XML String Interpolator for Dotty

Semester Project

Yassin Kammoun

EPFL
first.last@epfl.ch

Abstract

XML literals have always been a controversial fea-
ture since introduced in the Scala Language Specifica-
tion. They are nevertheless expected to disappear from
Dotty, a research compiler that will become Scala 3.
XML string interpolation was designated the best can-
didate to replace them. A solution in the form of an
external library is preferred in order to remove XML
from the language specification.

To address this, our project builds XML string in-
terpolation upon Dotty’s principled meta programming
framework. Interpolation is processed at compile-time
using Dotty’s new capability to write macros. Our
transformation relies on the standard Scala XML li-
brary to ensure behaviour equivalence with Scala’s
XML literals, and thus with Scala programs making
use of them.

1. Introduction

The Scala programming language introduced XML Lit-
erals in the very early days of its development. The ra-
tionale behind this decision was the promising future
augured for XML. In that respect, the authors of the
language saw fit to make XML parts of the Scala Lan-
guage Specification.

XML was not as successful as expected, though.
Dotty, a research compiler that will become Scala 3,
decided to replace XML literals with XML string inter-
polation. String interpolation is the process of evaluat-
ing a string literal containing one or more placeholders,
yielding a result in which the placeholders are replaced
with their corresponding values.

It is in this context that we present the implemen-
tation of an XML string interpolator for Dotty. Our
project relies on Dotty’s principled meta programming
- a new framework for staging and for some forms of

macros - to transform interpolated strings within user
code. The implementation provides the very same sup-
port of XML specification as Scala 2 does but with a
few minor differences, essentially related to the inter-
polation syntax.

Section 2 provides background information on the
new macro framework of Dotty. Section 3 introduces
the running example that we use throughout the pa-
per to explain the transformation. Section 4 presents
the implementation of the string interpolator. Section 5
briefly mentions the main related work from which our
project drew on. And section 6 concludes.

2. Background

Dotty comes with principled meta programming, a
new framework for staging and for some forms of
macros [1]. It is expressed as strongly and statically
typed code using two fundamental operations: quota-
tions and splicing. Quotation is expressed as >{...}
for expressions and as ’ [. . .] for types. Splicing is ex-
pressed as ${. . . }. Macros can then be defined through
a combination of inline function, quotation, and splic-
ing. For example, the code below presents an inline
function assert which calls at compile-time a method
assertImpl with a boolean expression tree as argu-
ment. assertImpl evaluates the expression and prints
it again in an error message if it evaluates to false.

import scala.quoted._

inline def assert(expr: => Boolean): Unit =
${ assertlmpl('{ expr }) }

def assertImpl(expr: Expr[Boolean]) = '{
if (! ${ expr }) throw new AssertionError(
s"failed assertion: ${ expr.show }"
)

}

2019/6/19

3. Example

Before introducing the running example that will illus-
trate how our implementation works, it seems appro-
priate to describe how Scala deals with regular string
interpolation. To this end, consider the following code:

val name = " James"
printin(s” Hello, $name™)

Under the hood, the Scala compiler (and Dotty in-
cidentally) transforms such an expression into a call to
the s method of StringContext, thus turning the pre-
vious snippet into the following one:

StringContext(" Hello, ", "").s(name)

Interpolated expressions become arguments passed
to the s method. The parts that make up the interpo-
lated string, without the expressions that get inserted by
interpolation, become arguments of the constructor of
StringContext. For this to work, however, two con-
ditions must be satisfied: 1) the string parts need to be
known at compile-time, 2) the interpolated expressions
need to have an implementation, i.e. no ?77-like ex-
pressions can be used.

Coming back to our XML string interpolator, the lat-
ter can be used like any default string interpolator of
StringContext, while being subject to the same con-
straints as described above, though. The only difference
lies in the method to call, xm1 in our particular case:

val text = "bar”
printIn(xm!" <foo>$text< /foo>")

And like previously, the compiler rewrites the user
code so then it becomes, before the interpolation takes
place, as follows:

StringContext(" <foo>", " < /foo>").xml(text)

It is actually a bit more complicated than that. For
reasons that will be explained in the implementation
section, the code rewritten by the compiler is actually
more verbose and involves some quite a bit advanced
features of Dotty.

In that respect, we pick a more involved example of
XML string interpolation for the purpose of discussion.
We define an XML string interpolation that describes
an HTML document which, in turn, embeds another

XML string interpolation that describes the body of the
document:

xml”""
<html xmlns:x="http: //www.w3.0rg/1999/xhtm!" >
<x:head>
<x:title>draft ${1.0}</x:title>
< /x:head>
${
xml”""
<x:body>
<x:p face="verdana"” >Lorem ipsum...</x:p>
<x:button disabled=""false” >ok< /x:button>
< /x:body>

man

}

</html>

man

4. Implementation

To provide a new string interpolator, one normally
needs to create an implicit class which adds a method to
StringContext. Our implementation avoids creating
such an implicit class. It uses instead Dotty’s exten-
sion methods feature. As a result, the entry point of the
interpolator is the following:

import scala.quoted._

inline def (ctx: => StringContext) xml
(args: => (given Scope => Any)x) given Scope =
${ internal.Macro.impl('ctx, 'args, '{the[Scope|}) }

We extend the class StringContext with a new
method xml. This method happens to be inline, and
combines both quotation and splicing in order for the
compiler to consider it as a macro. It takes two param-
eters: ctx - a StringContext - from which we re-
trieve the string parts of the original interpolated string,
and args which refer to the interpolated expressions.
Before explaining the rest of the signature, especially
what the Scope thing is all about and where it comes
from, we need to say a few words about how Scala ac-
tually represents XML literals under the hood and how
it deals with XML namespaces.

Scala relies on the standard Scala XML library -
an independent project - to represent XML literals.
This library provides support for the XML literal syn-
tax in Scala programs. To this end, the library defines
an abstract syntax tree mapping its nodes to concep-

2019/6/19

tual XML components, among which are comments,
elements, entities, but also namespaces. XML names-
paces are used for providing uniquely named elements
and attributes in an XML document. The standard
Scala XML library represents namespaces by instances
of scala.xml.NamespaceBinding. This (case) class
happens to be recursive in the sense that it defines a
parent parameter of the very same type.

The standard Scala XML library uses namespaces
to describe the scope of XML elements. The scope
of an XML element starts from the namespace of the
said element, includes the namespace of its parent, and
continues doing so up to the most outer enclosing ele-
ment’s namespace, by default scala.xml.TopScope.
A situation arises with these XML literals when this is
actually not true anymore, i.e. the most outer enclosing
element’s namespace is not scala.xml.TopScope.
Consider the following snippet:

<foo xmlns:f="scp0’'>

{

<bar xmlns:b="scpl’/>

}

< /foo>

This example shows two Scala XML literals, one
embedded into the other. Each literal is an element that
defines a namespace. Due to implementation decisions
from the authors of the standard Scala XML library,
embedding <bar/> into <foo></foo> has a particu-
lar side effect: <bar/>’s outer most namespace is not
scala.xml.TopScope, but rather the namespace of
<foo></foo> as depicted by the Scala compiler after
its typer phase:

var $tmp: NamespaceBinding = TopScope;
$tmp = new NamespaceBinding("f", "scp0”, $tmp);

val $s: NamespaceBinding = $tmp;
new Elem(null, "foo", Null, $s, false, ({
val $buf: NodeBuffer = new NodeBuffer();
$buf.&+(new Text("\n"));
$buf.&+({
var $tmp: NamespaceBinding = $s;
$tmp = new NamespaceBinding("b", "scpl”, $tmp);

val $scope: NamespaceBinding = $tmp;
newElem(null, "bar”, Null, $s, true)

}
/)

Considering the same example with our string in-
terpolator makes the task of producing the same side
effect quite difficult:

xml["""
<foo xmlns:f="scp0’'>
$
xml” <bar xmlns:b="scpl’/>"
}
< /foo>

... rewritten as ...

StringContext (" <foo xmlns:f="scp0'>",
xml" <bar xmlns:b="scpl’/>"

)

</foo>").xml(

... eventually rewritten as ...

StringContext(” <foo xmlns:f="scp0’>", " < /foo>").xml(
StringContext(” <bar xmlns:b="scpl’/>").xml()
)

On the one hand, the evaluation of the interpo-
lated string xm1"<bar/>" needs to take place dur-
ing the evaluation of xml"<foo></foo>", neither
before nor after it. On the other hand, the scope of
xml"<bar/>" needs to be completed with the names-
pace of xml"<foo></foo>", or in other words the
namespace of xm1"<foo></foo>" needs to be passed
somehow to xml"<bar/>" during the evaluation of
the latter. The running example introduced in section
3 would also be subject to such an evaluation process
since it involves two XML string interpolations, one
embedded into the other.

Our implementation responds to this challenge by
defining first a contextual abstraction named Scope
at the very same level as the interpolator’s definition,
along with an implicit value top that serves as the
default scope with which an interpolation should nor-
mally start:

type Scope = scala.xml.NamespaceBinding
implicit val top: Scope = scala.xml.TopScope

The interpolator then expresses a dependency to a
given scope by means of Dotty’s inferable parameters
feature with the given clause. If the evaluation con-
text is bound to a specific scope, that scope is con-
sidered during the interpolation. Otherwise, the default

2019/6/19

scope denoted by top is used. Last but not least, the
interpolated expressions designated by the variable ar-
gument args are not only by-name parameters to dif-
fer their evaluation, but also contextual arguments of
type given Scope => Any. This essentially means
that the evaluation of such arguments requires some
scope that can either be the default one or a context-
dependant one.

To complete the picture for any purpose whatsoever,
we propose a program example that serves as a basis for
illustrating how the compiler deals with all the bricks
mentioned in the previous two paragraphs once put
together:

import scala.quoted._
object P {

type Scope

def xml(args: (given Scope => Any)x)
given Scope: Any =
${ xmllmpl(’args, '{the[Scope]}) }

def xmllmpl(args: Expr[Seq[given Scope => Any]],
scope: Expr[Scope]) {
val arg: Expr[given Scope => Any] = 777
arg.apply(scope)
77

}
implicit val top: Scope = 777

xml(
printin(
xml("b")
)
)
}

Similarly to our string interpolator implementation,
this program defines a new type denoting a scope, along
with a default one, namely top. It also defines an xm1
function expressing a dependency to a scope. More-
over, it takes by-name contextual arguments of type
given Scope => Any, again, exactly like our imple-
mentation. The body of the function shows the last
magic trick that completes the solving of the original
problem of contextual scope: beta-reduction of quoted
contextual function. This gives us the capability to ap-
ply a given scope to a quoted contextual argument, a

quoted (contextual) interpolated expression in the par-
ticular case of our interpolator.

As a whole, the previous program is not really inter-
esting; it is rather how the compiler rewrites it at the
end of its frontend phase that interests us, in particular
the part of the two nested calls to xm1 which empha-
sizes the passing of contextual scope:

P.xml(
[{
def $anonfun(implicit ev$1: P.Scope): Any =
printin(
P.xml(
[{
def $anonfun(implicit ev$2: P.Scope): Any = "b"
closure($anonfun)

}

: (given P.Scope => Any)]:(given P.Scope => Any)x

)(ev$1)
)

closure($anonfun)

}
: (given P.Scope => Any)]:(given P.Scope => Any)x

)(P.top)

The expression passed to the outer call to xml is
turned into an anonymous function because of pass-by-
name parameter passing of the function. This anony-
mous function takes an implicit parameter: the contex-
tual scope. The scope is then applied to the inner call
to xm1, thus passing the contextual scope to the contex-
tual expression. This example remains rather basic but
gives anyhow a good idea of how our implementation
passes a scope to a contextual interpolated expression.

This concludes the long but necessary explanation of
the xm1 interpolator signature. The body of the interpo-
lator is rather straightforward to understand; it invokes
the internal implementation of the interpolation with
a call to internal .Macro.impl, passing the quoted
version of both the parameters and the given scope.

The rest of the section describes how the internal
implementation of the macro is able to rewrite the AST
of the code that is inside it. It does so in six steps, each
being explored in a separate subsection.

4.1 Checking Macro Call Parameters

Before the interpolation process really begins, the pa-
rameters of the macro need to be checked according to
the constraints that govern StringContext introduced
in section 3. Recall that the interpolated expressions
must have an implementation and the string parts need

2019/6/19

to be statically known. Assuming that the first interpo-
lated expression of our running example was ${?777}
instead of ${1.0}, the interpolation would result in a
compilation error since an implementation is missing.

4.2 Encoding Interpolated Expressions

This phase of the interpolation produces an encoded
XML string. The XML within the StringContext
needs to be parsed at some point. For this to be possible,
the parts of the StringContext instance are joined to-
gether into a single string to form an XML document.
However, to be fully complete, the string must also in-
clude the interpolated expressions given by the argu-
ments of the xml method. Those expressions are en-
coded as holes into that string using the Unicode sym-
bol O (0xE000). Such a hole serves as a marker dur-
ing parsing to indicate that there is actually an interpo-
lated expression at that current position. Holes differ in
length (or in the number of characters used) between
each other to distinguish which interpolated expression
they refer to. We denote the beginning of a hole with
the code 0xE000 and any subsequent character with the
code 0xE001. For example, the original string of our
running example would be encoded like this:

IEIRT)

<html xmlns:x=""http: //www.w3.0rg/1999/xhtm!" >
<x:head>
<x:title>draft O</x:title>
< /x:head>
oo
</html>

man

This encoding phase also creates a mapping between
a hole and the corresponding interpolated expression it
denotes for later use. This mapping is based on the in-
dex of a given interpolated expression in the variable
argument sequence args. Our implementation then re-
lies on a very simple convention: the first interpolated
expression is encoded with a hole of one character, the
second expression is encoded with a hole of two char-
acters, and so on.

4.3 Parsing Encoded XML String

The encoded XML string is then parsed. We imple-
mented a parser using the Scala Standard Parser Com-
binator Library, formerly part of the Scala standard li-
brary. It introduces a dependency to our project, but
makes nevertheless very easy to write a parser for a

context-free grammar when using Scala’s parser com-
binators. One needs only to write a method for every
production. Our parser is then a straightforward map-
ping of the productions of the XML grammar as de-
fined in the Scala Language Specification [2]. As a mat-
ter of fact, the production

EmptyElemTag ::= < Name {S Attribute} [S] />

is implemented as follows in our parser:

object Parser extends JavaTokenParsers {
// other definitions here

private def EmptyElemTag =
"<" ~> Name ~ (S ~> Attribute).x <~ S.7 <~ " />"
}

The parsing eventually returns an abstract syntax
tree internal to our implementation, but which is nev-
ertheless closely mirroring the abstract syntax tree the
standard Scala XML library is built upon. In case the
parsing fails, the interpolation reports an error which
consists of a meaningful error message indicating why
and where parsing the XML document failed.

4.4 Validating Parsed XML

Provided that parsing went successfully, this phase val-
idates the parsed XML. The validation makes sure of
two things: 1) there is no element with duplicate at-
tributes, 2) there is no element with mismatched tags.
Given the fact that those verifications are of semantic
order, they need to be done post-parsing, especially to
get the position of semantically erroneous nodes which
is only available after parsing.

Our running example happens to be a valid XML
document, valid with respect to the aforementioned
verifications. This would not be true if for example
the <p> element turned out to define the attribute font
twice. Such a situation would lead to a compilation er-
ror reporting the definition of duplicate attributes. Same
idea for the mismatched tags verification. If, for exam-
ple, the closing tag of the <head> element happened to
be misspelled, a compilation error would also occur.

4.5 Type Checking Interpolated Attribute Values

Due to the implementation of the attribute construct in
the standard Scala XML library, some precautions need
to be taken for interpolated attribute values with respect

2019/6/19

to their type. Interpolated expressions used as values
for attributes need to typecheck under the following
typing rules:

e if it is for a namespace attribute, the interpolated
value should have type String,

e if it is for a regular attribute, the interpolated value
should either have type String, or either Seq[Node]
or Option[Seq[Nodel] from the standard Scala
XML library.

This phase thus typechecks interpolated attribute
values on the basis of those typing rules. The inter-
polation fails and typing errors are reported if any of
the rules are violated.

From our running example, if the value of the at-
tribute disabled of the element <x:button> hap-
pened to be the interpolated expression ${false} in-
stead of the string literal "false", the interpolator
would report a typing error since this expression has
type Boolean.

4.6 Transforming The User Code

The last phase of the interpolation process transforms
the nodes of the parsing tree into instances from the
corresponding classes of the standard Scala XML li-
brary. The instanciations of those classes are quoted
and eventually used by the compiler to rewrite the AST
of the user code during macro expansion. For example,
the text Lorem ipsum. .. would eventually be rewrit-
ten with an instantiation of scala.xml.Text, through
a call to a method expandText as shown in the follow-
ing example.

package internal
import scala.quoted._

object Expander {
// other definitions here

private def expandText(text: Text):
Expr[scala.xml. Text] = '{
new _root_.scala.xml. Text(${text.text.toExpr})

}
}

This instantiation is quoted since Dotty’s macros
need to manipulate quoted expressions so the expan-
sion phase rewrites the user code. Similar methods are

defined for other kind of nodes, nodes in the sense of
our internal abstract syntax tree.

5. Related work

Our work is greatly inspired by a prototype of XML
string interpolator for Scala [3]. The two implemen-
tations only differ in the underlying macro framework
they rely on. Our interpolator is built upon Dotty’s prin-
cipled meta programming, an integral feature of the
language. On the other hand, the aforementioned pro-
totype is based on the experimental macros of Scala
which are substantially different. Binary compatibility
is therefore not possible between Scala and Dotty pro-
grams involving XML string interpolation, but source
compatibility is since both implementations transform
interpolated strings to class instances from the standard
Scala XML library.

6. Conclusion

Our project was able to build an XML string interpo-
lator for Dotty. It shows itself as a good candidate to
replace Scala XML literals in Dotty as an external li-
brary. We use Dotty’s principled meta programming to
provide our interpolator in the form of a macro. Our
implementation makes full use of Dotty’s features and
embodies the expressiveness and the elegance of its
contextual abstractions.

Overall, our transformation produces semantically
equivalent code to Scala XML literals. Source com-
patibility between Scala and Dotty programs is pos-
sible. Compiling a Scala program involving XML lit-
erals with Dotty would require the development of a
tool transforming those literals into interpolated XML
strings, though. Last but not least, our project misses
a performance evaluation which could be deferred to a
future work. Apart from that, the interpolator is opera-
tional and ready to use.

References

[1] Nicolas Stucki, Aggelos Biboudis, and Martin Odersky.
A practical unification of multi-stage programming and
macros. Proceedings of the 17th ACM SIGPLAN Inter-
national Conference on Generative Programming: Con-
cepts and Experiences, 2018.

[2] Scala Language Specification Version 2.12. Chapter
10: XML Expressions and Patterns. URL: https:
//www.scala-lang.org/files/archive/spec/2.
12/10-xml-expressions-and-patterns.html.

2019/6/19

[3] Denys Shabalin and Allan Renucci. String interpolator
for Scala to replace built-in xml syntax. URL: https:
//github.com/densh/scala-xml-quote.

7 2019/6/19

