Exploiting symmetries (in images) with graph neural networks

Semester Project - Charles Gallay
Supervision - Michaël Defferrard \& Nathanaël Perraudin

Symmetries everywhere

Data augmentation

Transformation

(Rotation of 90 degrees)

Equivariant network

Graph Convolution

Invariance in Graph Convolution

[$[0,1,1,0]$,
[1, 0, 0, 1],
[1, 0, 0, 1],
[0, 1, 1, 0]]

$[[0,0,1, \mathbf{Q}]$, [$\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}$], [1, ©, 0, ©], [$\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}]$

Invariance on the 2d grid

Image as signal on graph

Results

CIFAR-10:

AID:

Symmeties	CIFAR-10	AID
All (2dGrid)	52.9%	70.4%
Vertical	57.8%	-
Vertical+Horizontal	60.5%	67.5%
Horizontal	64.3%	-
None (Directed)	66.6%	68.5%

Conclusion

- Test symmetries present in datasets
- Invariance not always good
- Can we learn symmetries?

Questions
?

