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Introduction

● CNNs are very powerful tools in Deep Learning
○ Equivariance to translation
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Introduction

● Different symmetries such as rotations
○ Use of sphere S2 or SO(3) domain
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Cosmological maps [2] 3D objects Omnidirectional imaging [3]



Sphere representation

HEALPix [4] Equiangular [2] Polyhedron [2]
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● Iso-latitude
● Same area coverage
● Hierarchical



Equivariance
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Example: 
 Segmentation
 Rotation

[5]



Spherical CNNs

● 2D CNNs on planar projection
○ not desired rotation equivariance
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Planar projection [6]



Spherical CNNs

● 2D CNNs on planar projection
○ not desired rotation equivariance

● Spherical Fourier Transform
○ computationally expensive
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Planar projection [6]

Spherical Harmonics [7]



Spherical CNNs

● 2D CNNs on planar projection
○ not desired rotation equivariance

● Spherical Fourier Transform
○ computationally expensive

● Graph CNN
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Planar projection [6]

Spherical Harmonics [7]

Graph of USA



DeepSphere

Advantages

● Similar to standard CNN (computationally efficient)
● Can operate with any graph (flexible) 
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DeepSphere

Advantages

● Similar to standard CNN (computationally efficient)
● Can operate with any graph (flexible)

Differences

● Almost rotation equivariant (graph construction)
● Equivariant only on S2, but invariant to 3rd rotation of SO(3) 
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● Shape retrieval and classification
○ SHREC17 and ModelNet40

Different tasks
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● Shape retrieval and classification
○ SHREC17 and ModelNet40

● Global and Dense regression
○ GHCN-daily, planetarian data

Different tasks
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● Shape retrieval and classification
○ SHREC17 and ModelNet40

● Global and Dense regression
○ GHCN-daily, planetarian data

● Segmentation
○ Climate Pattern Detection

Different tasks
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SHREC17

● Shape retrieval contest

● Spherical signal → All orientations in 3D
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Ray-casting on a sphere

Back

Back

Front

Front

Distance feature

55 classes: [airplane, drawer, lamp, …]



SHREC17 - Results
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4 to 40 times fasterlocal filter



Tested on SHREC17

Equiangular
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SHREC17 - Time evaluation
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ModelNet40

● Shape classification - similar to SHREC17
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Accuracy



ModelNet40
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Confusion matrix Logits evolution



● Non-uniform sampling → prove DeepSphere flexibility

● No specific task

GHCN-daily
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Temperature 
over the globe



Dense regression

GHCN-daily
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Find future temperature



Global regression

GHCN-daily

Dense regression
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Find future temperature Find day in year



Climate Pattern Detection

● Segmentation problem
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Climate Pattern Detection

Results
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Conclusion

● Computationally 4 to 40 times faster

● Similar results to the other SCNNs

○ Invariance to 3rd rotation is an unnecessary price to pay

● Sufficiently equivariant to rotation

● Works on any sampling, as long as a graph is built and pooling operation 
adapted
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Thanks for your attention

Questions?
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Equivariance to rotation

Nside = 32
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New graph

● Sampling density
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New graph

● Sampling density

● DeepSphere V2
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Equiangular
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Overfit

31



Bibliography

1. Li et al., 2018, Deeply Supervised Rotation Equivariant Network for Lesion Segmentation in 
Dermoscopy Images

2. Perraudin et al., 2018
3. http://cmp.felk.cvut.cz/cmp/demos/Omni/omni-ibr/, 14.07.2019
4. https://healpix.sourceforge.io/, 14.07.2019
5. https://www.machinelearningtutorial.net/2018/01/11/dynamic-routing-between-capsules-a-novel-archit

ecture-for-convolutional-neural-networks/
6. Cohen et al., 2018
7. Starry documentation (rodluger.github.io/starry)

32


