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Abstract
Optimization of industrial processes aims at minimizing operating cost or maximizing eco-

nomic profit while respecting plant constraints. In process industry, real-time optimization

(RTO) is often considered to ensure optimal plant operation and constraint satisfaction.

Solid-oxide fuel-cell (SOFC) devices oxidize fuels such as hydrogen and methane to produce

electric energy through electrochemical reactions at very high efficiency. To reduce the emis-

sion of carbon dioxide and the high cost of non-renewable energies, fuel cells have become

popular as an alternative energy source with a wide range of applications. The optimal op-

eration of SOFC systems, while being subjected to changing operating conditions such as

variations in the electrical power demand, remains a challenging problem in the field of con-

trol and optimization. In addition, these types of devices are characterized by slow dynamics

and drifts such as degradation. This motivates the use of real-time optimization for optimizing

and controlling the operation of SOFC systems.

The most popular RTO technique in industry is the so-called two-step approach. This ap-

proach consists in estimating the model parameters based on measurements by solving a

parameter estimation problem, and computing the next operating point by solving an opti-

mization problem using the updated model. However, this technique is highly dependent

on model accuracy and tends to fail in the presence of structural plant-model mismatch. As

an alternative, modifier adaptation has been developed to enforce convergence to the plant

optimum even in presence of structural plant-model mismatch. Since plant optimality is

often characterized by active constraints, it is possible to use a simpler version of modifier

adaptation, called constraint adaptation (CA). This approach corrects the constraints in the

model-based optimization problem by means of bias terms computed from the differences

between the measured and predicted values of the constraints.

The active plant constraints—i.e. the intersection of the constraints where the plant optimum

lies—for each mode of operation is typically known from experience. Therefore, as the op-

timum of SOFC systems typically lies on active plant constraints, we can apply constraint

adaptation. One of the drawbacks of static RTO is the fact that it is necessary to wait until

the plant reaches its steady state. Since this may be inappropriate for slow processes, we

propose an RTO approach that can speed up the procedure by using transient measurements

combined with a dynamic tendency model.

In this work, we apply constraint adaptation combined with transient measurements and a

dynamic model to experimental SOFC systems. The proposed approach is applied to two

SOFC systems: (i) an SOFC system with 6 cells that consists of both hardware and software
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components; (ii) a commercial SOFC system named BlueGEN. The results obtained are very

promising. For both systems, the proposed approach can reach the power demand much

faster than the time it takes for the process to settle to steady state. The optimizer is quick

at finding and tracking the correct set of active constraints, thus avoiding large constraint

violations. In addition, we study the effect of the RTO period on the convergence rate. Finally,

we show that CA acts simultaneously as a controller and an optimizer that is able to efficiently

detect and track the correct set of active constraints.
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Résumé
L’optimisation des procédés industriels vise à minimiser les coûts d’exploitation ou à maximi-

ser le profit économique tout en respectant les contraintes du procédé. Dans l’industrie des

procédés, l’optimisation en temps réel (RTO) est souvent prise en compte pour optimiser le

fonctionnement de l’installation et la satisfaction des contraintes.

Les dispositifs à piles à combustible à oxyde solide (SOFC) oxydent des combustibles tels

que l’hydrogène et le méthane pour produire de l’énergie électrique par le biais de réactions

électrochimiques à très haut rendement. Pour réduire les émissions de dioxyde de carbone et

le coût élevé des énergies non renouvelables, les piles à combustible sont devenues populaires

comme source d’énergie alternative offrant une vaste gamme d’applications. Le fonctionne-

ment optimal des systèmes SOFC, tout en étant soumis à des conditions de fonctionnement

changeantes telles que des variations de la demande en puissance électrique, reste un pro-

blème épineux dans le domaine du contrôle et de l’optimisation. De plus, ces types d’appareils

se caractérisent par une dynamique lente et des changements au cours du temps telles que

la dégradation. Cela motive l’utilisation de l’optimisation en temps réel pour optimiser et

contrôler le fonctionnement des systèmes SOFC.

La technique RTO la plus populaire dans l’industrie est l’approche dite en deux étapes. Cette

approche consiste à estimer les paramètres du modèle à partir de mesures en résolvant un

problème d’estimation de paramètres et à calculer le point de fonctionnement en résolvant

un problème d’optimisation à l’aide du modèle mis à jour. Cependant, cette technique dé-

pend fortement de la précision du modèle et a tendance à échouer en présence d’une erreurs

structurelles dans le modèle du procédé. Une variante, modifier adaptation a été développée

pour imposer la convergence vers l’optimum du procédé, même en présence d’erreurs struc-

turelles entre modèles de procédés. L’optimalité du procédé étant souvent caractérisée par des

contraintes actives, il est possible d’utiliser une version plus simple de modifier adaptation,

appelée constraint adaptation. Cette approche corrige les contraintes du problème d’optimi-

sation basé sur un modèle au moyen de termes de biais calculés à partir des différences entre

les valeurs mesurées et prédites des contraintes.

Les contraintes actives du procédé—i.e. l’intersection des contraintes où l’optimum du pro-

cédé se trouve—pour chaque mode de fonctionnement sont généralement bien connues

par expérience. Par conséquent, comme l’optimum des systèmes SOFC repose généralement

sur des contraintes actives, nous appliquons constraint adaptation. L’un des inconvénients

de la RTO statique est le fait qu’il est nécessaire d’attendre que le système atteigne son état

stationnaire. Comme cela peut être inapproprié pour les processus lents, nous proposons une
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approche RTO qui peut accélérer la procédure en utilisant des mesures transitoires combinées

à un modèle de tendance dynamique.

Dans ce travail, nous appliquons expérimentalement aux systèmes SOFC l’adaptation de

contraintes basée sur des mesures transitoires et un modèle dynamique. L’approche propo-

sée est appliquée à deux systèmes SOFC expérimentaux : (i) un système SOFC à six cellules

composé à la fois de composants matériels et logiciels ; (ii) un système SOFC commercial

appelé BlueGEN. Les résultats obtenus sont très prometteurs. Pour les deux systèmes, l’ap-

proche proposée peut atteindre la demande d’énergie beaucoup plus rapidement que le

temps nécessaire pour que le processus se stabilise. L’optimiseur recherche et suit rapidement

l’ensemble correct de contraintes actives, évitant ainsi des violations importantes. De plus,

nous étudions l’effet de la période de RTO sur le taux de convergence. Enfin, nous montrons

que CA agit simultanément comme un contrôleur et un optimiseur capable de détecter et de

suivre efficacement le bon ensemble de contraintes actives.
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1 Introduction

1.1 Motivation

According to World Energy Outlook 2017, the global energy requirement will increase by 30%

by 2040. Although the rate of increase is slowing down, this increase represents the amount of

energy consumed by China and India today. The source of energy has significantly changed

in the past twenty-five years. Nowadays, natural gas represents the main part of the global

energy demand. The energy needs have changed dramatically with renewables representing a

significant part of the energy consumption. In addition, measures to increase energy efficiency

are very popular. Oil has been the rising force of energy end-use, representing 40% of the

consumption rise in the last twenty-five years. For the next 20 years, the same share of growth

is expected to be taken by electricity.

For many countries, renewables are expected to become by 2040 the most economical source

of new generation, which represents about 65% of the global investment in power plants.

Renewables are also used to provide heat and mobility and it is predicted to double by 2040.

Along the same lines, the Swiss government decided in 2011 to abandon plans to build new

nuclear reactors and, in 2017, the Swiss voted in favor of establishing the Energy Strategy 2050

and forbidding the construction of new nuclear power plants [1].

1.1.1 Solid-Oxide Fuel-Cell Systems

In the view of new energy sources, fuel cells have been the focus of growing interest. Fuel

cells convert energy with significantly lower carbon emissions compared to traditional sys-

tems. Fuel-cell devices convert chemical energy from hydrogen, methane and other fuels

to electricity with very high efficiency. The importance of reducing carbon emissions is

rapidly increasing, and a large number of countries are investing in fuel-cell and hydrogen

technologies [2].

Fuel-cell systems appear to provide an effective option for enhancing sustainability, mainly
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due to their high efficiencies and absence of polluting emissions. The application of fuel-cell

technologies in the energy field represents significant advances in terms of energy generation

and environmental preservation. Solid-oxide fuel-cell (SOFC) systems combine both high

efficiency and environmental-friendly features. The use of SOFCs for power generation at large

scale has been reported in the US, Europe and Japan, and at small scale for military, residential,

industrial and transportation purposes. However, there are still challenges regarding the

commercialization of these devices, the cost issue and the system reliability [3]. Pollution

reduction can be significantly reduced by fuel cells, specially SOFCs that emit virtually zero

sulphur and nitrogen emissions, while the produced carbon dioxide is reduced by about

50% [4].

A significant number of barriers must be overcome before fuel cells become a worldwide-

spread technology. The challenges range from issues with the cell itself, the stack interconnect,

the seals, the high temperatures, the start-up time to reliable operation. In the field of control

and optimization, the safe operation of SOFC systems at high efficiency, while being subjected

to changing operating conditions remains a challenging problem [5, 6].

SOFC systems are operated continuously for years. Degradation plays an important role after

a certain period of time, mainly due to the fact that slow drifts affect the optimal operating

conditions. Furthermore, technical constraints that must be guaranteed for safe and reliable

operation are difficult to be met. In addition, in the field of control and optimization, although

a few studies present experimental results [7, 8], none of the reported investigations deals with

a complete SOFC system. Hence, the question of how to continuously push the operation of

an SOFC system towards maximal efficiency is of considerable interest.

1.1.2 Real-Time Optimization

Minimizing costs or maximizing profits are part of the operating situations that are important

to process industry. The main challenges that industry face nowadays include production bot-

tlenecks, energy consumption, product quality and product losses. Market competition and

the need to limit energy requirements make process control and optimization very appealing.

The engineering approach to tackle all these issues is to build a model of the process in order

to determine optimal operating conditions that will both improve performance and satisfy

process constraints. However, models are not perfect, and to rely only on them could lead to

suboptimal operation or, even worse, constraint violation. In this context, real-time optimiza-

tion (RTO) appears as a family of methods that combine numerical optimization and online

process measurements to achieve optimal process operation, while explicitly accounting for

plant-model mismatch and varying operating conditions.

Advances in the past 30 years has allowed RTO to utilize steady-state process models. First-

principle models are mathematical models that comprise mass and energy balances, vapour-

liquid equilibrium expressions, reaction kinetics, etc [9]. However, although relatively accurate

models are available, important issues such as plant optimal operation and constraint satis-
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Figure 1.1: Automation decision hierarchy [15].

faction need to be addressed. Typically, model predictive control (MPC) is used to move and

maintain the plant at its optimum as optimal operation usually lies close or on constraints [10].

RTO is generally combined with low-level control to avoid constraint violation, which has

become standard practice for steady-state optimization of processes that operate at nominal

steady states—i.e. optimal steady states that are typically computed by a process model.

Unfortunately, many companies still have difficulties in the acceptance of RTO, although

several recent developments have proven this class of methods to be of major importance for

industry [9].

A systematic approach is required to compute optimal policies for complex industrial pro-

cesses. In the case of continuously operated processes, such as refineries and many bulk

chemical plants, RTO systems are typically implemented as part of a multi-level automation

decision hierarchy [11, 12]. At the upper level, planning and scheduling operations address

long-term issues like production rate targets and raw materials allocation. Operating at the

medium time scale of hours to days, the RTO level computes the optimal steady-state operat-

ing point in the form of setpoints that are passed to the lower-level process control system

[9, 11]. In the case of batch and semi-batch processes, RTO algorithms can also be applied in

a batch-to-batch fashion by parameterizing the time-varying input profiles and optimizing

the operation of the next batch using measurements obtained from previous batches [13, 14].

Figure 1.1 depicts the decision hierarchy involving several automation levels.

RTO approaches have been developed with the aim of overcoming industrial problems with

respect to:

3
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• Constraint satisfaction [16, 17]

• Plant-model mismatch [18–20]

• Optimal operation [21–23]

• Discretization of the input profiles for batch optimization [24]

• Plant gradient estimation [19, 25, 26]

• Convergence speed [27]

Among the aforementioned problems, convergence speed appears to be critical. The number

of RTO iterations, or the number of changes of operating points, needed to drive the plant to a

fixed point defines the convergence speed. RTO is capable of tracking the plant optimum in

case of low-frequency disturbances, which means that the convergence speed depends on the

plant settling time. The time that an RTO scheme takes to converge is affected by the settling

time of the system and the number of RTO iterations it takes to converge. This implies that

systems with large settling times may take several hours, or even days, to converge to their

optimum. The convergence time can be mathematically written as:

Convergence time = #Iterations×Settling time (1.1.1)

Note that the number of iterations depends on the RTO method, whereas the settling time is

related to the dynamics of the plant.

The standard RTO approach in industry is the so-called two-step approach [11, 28, 29]. This

RTO method first uses plant measurements to update the model parameters via the solution

to a nonlinear regression problem; then, the second step computes the plant inputs by solving

an optimization problem considering the updated model. This method, however, cannot

guarantee constraint satisfaction as the approach relies on a model that is typically uncertain.

This may have safety, economic and environmentally harmful consequences. This also implies

that industrial processes often do not operate at optimal conditions. Since structural plant-

model mismatch is often present, the solution obtained by the two-step approach may not

satisfy the plant optimality conditions [30]. In addition, many processes such as fuel-cell

systems are affected by slow drifts (due to degradation, fouling, etc.), which makes achieving

optimal efficiency and keeping the operation at high performance difficult. Moreover, the

convergence speed is also an issue that is not tackled by the two-step approach. The number

of iterations that this RTO approach takes to converge depends on the size of the problem and

the nature of plant-model mismatch.

The family of RTO schemes known as modifier adaptation circumvents the main disadvantages

of the two-step approach. Modifier adaptation (MA) can enforce convergence to plant opti-

mality even in the presence of structural plant-model mismatch [19]. Although MA is proven

to guarantee plant optimality upon convergence, a wide number of practical challenges still

need to be overcome before it becomes accepted in industry.
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A practical problem related to MA is the requirement to estimate plant gradients—i.e. plant

sensitivities with respect to each input. However, estimating these gradients may be impracti-

cal for processes with several inputs. Finite differences is the most commonly used approach

to estimate plant gradients. This method, however, requires perturbing each plant input

individually at the current plant operating point, and measuring each corresponding plant

output. As this procedure is required to be done at every RTO iteration, the convergence

speed is directly affected for plants that possess large settling times. Alternatively, transient

measurements are used for steady-state optimization via modifier adaptation in [27]. It is

shown therein that the plant optimum can be reached in a single transient operation if plant

gradients are accurately estimated.

Many processes have their optimal operation at the intersection of constraints [9, 10]. If plant

optimality is expected to be fully determined by active constraints, one can use constraint

adaptation (CA) instead, that is, a simpler version of modifier adaptation that does not require

the estimation of plant gradients [17, 22]. Similarly to MA, the convergence speed of CA

depends on the process settling time. However, optimality can only be guaranteed if the

model-adequacy conditions—i.e conditions that enable a process model to be suitable for

RTO—are fulfilled and the set of active constraints of the plant is known.

If the system has two time scales, of which one is considered fast and the other slow, it is

possible to implement CA without having to wait for steady state [7]. However, this type of

time-scale separation is not always present in complex systems since the system outputs may

be affected by components with different dynamics. Hence, steady-state CA may fail if the

output measurements obtained during transient operation are inadequate for adapting the

steady-state model. Considering the above, it is still unclear how one can speed up RTO using

transient measurements of a process characterized by multiple time scales. This thesis tackles

this issue, which consists in answering the following question: how to estimate quickly—i.e.

ahead of time—the steady state of a process that possesses multiple time scales?

1.2 State of the Art

1.2.1 Optimization of Solid-Oxide Fuel-Cell Systems

In 1937, two Swiss chemists, Emil Baur and Hans Preis, reported a series of experiments on fuel

cells with solid electrolytes in the form of ceramic materials [31]. Although this first study on

fuel cells was performed 80 years ago, it is only in the past 20 years that fuel cells, in particular

SOFCs, have been intensively studied worldwide [32].

There are many types of fuel cells such as proton-exchange membrane, direct methanol,

alkaline, phosphoric acid, microbial fuel cells, and solid-oxide fuel cells. The latter are distin-

guished by their high temperatures and efficiencies, and are typically used to generate power

and provide heat to small businesses, private households or public buildings [33, 34].
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The optimization of SOFC systems has received increasing attention in the past 15 years [35].

Yet, most of the literature on control and optimization of fuel-cell systems deals with proton-

exchange membrane cells [36–38]. These studies used heuristic approaches to maximize

system efficiency. Although the proposed approaches increase process performance, tackling

these types of problems in a systematic way requires a rigorous optimization approach.

In [39], the authors optimize a 200 kW SOFC co-generation power plant. The study aims at

minimizing the total system cost and maximizing system efficiency. The results show that

optimal performance depends highly on the internal reforming rate, air temperature in the

stack, cell voltage, and fuel utilization in the stack. In [40], a hybrid SOFC—an SOFC system

with gas turbine and steam turbine—with electrical power ranging from 1.5 MW to 10 MW

is studied. Similarly to the previous study, the authors also aim at reducing process costs

and increasing efficiency. However, in addition to fuel utilization, they use the steam-to-

carbon ratio, the operating pressure and the fuel cost as manipulated variables. The objective

in [41] is to guarantee safe operation while attaining maximal system efficiency of a complete

SOFC system. Therein, the manipulated variables are the air flow, the bypass air, and the fuel

flowrates. Many other studies in the optimization of SOFC field with different objectives such

as maximizing life time, exergy efficiency, or minimizing CO2 emissions or thermal gradients

have been reported [42–45]. In addition to the aforementioned manipulated variables, the air

temperature, the reformer temperature, the operating pressures, the gas recycling, and the

nitrogen flowrate have also been used in other studies [39, 40, 46–48]. Notably, a vast number

of optimization approaches for SOFC systems have been proposed. Although very significant,

all the aforementioned works are simulation studies.

Experimental studies concerning SOFC dynamics are rare [49]. While only few experiments on

the optimization of SOFC configuration can be found in the literature [50, 51], even fewer are

available on the optimization of SOFC operating conditions [7]. The latter reference presents

an experiment where RTO is applied to a single SOFC stack. This experiment aims at optimiz-

ing the operating condition by maximizing the electrical efficiency while respecting operating

constraints related to system safety and lifetime. Model predictive control is widely used to

control this type of system. Most of the works on control of SOFCs are either purely theoretical

or they merely use offline data for model validation [52–54]. Only a few experimental studies

can be found on MPC applied to SOFCs [55, 56]. Note that MPC typically aims at controlling

the system at some operating conditions, that is, not considering improving performance by

maximizing efficiency or reducing costs.

SOFC systems are affected by disturbances as well as changes in the power demand. As a

result, the optimal steady-state operating point changes with time. This motivates the use of

RTO for optimizing and controlling the operation of SOFC systems [57].

As models may become impractical for online implementation, it is common to use simpli-

fied models for this purpose. In this context, RTO methods conveniently make use of plant

measurements and appropriate model adaptation strategies to steer the plant to its optimum

6
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despite the absence of an accurate model [14].

One of the main difficulties in applying steady-state RTO algorithms is that their implementa-

tion is slow, in particular for systems that have long settling times and several inputs. Indeed,

since the models are typically updated based on steady-state data, one has to wait for steady

state each time the model is updated and the RTO problem executed. In order to overcome

this difficulty, it has been proposed to use transient measurements in the context of RTO in [7].

The RTO experiment was performed on a short 6-cell SOFC stack. The authors claim that it is

possible to speed up convergence when time-scale separation is present. The system has two

time scales, namely, the nearly instantaneous electrochemical scale (¿ 1 s) and the thermal

scale on the order of 30 min. It is assumed that the power response is mainly governed by the

electrochemical scale and the temperature dynamics is considered as a slow parametric drift.

This allowed implementing RTO without having to wait for steady state, with a RTO period of

10 s, which increased the convergence speed significantly. However, this type of time-scale

separation is not always present in SOFC systems because the outputs might be affected by

components with different dynamics, for instance, a pre-reformer or heat exchangers. Hence,

steady-state RTO may fail if the output measurements obtained during transient operation are

not representative of the corresponding steady-state values.

In addition to the aforementioned difficulties, since SOFC systems are operated continuously

for long periods of time, certain technical constraints must be guaranteed for safe and reliable

operation. However, slow drifts due to degradation or thermal inertia make achieving optimal

efficiency levels difficult.

1.2.2 Real-Time Optimization

Process industries produce industrial goods by continuous operation (e.g. oil refining, fer-

tilizers, SOFC systems) at near steady state and by discontinuous (batch) operation (e.g.

fermentation for beverage products, pharmaceutical production, waste-water treatment). Pro-

cess optimization is a field of study that aims at improving the performances of process plants,

while enforcing constraint satisfaction. With the advent of computers and new technologies,

the use of more complex mathematical models for optimization has become possible [58–60].

Due to plant-model mismatch and disturbances that typically affect the process, the direct

use of model-based optimization may lead to suboptimal performance or unsafe operation.

For the aforementioned reasons, RTO has emerged as an alternative optimization technique

that uses both process models and plant measurements. RTO algorithms differ in the way

the available measurements are utilized to update the model used for optimization. RTO

techniques can also be classified as ’model-based’ or ’model-free’ approaches. This distinction

is related to whether or not a mathematical model of the process is used for on-line computa-

tions [61]. In the case of ’model-based’ approaches, the process model must satisfy certain

conditions in order to be considered suitable for RTO.
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Model-Adequacy Conditions

An important concept in ’model-based’ approaches is that of model adequacy. In practice,

process models that provide a good accuracy and fast computation are selected. As typically

these models are not perfect, certain conditions related to their adequacy must be specified.

Model-adequacy conditions are related to whether a process model is suitable for use in a

RTO scheme. A model is considered to be adequate if it is capable of producing a fix point

for the used RTO scheme at the plant optimum. In other words, for the RTO approach to be

able to compute the optimal plant inputs from the plant measurements, there must exist a

set of parameters (model parameters or optimization parameters, depending on the chosen

RTO approach) such that the real-time optimizer can generate the plant optimum. These

conditions may vary depending on the RTO approach.

In RTO, the necessary conditions of optimality are used frequently. They are typically used

either to enforce or verify plant optimality. Next, we briefly describe the concept of necessary

conditions of optimality. This concept will be mathematically formalized in the next chapter.

Necessary Conditions of Optimality

The necessary conditions of optimality (NCO) are typically used to verify whether a process

or a plant is operating at its optimum. These conditions are known as the first-order Karush-

Kuhn-Tucker (KKT) conditions. They are mainly divided in two parts: (i) the constraint part,

and (ii) the gradient (or sensitivity) part. These sensitivities are gradients of the constraint

or cost functions with respect to the inputs. NCO are quite important as they are utilized

in RTO approaches to guarantee that the problem is at a feasible point—i.e. respecting all

constraints—and to push the reduced gradients to zero. Reduced gradients are either the

gradients of the cost function (when no constraint is active) or a linear combination between

the gradients of the cost function and active constraints.

’Model-Based’ Approaches

Although the name ’model-based’ techniques suggests that only process models are uti-

lized, this class of techniques uses plant measurements combined with process models to

perform the optimization. This class of RTO techniques uses process models repetitively

between iterations, and the measurements are used to bridge the gap between the uncer-

tain model and the plant outputs. The best known ’model-based’ RTO techniques are the

two-step approach [11, 28, 29], integrated system optimization and parameter estimation

(ISOPE) method [18, 21, 25, 62], modifier adaptation [19, 22], bias update [16], constraint

adaptation [17] and identification for optimization [24]. The classification of RTO techniques

depending on the type of approach is given in Table 1.1. Next, we describe each ’model-based’

RTO approach in more detail:
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Table 1.1: Classification of real-time optimization techniques [14].

RTO approach
’Model-based’ ’Model-free’

1. Two-step approach [11, 28, 29] 8. Active-constraint tracking [65]
2. Bias update [16] 9. Self-optimizing control [66, 67]
3. Constraint adaptation [17] 10. Extremum seeking [23, 26]
4. Identification for optimization [24] 11. NCO tracking [20, 68]
5. ISOPE [18, 21, 25, 62] 12. SCFO [69, 70]
6. Modifier adaptation [19, 22]
7. Iterative set-point optimization [71]

1. The most commonly applied model-based RTO scheme is the two-step approach, which

is typically used in industrial softwares [11, 28, 29]. The first step is a parameter estima-

tion problem, wherein the model parameters are updated to best fit the measurements.

The second step solves the optimization problem using the updated model to compute

the next operating point. This technique has gained popularity due to the intuitive

idea behind it [29]. However, it is well known that, in the presence of structural plant-

model mismatch, the two-step approach does not usually converge to plant optimality

[19, 63, 64]. It turns out that an RTO algorithm will not converge to the plant optimum

unless the necessary conditions of optimality (NCO) of the model-based optimization

problem match those of the plant. As the NCO are mainly characterized by gradients,

in the presence of structural plant-model mismatch, the two-step approach may fail at

finding a set of model parameters that would make plant and model gradients match.

2. Bias update is a RTO method that adds bias terms to constraint functions and process

model equations—i.e. mass and energy balances, thermodynamic relationships, etc [16].

These bias terms correspond to the differences between the actual and predicted plant

outputs. This method is specific to the case where there are as many active constraints as

inputs at the plant optimum. This approach is of considerable industrial relevance and

it is commonly used in model predictive control formulations [16]. The main weakness

of the bias-update approach is the fact that this method only guarantees feasibility.

However, optimality can be guaranteed if the correct set of plant active constraints is

known and the model-adequacy conditions are fulfilled. It is argued in [16] that the

set of active constraints for each mode of operation is known from experience. In the

case of newly designed plants, the set of active constraints could be identified from the

results of flexibility studies.

3. Constraint adaptation (CA) [17] is a variant of the bias-update technique. Note that

CA updates only the constraint functions, whereas bias update adds modifiers to the

process model equations in addition to the constraint functions. CA assumes that the

plant optimum lies at the intersection of active constraints. Therefore, if the process

model used is adequate, the model gradients are sufficiently accurate to push the plant

to the correct set of active constraints and, thereby, to plant optimality. The main
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feature of CA is the fact that it guarantees feasibility upon convergence. However, this

approach may lead to suboptimal performance when plant optimality is not completely

determined by active constraints.

4. Identification for optimization is a RTO method that shares some features of the two-

step approach as it consists in solving two problems: parameter identification and

cost optimization [24]. This method proposes to modify the objective function of the

identification step by including the cost and constraint functions of the optimization

problem. Appropriate weighting for the cost and constraint functions are included in

the identification objective. The authors in [24] claim that this way of optimizing is

relevant as the method becomes less dependent on the model, thus allowing using

inaccurate or incomplete process models.

5. Integrated system optimization and parameter estimation (ISOPE) is another RTO

technique that falls into the class of model-based approaches [18, 21, 25, 62]. This

technique utilizes correction terms, that is, a gradient-modification term, in order to

correct the cost function of the optimization problem. This way, the algorithm satisfies

the plant NCO upon convergence. In addition, ISOPE uses process measurements to

estimate the model parameters.

6. Modifier adaptation (MA) is a RTO approach, which, in contrast to ISOPE, does not

estimate model parameters. Instead, MA uses affine correction terms to adapt the cost

and constraint functions of the optimization problem [19, 22]. In MA, modifiers—i.e. the

differences between the plant and model gradients of the cost and constraint functions,

and the differences between the plant and model constraints—are updated iteratively in

order to locally match the plant NCOs. The main advantage of MA is that an operating

point satisfying the Karush-Kuhn-Tucker (KKT) optimality conditions of the plant is

reached upon convergence. The main disadvantage of MA is the fact that plant gradients

are required for its implementation. Typically, these gradients are estimated via finite

differences. As finite differences require plant perturbations, this approach may be

time consuming in the case of many inputs and slow processes. However, in order to

overcome this difficulty, a few approaches such as dual MA [72] and dual ISOPE [62]

have been proposed.

7. Iterative set-point optimization [71] is an optimization method derived from ISOPE.

This method also shares features with MA. Similarly to ISOPE, this method adapts the

objective function by adding zeroth- and first-order terms to the output variables, not

the objective function directly, whereas the constraint functions are adapted as in MA.

Note that here the zeroth-order terms correspond to the differences between the plant

and model outputs or constraints, and the first-order terms correspond to the difference

between the plant and model gradients of outputs and constraint functions. Therefore,

iterative set-point optimization also satisfies the KKT conditions of the plant upon

convergence. This method estimates plant gradients by taking into account the past

operation points instead of perturbing the plant to obtain additional information.
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’Model-Free’ Approaches

’Model-free’ RTO techniques update the input profiles from the measurements directly, that is,

the updated inputs are computed without the use of a process model. Although this class of

RTO techniques has in its name ’model-free’, in some cases, the process model can be used.

However, the process model is only used offline; it is not used for numerical optimization

online as in the ’model-based’ approaches. In the past 20 years, model-free techniques have

been developed that include active-constraint tracking [65], self-optimizing control [66, 67],

extremum-seeking control [23, 26], NCO tracking [20, 68], sufficient conditions for feasibility

and optimality [69, 70]. Next, we describe each ’model-free’ RTO approach in more detail:

8. Active-constraint tracking is a technique that uses direct input adaptation [65]. It is a

RTO approach that utilizes feedback control to adjust the inputs by identifying certain

characteristics that are invariant, namely, the necessary conditions of optimality, in

order to guarantee optimality despite uncertainty. As the concept of invariants are used

to obtain the gradients, no parameter is estimated and model is used for implementation.

More specifically, the invariants correspond to the active constraints and cost gradients

with respect to inputs. The algorithm is implemented as follows: (i) the active constraints

are determined offline by the simplified model, (ii) an experiment is performed with the

optimal inputs and the invariants computed based on the measurements obtained, (iii)

the inputs are updated, and Steps (ii) and (iii) are repeated until convergence.

9. Self-optimizing control adjusts the manipulated variables so that the process operates

with reasonable loss [66, 67]. Typically, optimal setpoints provided by the optimization

layer are input to the feedback control layer. The controlled variables are kept constant

and the loss with respect to the cost function is evaluated. It is said that a self-optimizing

control is obtained if this loss is acceptable. The losses are evaluated by comparing the

sensitivities of the model and measured outputs. Many scenarios are evaluated and the

worst-case loss for a given set of noise and disturbances is selected.

10. Extremum-seeking control is a RTO technique that uses limited knowledge of the pro-

cess in order to find a local optimum of cost function [23, 26]. This method, which

implements a gradient-descent approach, estimates a local gradient of the steady-state

input-output map. A sinusoidal perturbation is added to the inputs, and the measured

outputs are filtered. This allows estimating the gradients of the objective function with

respect to the inputs. The amplitudes of the oscillations in the outputs are scaled by

the local gradient at the point of operation. This means that, when the cost gradient is

pushed to zero, the effects of the input oscillations are less significant. An integrator is

used to update the model parameters so that a point of zero gradient can be reached.

11. NCO tracking is a RTO method that uses measurements to compensate the adverse effect

of uncertainty by using direct input adaptation [20, 68]. The direct input adaptation is

performed so as to enforce the NCO. Appropriate control laws are design to update the

NCOs that include the plant active constraints and the sensitivities. NCO tracking has
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two parts: (i) a nominal process model is used to identify the active constraints at the

optimum, and (ii) appropriate measurements are used to enforce the NCO by feedback

control. Note that the gradients in NCO tracking are pushed to zero using a controller

with integral action.

12. Sufficient conditions for feasibility and optimality (SCFO) is a solver that guarantees (i)

convergence to the plant optimum, (ii) constraint satisfaction at every iterate, and (iii)

monotonic cost improvement [69, 70]. This algorithm performs the optimization in two

steps. In the first step, the solver computes a descent direction for the cost function and

a new feasible operating point. This first step computes a direction that will minimize

the cost and move away from the constraints. The gradients of cost and constraint

functions are taken into account to compute this direction. In the second step, the

solver computes the step size by assuming that Lipschitz constants are available for the

plant. This second step can be seen as a filtering step, where additional constraints are

included in the optimization problem by considering the Lipschitz constants for each

constraint. These constraints represent polytopes that correspond to the robust feasible

areas where the next optimal operating point will lie.

Comparison of Two-Step Approach and Modifier Adaptation

Now, we turn back to ’model-based’ approaches again. Two RTO approaches deserve special

attention, namely, the two-step approach and modifier adaptation. The two-step approach

due to its wide industrial application and modifier adaptation because it represents the

transition from the use of output measurements to the use of estimated necessary conditions

of optimality. Figure 1.2 depicts a qualitative comparison of these RTO approaches in terms of

implementation aspects.

Output Modifier Adaptation

A few modifications of MA have been proposed. An alternative modification for MA, labeled

output MA, is proposed in [19, 73, 74]. Instead of using affine corrections to update the cost

and constraint functions, this approach considers affine corrections to update the model

outputs. Note that this approach is applicable to the case where the cost and constraint

functions are known functions of the input and output variables. This RTO scheme was

initially proposed by [19], where it is claimed that the performance of this RTO approach is

case dependent, that is, the potential advantages over standard MA are process dependent.

The definition of the modifiers represents the main difference between standard and output

MA. While one approach updates the model outputs and uses the modified model to solve

the optimization problem, the other corrects the constraint and cost functions directly in

the optimization problem. Note that output MA possesses the same features as standard MA

regarding KKT matching upon convergence. Later on, this approach was shown to have some

advantages when the cost and constraint modifiers are inaccurate, and this inaccuracy can be
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Figure 1.2: Qualitative comparison of the two-step approach and modifier adaptation.

compensated by using output modifiers instead [73, 74]. Up to now, no theoretical analyses

has shown advantages of this method over standard MA.

Use of Transient Measurements for Static Optimization

Transient measurements have been proposed in the context of steady-state RTO of dynamic

processes [7, 27, 75]. This approach uses transient measurements to either estimate steady-

state plant gradients for MA or compute the zeroth-order modifiers for CA. The main advantage

of these methods is that they allow the plant to converge to its optimum in a single transient

operation. This is particularly interesting for plants that have large settling times. In [27], the

authors estimate plant gradients via neighbouring extremals, which means that the proposed

approach works well for the case of parametric plant-model mismatch. The basic idea consists

in applying static MA during transient as if the plant were at steady state. The RTO period—i.e.

the time between two consecutive RTO iterations—is treated as a tuning parameter of the

optimization problem. However, this approach may fail in cases where the plant dynamics

exhibit behaviors such as inverse response.

CA combined with transient measurements has been applied to a single solid-oxide fuel-cell

stack in [7]. Similarly to the previous approach, transient measurements are collected to com-

pute the zeroth-order modifiers. The authors mention that the tested system is characterized

by two time scales: one slow and another fast, with a time-scale difference factor of about
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200. This way, while the fast dynamics have already settled, the slow dynamics are treated as

slow process drifts that are simply considered as another source of plant-model mismatch.

However, the authors highlight the fact that the proposed approach works well for system

where time scale-separation is present.

1.3 Contributions of the Thesis

The main contribution of this thesis is twofold: a novel RTO approach and its experimental

application to a commercial solid-oxide fuel-cell system, namely, BlueGEN. This work led to

the additional contributions that are described next.

1.3.1 Methodological Constributions to Modifier Adaptation

Fast RTO

We propose a novel RTO technique based on the constraint-adaptation approach. The pro-

posed approach aims at dealing with an open challenge in RTO, namely, improve the con-

vergence speed. As SOFC systems are characterized by large settling times, standard RTO

approaches applied to these types of systems may result in slow convergence. To circumvent

this problem, we reduce significantly the RTO period—i.e. the time that it takes to perform

a RTO iteration. This means that static RTO is performed during transient operation. This

approach tends to work well in systems characterized by a time-scale separation—i.e. systems

that possess both slow and fast dynamics. However, this type of time-scale separation is

rarely seen in complete SOFC systems because the dynamics are affected by the presence

of various units and recycles. As a consequence, static RTO may fail if the measurements

collected during transient operation are not representative of the plant steady state. To this

end, we propose to apply constraint adaptation using transient measurements combined

with a dynamic model. This way, we can speed up convergence of CA by executing the static

RTO problem more frequently, without having to wait for the plant to settle to a new steady

state between successive RTO iterations. Furthermore, optimality can be reached in a single

transition to steady state. In addition, we study the impact of RTO tuning parameters such as

the RTO filter and the RTO period. The advantages of the proposed approach include a simple

way of using transient measurements to predict plant steady-state values, and an illustration

that the use of dynamic models helps reach plant optimality. This approach has been applied

to both a small-scale experimental SOFC system and to the commercial BlueGEN system [33].

1.3.2 Optimization of Experimental SOFC Systems

Small-scale experimental SOFC system

This work investigates the RTO implementation on a SOFC system that consists of a reformer

and a SOFC stack, which are combined to a virtual afterburner and a virtual heat exchanger.
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Since the system has multiple time scales, we deal with the slow dynamics by using dynamic

models and transient measurements in the context of static RTO. We then perform experi-

ments on the SOFC system to validate the proposed methodology. In addition, we study how

the RTO period affects the convergence speed of the proposed RTO approach. Note that the

experimental setup in this experiment considers a SOFC stack without the physical presence

of the afterburner and the heat exchangers (the effects of these elements are simulated and

implemented via electrical heaters). To the best of the author’s knowledge, there exist no ex-

perimental results regarding the real-time optimization of solid-oxide fuel-cell systems as per

2012. The main contributions of this experimental validation are twofold: (i) the implemen-

tation of ’hardware-in-the-loop’ operation—i.e. operation of a system that consists of both

hardware and software components—of a 6-cells SOFC system, and (ii) the implementation

of a fast RTO approach aiming to speed up convergence and improve the performance of

the system. In addition, despite the fact that SOFC systems have slow dynamics, we show

experimentally that the proposed approach is able to deal with external disturbances such as

changes in the electrical power demand, thereby moving to the desired setpoint faster than

with standard RTO approaches.

Commercial SOFC System

We investigate further the experimental application of CA using transient measurements

together with a dynamic model. The system studied is a commercial micro-CHP consisting

of a 70-cell SOFC stack, a pre-reformer, an afterburner and several heat exchangers. This

complete SOFC system corresponds to the commercial BlueGEN system [33]. To the best

of the author’s knowledge, no investigation has reported experimental results concerning

the application of RTO approaches to a complete commercial SOFC system. We propose

to improve the operational efficiency of BlueGEN online—i.e. while the system is being

operated—by means of real-time optimization. We apply CA using transient measurements to

the BlueGEN system. In contrast to the previously mentioned small-scale experimental SOFC

system, the BlueGEN system is much larger and the afterburner and multiple heat exchangers

are physically present. The outcome of the experimental case study shows that the RTO scheme

can drive the system toward optimal efficiency regardless of the requested power demand and

the constraints imposed on the system. The contributions of this investigation include: (i) the

experimental implementation of a fast RTO approach to a complete SOFC system, (ii) an a

posteriori analysis that supports the fact that optimality has indeed been reached, and (iii)

demonstration that the set of active constraints that determine plant optimality changes with

the power demand. However, the main contribution of this study is the fact that the proposed

RTO approach can drive the SOFC system to optimality and remain there despite the presence

of slow drifts such as thermal inertia of the SOFC components and slower dynamics associated

with the thermal recycle. This contribution is quite important as it shows the capability of

the proposed RTO approach to deal with degradation that typically affects SOFC systems in

long-term operations.
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1.4 Organization of the Thesis

Chapter 2 presents a number of preliminary results on which the remaining parts of this thesis

are built. This includes the MA approach and the SOFC model.

Chapter 3 contains the methodology proposed to speed up RTO implementation and to deal

with multiple time-scale systems, namely, fast RTO. The basic principle is explained, and the

effect of measurement noise, RTO filter and RTO period is illustrated by means of a simulated

SOFC system.

Chapter 4 presents experimental results of fast RTO applied to a small system which consists

of actual and virtual elements that interact dynamically. The effectiveness of fast RTO in

terms of speeding up convergence is demonstrated. In addition, we perform an experimental

verification of the effect of the RTO period in fast RTO.

Chapter 5 contains the experimental implementation of fast RTO to a commercial SOFC

system. We show that fast RTO is effective at driving the SOFC system to optimality and

maintain it there despite changing power loads and the presence of disturbances such as

slow drifts. The system operability with respect to constraints is analyzed, and a qualitative

assessment of optimal performance is provided. We show that the proposed approach is

capable of operating at optimal efficiency despite the fact that the system is continuously in

transient mode.

Chapter 6 concludes the thesis, and gives a number of perspectives for future work.
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RTO methods are typically applied to industrial processes with the aim of finding the optimal

steady-state operating conditions. In this thesis, we propose and analyze an RTO approach

that is able to optimize a process quickly. Next, we first review static RTO methodology, more

specifically, MA approaches. Variations to static RTO approaches will be extended, used,

analyzed and applied to SOFC systems.

Steady-state optimization provides a framework for computing optimal operating conditions

for a continuous process. In Section 2.1, some attributes of optimal operation are described. A

process model never perfectly represents a real plant. In this context, numerical optimization

will fail at finding the optimal plant operating conditions. Hence, MA approaches, which

use plant measurements in combination with a process model to cope with plant-model

mismatch, is described in Section 2.2. Finally, a process model that comprises all components

of a complete SOFC system is described in Section 2.3.

2.1 Static Optimization Problem

The optimization of plant operation at steady state can be stated as the following NLP problem:

min
u

Φp (u) :=φ(
u,yp (u)

)
(2.1.1a)

s.t. Hp (u) := h
(
u,yp (u)

)= 0, (2.1.1b)

Gp (u) := g
(
u,yp (u)

)≤ 0, (2.1.1c)

uL ≤ u ≤ uU, (2.1.1d)

where u ∈ Rnu are the inputs or decision variables; φ : Rnu ×Rny → R denotes the objective

function to be minimized; h : Rnu ×Rny → Rnh represents the set of equality constraints

involving the inputs and outputs; g : Rnu ×Rny → Rng is the set of inequality constraints

involving the inputs and outputs; and uL and uU are the lower and upper bounds on the
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inputs. Note that the subscript (·)p is used to indicate quantities related to the plant. In this

thesis, the ’inputs’ represent the degrees of freedom used to optimize the process, which could

be flowrates, electrical current, or even setpoints for a low-level controllers.

Problem (2.1.1) has its optimum characterized by the necessary conditions of optimality. As

equality constraints can be expressed as inequality constraints, one can include both the

equality and inequality equations in Problem (2.1.1) as elements of the constraint vector g:

min
u

ϕp (u) :=φ(
u,yp (u)

)
(2.1.2a)

s.t. Gp (u) := g
(
u,yp (u)

)≤ 0, (2.1.2b)

uL ≤ u ≤ uU. (2.1.2c)

With the formulation in (2.1.2) and assuming that u∗
p is a regular point for the constraints, i.e.

the active constraints are linearly independent, then, there exist unique values for the vector

of Lagrangian multipliers µ such that the following first-order Karush-Kuhn-Tucker (KKT)

conditions hold at u∗
p :

Gp (u∗
p ) ≤ 0, uL ≤ u∗

p ≤ uU, (2.1.3a)

∇uLp (up ) =∇uϕp (u∗
p )+µT ∇uGp (u∗

p )+ζU T −ζLT = 0, (2.1.3b)

µTGp (u∗
p ) = 0, ζU T (u∗

p −uU ) = 0, ζLT (uL −u∗
p ) = 0, (2.1.3c)

µ≥ 0, ζU T ≥ 0, ζLT ≥ 0, (2.1.3d)

where the Lagrangian function is defined as: Lp (up ) =ϕp (up )+µTGp (up )+ζU T (up −uU )+
ζLT (uL −up ).

The necessary conditions of optimality (2.1.3) are referred to as the primal feasibility condi-

tions (2.1.3a), stationarity conditions (2.1.3b), complementary slackness conditions (2.1.3c),

and dual feasibility conditions (2.1.3d). Together, these conditions are called the KKT condi-

tions. Note that they are necessary but not sufficient conditions of optimality. These necessary

conditions must hold at any local minimum, which is also a regular point of the constraints.
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2.2 Modifier-Adaptation Approaches

In practice, the steady-state input-output map yp (u) of the plant is not precisely known, and

one relies on an approximation given by a nonlinear steady-state model of the form:

f(x,u,θ) = 0, (2.2.1a)

y = F(x,u,θ), (2.2.1b)

where x ∈ Rnx are the state variables, and θ ∈ Rnθ the model parameters. For given u and

θ, the solution to (2.2.1a) can be expressed as the steady-state mapping x = ξ(u,θ), and the

input-output mapping predicted by the model can be written as y(u,θ) = F(ξ(u,θ),u,θ).

Using model (2.2.1), the following model-based optimization problem can be formulated:

min
u

Φ(u) :=φ(
u,y(u,θ)

)
(2.2.2a)

s.t. H(u) := h
(
u,y(u,θ)

)= 0, (2.2.2b)

G(u) := g
(
u,y(u,θ)

)≤ 0, (2.2.2c)

uL ≤ u ≤ uU. (2.2.2d)

Since the optimization of a real process is typically affected by plant-model mismatch and

disturbances, the solutions to Problems (2.1.1) and (2.2.2) are usually different. The objective

of real-time optimization is to reach plant optimality by iteratively adapting the available

model using plant measurements. Modifier adaptation has been developed to enforce conver-

gence to the plant optimum even in the presence of structural plant-model mismatch [19].

As mentioned previously, if the plant optimum lies on active constraints, it is possible to

use a simpler version of MA, called constraint adaptation, that corrects the constraints in

the model-based optimization problem by means of only bias terms computed from the

differences between the measured and predicted values of the constraints [7, 17, 57]. Next, we

review the constraint-adaptation approach.

2.2.1 Constraint Adaptation

The idea behind constraint adaptation is to use measurements to correct the constraint

values predicted by the model [17]. When plant optimality is governed by active constraints,

constraint adaptation can be used to find and track the active constraints. At the k th RTO

iteration, the inputs uk are applied to the plant and, after waiting for steady state, the plant

constraints Hp and Gp are measured to compute the following constraint modifiers (or biases):

εH
k := Hp (uk )−H(uk ), (2.2.3a)

εG
k := Gp (uk )−G(uk ), (2.2.3b)
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where εH
k are the equality constraint modifiers and εG

k the inequality constraint modifiers.

Based on these modifiers, the following modified optimization problem is solved to determine

the next optimal inputs u?k+1:

u?k+1 = argmin
u

Φ(u) (2.2.4a)

s.t. H(u)+εH
k = 0, (2.2.4b)

G(u)+εG
k ≤ 0, (2.2.4c)

uL ≤ u ≤ uU. (2.2.4d)

An important property of the constraint-adaptation scheme is that the iterates are guaranteed

to reach a feasible operating point upon convergence. In practice, constraint adaptation is

implemented with exponential filtering of the modifiers or of the inputs, which (i) prevents

large modifications of the operating point between consecutive RTO iterations, (ii) reduces

the impact of measurement noise, and (iii) provides additional handles (the filter gains) for

enforcing convergence. If exponential filtering of the inputs is used, the next operating point

is obtained as follows:

uk+1 = Ku?k+1 + (I−K)uk , (2.2.5)

where the filter matrix K is often chosen as a diagonal matrix with the diagonal elements in the

interval (0,1]. Figure 2.1 depicts the RTO scheme via constraint adaptation using steady-state

plant measurements.

2.2.2 Modifier Adaptation

The idea behind MA is to add first-order correction terms to the cost and constraint functions

in the optimization problem [19, 22]. At the kth iteration, with the inputs uk applied to the

plant, the modified cost and constraint functions are constructed as follows:

Φm,k (u) :=Φ(u)+εΦk + (
λΦk

)T
(u−uk ), (2.2.6)

Gm,k (u) := G(u)+εG
k + (

λG
k

)T
(u−uk ), (2.2.7)

Hm,k (u) := H(u)+εH
k + (

λH
k

)T
(u−uk ), (2.2.8)

where λΦk ∈ Rnu , λG
k ∈ Rnu×ng , and λH

k ∈ Rnu×nh are the first-order gradient modifiers for the

cost and the inequality and equality constraint functions, respectively. These modifiers are

defined as the following plant-model differences at uk :
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Figure 2.1: RTO scheme via CA using steady-state plant measurements.

(
λΦk

)T
:= dΦp

du

∣∣∣∣
uk

− dΦ

du

∣∣∣∣
uk

, (2.2.9)

(
λG

k

)T
:= dGp

du

∣∣∣∣
uk

− dG

du

∣∣∣∣
uk

, (2.2.10)

(
λH

k

)T
:= dHp

du

∣∣∣∣
uk

− dH

du

∣∣∣∣
uk

. (2.2.11)

The plant gradients
dΦp

du ,
dGp

du and
dHp

du are assumed to be available at uk . Since φ, g and h are

known functions of u and y, these plant gradients can be inferred from the measured plant

outputs yp (uk ) and the estimated plant output gradients
dyp

du

∣∣∣
uk

:

dΦp

du

∣∣∣∣
uk

= ∂φ

∂u

∣∣∣∣
uk ,yp (uk )

+ ∂φ

∂y

∣∣∣∣
uk ,yp (uk )

dyp

du

∣∣∣∣
uk

,

dGp

du

∣∣∣∣
uk

= ∂g

∂u

∣∣∣∣
uk ,yp (uk )

+ ∂g

∂y

∣∣∣∣
uk ,yp (uk )

dyp

du

∣∣∣∣
uk

.

dHp

du

∣∣∣∣
uk

= ∂h

∂u

∣∣∣∣
uk ,yp (uk )

+ ∂h

∂y

∣∣∣∣
uk ,yp (uk )

dyp

du

∣∣∣∣
uk

.
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The next optimal inputs u?k+1 are computed by solving the following modified optimization

problem:1

u?k+1 := argmin
u

Φm,k (u) (2.2.12)

s.t. Gm,k (u) ≤ 0,

Hm,k (u) = 0,

uL ≤ u ≤ uU.

The next operating point is then determined upon applying a first-order filter to the inputs as

per (2.2.5). In its simplest form, the MA algorithm is implemented as follows:

Algorithm 1 (Modifier Adaptation [19])

Initialization. Provide the initial point u0 and select the input filter matrix K.

For k = 0 →∞

1. Apply the inputs uk to the plant, wait for steady state, measure yp (uk ) and evaluate

Φp (uk ) :=φ(
uk ,yp (uk )

)
and Gp (uk ) := g

(
uk ,yp (uk )

)
.

2. Compute estimates of
dΦp

du and
dGp

du at uk . These estimates require data from perturbed

operating points in the neighborhood of uk .

3. Evaluate the modifiers (2.2.9)-(2.2.11).

4. Compute uk+1 by solving Problem (2.2.12) and applying Filter (2.2.5).

end

The strength of MA lies in its ability to reach a KKT point of the plant upon convergence, as

stated in the following theorem.

Theorem 1 (MA convergence ⇒ KKT matching [19]) If the input sequence {uk } generated by

Algorithm 1 is convergent and its limit value u∞ := lim
k→∞

uk is a KKT point of the modified

optimization Problem (2.2.12), then u∞ is also a KKT point of the plant Problem (2.1.1).

1Note that the modified cost function is often defined as ΦMA,k (u) := Φ(u)+ (λΦk )T(u−uk ) or ΦMA,k (u) :=
Φ(u)+ (λΦk )Tu, since the addition of the constant terms εΦk and −(λΦk )Tuk to the cost function does not affect the

solution u?k+1.
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Remark 1 (First-order matching) KKT matching in Theorem 1 relies on the fact that the mod-

ified constraints match the values and the gradients of the plant contraints at uk , and the

modified cost function matches the gradient of the plant cost function at uk , that is,

Gm,k (uk ) = Gp (uk ), (2.2.13)

dGm,k

du

∣∣∣∣
uk

= dGp

du

∣∣∣∣
uk

, (2.2.14)

dΦm,k

du

∣∣∣∣
uk

= dΦp

du

∣∣∣∣
uk

. (2.2.15)

The KKT-matching theorem states that the solution to the MA algorithm is at KKT point of the

plant. However, other conditions must be guaranteed in order to enforce the convergence.

One of these conditions is model adequacy. In the context of the MA framework, a model is

called adequate if there exist values of zeroth- and first-order modifiers such that a fixed point

of the MA algorithm coincides with the plant optimum u∗
p [76]. A requirement that the process

model must satisfy in order to enable convergence of MA approaches is discussed in [19] and

summarized next.

Theorem 2 (Model adequacy [19]) Let u∗
p be a the unique plant optimum that is assumed to

be a regular point for the constraints. If the process model is such that the reduced Hessian of

the cost functionΦ is positive definite at u∗
p ,

∇2
rΦ(u∗

p ) ≺ 0 (positive definite), (2.2.16)

then the process model is said to be adequate for the MA scheme.

Owing to the fact that the model adequacy condition is satisfied when the process model is con-

vex, a method of model convexification via convex approximations in order to automatically

satisfy Theorem 2 has been proposed in [77].

MA approaches have the ability to converge to a plant KKT point upon convergence. The next

question is whether there exist convergence conditions for MA. In an attempt to answer this

question necessary and sufficient conditions for the convergence of MA have been proposed

in [19]. Later on, a method that upper bounds the cost and constraint functions has been

proposed in [78]. This approach enforces feasible-side convergence of MA by adding quadratic

terms to the model cost and constraint functions. The use of second-order modifiers for MA

schemes, and how, in the presence of reliable measurements, first- and second-order data

can be used to approximate SQP-like model-free RTO schemes has been discussed in [79].

The combination of trust-region methods with the MA framework in order to enforce global

convergence has been studied in [80]. However, convergence properties are still subject of

study as, unfortunately, only impractical conditions have been proposed so far.
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2.3 SOFC Model

Here we describe the SOFC model that is used to implement the proposed RTO methodologies

in this thesis. This section provides a description of each component of a SOFC system.

Hence, modeling of an SOFC stack, a pre-reformer, an afterburner, and heat exchangers are

considered.

2.3.1 SOFC Stack

The stack model includes three parts, the internal reforming, the stack voltage, and the mass

and energy balances. These are briefly described next and given in more details in [81] and

[82].

Internal Reforming. We consider that all methane that is not converted in the pre-reformer is

reformed in the stack. For simplicity, we assume that the methane is converted instantaneously.

Hence, the internal-reforming equations are of algebraic nature. The overall endothermic

reaction that takes place in the stack is:

CH4 +2H2O → CO2 +4H2 ∆HR = 164.95 kJ.mol−1. (2.3.1)

Stack Voltage. The electrochemical model expresses the cell potential as a function of the

flowrates and the electrical current. To compute the effective potential in the fuel cell, we

compute the maximum potential that the cell produces, UN , and subtract its losses. These

losses (or overpotentials) include:

• (i) the ohmic loss caused by the ionic resistance of the electrolyte and current collectors,

ηel ;

• (ii) the activation overpotential attributed to charge-transfer kinetics, ηact ,cath ;

• (iii) the diffusion overpotential caused by concentration gradients between the electrode

surface and the bulk flow, ηdi f f ,an and ηdi f f ,cath ;

• (iv) the overpotential losses due to the dissociation of the oxygen molecules into ions on

the cathode surface, ηdi ss ;

• (v) the ohmic losses, ηM IC .

Hence, the effective cell potential Ucel l can be written as follows:

Ucel l =UN −ηel −ηact ,cath −ηdi f f ,an −ηdi f f ,cath −ηdi ss −ηM IC . (2.3.2)
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The electrical power, Pel , and the efficiency, η, are expressed in terms of the cell potential as:

Pel =Ucel l Ncel l I , (2.3.3)

η= Pel

qC H4 LHVC H4

, (2.3.4)

where Ncel l , and LHVC H4 are parameters that represent the number of cells in the stack, and

the lower heating value of the methane, respectively. The electric current is represented by I

and qC H4 is the methane flowrate that enters the SOFC system. The air-excess ratio is defined

by:

λai r = 0.21

2

qai r

qC H4

. (2.3.5)

The fuel utilization is given by:

ν= Nc

8F

I

qC H4

, (2.3.6)

where F is the Faraday constant.

Mass and Energy Balances. Following the lumped-model approach, the fuel cell is divided

into four smaller thermal bodies over which the temperature is assumed to be uniform:

• the electrolyte at temperature Te ,

• the metal interconnect at temperature Ti ,

• the fuel channel at temperature Tan ,

• the air channel at temperature Tcath .

Based on these thermal bodies, we can perform an overall material and energy balance around

the fuel-cell stack as in [81]. According to these authors, one can separate the fuel cell in

four parts, which allows expressing the model equations as functions of the temperatures of

the fuel and air at the inlet and outlet. These temperatures can be measured and compared

to experimental data. In addition, the electrolyte temperature needs to be estimated since,

usually, it cannot be measured. Hence, these result in four differential equations that represent

the energy balance around each thermal body.
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2.3.2 Pre-Reformer

Natural gas is primarily composed of methane. Using methane as a fuel is advantageous due

to its thermodynamics, its wide availability, and the available distribution network. In this

perspective, fuel cells represent a high-efficiency alternative for electricity and heat production

compared to the direct combustion of methane. The aim of the methane-steam reforming

process is to convert methane and steam into syngas, which is then fed to the anode of the

fuel cell. This is done through two main chemical reactions [82], namely, steam reforming and

water gas shifting:

CH4 +H2O → CO+3H2 ∆HR = 206.1 kJ.mol−1. (2.3.7)

CO+H2O → CO2 +H2 ∆HR =−41.15 kJ.mol−1. (2.3.8)

The remaining methane is converted in the stack. It is important to mention that, while the

second reaction is exothermic, the first one is highly endothermic, which results in an overall

endothermic process. In a SOFC system, a pre-reformer is needed since direct injection of

methane and steam inside the fuel cell would induce cold spots inside the stack.

Energy Balance. As the process is mainly endothermic, the temperature of the reformer tends

to decrease. The energy flows entering and leaving the system include two components:

• the enthalpy of the streams entering the reformer,

• the enthalpy of the streams leaving the reformer.

An energy balance of the reformer gives the following ODE:

ρr Vr Cp,r
dTr e f

d t
=∑

j
qr, j Hr, j (Tr, j )−∑

l
qr,l Hr,l (Tr e f ), (2.3.9)

where Tr e f is the temperature of the pre-reformer, Hr is the molar enthalpy of each component

that enters or leaves the pre-reformer, Tr, j represents the temperature of the jth component

that enters the pre-reformer, qr is the molar flowrate associated with the components that

enter or leave the pre-reformer, the subscript j denotes the components that enter the pre-

reformer, while the subscript l stands for the components that leave the pre-reformer. The

model parameters ρr , Vr and Cp,r represent the density, the volume and the heat capacity of

the reformer, respectively.

2.3.3 Afterburner

When the anodic flow leaves the fuel cell, it still contains fuel. The outgoing flow contains

small amounts of H2 and CO that can be oxidized. The remaining fuel is burned with the
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excess of air in order to create a hot flow that is used to heat up the inlet flow of air and to

provide heat to the pre-reformer. This heat recovery allows increasing the system efficiency,

The afterburner oxidizes the anodic flow using the cathodic flow through the following com-

bustion equations:

H2 + 1
2 O2 → H2O, (2.3.10)

CO+ 1
2 O2 → CO2. (2.3.11)

It is assumed that the combustion is complete.

Energy Balance. We can write an energy balance of the afterburner. Upon assuming that the

afterburner operates at constant pressure under ideal gas mixing, the outlet temperature is

equal to the temperature inside the burning chamber. Hence, the energy balance reads:

ρbVbCp,b
dTbur ner

d t
=∑

j
qb, j Hb, j (Tb, j )−∑

l
qb,l Hb,l (Tbur ner )−

qH2∆Hr,H2 −qCO∆Hr,CO , (2.3.12)

where ∆Hr,i represents the molar reaction enthalpy of a component that is oxidized, and Hb is

the molar enthalpy of each component that enters or leaves the afterburner. The afterburner

temperature is represented by Tbur ner . The temperature of jth component that enters the

afterburner is represented by Tb, j , qb is the molar flowrate associated with the components

that enter or leave the afterburner. The subscripts j and l denote the components entering

and leaving the afterburner, respectively. The parameters ρb , Vb and Cp,b represent the density,

the volume and the heat capacity of the afterburner.

2.3.4 Heat Exchangers

A heat exchanger is used to transfer heat from a hot flow to a cold flow. This can be used here

to pre-heat the air inlet by using the heat available in the hot exhaust of the afterburner. A

plate heat exchanger is considered due to its flexibility and efficiency. It consists of a series

of corrugated and gasketed metal plates pressed together as proposed in [83]. The gaskets

allow distributing the flows to the channels located between two plates. It is assumed that

the considered heat exchanger can be modeled as a big plate, the equivalent area of which

depends on its layout.

Energy Balances. For the hot flow, one can write:

ρhVchCp,h
dTh

d t
= A(Tm −Th)

Rh,tot
+∑

j
qh, j Hh, j (Th, j )−∑

l
qh,l Hh,l (Th), (2.3.13)
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where Th represents the temperature of the gases on the hot side and Tm is the metallic plate

temperature. The molar enthalpy of each component that enters or leaves the hot side of the

heat exchanger is denoted by Hh . The temperature of the jth component that enters the hot

side of the heat exchanger is represented by Th, j , qh is the molar flowrate associated with the

components that enter or leave the hot side of the heat exchanger. As before, the subscript

j denotes the components entering the hot side of the heat exchanger, while the subscript

l stands for the components leaving the hot side. The variables ρh and Cp,h are parameters

that represent the average density and the heat capacity of the gases on the hot side. Rh,tot

represents the overall thermal resistance of the hot side, A stands for the heat exchange area.

The volume of the channel is assumed to be the same on both sides and given by Vch .

The enthalpies related to the inlet and outlet flows are taken into account at their respective

temperatures. Furthermore, this tendency model assumes that the composition remains the

same between inlet and outlet.

The energy balance for the cold side reads:

ρcVchCp,c
dTc

d t
= A(Tc −Tm)

Rc,tot
+∑

j
qc, j Hc, j (Tc, j )−∑

l
qc,l Hc,l (Tc ), (2.3.14)

where Tc represents the temperature of the gases on the cold side. The temperature of the

jth component that enters the cold side of the heat exchanger is denoted by Tc, j . The molar

enthalpy of each component that enters or leaves the cold side of the heat exchanger is

represented by Hc . The molar flowrate associated with the components that enter or leave

the cold side of the heat exchanger is denoted by qc . As before, the subscript j denotes the

components entering the cold side of the heat exchanger, while the subscript l stands for the

components leaving the cold side. The parameters ρc , Vch and Cp,d represent the density, the

volume and the heat capacity of the gases on the cold side, respectively. The overall thermal

resistance of the cold side is represented by Rc,tot .

Finally, the energy balance for the metallic plate is affected by the thermal flow that goes

from the hot side to the cold side. The heat-exchange dynamics are mostly determined by the

metallic plate as it has the largest time constant. The energy balance for the metallic plate can

be written as:

ρmVpl ateCp,m
dTm

d t
= A(Tc −Tm)

Rc,tot
− A(Tm −Th)

Rh,tot
, (2.3.15)

where ρm , Vpl ate and Cp,m are parameters that represent the density, the volume and the heat

capacity of the metallic plate, respectively.

Table 2.1 summarizes the SOFC model order used for simulation and RTO implementation.

For RTO, we use the algebraic version with all time derivatives set to zero.
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Table 2.1: General overview of the SOFC model, with n heat exchanges in the SOFC system.

Component Variables Order
SOFC stack Te ,Ti ,Tan ,Tcath 4
Pre-reformer Tr e f 1
Afterburner Tbur ner 1
Heat exchanger Tm ,Tc ,Th 3n

Overall model 6+3n
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3 Fast Real-Time Optimization Using
Transient Measurements

This chapter discusses the use of transient measurements in the context of steady-state RTO.

It is based on the following publications [8, 84].

T. de Avila Ferreira, Z. Wuillemin, A. G. Marchetti, C. Salzmann, J. Van Herle, and D. Bonvin.

Real-time optimization of an experimental SOFC system. J. Power Sources, Submitted, 2018.

T. de Avila Ferreira, G. François, A. G. Marchetti, and D. Bonvin. Use of transient measurements

for static real-time optimization. IFAC-PapersOnLine, 50(1):5737–5742, 2017.

3.1 Introduction

Modifier adaptation is a real-time optimization method characterized by its ability to enforce

plant optimality upon convergence despite the presence of model uncertainty. MA uses

steady-state measurements and solves a static optimization problem. Hence, after every input

change, one typically waits for the plant to reach steady state before measurements are taken

again, which may make convergence to plant optimality rather slow.

Recently, an approach that uses transient measurements for steady-state MA has been pro-

posed. This way, plant optimality can be reached in a single transient operation. Here, in the

context of constraint adaptation (CA), we propose to improve this approach by using a dy-

namic model to process transient measurements for the estimation of zeroth-order modifiers.

The approach is illustrated through the simulated example of a SOFC system. It is shown that

the approach is rather independent of the choice of the RTO period. The time needed to reach

plant optimality is of the order of the plant settling time, whereas several transitions to steady

state would have been necessary using the standard MA scheme.

Since, MA typically requires several iterations to steady state before converging to plant

optimality, it is of great interest to combine the MA properties with the ability of implicit

schemes to converge to the plant optimum in a single iteration to steady state. A first step

in that direction was made recently in [27], who proposed to implement steady-state MA in
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the transient phase, thereby attempting to reach optimality in a single transient operation

to steady state. For this, the steady-state optimization problem is solved repeatedly online,

with the steady-state modifiers being estimated from transient measurements. The latter are

used as if they were steady-state measurements. The approach is consistent since transient

measurements tend to steady-state measurements when the plant reaches steady state. The

nice MA property of reaching a KKT point of the plant upon convergence is preserved, provided

the gradient estimates converge to their true values. However, the main disadvantage of this

approach is that, during transient operation, the steady-state gradient estimates might be

rather inaccurate, which might lead to oscillatory behavior and even prevent convergence.

This chapter proposes to use dynamic models to process transient measurements and predict

the corresponding steady-state constraint and output values. The main contribution of the

proposed approach includes: (i) a simply way of using transient measurements to predict

plant steady-state values, and (ii) an illustration that the use of dynamic models helps reach

plant optimality.

This chapter is organized as follows. Section 3.2 describes the use of transient measurements

to estimate steady-state values with the use of dynamic models. The implementation aspects

are illustrated via a simulated SOFC system in Section 3.3, while Section 3.4 concludes this

chapter.

3.2 Fast Constraint Adaptation

The objective of constraint adaptation using transient measurements is to speed up conver-

gence of constraint adaptation by executing the steady-state RTO problem more frequently,

without having to wait for the plant to settle to a new steady state between successive RTO

iterations.

3.2.1 Use of Transient Measurements

Consider the jth iteration during transient operation. At time t j with the inputs u j , the values

of the plant constraints at steady state are estimated (not measured) and compared to the

model predictions. Then, the next optimal inputs u∗
j+1 are computed, filtered and applied to

the plant until the next RTO execution at time t j+1 = t j +τRT O , where τRT O is the RTO period.

The optimization problem for computing u∗
j+1 can be written as:

u∗
j+1 = argmin

u
Φ(u) (3.2.1a)

s.t. H(u)+ ε̂H
j = 0, (3.2.1b)

G(u)+ ε̂G
j ≤ 0, (3.2.1c)

uL ≤ u ≤ uU, (3.2.1d)
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where ε̂H
j and ε̂G

j represent the steady-state constraint modifiers estimated at time t j as follows:

ε̂H
j := Ĥp (u j )−H(u j ), (3.2.2a)

ε̂G
j := Ĝp (u j )−G(u j ), (3.2.2b)

with Ĥp (u j ) and Ĝp (u j ) representing the estimates of the plant constraints at steady state

corresponding to the current inputs u j . We propose to use exponential filtering of the inputs:

u j+1 = Ku∗
j+1 + (I−K)u j . (3.2.3)

There are different ways of estimating Ĥp (u j ) and Ĝp
(
u j

)
, two of which are described next.

Let us denote by yd yn
p (t j ) the measured plant outputs at time t j . The corresponding measured

constraints are Hd yn
p (t j ) := h

(
u j ,yd yn

p (t j )
)

and Gd yn
p (t j ) := g

(
u j ,yd yn

p (t j )
)
. The superscript

(.)d yn is introduced to distinguish these dynamic quantities from the steady-state plant map-

pings yp , Hp and Gp . In [27], the authors proposed to simply use the dynamic measurements

at time t j as estimates of the steady-state values corresponding to the current inputs u j , that

is,

Ĥp
(
u j

)
:= Hd yn

p
(
t j

)
, (3.2.4a)

Ĝp
(
u j

)
:= Gd yn

p
(
t j

)
. (3.2.4b)

3.2.2 Use of Transient Measurements and a Dynamic Model

We assume the availability of a dynamic model that is consistent with the steady-state model

(2.2.1) used for optimization:1

ẋ(t ) = f (x(t ), u(t ),θ) , x(0) = x0, (3.2.5a)

y(t ) = F (x(t ), u(t ),θ) . (3.2.5b)

The dynamic model predicts the constrained variables during transient operation as Hd yn(t j ) :=
h
(
u j ,y(t j )

)
and Gd yn(t j ) := g

(
u j ,y(t j )

)
.

Instead of taking the current measured values of the plant constraints as steady-state esti-

mates, as was done in (3.2.4), this method proposes to account for dynamic effects (at least

those predicted by the model) by estimating the plant steady-state quantities as the transient

measurements at time t j corrected by the offsets between the values predicted by the model

1 Consistency with the steady-state model implies here that the dynamic model and steady-state model predict
the same steady-state values.
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Figure 3.1: Estimation of Ĝp
(
u j

)
from the measurement of Gd yn

p (t j ) and estimation of ∆ :=
G(u j )−Gd yn(t j ) from the model.

at steady state and at time t j :

Ĥp
(
u j

)= Hd yn
p

(
t j

)+ (
H(u j )−Hd yn(t j )

)
, (3.2.6a)

Ĝp
(
u j

)= Gd yn
p

(
t j

)+ (
G(u j )−Gd yn(t j )

)
. (3.2.6b)

The basic idea is illustrated in Figure 3.1. It follows that the constraint modifiers can be evalu-

ated as the differences between the dynamic constraint measurements and the corresponding

values predicted by the dynamic model:

ε̂H
j = Hd yn

p (t j )−Hd yn(t j ), (3.2.7a)

ε̂G
j = Gd yn

p (t j )−Gd yn(t j ). (3.2.7b)

Figure 3.2 depicts the RTO scheme via constraint adaptation using transient measurements

and a dynamic model.

If the dynamic and steady-state models are consistent, the advantage of the method presented

in this subsection over the one in [27] is a dynamic adjustment that accounts for the modeled

dynamic effects, which vanish when steady state is reached upon convergence.

3.2.3 Model Adequacy

Model-adequacy conditions for the bias update scheme for the case where the plant optimum

is fully determined by active constraints have been proposed in [16]. Here, we adapt those

conditions for CA. The process model is said to be adequate if zeroth-order modifiers can be

found such that a fixed point of the CA scheme corresponds to a (local) plant optimum u∗
p .

For simplicity of notation, we consider the case without equality constraints and with the

input bounds included in the inequality constraints G. Let A (u∗
p ) be the set of active inequality

34



3.2. Fast Constraint Adaptation

Figure 3.2: RTO scheme via CA using transient measurements and a dynamic model.

constraints at the plant optimum, with card(A ) = nu . CA ensures that the modified constraints

match the plant constraints, that is,

Gi (u∗
p , θ̄)+εGi = 0, i ∈A (u∗

p ) (3.2.8a)

Gi (u∗
p , θ̄)+εGi < 0, i ∉A (u∗

p ), (3.2.8b)

where the constraint modifiers εGi are evaluated at u∗
p . The process model is considered to be

adequate for reaching the plant optimum in the CA scheme if there exists µi ≥ 0 such that

∇Φ(u∗
p , θ̄)+∑

i
µi∇Ga

i (u∗
p , θ̄) = 0, i ∈A (u∗

p ), (3.2.9a)

where Ga denotes the active inequality constraints at the plant optimum and µi are the

corresponding Lagrange multipliers of the CA problem. Note that these conditions ensure

that the gradient errors in the cost and constraint functions predicted by the model do not

change the set of active constraints.
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Figure 3.3: SOFC system flowsheet.

3.3 Simulated Example: Solid-Oxide Fuel-Cell System

3.3.1 SOFC System Description

Figure 3.3 depicts the layout of the SOFC model considered. The electric current, and the air

and fuel flows are the manipulated variables. It is assumed that the temperature of all streams

and the electrical potential of the stack can be measured. The electrical power, the system

efficiency, the fuel utilization, and the air-excess ratio are computed based on the manipulated

and output variables.

A complete fuel-cell system generally consists of a fuel-cell stack, a pre-reformer, a burner

and heat exchangers. The model of this system is described in Section 2.3. The solid lines in

Figure 3.3 represent exchange of mass between the SOFC components, whereas the dashed

line represents heat transfer. The purpose of the pre-reformer is to convert the available fuel

to syngas, which is rich in hydrogen. The syngas in combination with air produces electricity

through an electrochemical reaction inside the stack. The unreacted fuel and air are fed to the

afterburner, which oxidizes the exhaust fuel. The afterbuner outlet is then used to heat the

inlet air stream. This way, costs related to heating are minimized as no external heat source is

needed.
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3.3.2 Formulation of the Optimization Problem

The optimization of a SOFC system aims at operating at maximal efficiency for any allowed

power demand. In addition, the system must operate in a safe way.

The static optimization problem can be written mathematically as follows:

max
u

η(u) = Pel

qC H4 LHVC H4

s.t. Pel (u) = P S
el [W ]

Ucel l (u) ≥ 0.7 [V ]

ν(u) ≤ 0.8

λai r (u) ≥ 4

0.144 ≤ qC H4 ≤ 0.422 [L.mi n−1]

15 ≤ qai r ≤ 50 [L.mi n−1]

0 ≤ I ≤ 50 [A],

(3.3.1)

where η is the efficiency of the SOFC system, Pel represents the power demand, P S
el is the

setpoint for the power demand, Ucel l denotes the cell voltage, ν is the fuel utilization, λai r

represents the air excess ratio, LHVC H4 is the lower heating value of the fuel, I is the electrical

current, and qC H4 and qai r denote the fuel and air feedrates, respectively. Three inputs are

used to operate this SOFC system, namely, the current, and the fuel and air feedrates, that is,

u = [I , qC H 4 , qai r ]T.

To avoid any damage due to fuel starvation and re-oxidation of the anode, a conservative

bound of 0.8 (80%) is set on the fuel utilization. Additionally, a lower bound of 0.7 V is set to

protect the stack from accelerated degradation. Moreover, to prevent the system from steep

thermal gradients, we enforce the air-excess ratio to be larger than 4. Also, a lower bound of

0.144 L/min is set on the fuel feedrate, and an upper bound of 50 A is placed on the current

to avoid excessive heating. Finally, an equality constraint is set in order to meet the power

demand.

The optimization problem (3.3.1) can be cast into the generic NLP formulation given in (2.2.2).

To have this generic formulation, one defines the scalar cost functionΦ and the constraints H

and G as follows:

Φ=−η, (3.3.2)

H = Pel −P S
el , (3.3.3)
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Table 3.1: Parameters that differ between the plant and the model

Parameter Plant Model
Eact ,cath [J .mol−1] 153260.5 150000.0
k0 [Ω−1.m−2] 4.103096×1011 4.5×1011

Edi ss,cath [J .mol−1] 1.543785 1.54
R0 [Ω.m2] 9.225228×10−14 10×10−14

G =

0.7−Ucel l

ν−0.8

4−λai r

 . (3.3.4)

3.3.3 Simulation Results

This section describes the application of CA to the dynamic SOFC model described in Subsec-

tion 2.3. In order to investigate the effect of plant-model mismatch, we consider as Plant a

model with a specific set of parameters and as Model a model with a different set of parameters.

Both sets of parameters are given in Table 3.1.

We solve Problem (3.3.1) using both the CA approach using steady-state measurements,

described in Subsection 2.2.1, and the CA approach using transient measurements and a

dynamic model described in Subsection 3.2.1. The static model used for CA corresponds to

the dynamic model of Subsection 2.3 with all time derivatives set to zero.

To evaluate the performance of the two algorithms, the setpoint of the electrical power P S
el is

changed every 2.5 h. The electrical power profile applied is the following:

P S
el (t ) =


100 [W ], t ≤ 2.5 h

120 [W ], 2.5 h < t ≤ 5 h

100 [W ], t > 5 h.

(3.3.5)

Here, the filter matrix K is a diagonal matrix defined as K = K f I, where K f is a scalar, and

I ∈Rnu×nu is the identity matrix. The following simulations are performed to investigate the

effects of the filter gain, the RTO period, and measurement noise:

• Simulation 1: CA_ss, K f = 0.6, no noise.

• Simulation 2: CA_dyn, K f = 0.6, τRT O = 10 min, no noise.

• Simulation 3: CA_dyn, K f = 0.6, τRT O = 3 min, no noise.

• Simulation 4: CA_dyn, K f = 0.3, τRT O = 10 min, no noise.
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Figure 3.4: Simulation 1: Efficiency, current, electrical power, methane flowrate, cell voltage,
and air flowrate vs. time.

• Simulation 5: CA_dyn, K f = 0.6, τRT O = 3 min, measurement noise.

CA using Steady-State Measurements

We apply CA_ss as per Section 2.2.1 and Figure 2.1. The plant is initially at steady state at

some conservative operating point. The plant and the model are subjected to the same inputs,

and the corresponding outputs are used to compute the modifiers according to (2.2.3). The

inputs for the next RTO period are computed by solving the modified RTO Problem (2.2.4).

These optimal inputs are filtered as per (2.2.5) with K f = 0.6 and then fed to the plant and the

model. This procedure is repeated every 30 min until convergence. The performance of CA_ss

is described next.

Simulation 1, CA_ss, K f = 0.6, no noise: Figures 3.4 and 3.5 show the performance of CA_ss.

The plant converges to plant optimality in a single iteration (30 min), either from a conservative

initial point or following a step change in electric power.

CA using Transient Measurements and a Dynamic Model

We apply next CA_dyn as per Section 3.2.1 and Figure 3.2. We investigate the effects of both

the RTO period (τRT O = 3 and 10 min) and the amount of filtering (K f = 0.3 and 0.6). The
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Figure 3.5: Simulation 1: Fuel utilization, air excess ratio, pre-reformer temperature, inlet air
temperature, cathode and anode temperatures vs. time.

measurements are taken during the transient phase as the SOFC system does not reach steady

state for any of the investigated cases.

The plant is initially at steady state at a conservative operating point. The plant and the

model are subjected to the same inputs, the dynamic SOFC model is integrated, and the

corresponding outputs are used to compute the modifiers according to (3.2.7). The inputs for

the next RTO period are computed by solving the modified RTO Problem (3.2.1). These optimal

inputs are filtered as per (3.2.3) and then fed to the plant and the model. This procedure is

repeated every τRT O min until convergence. The effects of the RTO period, the amount of

filtering, an the noise measurement on the performance of CA_dyn are described next.

Effect of RTO Period

Simulation 2, CA_dyn, K f = 0.6, τRT O = 10 min, no noise: Figures 3.6 and 3.7 depict the per-

formance of CA_dyn with a RTO period of 10 min. The plant takes 1 to 2 iterations (10 to 20

min) to converge to a new steady state, which is considerably faster than in Simulation 1.

Simulation 3, CA_trans_dyn, K f = 0.6, τRT O = 3 min, no noise: Figures 3.8 and 3.9 show the

performance of CA_dyn with a RTO period of 3 min. The plant also takes 1 to 2 iterations (3 to

6 min) to converge to a new steady state. The convergence speed is increased significantly

compared to Simulations 1 and 2. One can see that, by reducing the RTO period, the plant
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Figure 3.6: Simulation 2: Efficiency, current, electrical power, methane flowrate, cell voltage,
and air flowrate vs. time.

reaches optimality faster.

Effect of Filtering

Simulation 4, CA_dyn, K f = 0.3, τRT O = 10 min, no noise: Figures 3.10 and 3.11 show the

performance of CA_dyn for a larger amount of filtering (K f =0.3). The plant reaches optimality

in a single iteration (10 min). One can see that the filter gain does not play an important role

for CA_dyn. We have also verified that, for smaller RTO periods, the same behavior is observed.

Effect of Noise

Simulation 5, CA_dyn, K f = 0.6, τRT O = 3 min, measurement noise: Figures 3.12 and 3.13

depict the performance of CA_dyn for noisy measurements. We assume that the cell voltage

as well as all measured temperatures are subjected to noise with zero mean and standard

deviations σUcel l = 0.0025 and σT = 0.125, respectively. Note that the efficiency η and the

electrical power Pel are functions of the cell voltage. Hence, these output variables are also

subjected to noise. Despite the noise introduced in the measurements, the plant shows similar

performance to noise-free simulations and reaches optimality in a single iteration (3 min).
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Figure 3.7: Simulation 2: Fuel utilization, air excess ratio, pre-reformer temperature, inlet air
temperature, cathode and anode temperatures vs. time.
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Figure 3.8: Simulation 3: Efficiency, current, electrical power, methane flowrate, cell voltage,
and air flowrate vs. time.
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Figure 3.9: Simulation 3: Fuel utilization, air excess ratio, pre-reformer temperature, inlet air
temperature, cathode and anode temperatures vs. time.
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Figure 3.10: Simulation 4: Efficiency, current, electrical power, methane flowrate, cell voltage,
and air flowrate vs. time.
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Figure 3.11: Simulation 4: Fuel utilization, air excess ratio, pre-reformer temperature, inlet air
temperature, cathode and anode temperatures vs. time.
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Figure 3.12: Simulation 5: Efficiency, current, electrical power, methane flowrate, cell voltage,
and air flowrate vs. time.
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Figure 3.13: Simulation 5: Fuel utilization, air excess ratio, pre-reformer temperature, inlet air
temperature, cathode and anode temperatures vs. time.

3.4 Conclusions

This chapter has described a RTO methodology that enables faster convergence to plant

optimality. The approach has been illustrated by means of the real-time optimization of a

small scale SOFC system. The proposed approach is based on constraint adaptation that uses

either steady-state measurements or transient measurements together with a dynamic model.

The improvement consists in processing these transient measurements through dynamic

models, thereby improving the estimation of plant constraints at steady state. This way, static

CA can be implemented during transient operation, with the objective of reaching optimality

in a single transition to steady state. In a way, this is similar to what is done with implicit

RTO methods, such as extremum-seeking control [26], self-optimizing control [66] and NCO-

tracking [20]. However, CA that uses transient information has the advantage of being an

explicit RTO method, which repeatedly solves the optimization problem and is therefore able

to deal with changing active constraints.

The use of a dynamic model to process transient measurements is key for implementing a

high-frequency RTO scheme, thereby leading to fast convergence. In addition, the use of a

dynamic model significantly reduces the adverse effect of having different time scales in the

plant. Finally, we showed that the use of CA with small RTO periods does not only act as an

optimizer but, in this case, also as a controller.

45





4 Real-Time Optimization of a Small-
Scale Experimental SOFC System

This chapter discusses the experimental implementation of the fast RTO approach proposed

in Chapter 3 to a small-scale experimental SOFC system. It is based on the following publica-

tion [8].

T. de Avila Ferreira, Z. Wuillemin, A. G. Marchetti, C. Salzmann, J. Van Herle, and D. Bonvin.

Real-time optimization of an experimental SOFC system. J. Power Sources, Submitted, 2018.

4.1 Introduction

To the best of the author’s knowledge, as recently as 2012, no experimental results regarding

real-time optimization of solid-oxide fuel-cell systems had been reported. Hence, as part of a

collaborative project between Group of Energy Materials – EPFL, Automatic Control Laboratory

– EPFL and SOLIDpower SA, we decided to validate experimentally the RTO methodology

presented in Chapter 3. For this reason, we built an interface that would allow exchanging

data between the optimization algorithm implemented in MATLAB and the SOFC system

controlled via LabVIEW. The SOFC system was located at EPFL Valais in Sion, Switzerland.

All experiments were performed remotely from EPFL Lausanne, Switzerland. The results are

presented in this chapter.

The only experimental work regarding the operational optimization of an SOFC system is

reported in [80]. However, as mentioned previously, this experiment lacks answering the

following questions: (i) Can RTO speed up systems that have multiple time scales? (ii) In

the context of fast RTO, what is the influence of tuning parameters such as the RTO period?

With the objective of bridging the large gap between simulation work and experimental

applications in the context of control and optimization of SOFC systems, this chapter presents

RTO experiments of a SOFC system with the aim of answering the aforementioned questions.

The chapter is structured as follows: Section 4.2 describes the experimental setup, namely,

hardware and software. Section 4.3 describes the experimental implementation of fast RTO,

where the effect of the RTO period and the use of a dynamic model is analyzed. Section 4.4

47



Chapter 4. Real-Time Optimization of a Small-Scale Experimental SOFC System

concludes the chapter. It is worth mentioning that all figures in this chapter show experimental

data.

4.2 SOFC System

4.2.1 Physical System

The available experimental system includes a pre-reformer, a stack, as well as two electrical

heaters used to heat up the air inlet stream and the pre-reformer.

The SOFC stack used in this study is a short-stack developed by SOLIDpower. It consists of six

planar anode-supported cells with an active area of 80 cm2, pressed between gas-diffusion

layers and metallic interconnector plates. The anodes are made of standard nickel/yttrium-

stabilized-zirconia (Ni-YSZ) cermet, and the thin electrolyte is made of dense YSZ and a CGO

(ceria-gadolinia) barrier layer. The cathodes consist of screen-printed (La, Sr)(Co, Fe)O3, which

allows operating at temperatures between 650◦C and 850◦C. The stack is placed in a high-

temperature furnace at 750◦C and is connected to a testing station that provides controlled

flowrates of air and pre-heated fuel. Additionally, an active load is used to set the delivered

current. The syngas coming from the pre-reformer enters the anode chamber at about 450◦C.

The heated air enters the cathode chamber at about 700◦C. The pre-reformer is fed with

natural gas and steam at about 400◦C. Several options are available for fuel processing. In this

study, the fuel is reformed partially in the pre-reformer, with the remaining part of the fuel

being reformed in the stack so as to keep the temperature within the operating range. The

pre-reformer is a shell-and-tube reactor, whose model is described in [83]. The water pump,

fuel, and air blowers, as well as the pre-reformer and air heaters are electrically driven. The

control of the testing station is ensured by a LabVIEW interface.

Figure 4.1 represents the available SOFC system. The electric current, the air and fuel flows, as

well as the pre-reformer and air electrical heater temperatures are the manipulated variables.

These variables are controlled by a PI controller. The temperature of all streams and the

electrical potential of the stack are the measured outputs of this system. The electrical power,

system efficiency, fuel utilization, and air-excess ratio are computed based on the manipulated

and output variables.

A complete fuel-cell system generally consists of a fuel-cell stack, a pre-reformer, an after-

burner heat exchangers. In this work, we propose to combine the aforementioned available

SOFC system with mathematical models of the afterburner and heat exchangers. This results

in an SOFC system that combines hardware and software parts. This specific manner of oper-

ating a system is named ’hardware-in-the-loop’ operation. Figure 4.2 depicts the layout of the

experimental SOFC system. The available and virtual parts of the SOFC system are highlighted

by dotted lines. The solid arrows represent mass flows, whereas the dashed arrows represent

signals.
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4.2. SOFC System

Figure 4.1: Available SOFC system flowsheet.

4.2.2 Software

The available SOFC system is controlled via LabVIEW, while the dynamic SOFC model is

implemented in MATLAB. Hence, we developed an interface in LabView and implemented the

data communication as proposed in [85]. The cathode and anode temperatures are read from

the available SOFC system and sent to the model, where they are used as initial conditions

for the afterburner dynamic model. This model also needs to know the composition of the

anode and cathode streams. However, since there is no sensor to measure gas compositions,

the compositions inside the stack are estimated using the fuel-cell model. The computed

afterburner temperature is sent to the virtual heat exchanger (dynamic heat-exchanger model)

that computes the temperature of the air stream. This temperature is used as setpoint (Set-

point 2) for the available electrical heater. The afterburner temperature is also sent to a

pre-reformer dynamic model to compute its expected reformer temperature. This computed

temperature is then sent as setpoint (Setpoint 1) to the electrical heater that heats up the

available pre-reformer. In other words, the pre-reformer and air heat exchanger temperatures

are determined by the virtual system (dynamic models) connected to the available SOFC

system. Hence, although these temperatures are manipulated variables, they cannot serve

as decision variables in the optimization problem. The sampling time used to perform the

communication between software and hardware is 5 s. Figure 4.3 shows a simplification of

structure to establish an interface between the RTO algorithm and the SOFC hardware.
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Figure 4.2: Tested SOFC system flowsheet.
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4.2. SOFC System

Figure 4.3: Interface structure of the system optimization. Each box corresponds to a process,
whose execution period is specified in the upper-hand corner. The largest rectangle com-
prises the inner-loop (loop performed in a higher frequency) blocks, while the RTO and the
Interface 1 blocks correspond to the outer-loop (loop performed in a lower frequency) blocks.
Each arrow correspond to data exchange between processes: (1) RTO inputs and constraint
measurements; (2) RTO inputs and constraint measurements, communication between inner-
and outer-loops; (3) electrical heater setpoints and measurements; (4) all system temperature
and cell voltage measurements, and inputs.
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• RTO: This block runs in MATLAB and provides the optimal inputs computed by the selected

RTO method to the Interface 1 block. It also acquires constraint measurements that

are used to compute the zeroth-order modifiers. The frequency at which this block is

executed depends on the chosen RTO period. However, the execution frequency of this

block is always lower than the inner-loop blocks.

• Interface 1: This block is implemented in LabVIEW and is used to verify the inputs provided

by the RTO algorithm. A warning window pops up every τRT O min with the input values

to be applied to the system and the user must ’comply’ in order for the data to be sent

to the next block. Interface 1 is important as it allows modifying the inputs in case

MATLAB crashes or RTO provides unreasonable values.

• Heat Exchanger and Afterburner Models: This block contains the models of the heat ex-

changer and the afterburner described in Section 2.3. The measured temperature of the

air heated by the electrical heater is sent to this block via Interface 2 and used as initial

conditions for the model. The model is integrated every 5 s in order to compute the heat

exchanger and afterburner temperature predictions. These temperatures are then sent

back to the Interface 2 block.

• Interface 2: This block corresponds to the communication between the inner and outer

loops. It acquires and sends verified RTO optimal inputs and constraint measurements.

This procedure is performed according to the specified RTO period. In addition, this

block is the bridge between the Heat Exchanger and Afterburner Models block and the

SOFC Hardware block. The communication between these two blocks happens every 5

s. The heat exchanger and afterburner temperature predictions are input to the SOFC

hardware as setpoints to the PI controllers of the heat exchanger temperatures. Then,

after 5 s the heat exchanger temperatures are once again sent to Interface 2 .

4.3 Real-Time Optimization of the SOFC System

4.3.1 Dynamic Model

Each component of the model utilized for the RTO scheme is described in Section 2.3. Note

that two different models are used: (1) the heat exchanger and afterburner models for the

’hardware-in-the-loop’ operation, and (2) the model of the entire system used in the RTO

scheme. Here, we refer to the latter. Figure 3.3 depicts the flowsheet of the model utilized for

the optimization.

4.3.2 Experimental Results

This section describes the implementation of steady-state constraint-adaptation (CA_ss) and

constraint adaptation using transient measuments and a dynamic model (CA_dyn) to the

experimental SOFC system. The methods are presented in Section 2.2.1 and Section 3.2.2,

respectively. The problem formulation is described in Section 3.3.2. The following experiments
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4.3. Real-Time Optimization of the SOFC System

are performed:

• Experiment 1: CA_ss, K f = 0.6.

• Experiment 2: CA_dyn, K f = 0.6 and τRT O = 10 min.

• Experiment 3: CA_dyn, K f = 0.6 and τRT O = 3 min.

As indicated by the simulation results obtained in the previous chapter, the filter gain does not

significantly affect the convergence speed of CA_dyn. Hence, we will only analyze the effect of

the RTO period.

The SOFC system is initially at steady state with an electric power of 100 W and an efficiency of

about 55%. We will first try to maximize the efficiency at that power demand and then follow

the electrical power setpoint profile given in (3.3.5).

As seen in Figures 4.4 to 4.10, the measurements and the quantities computed from these

measurements can be noisy. Hence, we average the last minute of acquired data to compute

mean values. The blue and red lines in these figures represent the measurements after applying

a moving-average filter offline [86].

CA using Steady-State Measurements

We apply CA_ss according to Section 2.2.1 and Figure 2.1. The plant is initially at steady state

with an electric power of 100 W. The plant and the model are subjected to the same inputs,

and the corresponding outputs are used to compute the modifiers according to (2.2.3). The

inputs for the next RTO period are computed by solving the modified RTO Problem (2.2.4).

These optimal inputs are filtered as per (2.2.5) with K f = 0.6 and then fed to the plant and the

model. This procedure is repeated every 30 min until convergence. The performance of CA_ss

applied to the experimental SOFC system is described next.

Experiment 1, CA_ss, K f = 0.6: Figures 4.4 and 4.5 show the performance of CA_ss. Initially,

the plant takes 3 to 4 iterations (90 to 120 min) to converge to the plant optimum, thereby

increasing efficiency from 55% to about 62% for the same power demand. Then, a single

iteration (30 min) is sufficient to converge to a new steady state following a step change in

power demand.

CA using Transient Measurements and a Dynamic Model

We apply next CA_dyn as per Section 3.2.1 and Figure 3.2. We perform two experiments with

RTO periods of 3 and 10 min, respectively. The measurements are taken during the transient

phase as the experimental SOFC system does not reach steady state for any of the investigated

cases.
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Figure 4.4: Experiment 1: Efficiency, current, electrical power, methane flowrate, cell voltage,
and air flowrate vs. time.
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Figure 4.5: Experiment 1: Fuel utilization, air excess ratio, pre-reformer temperature, inlet air
temperature, cathode and anode temperatures vs. time.
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The plant is initially at steady state with an electric power of 100 W. The plant and the model are

subjected to the same inputs, the dynamic SOFC model is integrated, and the corresponding

outputs are used to compute the modifiers according to (3.2.7). The inputs for the next RTO

period are computed by solving the modified RTO Problem (3.2.1). These optimal inputs are

filtered as per (3.2.3) with K f = 0.6 and then fed to the plant and the model. This procedure is

repeated every 3 or 10 min until convergence. The effect of the RTO period on the performance

of CA_dyn is described next.

Effect of RTO Period

Experiment 2, CA_dyn, K f = 0.6 andτRT O = 10 min: Figures 4.6 and 4.7 show the performance

of CA_dyn with a RTO period of 10 min. Initially, the plant takes 4 to 5 iterations (40 to 50 min)

to converge to the plant optimum, which is considerably faster than in Experiment 1. Then, a

single iteration (10 min) is sufficient to converge to a new steady state following a step change

in power demand.

There are spikes on the efficiency, cell voltage, and fuel utilization when the power setpoint is

changed. This is due to the fact that the inputs are updated at different rates. Indeed, the rates

of change of the inputs are set by the operator, with the rate of change of the current being

larger than that of the methane flowrate. Hence, spikes are seen on the fuel utilization plot as

it is a function of the inputs only. The cell voltage and the efficiency are affected as well since

they are functions of the fuel utilization.

Experiment 3, CA_dyn, K f = 0.6 and τRT O = 3 min: Figures 4.8 and 4.9 show the performance

of CA_dyn with a RTO period of 3 min. Initially, the plant takes 6 to 7 iterations (18 to 21 min)

to converge to the plant optimum, which is considerably faster than in Experiments 1 and

2. Then, the plant takes only 1 to 2 iterations (3 to 6 min) to converge to a new steady state

following a step change in power demand.

As in Experiment 2, one can see spikes on the efficiency, cell voltage, and fuel utilization when

the power setpoint is changed for the reasons explained previously. One also sees a spike after

2.5 h when the electric power is set to 120 W, which can be explain by the "sudden" input

change with this small RTO period. This behavior could be avoided by increasing the amount

of input filtering (lower K f ).

Figure 4.10 compares the performance (in terms of efficiency and electric power) of CA_ss

with τRT O = 30 min and CA_dyn with τRT O = 3 min. One clearly sees a major improvement in

response speed through the use of CA_dyn. Table 4.1 lists the settling times necessary to reach

the power setpoint, more specifically the interval of ±2% around the setpoint.
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Figure 4.6: Experiment 2: Efficiency, current, electrical power, methane flowrate, cell voltage,
and air flowrate vs. time.
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Figure 4.7: Experiment 2: Fuel utilization, air excess ratio, pre-reformer temperature, inlet air
temperature, cathode and anode temperatures vs. time.
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Figure 4.8: Experiment 3: Efficiency, current, electrical power, methane flowrate, cell voltage,
and air flowrate vs. time.
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Figure 4.9: Experiment 3: Fuel utilization, air excess ratio, pre-reformer temperature, inlet air
temperature, cathode and anode temperatures vs. time.
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Table 4.1: Settling time to reach the power setpoint (±2%).

Experiment Method
τRT O

(min)
Settling time

(min)
1 CA_ss 30 30-120
2 CA_dyn 10 10-50
3 CA_dyn 3 3-21

Figure 4.10: Performance (in terms of efficiency and electric power) of CA_ss with τRT O = 30
min and CA_dyn with τRT O = 3 min.

4.4 Conclusions

In the performed experiments, the plant efficiency was increased from 55% to 62% through

application of real-time optimization. SOFC systems are characterized by the presence of

different time scales. The use of a dynamic model allows reducing significantly the RTO period.

This way, convergence speed can be increased and the RTO scheme does not suffer from the

impact of different plant time scales. Although SOFC systems have slow thermal dynamics

that may take a few hours to settle to steady state, it has been possible to reduce the time

necessary to reach the power setpoint from 1 h to about 5 min. This experimental work has

shown that it is possible, not only to control the SOFC system at the desired operating point,

but also to operate it near optimality despite changes in power demand.

This chapter has described the experimental implementation of real-time optimization to an
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SOFC system. The proposed approach consists in utilizing either steady-state measurements

or transient measurements together with a dynamic model to implement constraint adap-

tation. In spite of significant plant-model mismatch and uncertainty, it was shown that the

approach is able to efficiently steer the SOFC system to near optimality, while always meeting

the power demand and respecting the operational constraints. This opens up nice industrial

perspectives, in particular with respect to dealing with system degradation.

The results are very encouraging and offer the possibility to rapidly and adequately optimize

the operation of complete large-scale industrial SOFC systems without compromising on

safety and lifetime. This will be illustrated in the next chapter.
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5 Real-Time Optimization of a Commer-
cial SOFC System

This chapter discusses the experimental implementation of the fast RTO approach proposed

in Chapter 3 to a commercial SOFC system. It is based on the following publication [87]

T. de Avila Ferreira, Z. Wuillemin, T. Faulwasser, C. Salzmann, J. Van Herle, and D. Bonvin.

Enforcing Operational Efficiency in SOFC Micro-CHPs. Energy, Submitted, 2018.

5.1 Introduction

In this chapter, we consider high-temperature solid-oxide fuel-cell (SOFC) systems that elec-

trochemically oxidize fuels (hydrogen and/or methane) to generate electricity. SOFC systems

are mostly considered for stationary applications such as combined heat and power (CHP)

generation for households, whereby the thermal integration of fuel-cell stack, reformer and

heat exchangers is key to achieve commercially competitive efficiency levels above 55% [3, 33].

As previously mentioned, SOFC systems are operated continuously for long periods of time

(several years). Therefore, certain technical constraints must be guaranteed for safe and

reliable operation. However, slow drifts of system parameters (due to degradation, thermal

inertia, etc.) make achieving optimal efficiency under all circumstances difficult. Moreover,

disturbances and frequent changes in electrical power demand are additional operational

challenges. Hence, the question of how to continuously enforce optimal operation of a SOFC

system is of considerable interest.

The outcomes of an experimental case study on a commercial micro-CHP built around a SOFC

stack is presented in this chapter. Specifically, we consider the BlueGEN system [33], which

comprises a fuel-cell stack, a pre-reformer, an afterburner and several heat exchangers. To

the best of the author’s knowledge, none of the reported investigations deal with a complete

commercial SOFC system. Specifically, we suggest improving the operational efficiency of

such systems online, that is at run time, by means of real-time optimization (RTO).

The conceptual foundation of the previous RTO approach proposed is a time-scale separa-
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tion [7], that is, the fact that the fuel cell is characterized by two time scales (a fast time scale

associated with the electrochemical reactions and a much slower time scale associated with

the thermal processes). Since constraint adaptation fails when a time-scale separation is

absent, we propose to use the approach described in Chapter 3. This RTO approach uses

transient measurements in combination with a dynamic model, thereby overcoming the

time-scale separation issue in constraint adaptation. In general, it can be shown that con-

straint adaptation reaches a feasible operating point upon convergence, that is, an operating

point that satisfies the considered constraints [17]. In contrast, guaranteeing optimality upon

convergence requires first-order corrections [22].

In this chapter, we apply constraint adaptation using transient measurements combined with

a dynamic model to a complete SOFC system that includes a pre-reformer, an afterburner and

several heat exchangers. Note that the experimental setup in the previous chapter considered

an experimental SOFC stack without the physical presence of the afterburner and the heat

exchangers (the effects of these elements were simulated and implemented via electrical

heaters). Here, we consider a complete commercial BlueGEN system. Our experimental

results indicate that the RTO scheme drives the system toward optimal efficiency regardless

of the requested power demand and the constraints imposed on the system. In addition, we

provide a posteriori analysis that supports the fact that optimality was indeed reached.

This work is a collaborative project between Group of Energy Materials – EPFL, Automatic

Control Laboratory – EPFL and SOLIDPower SA. A data exchange interface was built to estab-

lish a communication between the optimization algorithm implemented in MATLAB and the

BlueGEN system controlled via LabVIEW. Although the BlueGEN SOFC system was located at

SOLIDpower SA in Yverdon-les-Bains, Switzerland, all experiments were performed remotely

from EPFL Lausanne.

The remainder of the chapter is organized as follows. A system description and the considered

tendency model are provided in Section 5.2. Section 5.3 briefly discusses the RTO techniques

used in this study. Section 5.4 analyzes the experimental results obtained with BlueGEN.

Then, analysis and assessment of optimal operation is given in Section 5.5, while Section 5.6

concludes the paper.

5.2 BlueGEN System

The demand for CHP or co-generation technology has substantially increased due to the

need for decarbonization of energy supply and the steadily increasing demand for electricity.

Several commercial CHP systems are available. While many CHP systems, such as those pro-

vided by 2G Energy AG [88], ETW Energietechnik [89], SenerTec Center NRW-Süd GmbH [90],

rely on internal combustion engines or gas/steam turbines in conjunction with a generator,

the BlueGEN system developed by SOLIDpower SA is based on a micro power SOFC [33].

Subsequently, we describe the main features of the BlueGEN system, the tendency model used

for control, and the formulation of the optimization problem.
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Figure 5.1: Power balance of the BlueGEN system [33].

5.2.1 System Description

BlueGEN is a commercial micro-CHP system targeted to small businesses, private households

and public buildings. The BlueGEN system can deliver about 13’000 kWh of electricity a

year. Currently, the system is able to run with AC electrical efficiency of about 60% at 1.5 kW,

producing electricity 50% cheaper than current market prices [33].

BlueGEN is a fully integrated SOFC fuel-cell module that converts fuel into electrical energy.

The heat produced by the system can be used to heat water. BlueGEN weighs 195 kg and has a

size of 1010 x 600 x 660 mm in height, width and depth. Natural gas or biomethane can be

used as the source of energy. At the electrical power of 1.5 kW and AC electrical efficiency of

about 60%, the fuel consumption is about 2.5 kW. In addition, about 0.55 kW can be used as

energy to external heating systems. Figure 5.1 depicts BlueGEN power balance at the electrical

power of 1.5 kW.

The BlueGEN system consists of a pre-reformer, a stack, several heat exchangers and an

afterburner. The system consists of 70 planar anode-supported cells with an active area

of 80 cm2. The cells are pressed between gas-diffusion layers and metallic interconnector

plates. The anodes consist of standard nickel/yttrium-stabilized-zirconia (Ni-YSZ) cermet,

and thin electrolyte, which is made of dense YSZ and a CGO (ceria-gadolinia) barrier layer. The

cathodes consist of screen-printed (La, Sr)(Co, Fe)O3 that allows operating at temperatures

between 650◦C and 850◦C. The system is connected to a station that provides air and fuel,

while the delivered current is set by an active load.
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Figure 5.2: BlueGEN system flowsheet.
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Figure 5.3: Input-output representation of the BlueGEN system.

The BlueGEN flowsheet is given in Figure 5.2. The electrical current and the flows of air, fuel

and cooling air are the manipulated variables. These variables are regulated by PI controllers.

The measured outputs are the cathode inlet and outlet temperatures of the stack, the burner

temperature, and the electrical potential of the stack. The electrical power, system efficiency,

fuel utilization and air-excess ratio are computed based on the manipulated and output

variables. Figure 5.3 depicts a simplified input-output representation of the BlueGEN system.

5.2.2 Tendency Model

Next, we turn to the mathematical model used for RTO. As will be discussed later, the RTO

scheme used in this study does not require an accurate model since correction terms based

on measurements will be added to the predicted values of the constraints. To reflect this

aspect, we say here that we use a tendency model (in practice, we use the best available model,

which, however, does not need to be very accurate). In particular, we will use a lumped

model as this will be sufficient to capture the fundamental aspects of the SOFC system, while

allowing for fast computation and reasonable accuracy. The components of the tendency

model used are described in Section 2.3. The connections of each of the model component is

done according to the plant flowsheet in Figure 5.2. Note that four available inputs are used to

control the system, namely, the current and the flowrates of fuel, air and cooling air, which

gives u = [ I , qC H 4 , qai r , qcool ]T.

Dynamic Behavior

The dynamic behavior of a SOFC stack alone was studied in [91]. This behavior is characterized

by a fast response of the cell voltage when a step change is imposed to the current density,

followed by a relaxation process that is considerably slower. This relaxation time depends on

the cell size and configuration, the thermal properties and the operating conditions.

The BlueGEN system has several components, with each component being characterized by

its own dynamics. Moreover, the system has a thermal recycle, which increases its dynamic
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complexity. Hence, the system is expected to have (i) fast dynamics associated with the elec-

trochemical reactions, (ii) slow dynamics associated with the thermal inertia of the individual

components, and (iii) still slower dynamics associated with the thermal recycle. It is also

important to mention the relative large thermal inertia of the burner, which affects the system

dynamics.

5.2.3 Operational Constraints

The operational constraints present in the BlueGEN system are summarized in Table 5.1. The

constraint that most limits efficiency is the fuel utilization ν. BlueGEN can have different

values of fuel utilization for the same electrical power. System efficiency is mainly driven by

high fuel utilization. However, too high values of fuel utilization can damage the stack through

re-oxidation of the anode and fuel starvation [7, 92]. Hence, in this study, we set a relative

conservative upper bound (80%) on fuel utilization.

BlueGEN is designed to operate at high values of the cell voltage Ucel l . We set a conservative

lower bound on Ucel l to avoid accelerated cell degradation that occur at low cell potentials.

The stack operating temperature varies depending on the cathode material [92]. In this

study, we maintain the cathode outlet temperature Tcath,out between certain bounds to avoid

damage of the cathode material. To prevent elevated temperatures, we set an upper bound

on the burner temperature Tbur ner . Large thermal gradients between the cathode inlet and

outlet temperatures would impact the temperature profile inside the cell, which affects the

potential losses and consequently may shorten the system life-time due to degradation [93].

Hence, lower and upper bounds on the cathode inlet temperature are also taken into account.

In addition, to avoid strong thermal gradients in the stack, we set a lower limit on the air-excess

ratio λai r , which is defined as the ratio of the amount of oxygen in-take to the stoichiometric

amount of oxygen needed to react with the fuel. Moreover, the air inlet flowrate qai r is con-

strained between lower and upper values based on device specifications. The fuel flowrate

qC H4 has a lower bound to avoid fuel starvation and an upper bound based on device specifi-

cations. Since cooling air is used to regulate the burner temperature, an upper bound is set on

the cooling air flowrate qcool to avoid too low system temperatures.

Finally, an upper bound on the current I is set to limit degradation.

5.2.4 Formulation of the Optimization Problem

In operating the BlueGEN micro-CHP, it is of vital interest to improve the overall system

efficiency for varying demands of electrical power. In addition, operating constraints as per

Section 5.2.3 are included to guarantee safe operation. Based on the aforementioned tendency

model, the optimization problem can be formulated as the following nonlinear program (NLP):
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Table 5.1: Operational constraints in the BlueGEN system.

Constraint Lower bound Upper bound
Ucel l [V ] 0.76 -
ν [-] - 0.8
λai r [-] 3 -
Tcath,i n [◦C] 650 750
Tcath,out [◦C] 650 790
Tbur ner [◦C] - 890
qC H4 [L.mi n−1] 1 7
qai r [L.mi n−1] 85 200
I [A] 0 50
qcool [L.mi n−1] 0 40

max
u

ηs y s(u) = Pel

qC H4 LHVC H4

−δai r q2
ai r −δcool q2

cool

s.t. steady-state model equations (2.3.2)-(2.3.15)

constraints in Table 5.1

Pel (u) = P S
el [W ],

(5.2.1)

where ηs y s represents the cost function (related to system efficiency) to be maximized, Pel

denotes the electrical power demand and P S
el its setpoint, LHVC H4 is the lower heating value

of the fuel. Note that the flowrates of air and cooling air are included in the cost function

to force the system to use small amounts of air and cooling air in an effort to reduce the

operational costs, with δai r = 1×10−5 and δcool = 1×10−4 the corresponding weights. Note

that, in contrast to the DC electrical efficiency η, the cost function ηs y s includes terms to

account for parasitic blower consumption.

5.3 Real-Time Optimization Approach

If the tendency model used in this work were an exact representation of the true system behav-

ior, it would be straightforward to achieve optimal system operation by means of numerical

optimization [3, 7, 8, 94]. However, in practice, models are never exact. Hence, we now turn to

a family of methods known as real-time optimization (RTO) that can handle inexact models.

We refer to the previous chapters to review the RTO approaches used here, see Section 2.2.1

for steady-state constraint-adaptation scheme, and see Section 3.2.2 for constraint adaptation

using transient measurements and a dynamic model.

Table 5.2 emphasizes the differences between the steady-state CA scheme and its fast counter-

part implemented in this work. Note that the use of transient measurements allows reducing
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Table 5.2: Two CA schemes.

Algorithm Measurements Optimization Modifiers RTO
problem (bias update rule) period

Steady-state CA At steady state (2.2.4) (2.2.3) 90 min
Fast CA During transient (3.2.1) (3.2.7) 5 min

the sampling interval from 90 to 5 min, which speeds up convergence considerably. With both

schemes, the converged solution is guaranteed to be feasible. However, without plant-specific

analysis, it is in general not possible to infer optimality upon convergence. Hence, we will

discuss optimality issues in Section 5.5, after presentation of the experimental results in the

next section.

5.4 Experimental Results with the BlueGEN System

This section describes the experimental results obtained upon applying RTO to the BlueGEN

system. The experiments were performed considering three distinct operating points corre-

sponding to electrical power demands of 1, 1.25 and 1.5 kW. Note that the electrical power acts

as an unknown disturbance. These scenarios were chosen to (i) assess the performance of the

proposed approach, (ii) demonstrate the change in active constraints, and (iii) show the effect

of the different time scales.

• Steady-state CA: A 72-h experiment with steady-state CA.

• Fast CA: A 6-h experiment with fast CA.

The fuel-cell system is controlled using a LabVIEW interface, in which the optimization

algorithm is implemented via a MATLAB Script function. The results of the experiments are

detailed next.

5.4.1 Steady-State CA

We first performed a 72-h experiment solving Problem (2.2.4) using a steady-state model and

steady-state measurements, that is, computing the modifiers as per (2.2.3). The model used is

the steady-state version of the tendency model described in Section 5.2.2.

The filter matrix K in (2.2.5) is the diagonal matrix K f I, where K f is a scalar and I ∈Rnu×nu is

the identity matrix. K f is set to 0.4 to prevent large moves between RTO iterations and reduce

the effect of measurement noise.

To explore the range of power demand that the system can provide, the power setpoint P S
el is
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changed every 24 h as follows:

P S
el (t ) =


1000 [W ], t ≤ 24 h

1250 [W ], 24 h < t ≤ 48 h

1500 [W ], t > 48 h.

(5.4.1)

At the start, BlueGEN is set at the relative conservative operating condition of 55% DC efficiency

at 1 kW. Next, the control algorithm is applied to drive the system to optimal efficiency. The

modifiers are computed as per (2.2.3). Problem (2.2.4) is solved to compute the next inputs,

which are filtered according to (2.2.5). With the RTO period of 1.5 h, the procedure is repeated

until convergence. Figures 5.4 and 5.5 depict the performance of steady-state CA. All lines

represent measurements after application of an offline moving-average filter [86].

The DC electrical efficiency increases to about 62% in the first 5 h. However, since the system is

not at thermal equilibrium yet, the efficiency decreases slightly with temperature to eventually

reach 61%. The system takes about 20 h to reach steady state. Note that, although the electrical

power is kept constant, the efficiency increases by 11% with respect to its initial value.

After 24 h, the power setpoint is changed to 1.25 kW. It takes the system five iterations, or 7.5 h,

to reach the new power setpoint. However, since the temperatures are slower and take about

16-20 h to reach steady state (Figure 5.5), the system efficiency is not at steady state after 7.5 h.

The temperatures keep increasing, and the DC electrical efficiency eventually settles at about

63.5%.

After 48 h, the electrical power setpoint is increased again to 1.5 kW. The system reaches the

new power setpoint in about seven iterations, or 10.5 h. Here, the temperatures do not change

much as the cathode outlet temperature was already close to its upper bound. Hence, the

efficiency reaches steady state faster, as it is not affected by the slow thermal changes. It

reaches about 62.5% after two iterations.

Note that the RTO scheme minimizes the cooling air flowrate for all operating points. This

is not surprising since (i) this input is used to control the burner temperature and prevent it

from getting too high, and (ii) in this experiment, the burner temperature is below 860 ◦C and

thus no control action is needed.

5.4.2 Fast CA

This section describes a shorter 6-h experiment performed to assess the performance of fast

CA, that is, steady-state CA that uses transient measurements and a dynamic model to estimate

the plant steady state.

Problem (3.2.1) is solved using the modifiers (3.2.7). The dynamic model is the tendency

model described in Section 5.2.2. A diagonal filter matrix, with K f = 0.4, is used.
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Figure 5.4: Steady-state CA: Efficiency, current, electrical power, methane flowrate, cell voltage,
and air flowrate vs. time.

The power setpoint P S
el is changed every 2 h as follows:

P S
el (t ) =


1000 [W ], t ≤ 2 h

1250 [W ], 2 h < t ≤ 4 h

1500 [W ], t > 4 h.

(5.4.2)

The BlueGEN system starts again at steady state with an electrical power of 1 kW and about

55% DC efficiency. The procedure is repeated with the RTO period of 5 min until convergence.

Figures 5.6 and 5.7 depict the performance of fast CA. The lines represent measurements after

application of an offline moving-average filter [86].

The DC electrical efficiency increases to about 64.5% in the first 30 min. However, since the

system is not at thermal equilibrium, the efficiency decreases slightly with temperature to

eventually reach 64% after 2 h. The DC electrical efficiency is thus increased by about 16%

with respect to its initial value for the same electrical power.

Next, the power setpoint is changed to 1.25 kW after 2 h. It takes the system about 15 min to

reach 96% of the new power setpoint and 45 min to completely reach it. The cell potential and

the temperatures keep increasing, with the electrical efficiency reaching 62% at this point.
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Figure 5.5: Steady-state CA: Fuel utilization, air-excess ratio, cathode outlet and inlet tempera-
tures, and burner temperature vs. time.

Finally, after 4 h, the electrical power setpoint is changed to 1.5 kW. The system takes about

11 min to complete 95% of the change and 40 min to fully complete it. The DC electrical

efficiency reaches about 61% after 2 h.

Table 5.3 summarizes the range of efficiencies that the BlueGEN system is able to reach for

each electrical power tested when either steady-state CA or fast CA is applied.

5.4.3 Change in Active Constraints for Different Power Levels

For all tested electrical powers and upon convergence, the optimal operation of BlueGEN

system is determined by active constraints (Figures 5.4 - 5.7). This feature makes the proposed

RTO scheme attractive. At steady state, for the power setpoint of 1 kW, the following four

constraints are active: the electrical power, the cathode inlet temperature, the air flowrate

and the cooling air flowrate. At the power of 1.25 kW, another set of four constraints are

active, namely, the electrical power, the fuel utilization, the air-excess ratio and the cooling air

flowrate. Finally, at the power of 1.5 kW, the active constraints are the electrical power, the fuel

utilization, the cathode outlet temperature and the cooling air flowrate.

Note that, when fast CA is applied, the system can exhibit a set of active constraints that differs

from the corresponding set obtained with steady-state CA for the same power setpoint. For
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Table 5.3: Range of DC efficiencies for each electrical power tested, where SS CA stands for
standard steady-state constraint adaptation and Fast CA stands for constraint adaptation
using transient measurements combined with a dynamic model.

Electrical Power [kW]
1 1.25 1.5

RTO scheme SS CA Fast CA SS CA Fast CA SS CA Fast CA
Efficiency [%] 61 64 62 63.5 61 62.5

example, at the power of 1 kW, the electrical power, the fuel utilization, the air flowrate and

the cooling air flowrate are active with fast CA. However, as the system settles to steady state,

the lower bound of the cathode inlet temperature becomes active, thereby freeing the fuel

utilization. This is caused by the slow thermal transients, with the cathode inlet temperature

reaching its lower bound very slowly. Fuel utilization is not at its upper bound at steady state

because this would result in a lower burner temperature and thus also to a lower cathode inlet

temperature, which is not possible because the lower bound is already active.

5.4.4 Transient vs. Steady-State Performance

A comparison of the results obtained with steady-state CA and fast CA in Figures 5.4 to 5.7 is

clearly to the advantage of fast CA. Indeed, in addition to the ability of reaching a new setpoint

much quicker, fast CA also seems to be able to generate, at least temporarily, higher efficiency

values. A closer look indicates that this is probably linked to the fact that the cathode can be

kept at higher temperatures, which is linked to the fact that the higher the fuel utilization, the

higher the system efficiency. At 1 kW, fuel utilization can be at its maximum if the cathode

inlet temperature is not at its lower bound.

Hence, an additional experiment, shown in Figure 5.8, was performed to evaluate the perfor-

mance when the system is forced to remain in transient mode in such a way that the lower

bound on Tcath,i n is not reached. Initially, the system is at steady state at 1 kW with a DC

efficiency of about 55%. The modifiers are computed as per (3.2.7). Problem (3.2.1) is solved

to compute the next inputs, which are then filtered according to (3.2.3). The RTO period is

5 min, as with fast CA. Every 50 min, the system is pushed back to the initial state and kept

there 10 min by resetting manually the values of the inputs. This procedure is repeated several

times so as to keep the fuel-cell system in a transient operating mode.

As shown in Figure 5.8, the electrical power is kept at 1 kW throughout this experiment. Due to

the periodic excitation, the system undergoes cyclic operation. Once a limit cycle is reached,

the system exhibits maximal efficiency of about 62%, with an average efficiency of about 60%.

Although the average efficiency is slightly lower than the corresponding steady-state value,

the plateau at maximal efficiency is higher than the steady-state value. No attempt was made

to determine the parameter values that would optimize such a limit cycle. However, this

experiment suggests the possibility of optimizing system performance by appropriate cycling,
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Figure 5.6: Fast CA: Efficiency, current, electrical power, methane flowrate, cell voltage, and air
flowrate vs. time.

particularly in applications where cycles appear naturally, such as in daily power demands. It

also shows that the BlueGEN system copes well with frequent load cycling, which is positive

for its application as residential micro-CHP. This, however, is beyond the scope of this work.

5.5 Discussion and Analysis of Experimental Results

This section discusses and analyzes the results obtained in the previous section, in particular (i)

the effect for optimization of the presence of different times scales, (ii) the effect of constraints

on operability and performance, and (iii) an a posteriori assessment of optimality.

5.5.1 Effect of Different Time Scales

As already mentioned, the BlueGEN system is characterized by the presence of several time

scales. One can observe three time scales that are associated with the electrochemical process,

the burner and the thermal recycle, respectively. As seen by the rather quick response to

changes in power setpoint, the efficiency responds almost instantaneous to input changes.

This is due to the fact that efficiency is mostly affected by the electrochemical time scale.

In contrast, the cell potential keeps changing even when the inputs do not change much

as seen in Figures 5.4 and 5.6. Since the cell potential is also a function of temperatures,
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Figure 5.7: Fast CA: Fuel utilization, air-excess ratio, cathode outlet and inlet temperatures,
and burner temperature vs. time.

these slow changes are related to the slow thermal time scale. The burner, due to its large

thermal inertia, has a much larger time constant compared to the electrochemical effects.

Furthermore, the time constant associated with the thermal recycle is rather large and the

one that ultimately governs the system steady state. This appears to be the reason for the

change in active constraints between the transient and steady-state phases of operation at 1

kW. During transient operation, as the temperatures decrease slowly and the cathode inlet

temperature has not reached its lower bound yet, fuel utilization is temporarily at its upper

bound. Note that the fuel utilization decreases when the cathode inlet temperature reaches its

lower bound.

These results are very promising. Indeed, due to this large difference in time scales, the

proposed approach can reach the electrical power setpoint much faster than the time it takes

for the system to settle to thermal steady state. This way, the optimizer is quick at finding and

tracking the active constraints, thus implementing optimal operation quickly.

5.5.2 Effect of Constraints on Operability and Performance

Different sets of active constraints have been observed at the plant optimum for the three

investigated electrical power loads.
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Figure 5.8: Cycling experiment: Efficiency, cathode outlet temperature, electrical power, cath-
ode inlet temperature, cell potential, and burner temperature vs. time.

At 1 kW, the most restrictive constraint appears to be that on the cathode inlet temperature,

which is at its lower bound. A performance comparison between steady-state CA and fast CA

shows that the electrical efficiency can reach higher values (up 64.5%) when the constraint on

fuel utilization is active. Since the cathode inlet temperature constraint is active at steady state,

fuel utilization cannot be at its upper bound, which causes a decrease in system performance.

At 1.5 kW, the most restrictive constraint seems to be that on the cathode outlet temperature,

which is at its upper bound. In this case, a relatively large air flowrate is used to regulate the

cathode outlet temperature. Unfortunately, the larger the air flowrate, the lower the efficiency.

At the intermediate power value of 1.25 kW, constraints that are only functions of inputs are

active. This means that system performance relies more on the electrochemical dynamics

than on the slow thermal dynamics. Consequently, the system reaches the power setpoint

quickly. This suggests that there is an electrical power range between 1 and 1.5 kW, where

the electrochemical time scale plays the dominant role. Note that this information is of high

practical value.
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5.5.3 A Posteriori Assessment of Optimality

Without an exact plant model, it is not possible to certify optimality for RTO schemes.1 In the

case of CA, optimality guarantees would required to know the correct set of active constraints

beforehand. Because of this difficulty, we conduct next an a posteriori analysis that supports

the claim of local optimality.

The BlueGEN system has four inputs. The current, which has a limited impact on temperatures,

is used to regulate the electrical power. The flowrate of cooling air is available to keep the

burner temperature below its upper bound. The remaining inputs, namely, the fuel and air

flowrates, are available to push efficiency, while respecting all other constraints. An intuitive

way of pushing system efficiency is to increase fuel utilization to its upper bound.

Let us consider BlueGEN’s operation at various power demands and assess qualitatively

whether performance could be improved.

• At 1 kW, both the cathode inlet temperature and the air flowrate are at their lower

bounds.

Fuel utilization can be increased by reducing the fuel flowrate. However, this would

eventually decrease the cathode inlet temperature and thus violate its lower bound. An

increase in current would also lead to an increase in fuel utilization, but this would

make the electrical power deviate from its setpoint. Alternatively, one could consider

increasing the current and decreasing simultaneously the fuel flowrate so as to keep the

electrical power at 1 kW. However, this would violate the cathode inlet temperature as

the current has less effect on temperatures.

The air flowrate is at its lower bound, and any increase would lead to a decrease in

system temperatures, thus violating the constraint on the cathode inlet temperature. In

addition, the system efficiency would decrease.

The cooling air flowrate is also at its lower bound. An increase of this input would de-

crease the temperatures, thus violating the constraint on the cathode inlet temperature

and reducing the efficiency.

These qualitative arguments suggest that optimality is reached at the electrical power

of 1 kW as no input change would lead to better efficiency while remaining feasible. In

other words, small (i.e. local) changes of the inputs will very likely not improve efficiency.

• At 1.25 kW, no temperature constraint is active. Fuel utilization is at its upper bound,

which implies that a change in fuel flowrate would not improve the efficiency. The air

flowrate cannot be decreased as the air-excess ratio is at its lower bound. Note that an

increase of the air flowrate would reduce efficiency. Since the cooling air flow is also

at its lower bound, any change of this variable would lead to suboptimal performance

1Even RTO schemes providing nominal certificates of optimality upon convergence require certain assumption,
for example the availability of exact plant gradients for modifier adaptation [22]. In general, the fact that the plant
optimum is unknown makes the generic certification of optimal operation impossible.
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as mentioned previously. All these reasons suggest that, for the power of 1.25 kW, the

system is also locally optimal.

• For 1.5 kW, fuel utilization is also at its upper bound, which indicates that no change

in fuel flowrate or current would result in better performance. Furthermore, the air

flowrate can neither be decreased as this would violate the constraint on the cathode

outlet temperature, nor increased as this would reduce efficiency. The cooling air

flow is at its lower bound and cannot be increased without compromising the system

performance as previously mentioned. This also suggests that the system is at a local

optimum at 1.5 kW.

5.5.4 Operational Guidelines

Supported by the results presented in this paper, one can state operational guidelines to help

operate BlueGEN efficiently in the electrical power range between 0.6 and 1.7 kW:

• For electrical powers between 1 and 1.5 kW, two operational constraints must be active

besides the electrical power and the cooling air flowrate: (i) the fuel utilization needs to

be at its upper bound to maximize efficiency, and (ii) the air flowrate (or the air-excess

ratio if it becomes active first) needs to be minimal since smaller amounts of air lead to

higher efficiency.

• For electrical powers lower than 1 kW, the constraint on the cathode inlet temperature

is always active. Hence, one could relax this constraint to increase fuel utilization and

improve efficiency. Typically, the air flowrate is also active at this power range. However,

the air-excess ratio may become active depending on the fuel utilization.

• For electrical power values higher than 1.5 kW, the cathode outlet temperature is at its

upper bound. This constraint could be relaxed to decrease the amount of air in-take,

which would improve performance. The fuel utilization needs to be active to guarantee

high efficiency. At electrical power values close to 1.7 kW, the burner temperature and

the cathode inlet temperature might become active. These variables can be controlled

via the flowrates of air and cooling air. However, it may be of interest to find a trade-off

between these two flowrates that maximizes performance.

5.6 Conclusions

Real-time optimization via constraint adaptation has been applied to a commercial SOFC

system. The approach is based on updating the model constraints using either steady-state

measurements or transient measurements combined with a dynamic model. It has been

shown that the set of active constraints that determine plant optimality changes with the

power demand. Despite the presence of significant plant-model mismatch, the proposed RTO
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scheme is able to drive the SOFC system to optimality and maintain it there despite changing

power loads and the presence of disturbances such as slow drifts.

In addition, this chapter has analyzed the system operability with respect to constraints

and provided a qualitative assessment of optimal performance. The proposed strategy can

implement a change in electrical power demand in about 15 min, that is, well before the

thermal dynamics have settled to steady state. Thermal inertia is a slow process that makes the

system drift "somewhere" after a change in load/demand/operation. The proposed approach

drives and maintains the system at optimal efficiency despite the ongoing drift.

Furthermore, it has been shown that this iterative RTO scheme acts as a self-optimizing

controller that is able to push the operational efficiency to its limits and make the SOFC

micro-CHP work in dynamic mode, thereby responding to load changes in real time.

Finally, note that this investigation has considered a rather conservative upper bound of 80%

on fuel utilization. In practice, fuel utilization values of 85% or even 90% are possible, which

would drive efficiency even higher.
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This thesis has demonstrated that the incorporation of measurements in the optimization

framework helps to improve the performance of industrial processes, in particular when the

available models are of limited accuracy. Modeling often requires significant time and effort

and is thereby associated with significant costs. In practice, we use the best model available as

long as the optimization routines can be performed within the selected RTO period. Hence, we

utilized a model that captures the fundamental behavior of the SOFC system while providing

a good trade-off between accuracy and fast computation.

We have proposed a novel RTO approach in order to deal with the slow convergence of RTO

approaches applied to systems that possess slow dynamics such as SOFC systems. The pro-

posed approach allows reducing the RTO period even in the absence of time-scale separation.

Multiple time scales may lead to oscillatory behavior and even prevent convergence. Avoiding

these adverse effects was achieved by applying a variant of constraint adaptation that uses

transient measurements combined with a dynamic model. This way, static RTO was applied

during transient operation with the aim of reaching optimality in a single transition to steady

state. The main contributions of the proposed approach include a different manner of predict-

ing plant steady state by using transient measurements and a demonstration that the use of

dynamic models decreases the negative effects of different time scales, thereby helping reach

plant optimality.

We performed experiments on SOFC systems to validate the proposed methodology. In the

small-scale experimental SOFC system, we implemented and operated a 6-cell SOFC system

that contained a few simulated units in the loop. The experimental results showed that

convergence speed was significantly increased and the performance of the system improved.

We demonstrated that the proposed approach can achieve the desired electrical power despite

the setpoint changes. The time necessary to reach the power setpoint was reduced from 1 h to

about 5 min in spite of the fact that the systems is characterized by slow thermal dynamics,

which take a few hours to settle to steady state. In addition, it was observed experimentally

that the adverse effect of different time scales could be significantly reduced by the use of

a dynamic model. These results are quite important as the experiments showed that it is
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possible to act rapidly and optimize the operation of SOFC systems. These experimental

results are very encouraging to apply this methodology to a complete and larger industrial

SOFC system.

The proposed RTO approach was also implemented on a commercial micro-CHP system, the

BlueGEN system that consists of a 70-cell SOFC stack, a pre-reformer, an afterburner and a

heat-exchanger network. This means that the BlueGEN system has a much slower dynamics

compared to the aforementioned small-scale SOFC system. Through the experiments, we

have shown that the proposed RTO approach steers the BlueGEN system to optimal efficiency

despite changes in electrical power demand. Also, we performed a qualitative analysis to

assess plant optimality. In addition, we analyzed how the set of active constraint changes

with the electrical power and provided guidelines for optimal operation. The most significant

contribution of these experimental results was the fact that fast RTO can drive the BlueGEN

system to optimal efficiency and keep it there far before the thermal variables settle to steady

state. This opens up new perspectives related to how to deal with slow drift disturbances, in

particular concerning the dire effects of degradation. However, it would require performing

long-term experiments to assess whether the proposed RTO approach can deal with it.

6.1 Summary

Next, we summarize the main conclusions of each chapter:

Chapter 3: Fast Real-Time Optimization Using Transient Measurements. This chapter has

extended the RTO scheme, labeled constraint adaptation, to the cases where transient mea-

surements are available. We have shown that the proposed fast RTO approach allows speeding

up plant convergence significantly. Fast CA consist in processing transient measurements

through a dynamic model. This way, the estimation of plant constraints is improved as the

approach accounts for transient behaviors when the system is not at steady state. It follows

that steady-state CA can be applied during transient operation, with the aim of reaching

plant optimality in a single transient transition to steady state. The proposed methodology

exhibits the same basic features as standard CA, that is, the plant is guaranteed to reach a

feasible operating point upon convergence. In addition, provided model-adequacy conditions

are fulfilled, fast CA has the ability to deal with changing active constraints. This is possible

because fast CA has the advantage of being an explicit RTO method, that is, it repeatedly

solves the optimization problem. Moreover, as the RTO frequency can be much higher than

with standard CA, more plant information is acquired and quicker actions are taken, thereby

preventing the plant from large constraint violations. Finally, the use of a dynamic model

circumvents the need to have time-scale separation in order to apply RTO using transient

measurements.

Chapter 4: Real-Time Optimization of a Small-Scale Experimental SOFC System. This chap-

ter has discussed the experimental RTO implementation to an SOFC system with 6 cells that

consists of both hardware and software components. We applied the RTO approach described
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in Chapter 3, where CA was implemented using both steady-state measurements and transient

measurements combined with a dynamic model. The experimental results show that the

proposed approach allows reaching plant optimality, while meeting the electric power demand

and respecting all the imposed operational constraints. In addition, the results have shown

that the use of measurements can overcome the difficulties related to plant-model mismatch

and uncertainty. Moreover, it is shown that fast CA is able to increase plant efficiency up to

62%. The presented experimental results agree with the methodology presented in Chapter 3.

Indeed, the use of a dynamic model permits to significantly reduce the RTO period, which both

increases the convergence speed and allows dealing with a SOFC system with multiple time

scales. Finally, it has been shown that the time needed to reach the electric power setpoint

was reduced from 1 h to about 5 min despite the slow thermal dynamic effects of the tested

SOFC system.

Chapter 5: Real-Time Optimization of a Commercial SOFC System. This chapter has pre-

sented an RTO experiment applied to a complete commercial SOFC system that consists of

70 cells. We have implemented steady-state and fast CA approaches to the BlueGEN system.

The experimental results have shown that the set of active constraints that determine the

optimal operating point change according to the power setpoint. In addition, the results have

demonstrated that fast RTO can operate optimally while delivering the demanded electric

power even when the system is being affected by slow drifts such as thermal inertia. This

shows that the proposed approach is capable of dealing with other slow drift disturbances

such as degradation that often compromise the performance of SOFC systems. Furthermore,

we have shown that fast RTO significantly speed up convergence compared to steady-state

RTO. The time to reach the power setpoint was reduced to about 15 min even though the

system was still in a transient phase. Finally, we have analyzed the BlueGEN system in terms of

its constraints, time scales, transient and steady-state performance, and provided an ex-post

analysis of its optimal operating conditions.

6.2 Perspectives

At the end, we propose some suggestions related to the optimization of SOFC systems and

RTO methodology.

6.2.1 Optimization of SOFC Systems

Solid-oxide fuel cells are fuel-cell systems that are mostly used for stationary applications.

Combined heat and power generation for households, businesses or public buildings is promis-

ing as electric and thermal energy generation technology are produced simultaneously. This

thesis has shown how to operate SOFC systems safely and optimally. However, the optimiza-

tion problem has been formulated with the aim of maximizing electrical efficiency. One

could explore the idea of combining thermal and electrical efficiency in the optimization

problem. In addition, one could split this problem into two optimization problems: with
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electrical efficiency as the objective function when the electrical energy consumption is at

its peak, and with thermal efficiency as the objective function when the thermal consump-

tion is at its peak. Moreover, SOFC systems release on average 50% less CO2 compared to

carbon-based energy systems, which means to save up to 4 tons of CO2 emissions per year [33].

Although SOFC systems are considered environmentally friendly, one could also re-formulate

the optimization problem in order to prevent the system from producing CO2 outside of

a certain range, mainly when the system is on thermal efficiency mode. Furthermore, the

optimization problem could be formulated as a sum of all operational costs that are associated

with the consumption of natural gas, water and air.

As previously mentioned, thermal gradients between stack inlet and outlet temperatures may

affect the life time of the system due to degradation. Hence, one could include additional

constraints or a penalty function which would restrict the temperature difference to a certain

maximal value. The main disadvantage of adding those additional constraints is the fact

that they may compromise the system performance as either the fuel utilization or the air-

excess ratio would have to be modified in order to reduce this temperature difference. Another

possibility is to use a one-dimensional stack model in order to predict the spatial distribution of

temperature, gas composition and overpotentials along the gas flow direction. Although more

complex, this approach would allow having more flexibility and the temperature constraints

would not only be restricted between inlet and outlet.

The electrical power setpoints have been changed as step functions. Another possibility would

be to set the power setpoints as ramp functions. This would enable smoother temperature

profiles, and slower fuel utilization and air-excess ratio changes. This would allow operating

the SOFC system in a safer manner and also increasing the fuel-cell life span by reducing

the adverse effect of degradation. In addition, as shown in the previous chapter, fuel-cell

performance could be increased with cyclic operation. In order to solve this problem, one

could formulate it as an optimal control problem, which can be solved in cycle-to-cycle fashion

in the context of RTO.

As part of this thesis, but not reported in this document, we compared output MA approach

with standard MA, which is available in [95]. We have demonstrated that this approach, labeled

output modifier adaptation (MAy), provides additional corrections to the Hessian of the cost

and constraint functions compared to MA. This is possible because the cost and constraint

functions are nonlinear functions of the inputs and outputs. MAy allows the plant to converge

to its optimum in a single iteration in the case when the output functions can be expressed as

linear functions of the inputs, whereas MA may take several iterations to converge and, in some

cases, depending on the plant-model mismatch, may not converge. Moreover, it has been

shown that MAy generally provides a better approximation of the plant curvature. Since plant

knowledge is assumed to be unavailable, it is not possible to tell in advance which method

will have a better performance. However, taking into account the presented examples, MAy

is likely to present better performance than MA for the cases where the cost and constraint

functions are nonlinear function of inputs and outputs. This opens up nice perspectives in the
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context of SOFC systems as these types of systems have many variables that can be measured

and used to perform the output corrections made by MAy.

6.2.2 RTO Methodologies

The CA approach has been experimentally applied to SOFC systems and reported in this thesis.

The main drawback of the CA scheme is the fact that it requires prior knowledge of the correct

set of active constraints. It may be a problem in the case where the input dimension is large.

One way to overcome this is to estimate the cost and constraint plant gradients. Modifier

adaptation utilizes this information in order to update the cost and constraint functions. The

technique most used to estimate plant gradients is finite differences. However, it may become

impractical if the plant settling time is large as convergence speed would be significantly

reduced. Estimation of plant gradients during transient operation represents a possible

solution to this problem. The use of plant gradients obtained during transient operation in

the context of RTO has already been reported [27]. Nevertheless, the proposed approach

works only for parametric plant-model mismatches. One could use transient data to fit a

given function—e.g. regression via Gaussian processes or polynomial regression—to estimate

functions while the plant is on transient phase. This is particularly interesting for fuel-cell

systems, since before implementing any control technique, the system is subject to test and

input-output data are collected. Preliminary results regarding combination of RTO schemes

with Gaussian processes have been proposed as part of this thesis and are reported in [96].

This thesis has applied static RTO with both steady-state measurements and transient mea-

surements combined with a dynamic model. An alternative to static RTO would be to utilize

dynamic RTO in the context of modifier adaptation. This way, the dynamic effects of the

process would be taken into account not only by the transient measurements that are used to

compute the modifiers but also by the ODEs that are solved in the optimization problem. This

could result in better estimates of plant outputs during transient, which could lead to better

performance. Hence, transient quantities such as constraint and cost functions would be

updated with transient corrections, which could result in fewer constraint violations and better

estimates of the cost and constraint gradients. A first step towards this proposition has been

investigated in [97]. Therein, the authors have proposed to combine the modifier-adaptation

approach with offset-free economic MPC, and highlighted that this combination avoids failure

of MPC in achieving plant optimum in closed loop. Although only parametric plant-model

mismatch case is considered, the results are promising as a new viewpoint concerning the

combination of MPC and RTO is considered.

Finally, MA requires plant measurements and a system model to compute the plant optimum

at each RTO iteration. Although the model used can support a significant level of approxima-

tion, it must satisfy the following two requirements: (i) a model adequacy condition related to

the second-order optimality conditions must be valid at the plant optimum, and (ii) the model

must have the same input variables as the plant. As part of this thesis, we have considered
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a case where (ii) is not verified because only a partial or incomplete model is available in

[98]. We have proposed to approximate the unmodeled part of the system by a linear model

that is identified using the same excitation that is used in modifier adaptation for gradient

estimation. In the context of SOFC systems, this may be applied in the case when a part of

the plant is not modeled because of modeling difficulties. This linear approximation could

replace a component of the SOFC system such as a reformer or even recycle streams.
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