative. The predictive capability of ROCOF
index allows for a more effective and prompt response to
transient events, thus avoiding the occurrence of system
blackouts and leading to a safe load restoration. The obtained
results confirm that the adopted class (P or M) and signal
model (static or dynamic) significantly affect the UFLS
performance. Coherently with the previous analysis, the
combination of M-class configuration and dynamic model
provides the better results (i.e. the minimum EENS).
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