Spherical Convolutional Neural Networks

Empirical analysis of SCNNs

LTS2

Prof. Pierre Vandergheynst Sup. Michaël Defferrard Nathanaël Perraudin

Introduction

- CNNs are very powerful tools in Deep Learning
 - Equivariance to translation

Introduction

- Different symmetries such as rotations
 - \circ Use of sphere S² or SO(3) domain

Sphere representation

Equiangular [2]

Polyhedron [2]

- Iso-latitude
- Same area coverage
- Hierarchical

[5]

Spherical CNNs

- 2D CNNs on planar projection
 - o not desired rotation equivariance

Planar projection [6]

Spherical CNNs

- 2D CNNs on planar projection
 - o not desired rotation equivariance

- Spherical Fourier Transform
 - computationally expensive

Spherical Harmonics [7]

Spherical CNNs

- 2D CNNs on planar projection
 - o not desired rotation equivariance

- Spherical Fourier Transform
 - computationally expensive

Graph CNN

DeepSphere

Advantages

- Similar to standard CNN (computationally efficient)
- Can operate with any graph (flexible)

DeepSphere

Advantages

- Similar to standard CNN (computationally efficient)
- Can operate with any graph (flexible)

Differences

- Almost rotation equivariant (graph construction)
- Equivariant only on S^2 , but invariant to 3rd rotation of SO(3)

Different tasks

- Shape retrieval and classification
 - SHREC17 and ModelNet40

Different tasks

Shape retrieval and classification
SHREC17 and ModelNet40
Global and Dense regression
GHCN-daily, planetarian data

Different tasks

Shape retrieval and classification

SHREC17 and ModelNet40

- Global and Dense regression
 - o GHCN-daily, planetarian data

Climate Pattern Detection

SHREC17

Shape retrieval contest

- 55 classes: [airplane, drawer, lamp, ...]
- Spherical signal → All orientations in 3D

Ray-casting on a sphere

Distance feature

SHREC17 - Results

	performance		size		speed *	
Method	Accuracy	mAP	params	features	inference	training
Cohen s2cnn_simple	78.59	66.5	400k	$2 \cdot 64$	12ms	32h
Esteves sphericalcnn	79.18	68.5	500k	8	$9.8 \mathrm{ms}$	2h52
Deepsphere Optimal	80.42	68.6	190k	4	$1.0 \mathrm{ms}$	48m

local filter 4 to 40 times faster

	performance			
Method	Accuracy	mAP		
Deepsphere Equiangular	79.25	66.5		
Deepsphere <i>HEALPix</i>	80.42	68.6		

^{*} Trained on NVIDIA GTX 1080 Ti

Equiangular

Tested on SHREC17

	performance			
Method	Accuracy	mAP		
Deepsphere Equiangular	79.25	66.5		
Deepsphere <i>HEALPix</i>	80.42	68.6		

SHREC17 - Time evaluation

ModelNet40

• Shape classification - similar to SHREC17

Accuracy	x/x	\mathbf{z}/\mathbf{z}	SO3/SO3	z/SO3
Cohen	85.0	-	5	-
Jiang	90.5	-	-	1.7
Esteves $scnn$	-	88.9	86.9	78.6
DeepSphere	87.8	86.8	86.7	76.9

ModelNet40

Confusion matrix

Logits evolution

GHCN-daily

Non-uniform sampling → prove DeepSphere flexibility

No specific task

GHCN-daily

Dense regression

Find future temperature

order	MSE	MAE	MRE	R2
0	10.88	2.42	83.8	0.896
1	8.91	2.20	75.1	0.906
4	8.20	2.11	73.2	0.919
9	8.38	2.12	73.3	0.915

GHCN-daily

Dense regression

Find future temperature

order	MSE	MAE	MRE	R2
0	10.88	2.42	83.8	0.896
1	8.91	2.20	75.1	0.906
4	8.20	2.11	73.2	0.919
9	8.38	2.12	73.3	0.915

Global regression

Find day in year

Climate Pattern Detection

Segmentation problem

Climate Pattern Detection

Results

Method	BG	ТС	AR	mean	mAP
Mudigonda et al.	97	74	65	78.67	-
Jiang et al.	97	94	93	94.67	-
Cohen et al. (R2R)	97.4	97.9	97.8	97.7	75.9
Deepsphere	97.9	96.0	97.9	97.9	83.6

Conclusion

- Computationally 4 to 40 times faster
- Similar results to the other SCNNs
 - Invariance to 3rd rotation is an unnecessary price to pay
- Sufficiently equivariant to rotation
- Works on any sampling, as long as a graph is built and pooling operation adapted

Thanks for your attention

Questions?

Equivariance to rotation

$$N_{\text{side}} = 32$$

	NR/NR	R/NR	R/R	NR/R
Accuracy	79.57	79.26	79.25	79.82
mAP@N	67.1	67.0	67.5	67.4

New graph

Sampling density

New graph

Sampling density

DeepSphere V2

	old graph	new kernel size	new graph
accuracy	82.23	82.45	82.76

Equiangular

Overfit

	Ø	Regularization	Dropout	DropFilter	Triplet Loss	Data aug.
Accuracy	81.8	80.7	82.4	81.5	82.5	83.4

Bibliography

- Li et al., 2018, Deeply Supervised Rotation Equivariant Network for Lesion Segmentation in Dermoscopy Images
- 2. Perraudin et al., 2018
- 3. http://cmp.felk.cvut.cz/cmp/demos/Omni/omni-ibr/, 14.07.2019
- 4. https://healpix.sourceforge.io/, 14.07.2019
- 5. https://www.machinelearningtutorial.net/2018/01/11/dynamic-routing-between-capsules-a-novel-archit ecture-for-convolutional-neural-networks/
- 6. Cohen et al., 2018
- 7. Starry documentation (rodluger.github.io/starry)