Exploiting symmetries (in images) with graph neural networks

Semester Project - Charles Gallay Supervision - Michaël Defferrard & Nathanaël Perraudin

Symmetries everywhere

Data augmentation

Transformation (Rotation of 90 degrees)

Equivariant network [[3, 4, 9, 6, Input Output Relation: Shoifteila fixatures 90 degree [[3, 9, rotation ₫,

Graph Convolution

$$K = \mathbf{Q}$$

$$f * g =$$

$$w_0 n_0 + w_1 \Sigma n_i + w_2 \Sigma n_i$$

Invariance in Graph Convolution

Invariance on the 2d grid

Image as signal on graph

Results

CIFAR-10:

AID:

Symmeties	CIFAR-10	AID
All (2dGrid)	52.9%	70.4%
Vertical	57.8%	-
Vertical+Horizontal	60.5%	67.5%
Horizontal	64.3%	-
None (Directed)	66.6%	68.5%

Conclusion

- Test symmetries present in datasets
- Invariance not always good
- Can we learn symmetries?

Questions

