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Résumé 

La sensibilité à différents traitements d’inactivation est connue pour varier entre les virus, et 

même entre les des souches de virus apparentés. Cependant, l’étendue de cette variation, 

ainsi que les mécanismes responsables celle-ci n’est pas connus. Dans cette étude, différent 

entérovirus (six souches the coxsackievirus B5 (CVB5), deux de coxsackievirus B4 (CVB4), et 

une souche de coxsackievirus B1 (CVB1)) ont été isolées d’eau usée, et soumises à plusieurs 

traitements de désinfection (UV254, le chlore libre, et le dioxide de chlorine) et autres 

facteurs de stress rencontrés dans l’environnement (soleil, temperature). Les cinétiques 

d’inactivation des souches environnementales ont été comparées avec celles de souche de 

laboratoire (CVB5 Faulkner et échovirus 11 Gregory) ainsi qu’avec le bactériophage MS2. La 

plus grande variabilité entre les souche a pu être observée avec le traitement au chlore libre, 

contrairement au traitement à l’UV254, qui ne présentait seulement qu’une variabilité 

subtile. La cinétique d’inactivation entre les différents sérotypes apparaissait plus grande 

que celle observée au sein du sérotype CVB5. Quant à MS2, il apparaît comme un substitut 

conservatif pour l’inactivation des enterovirus à l’UV254, au soleil, ainsi qu’à la température, 

mais sous-estime la désinfection chlore libre et au dioxide de chlorine. 

Curieusement, les différences observées entre les virus avec l’inactivation par température 

apparaissaient liés au sérotype, mais aussi à la source (souche environnementale ou de 

laboratoire). Pour cette raison, nous avons décidé d’orienter le travail sur l’inactivation 

thermique, afin d’évaluer les mécanismes responsables de ces différences. Plus 

précisément, nous avons analysé l’inactivation de ces virus à deux températures, 30 et 55°C, 

ainsi qu’à deux différentes conditions de pH et concentration de sel (NaCl). A 30°C, une lente 

inactivation a pu être constatée à pH neutre, et plus rapide à pH acide ou alcalin. De plus, 

l’ajout de 1M de NaCl a provoqué une forte augmentation de l’inactivation observée à ces 

pH extrêmes, de façon synergétique. Ces résultats apparaissent cohérents avec un clivage de 

l’ARN, confirmé expérimentalement par une dégradation de l’ARN viral. À 55°C, un effet 

protecteur du sel a pu être constaté sur tous les virus étudiés, ce qui a pu être justifié par 

une augmentation des forces d’attraction à l’interface des structures pentamériques 

constituant la capside virale. À cette température, des différences importantes entre les 

souches virales ont été constatées, les souches CVB4 et échovirus 11 étant les plus 

thermosensibles que toutes les autres, et la souche de laboratoire CVB5 étant plus 

thermosensible que ses isolats environnementaux correspondants. Ces variations n’ont pas 

pu être expliquées par un changement dans les forces d’interaction des pentamères, mais 

possiblement provoquée par des mutations localisées dans la poche hydrophobe de VP1. 
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L’importance de cette poche a pu être confirmée en adaptant CVB5 à deux températures, 50 

et 55°C. Les souches adaptées sont apparues moins compétitives que les souches contrôles, 

mais étaient plus résistantes à la température. Cette résistance coïncide avec l’apparition de 

mutations dans cette même poche hydrophobe, mais n’impliquant aucun changement dans 

les forces d’interaction des pentamères. Ces résultats confirment l’importance de cette 

poche hydrophobe dans la résistance des virus à la température. 

Globalement, ces données nous révèlent que la thermo-résistance des virus peut être 

renforcée par des facteurs externes, comme la salinité, ou par des modification structurales 

de la poche hydrophobe de VP1. 

 

Mots-clés: virus, eau, désinfection, résistance, température 
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Summary 

The susceptibility of waterborne viruses to different inactivating treatments is 

acknowledged to vary between viruses and even between closely related strains, yet the 

extent of this variation, or the underlying mechanisms, are not known. Here, different 

enteroviruses (six strains of coxsackievirus B5 (CVB5), two strains of coxsackievirus B4 

(CVB4) and one strain of coxackievirus B1 (CVB1)) were isolated from wastewater. The 

different viruses were then exposed to disinfectants used in water and wastewater 

treatment (UV254, free chlorine (FC), chlorine dioxide (ClO2)) and to stressors encountered in 

the environment (sunlight, temperature). Inactivation kinetics of the environmental isolates 

were compared with those of laboratory enterovirus strains (CVB5 Faulkner and echovirus 

11 Gregory) and MS2 bacteriophage. FC exhibited the greatest variability in inactivation 

kinetics between different strains, whereas inactivation by UV254 differed only subtly. The 

variability in inactivation kinetics was greater between serotypes than it was among the 

seven strains of the CVB5 serotype. MS2 was a conservative surrogate of enterovirus 

inactivation by UV254, sunlight or heat, but frequently underestimated the disinfection 

requirements for FC and ClO2. 

Interestingly, the differences between the viruses in heat resistance appeared linked to the 

serotype and the source of isolation (environmental versus laboratory). For this reason, we 

decided to focus on thermal inactivation and investigate the mechanisms underlying these 

differences. Specifically, we extensively analyzed the inactivation of these viruses at 30 and 

55°C, and under different conditions of pH and NaCl concentrations. At 30°C, inactivation at 

neutral pH was slow, but both acidic and alkaline pH enhanced inactivation, and the addition 

of 1 M NaCl exerted a synergistic inactivating effect. These findings are consistent with RNA 

cleavage being the main mechanism of inactivation, and genome degradation was 

experimentally confirmed. At 55°C, salt had a protective effect on all viruses. This was 

rationalized by calculations of the different protein interaction forces, which demonstrated 

that increasing concentrations of salt resulted in increasing attractive forces at the capsid 

pentamer interfaces. At this temperature, major differences in thermoresistance between 

the viruses were observed, with CVB4 and E11 displaying the lowest thermoresistance, and 

the CVB5 laboratory strain being less thermoresistant than the CVB5 isolates. These 

differences could not be explained by a shift in capsid pentamer interaction forces, but likely 

resulted from mutations located in VP1 pocket region.  
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The importance of the VP1 pocket region was further confirmed by adapting CVB5 to two 

different temperatures (50 and 55 °C). The thermo-adapted strains exhibited a competitive 

fitness trade-off compared to control strains, but were significantly more resistant to 

thermal inactivation. This resistance coincided with the appearance of one or several of four 

mutations in the VP1 region of the structural proteins. These mutations did not affect the 

interaction forces at the pentamer interface. Instead, they were located in the VP1 pocket 

region, confirming the importance of this region in the acquisition of thermotolerance. 

Overall, these data indicate that the thermostability of a virus can be enhanced by external 

(matrix) factors, in particular salinity, or by intrinsic (structural) modifications in the VP1 

pocket region. 

 

Keywords: virus, water, disinfection, resistance, temperature 
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CHAPTER 1 INTRODUCTION 

CONTEXT 

A constant battle has always been waged between animals and viruses. Each time animals 

developed a natural immunity to avoid or interrupt an ongoing infection, viruses either 

found a hidden door or evolved to be unrecognizable to the host. Humans then developed 

vaccinations as an artificial immunity to prepare against potential future infections. 

Nevertheless, viral infections cannot be completely avoided by vaccines, so synthetic 

antiviral tools were developed that target specific steps of the viral replication cycle to assist 

in host recovery. Unfortunately, because certain types of virus remain relatively insensitive 

to those tools, humans resort to avoiding crossing paths with a virus through sanitation and 

prevention campaigns. Conscious efforts and investigations into minimizing viral 

transmission have been accomplished, but viruses still remain a major concern to human 

health, as they likely always will. 

This study tackles viruses through sanitation studies, highlighting several issues caused by 

current disinfection methods as well as the implications of the content of the viral matrix. In 

addition, this study describes how the virus source can impact the efficiency of several 

disinfection methods and the virus’s ability to adapt to thermal stress. 

VIRUSES AND PICORNAVIRUSES 

Background 

What is a virus ? 

Viruses are one of the smallest infectious agents and possess one of the widest ranges of 

potential hosts, including plants, bacteria, invertebrates, mammals and even other viruses. 

Their existence has been traced back at least 19 million years1, and several studies highlight 

their significant contributions to human evolution2,3. Viruses can be composed of an 

incredible number of different shapes, sizes, envelopes and genome types (Figure 1.1), and 

host invasions can lead to both symptomatic or asymptomatic infections4,5. As an obligate 

parasite, the life cycle of the virus is entirely dependent on the host machinery, and its 

infection cycle can be divided into three main steps: viral entry, replication and shedding, 

which produces new progeny able to infect a host6. Even with vaccinations and the advent of 

antiviral medications, advanced mechanisms for hiding from the host immune system and 

their rapid adaptation rates mean that viruses are still a major public health concern6. 

1 

 



The question of whether a virus is a living organism is still hotly debated and relies mainly on 

the definition of life. Viruses can be seen as an inert, complex bag of proteins containing 

genetic information, as they have no metabolic activity and passively infect their host. 

Regardless, though, of if it is considered a living organism, the strength of a virus lies in the 

fact that as long as its components remain intact, it can remain infectious ad (vitam) 

aeternam. A notorious example is the discovery and isolation of an infectious virus from a 

30,000 year-old permafrost in Siberia7. Therefore, the longer a virus persists, the higher the 

chances are of finding a new host. 

 

Figure 1.1. Viruses shape, size and genome diversity 
This figure highlights the virus diversity. Left side: distribution of the virion size according to the genome length in 

kilobases (kb), the number of species (dot size) and genome type (dot color). Right side: images showing the 

virus’s shapes diversity. The data and images were extracted from ViralZone8. 

 

Waterborne viruses 

The waterborne transmission of viruses is a major concern in public health due to the 

contact of potentially contaminated water by many ways (see “Transmission” section). Six 

families of waterborne viruses are generally considered, including the Picornaviridae family 

(Table 1.1), which is often implicated in disease outbreaks9 mainly due to the high 

prevalence of disease-causing species from the enterovirus genus of this family10. In 

seafood, it was found that even in low-level fecal contamination areas, 8% of oysters 

sampled were positive for enteroviruses11, and these viruses also appeared to be 

responsible for 23% of the outbreaks involving recreational water (Sinclair et al. 2009 and 
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references therein12). The cause of this prevalence may be directly linked to the ability of 

enteroviruses to survive for longer periods in various environmental matrices, such as 

groundwater, marine water, or estuarine sediments13–15. 

Table 1.1. Waterborne virus families. 
Table adapted from Rusinol et al. 2017.16 

 

Genetic and structural characteristics of picornaviruses 

This study focuses on the Picornaviridae family, and more precisely, the genus Enterovirus. 

This genus is composed of small-sized non-enveloped viruses (~30 nm diameter) containing 

a positive single-stranded RNA genome coding for a single, open reading frame. The genome 

is composed of 5’- and 3’-end noncoding regions, a structural region coding for the capsid 

proteins, and a non-structural region containing the coding sequence of the viral polymerase 

and other functional proteins17. The icosahedral capsid is composed of 60 repeating 

protomers, which are each made up of four structural proteins (VP1 to VP4). The viral RNA-

dependent RNA polymerase (RdRP) in these viruses is known for its lack of proofreading 

activity, which leads to a higher mutation rate per nucleotide compared to other DNA-

genome viruses18. This low-fidelity replication combined with mutation robustness leads to 

an improved capacity for adaptation under specific selective events (i.e. tissue specificity or 

antiviral drug)19. 

Serotypes, genotypes and non-polio enteroviruses 

The current classification system based on genetic typing correlates well with the older 

serotyping technique20 and divides the Enterovirus genus into 13 species consisting of 10 

enteroviruses and 3 rhinoviruses21. Hence, the serotype names used herein were chosen as 

the ones most commonly appearing in the literature. 

Since its discovery in the early 20th century and because it was the first enterovirus to be 

fully sequenced22, the poliovirus is one of the most studied of the genus Enterovirus. Since 
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then, a considerable number of non-polio enteroviruses (NPEVs) were discovered and 

became increasingly important pathogens with various serious symptoms and host tissue 

tropisms (Baggen et al. 2018 and references therein23). Coxsackieviruses, enteroviruses, and 

echoviruses have become a growing issue while poliovirus cases gradually decreased24–26. 

Human infection, symptoms and shedding 

With the exception of rhinoviruses, the primary infection site for enteroviruses is the 

gastrointestinal tract23,27. This primary infection can be asymptomatic or lead to a systemic 

infection that invades various organs, even reaching the central nervous system28. In 

consequence, various symptoms can develop, such as aseptic meningitis, acute flaccid 

paralysis, hand-foot-and-mouth disease or pericarditis (Table 1.1), all affecting mainly young 

infants and the immunosuppressed29. Throughout an infection, a high titer of the virus is 

excreted to the environment through feces or vomit, with up to 106 median tissue culture 

infective dose (TCID50) per gram of stool (Rusinol et al 2017, and references therein16), 

which is then free to infect a new host. 

 

Figure 1.2. Waterborne virus transmission routes 
Schematic representation of waterborne virus transmission routes (black lines) and the anthropogenic barriers 

implemented to avoid or diminish this transmission (red lines), and immunity barrier (yellow). The green boxes 

are the different existing matrices, and the color background represents the implication of the different means of 

virus transportation: brown for the solid transportation, blue for water-related transportation, orange for food 

related transportation, and grey for air-transmission. OERL: Ocean, Estuaries, Rivers and Lakes. 

 

Transmission 

After shedding from its current host, the usual enterovirus transmission route is fecal-oral 

but can also occur through various modes, such as aerosol, droplet, direct and indirect 
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contact transmission or by a combination thereof30. When the virus is released, it usually 

follows environmental indirect transmission that depends on the presence or absence of an 

urban sewage system, the quality of the treatment applied and on water reuse. As this route 

for viral transmission implies water as transport vehicle, we consequently call it “waterborne 

transmission”, which can occur via several waterborne transmission routes, as described in 

Figure 1.2. From human excretion, various aqueous environments can be contaminated, 

such as estuarine water, groundwater, rivers or lakes, and can consequently contaminate 

humans through water-related recreational activities, vegetables due to crop irrigation, 

seafood consumption, or simply through an insufficiently treated water supply31. It is at this 

point in the viral life cycle that a first efficient barrier in transmission can be implemented 

using a combination of different treatment methods, which are described in the next 

section. 

DISINFECTION METHODS AND GUIDELINES 

Disinfection 

Common disinfection treatments and how they target a virus 

Different oxidative and non-oxidative disinfection methods can inactivate viruses in the 

water by inducing damage that can block essential steps in the viral replication cycle. For 

example, damage to the capsid proteins can eliminate viral binding to its specific host cell 

receptor, even though the viral genome remains intact and the virus is infectious. Damage to 

genome will still allow the virus to enter the cell, but the RNA replication step could be 

inhibited. The most common methods for damage-inducing disinfection are photochemical 

inactivation (sunlight and UV-C), chlorine, chlorine dioxide, ozone and chloramine. Although 

these methods all have the same common outcome (inactivating the virus), they have 

different primary mechanisms for damaging the viral particle and are used in various 

different ways, meaning that a combination of them can optimize the overall effect on water 

disinfection. 

Briefly, UV has been described as primarily inducing genome damage, whereas sunlight 

moderately targets the genome but affects the proteins to a larger extent, by direct 

inactivation, but can also be improved through an exogenous indirect inactivation by the 

addition of external sensitizers32. Chlorine targets both the genome and proteins, but the 

type of virus seems to significantly influence the balance between the two effects33. Chlorine 

dioxide appears to exclusively target viral proteins, but here again, the rate constants are 

greatly affected by the type of virus33. Ozone primarily targets the genome and only 
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secondarily affects the proteins, as indicated by a greater replication loss than binding loss 

after treatment34. 

Common uses of the disinfection methods 

Viral inactivation via sunlight is mainly used in engineered treatment systems, such as waste 

stabilization ponds35, constructed wetlands36 and SODIS containers37. UV-C treatment is 

widely used for drinking water disinfection, though, requires meticulous turbidity control to 

be efficient for wastewater treatment38. Chlorine, chloramine, chlorine dioxide and ozone 

are commonly used in tertiary wastewater treatment as well as drinking water treatment39. 

Sometimes, chloramine is preferred over chlorine as it has a longer persistence in the 

distribution system40. Chlorine dioxide is also preferred over chlorine due to a lower amount 

of toxic by-product formation, even though it has a much lower persistence41. Ozone is a 

strong oxidant that reacts with all waterborne pathogens in a short contact time with no 

residual agents, though the cost of using this method is high, and it must be generated on-

site for safety issues. Furthermore, its high reactivity creates a challenging problem for 

measuring viral exposure to low ozone concentrations42. 

Downsides of disinfection 

The application of these different methods should not be taken lightly, as they all contain 

certain downsides. For example, beyond a certain concentration, these disinfectants can 

cause eye, skin, and respiratory problems43, with the persistence of chlorine and chloramine 

in water used for dialysis patients potentially causing hemolytic anemia44. This means 

medical facilities must control their incoming water, as a strong discrepancy exists in the 

standards for drinking water and dialysis water45. A high chlorine concentration also appears 

to negatively impact marine biodiversity at the discharge sites of disinfected urban 

wastewaters46. Additionally, disinfection can lead to the formation of disinfection by-

products that can be toxic for human health47. 

For these reasons, the Environmental Protection Agency (EPA) implemented upper 

concentration limits to constrain the direct effects of these disinfection methods on the 

environment and human health, and substantial research efforts are currently being 

conducted on the issue of disinfection by-products (Richardson et al. 2007, and references 

therein48). An equilibrium between efficient viral inactivation and limiting the drawbacks is 

required and can be improved by experimentally measuring the disinfection sensitivity of 

the different pathogens (Ct values, described in the next section)49. 
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Ct value guidelines, advantages and disadvantages 

The Ct value is the disinfectant concentration (C) multiplied by the pathogen contact time (t) 

that results in a certain log10 reduction of the pathogen. This allows for a comparison of viral 

disinfection sensitivities from one study to another and provides dose threshold guidelines 

for water treatment plants. As an example, enteroviruses can be found at concentrations of 

up to 103 genome-copies/liter of tertiary wastewater effluent16. Hence, a disinfectant dose 

corresponding to at least 3-log10 of virus removal could be applied, which would 

consequently improve treatment accuracy and limit useless disinfectant overloads. 

Unfortunately, the real-life application of these Ct value guidelines can be complex. In 

addition to the type of virus, the temperature, and the pH, many other factors can greatly 

affect the interactions between the pathogen and the disinfectant, such as the organic and 

inorganic content of the water50. Furthermore, rainfall, time of day and other special events 

(i.e. wine harvest period) can drastically change the treatment efficiency51,52. 

Ct value database 

Implementation and benefits of a Ct value database 

To have a global overview of viral disinfection in the literature, we built a database 

containing the Ct values for different waterborne viruses from 1 to 4-log10 inactivation and 

recounted all the factors capable of influencing this value. To do this, the temperature, pH 

and matrix type were recorded, as well as other factors, such as the genome type and 

length, the taxonomy of each virus and their source (laboratory strain, environmental isolate 

or clinical isolate). This database was built by completing and correcting the existing Ct value 

list from the Guillot & Loret book53. However, it has to be noted that this database is still 

unfinished, and the results found in this thesis were not included. At the moment, it records 

571 Ct values from 51 studies. 
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Figure 1.3. Database quality 
This figure represents the current quality state of the database, and the problematic discrepancies within specific 

factors. (A) Percentage of missing information for the temperature and pH. (B) Over- and under-representation 

of various viruses within the Picornaviridae family for chlorine and UV254 disinfection treatments. (C) Over- and 

under-representation of different matrices as well as the virus sources used for the studies included in this 

database. 

 

Database quality: missing data and under- and over-representations 

The first problem encountered when building the database was the amount of missing data 

among the major factors, such as the matrix type, pH, temperature and viral strain. The 
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percentages of missing values ranged from 9 to 15% of the total number of records (Figure 

1.3A) and occurred mainly due to simple omissions of the research scientists and publishers. 

The second problem observed in database construction was the under- or over-

representation of certain types of data among the different factors. A clear discrepancy 

within Picornavirus serotypes and genus representations between UV and chlorine could be 

observed (Figure 1.3B), with significantly more coxsackievirus B and echovirus serotypes 

with data on chlorine than UV disinfection, and more poliovirus and hepatitis A with data on 

UV than chlorine disinfection. In terms of the matrix factor, buffered water and distilled 

water were also over-represented in the whole database (Figure 1.3C), making it difficult to 

always apply these values to real-world scenarios. Finally, a major discrepancy in the source 

of the viruses exists, with at least 82% of the data coming from laboratory strains, clinical 

isolates and mice, and no records of environmental isolates were found (Figure 1.3C). This 

last point may be the most problematic, as the variability in disinfection resistance between 

laboratory strains and environmental strains is unknown. 

Database results: Notes on UV and chlorine 

 

Figure 1.4. Ct value 
database output for 
UV254. 
Discrepancy of the Ct values 

depending (A) on the genome 

type, (B) on the virus family, 

and (C) within the 

Picornaviridae family. The data 

displayed here are for 2-log10 

inactivation. 

 

According to the literature, the amount of UV damage to nucleic acids depends on their type 

and structure, with the photolysis rate constants exhibiting the following trend, from most 

to least sensitive: ssDNA > ssRNA ≈ dsDNA > dsRNA54. Interestingly, the trend observed 

through the database was similar except for dsDNA viruses, which appeared the least 

sensitive to UV and had a high variability in the Ct values (Figure 1.4A). Here, the viral 

genome type is responsible for the differences in UV sensitivity, which can explain the 

differences observed between the different waterborne virus families (Figure 1.4B). Within 

the Picornaviridae family, the Ct values were highly variable depending on the serotype, with 

coxsackievirus B5 and B3 displaying the highest resistance (Figure 1.4C). 
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For chlorine, the effect of temperature and pH could be observed in the Ct values. A higher 

temperature increased the inactivation efficiency, while a higher pH decreased it (Figure 

1.5A). Between the different waterborne viruses, Picornaviridae displayed the highest 

resistance to chlorine, and a great variability was observed (Figure 1.5B). Within this family, 

coxsackievirus A2 was the most resistant serotype followed by coxsackievirus B5 (Figure 

1.5C). 

 

Figure 1.5 Ct value 
database output for 
chlorine. 
Effect of the temperature (A) 

and pH (B) on the fluctuation of 

the Ct values for coxsackievirus 

B5. Discrepancy of the Ct 

values depending on the virus 

family (C) and within the 

Picornaviridae family (D). The 

data displayed here are for 2-

log10 inactivation. 

Matrix- and virus-related resistance mechanisms 

Matrix-related resistance 

Different matrices can greatly influence the sensitivity of the virus to disinfection, as 

previously seen with pH and chlorine (see section Database results: Notes on UV and 

chlorine). Environmental matrices significantly increased the survival rate of enteroviruses13–

15. The adsorption to different particles present in the various matrices, such as wastewater 

sludge, aquatic sediment or soil, significantly increased the required dose of UV and chlorine 

(Templeton et al. 2008, and references therein55). Furthermore, a higher protein and fat 

content enhanced viral resistance in food processing56. 

Virus-related resistance 

As previously described with the genome type, factors exclusive to the virus can change 

their sensitivity to a disinfectant (i.e. ssDNA versus ssRNA). (1) The adsorption, although also 

linked to the matrix type, can vary from one virus to another57. The authors described 

distinctive viral capsid isoelectric points that should impact the adsorption efficiency, thus 

impacting the disinfection. (2) Also linked to the type of matrix, viral aggregation increases 

viral resistance to chemical disinfection by keeping viruses alive due to being protected at 
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the center of the aggregate58. (3) Viral recombination was also described as a possible 

resistance mechanism to UV-induced genome damage by genetic strand exchange occurring 

after host entry59. However, this resistance mechanism requires a high multiplicity of 

infection during the host infection process, which is rarely the case upon environmental 

exposure. (4) Viral adaptation through mutation enhances its resistance to disinfection60, 

occurring through events such as an amino acid changing to one less reactive to chlorine. 

Finally, (5) a virus with mutation robustness may also be more resistant to genome damage 

by preserving its phenotype despite a high rate mutagenesis61. 

Missing information and unanswered questions 

The main concern herein is the lack of information on currently circulating environmental 

strains and their resistance to disinfection. This issue, as raised previously (see section 

Database quality: missing data and under- and over-representations), can lead to inaccurate 

guidelines for water treatment plants and must be resolved. Also, a high variability in 

disinfection sensitivity can be observed between different enteroviruses strains, but the 

reasons for this are unknown. 

Second, the mechanisms behind viral viability and the relationship with the matrix are not 

completely understood. The effect of specific factors, such as pH, ionic strength and 

temperature, are not well understood, and their exact mechanism of action and subsequent 

effects on the different viral components are unknown. 

Finally, the long-term persistence of a virus in various matrices may depend on its capsid 

stability. Therefore, a selection of the most stable capsid variant may occur in the 

environment, but this has not been tested. 

RESEARCH OBJECTIVES AND APPROACH 

Chapter 2. Variability in disinfection resistance between currently circulating enterovirus B 

serotypes and strains. 

The main objectives of this chapter are to evaluate the accuracy of laboratory strains in 

modeling the disinfection of currently circulating enteroviruses isolated from untreated 

domestic sewage and to quantify the extent of variability among those isolates. 

Chapter 3. Effect of salt and pH on virus thermostability. 

The main objective of this chapter is to determine which simple matrix factors affect viral 

thermoresistance and which virus components are targeted according to the specific 
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conditions. Acid to alkaline pH, high and low temperatures (55 and 30°C) and low to high 

ionic strengths will be tested on both laboratory strains and environmental isolates. 

Chapter 4. Structural mechanisms causing heat resistance mediated by thermal adaptation 

or salt. 

In this chapter, we determine whether a virus can increase its capsid stability through heat 

adaptation and seek to understand the effects of the selected mutation on the structural 

features of the capsid. The effect of ionic strength on the capsid features will be tested by 

structural modeling. Several specific capsid changes will be investigated, such as the number 

of hydrogen or disulfide bonds or changes in the electrostatics. 
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CHAPTER 2 VARIABILITY IN DISINFECTION RESISTANCE BETWEEN 

CURRENTLY CIRCULATING ENTEROVIRUS B SEROTYPES AND STRAINS 

A modified version was published as: 
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Circulating Enterovirus B Serotypes and Strains. Environmental Science and Technology, 52(6), 3696–3705. 
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To view the published open abstract, go to http://dy.doi.org and enter the DOI 

Experimental design and data analysis were performed by Meister S.; Inactivation experiments were performed 

by M. Klinger and Meister S.; Bayesian modeling was implemented by Verbyla M. E. 

INTRODUCTION 

Human enteric viruses are a leading cause of waterborne disease worldwide9. Their control 

remains problematic; compared to bacterial pathogens and fecal indicators, viruses are 

highly persistent in the environment62 and have high resistance to disinfectants such as 

chlorine63. The Enterovirus genus of the Picornaviridae family in particular is a major source 

of the waterborne disease burden64 and hence was included on the EPA contaminant 

candidate list (EPA, CCL465). Within this genus, species of concern include Enterovirus A, 

which contains coxsackievirus A serotypes, Enterovirus B, which includes serotypes of 

echovirus and coxsackievirus B, and Enterovirus C, which includes poliovirus and other 

coxsackievirus A serotypes20,66. 

Serotypes of the Enterovirus genus are generally more resistant than other enteric viruses to 

chlorine67,68. The different species and serotypes of this genus, however, have a wide range 

of susceptibilities to disinfection. For example, differences in chlorine resistance were 

observed between the serotypes coxsackievirus B4 (CVB4) and B5 (CVB5), as well as 

poliovirus serotypes (PV) 1, 2 and 369, with CVB5 displaying the highest resistance. Similarly, 

disinfection by monochloramine exhibited up to three-fold greater inactivation rates of 

serotypes coxsackievirus B3 (CVB3) compared to CVB5, and more than 100-fold greater rates 

for serotypes echovirus 1 (E1) compared to 11 (E11)68. Finally, disinfection of wastewater 

effluent by chlorine dioxide (ClO2) revealed that CVB5 was more resistant than echovirus 1 

and PV 1 serotypes70. More surprisingly, differences were also observed among strains of 

the same poliovirus serotype71,72, revealing variability even among closely related viruses. 

Combined, these studies indicate that differences in resistance to oxidizing disinfectants 

exists between the different Enterovirus species, between serotypes and even within 
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serotypes. In contrast, similar susceptibility was found among different enteroviruses to UV 

light and sunlight73,74. 

The reason for variability in Enterovirus susceptibility to oxidants is not well understood, yet 

it may be driven through selection by the disinfectant for the most resistant variants. For 

example Bates et al.75 demonstrated that the repeated exposure of PV to chlorine led to 

increased resistance. Similarly, Shaffer et al.76 reported that PV isolated from chlorinated 

drinking water were more resistant to chlorine than unexposed lab strains. More recently, 

our group has repeatedly exposed echovirus 11 to UV254 which resulted selection of UV254 

resistant strain. Similarly, repeated exposure of echovirus 11 to UV light at 254 nm (UV254) 

led to the selection of UV254-resistant strains77. Selection of disinfection-resistant viruses 

may also arise from exposure to environmental stressors. Specifically, Payment et al.69 

demonstrated that sewage isolates of CVB5 were more resistant to chlorine compared to 

the corresponding lab strains. Tree et al.78 furthermore demonstrated that sewage-borne PV 

were more resistant to chlorination compared to lab strains.  

While it has been previously been reported that disinfection resistance can vary between 

environmental isolates and laboratory strains, as well as between and within different virus 

serotypes, the extent of this variability is poorly understood, in particular for environmental 

isolates. However, to establish adequate disinfection practices, it is important that the 

diversity in disinfection kinetics of circulating viruses is taken into account. To this end, we 

isolated nine strains of Enterovirus B from untreated domestic sewage from three 

geographic locations (Lausanne, Switzerland, Minneapolis, MN and Tampa, FL), and 

compared their disinfection kinetics with those of two laboratory strains (echovirus 11 

Gregory strain and coxsackievirus B5 Faulkner strain). Additionally, inactivation kinetic 

parameters were compared to those of MS2 bacteriophage, which has been proposed as a 

surrogate for enteric viruses for the assessment of household water treatment interventions 

(including chlorination, UV, solar disinfection, and heat treatment)79. All viruses were 

subjected to inactivation by five different treatments of which two mainly act by inducing 

genome damage (UV254 and simulated sunlight), two target both the viral genome and 

proteins (FC and ClO2), and one (heat) induces non-oxidative protein denaturation60. The 

ultimate objective of this study was to quantify the extent of variability in disinfection 

resistance for different Enterovirus B serotypes and strains, as well as for different 

inactivation methods, and to assess if surrogate viruses can be used to represent the 

inactivation of circulating viruses.  
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EXPERIMENTAL SECTION 

Isolation of circulating viruses 

Viruses were isolated from one liter of untreated domestic sewage from three wastewater 

treatment plants (Lausanne, Switzerland, Minneapolis, MS, and Tampa, FL), as described 

previously80–83. Insoluble contaminants were removed by adding 110 mL of glycine buffer 

(1M glycine, 3M NaCl, miliQ H2O, pH9.5), stirring on ice for 20 min, and then centrifuging for 

30 min at 6700×g at 4°C. The supernatant was transferred to a clean bottle, the pH was 

adjusted to 7.2 with HCl, 200 mL of polyethylene glycol (PEG) 8000 (40%) were added and 

samples were stirred overnight at 4°C. Samples were then centrifuged for 40 min at 4°C, 

then the supernatant discarded and the pellet was resuspended in 15 mL of phosphate-

buffered saline (PBS; 5 mM NaH2PO4, 10 mM NaCl, pH7.4). To remove PEG and 

macromolecular inhibitors, the solution was vigorously mixed with 15 mL chloroform and 

centrifuged for 15 min at room temperature. The upper phase was harvested, filtered 

through a 0.45 µm filter (hydrophilic polyethersulfone filter; Millipore), and concentrated to 

1.7 mL using an Amicon 100 kDa molecular weight cutoff column (Sigma-Aldrich, Germany). 

Buffalo Green Monkey Kidney (BGMK) cells were grown to confluence in T25 flasks (TPP 

Techno Plastic Products, Trasadingen, Switzerland) as described previously84, were infected 

with the concentrated viruses diluted in cell culture media (see SI) at a 1:10 ratio, and the 

cytopathic effect (CPE) was checked daily. After full CPE was observed (around four days 

post-infection), the cell lysate was harvested and viruses were clarified by centrifugation. 

Finally, two successive plaque assays were performed to isolate individual virus strains (see 

SI for details). 

Virus identification, whole genome sequencing and alignment 

To identify the virus serotypes isolated, general enterovirus Inosine-degenerated primers 

targeting the viral protein 1 (VP1) were used85. The PCR amplicon size was first controlled by 

agarose gel, then sequenced by Sanger technique using the same primers. The resulting 

sequences were identified by the NCBI basic local alignment search tool (BLAST). Whole 

genome sequencing of the CVB5 isolates was accomplished first by aligning 86 CVB5 

complete genomes listed in the ViPR86 database. Several primer couples were designed 

along the consensus sequence and used to sequence the whole genome of each isolate 

(Table 1). CVB4 isolates were sequenced with primers designed according to a single CVB4 

sequence (accession number: S7677287), and CVB1 was sequenced with CVB5-derived and 
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strain-specific CVB1 primers. Virus genome sequences were controlled, aligned, assembled, 

and annotated using the Geneious software version 8.1.888. 

The whole sequence of VP1 was used to align the different viruses and calculate their 

pairwise identity using multiple sequence comparison by log-expectation (MUSCLE)89 with 

an iteration of 8, a gap open penalty of 400, and a gap extension penalty of 0. An unrooted 

tree was built using the neighbor-joining estimation method90. The protein pairwise identity 

was determined using the translated region of the structural proteins (VP1 to VP4). 

Table 2.1. Viruses used in this study. 
Serotype, genus, strain, and isolation location of viruses used in this work. The environmental isolates are named 

according to first letter of the city (Minneapolis, Tampa, or Lausanne) and the isolation date (month/day/year). 

 

Virus purification and enumeration 

To prepare viral stock solutions, each strain was individually amplified in BGMK cells, 

purified by PEG precipitation and chloroform treatment91, concentrated, and divided into 

aliquots of 100 µL. At least two separate amplifications stocks were preformed per virus. 

Viruses in all stock solutions were analyzed by dynamic light scattering as described 

previously59 and were found to be generally monodispersed at pH 7.4 and aggregated at pH 

3 (Figure A.10). Unfortunately, the viruses stock concentrations used for the DLS 

measurements did not allowed a proper identification of monodispersed viruses at neutral 

pH (Figure A.10). Infective virus concentrations were determined by endpoint dilutions with 

Most Probable Number (MPN) statistics92, and are reported as most probable number of 

cytopathic units per mL (MPNCU·mL-1). Endpoint dilutions were performed on BGMK cells in 

96-well plates, with five replicates and eight dilutions per experimental sample. After 

inoculation, plates were incubated at 37°C with 5% CO2, and the presence or absence of CPE 

in each well was determined five days post-infection through microscopy. MS2 
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bacteriophage was propagated, purified by PEG and chloroform, and enumerated using the 

double agar layer plaque assay method as described previously91, and its infectivity was 

measured in plaque forming units per mL (PFU·mL-1). 

Inactivation experiments 

Inactivation experiments were performed two to four times per virus and disinfectant, and 

eight samples were taken to construct each inactivation curve. All experiments were 

performed in PBS at an initial virus concentrations of 107 to 108 MPNCU·mL-1 or PFU·mL-1. 

UV254. 

A low-pressure monochromatic UVC lamp was used to test the virus inactivation at a 

wavelength of 254 nm (UV254). A bench scale device containing a 17 W mercury UV lamp 

(Philips, TUV F17T8) with a manual shutter was used. Two mL of PBS were added to a 

darkened glass beaker, were spiked with viruses, and were exposed to UV254 for up to four 

minutes under constant stirring. Aliquots of 100 μL were harvested every thirty seconds. The 

UV254 fluence rate was measured by iodide/iodate actinometry93,94, and corresponded to 

1.398 W·m-2. 

Simulated sunlight. 

Sunlight was simulated using Sun 2000 (Abet Technologies) equipped with a 1000W Xenon 

lamp, an AirMass 1.5 filter, and a 2 mm atmospheric edge filter. The irradiance spectrum 

was determined using a radiometer (ILT 900-R; International Light Technologies, Peabody, 

MA). The average UVB fluence rate was calculated by integrating the irradiance from 280 to 

320 nm corresponding to 0.563 W·m-2. For typical 12-hour exposure, this corresponds to 

four times the equatorial UVB fluence determined elsewhere95. 100 µL of virus concentrate 

were added to 10 mL of PBS in a glass beaker immersed in a 22°C temperature-controlled 

water bath, and were exposed to simulated sunlight under constant stirring. Samples of 100 

µL were taken each 2-3 hours over the course of up to 24 hours. 

Free chlorine. 

Prior to experiments, 10 mL glass beakers were incubated overnight in a concentrated FC 

solution to quench any chlorine demand. The FC working solution was prepared by diluting 

bleach solution (15% HOCl) in PBS to a final concentration between 0.8 and 3.1 mg·L-1. The 

FC concentration was measured by the N,N-diethyl-p-phenylenediamine colorimetric 

method96 at the beginning and end of each experiment, and typically varied by less than 20% 

throughout the experiment. Therefore the average of the initial and final FC concentration in 

each experiment was considered as the working concentration. Prior to each experiment, 
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beakers were rinsed twice with the working solution. Then 50 µL of virus stock solution were 

spiked into a 2 mL working solution under constant stirring. 10 µL aliquots were harvested 

every 10-30 seconds over the course of 3 minutes, and were directly mixed with 90 µL PBS 

containing 1.4 M sodium thiosulfate to quench the residual FC. The initial virus 

concentration was sampled from a 2 mL PBS solution without FC spiked with 50 µL virus 

stock. 

Chlorine dioxide. 

A concentrated ClO2 solution was obtained by mixing 100 mL 4% K2S2O8 with 100 mL 2% 

NaClO2 as described elsewhere33, and was kept at 4 °C. ClO2 concentrations were measured 

by spectrophotometer (UV-2550; Shimadzu) at 358 nm. The concentrated solution was 

mixed with PBS in order to obtain a supply solution (4-7 mg·L-1) and a working solution (0.25-

1 mg·L-1). All beakers were rinsed three times with the working solution. Then 2 mL of 

working solution were amended with 50 µL of virus stock solution under constant stirring. 

Throughout the experiment, the ClO2 concentration was maintained approximately constant 

(± 7 %) by continuously adding the supply solution with a syringe pump at a flow rate of 5-20 

µL·min-1. The sampling procedure, ClO2 quenching, and measurement of the initial virus 

concentration were performed as described for FC. 

Heat. 

Inactivation experiments by heat were performed in a PCR thermocycler (Applied 

Biosystems, GeneAmp PCR system 9700). PCR tubes containing 90 µL of PBS were heated to 

55°C, then 10 µL of virus stock solution was spiked into each tube. At each time point, a 

sample was removed and quickly placed in an aluminium PCR cooling block on ice. The initial 

virus concentration was measured by spiking 10 µL of viruses in 90 µL of PBS at room 

temperature. 

Inactivation Rate Modelling 

The rates of infectivity loss for all viruses and disinfectants (except heat) were modeled by 

first-order kinetics according to the Chick-Watson model97,98, where k is the decay rate 

constant, C is the concentration (or fluence rate) of the disinfectant, N is the concentration 

of viruses at time t, and η is the coefficient of dilution, assumed to be equal to one: 

(1) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −𝑘𝑘𝐶𝐶𝜂𝜂𝑁𝑁 

Given that C was approximately constant in our experimental systems, the integration of 

Equation 1 gives the following, 

18 

 



(2) 𝑁𝑁 = 𝑁𝑁𝑜𝑜e−𝑘𝑘𝑘𝑘𝜕𝜕 

where Ct is the dose, and the decay rate constants (k) have the units mJ-1·cm2 (for UV254 and 

sunlight), and mg-1·min-1·L (for FC and ClO2). 

Exponential rates of infectivity loss by ClO2 and heat were modeled by segmental regression, 

according to the following equation, 

(3) 𝑁𝑁 = 𝑁𝑁𝑜𝑜e−𝑘𝑘1𝑘𝑘𝜕𝜕+𝑁𝑁1e−𝑘𝑘2𝑘𝑘𝜕𝜕 

where N1 is the breakpoint (the virus concentration at which kinetics deviate from the initial 

exponential decay), and k1 (hereafter denoted as kClO2 or kheat) and k2 are the rate constants 

associated with inactivation before and after the breakpoint. Here, Ct is the dose in mg-

1·min-1·L for ClO2 and sec-1 for heat. 

Bayesian analysis of rate constants 

The probabilities associated with the values of k were estimated using Bayesian inference 

(Figure 2.3 and Figure A.9). The probability of one virus strain or serotype being more or less 

resistant than another was calculated as the difference between the posterior distributions 

of the two inactivation rate constants. Bayesian inference was used instead of conventional 

hypothesis testing (e.g., with p-values and confidence intervals) to provide a more intuitive 

assessment of the probabilities that a given virus has an inactivation rate constant, and 

hence a disinfection resistance, that differs from a reference virus considered (e.g., CVB5 

Faulkner strain). Furthermore, the use of Bayesian inference allows for the reduction of 

uncertainty in the rate constant by utilizing raw endpoint dilution data (number of positive 

wells in a given dilution sample) directly in the model a likelihood model99, instead of using 

MPN values from different dose levels as “data” to fit a log-linear inactivation curve using 

the least squares method. For the analysis of combined serotypes, k distribution of each 

virus from each serotype were pooled and 30’000 values were randomly sampled from this 

pool for the proper calculation of posterior distribution difference. 

Data analysis 

All computations of kinetic parameters and pairwise identities were performed using the 

statistic software R100, supplemented with JAGS for Bayesian analysis101. The following CRAN 

packages were used: ggplot2102, gridExtra103, rjags104, segmented105, seqinr106, sjPlot107, 

bbmle108, coda109, msa110, ape111, ggtree112.  

19 

 



RESULTS AND DISCUSSION 

Virus Isolation 

A total of nine virus strains were isolated from untreated domestic sewage. By sequencing 

their whole genomes, five isolates were identified as serotype coxsackievirus B5, two as 

serotype coxsackievirus B4 and one as serotype coxsackievirus B1. All CVB5 isolates belong 

to genotype IV, which mostly contains viruses isolated after 1984, whereas the Faulkner 

strain, which was isolated in 1952, belongs to genotype I113. The different isolates were 

named according to the isolation date and the first letter of the city they were isolated from 

(Table 2.1). 

 

Figure 2.1. Unrooted neighbour joining 
tree. 
This tree is built based on the virus VP1 coding 

region of the virus studied. The horizontal lines 

lengths are proportional to the genetic distance 

(see Table A.3). The four serotypes represented 

can be clearly differentiated by their genetic 

distance. 

 

The genetic distance between isolates, determined by comparison of their VP1 genes, is 

illustrated in a neighbor-joining tree (Figure 2.1). All CVB5 isolates exhibited 79.1-99.4% 

pairwise identity, whereas they shared 76.8-81.7% with the CVB5 Faulkner strain (Table A.3). 

This discrepancy can be explained by the different year of isolation of the CVB5 isolates and 

the Faulkner strain (2015 versus 1952 respectively), and their different genotypes (IV versus 

I, respectively). The CVB4 isolates had 88.1% identity among each other, and shared 63.4-

66.1% with CVB5 isolates. The single CVB1 isolate (CVB1-L071615) shared 61.3-67.6% 

identity with all other viruses. Finally, E11 exhibited the greatest genetic distance, sharing 

only 59.3-62.2% of its VP1 gene with the other viruses considered. At the protein level, the 

pairwise identity among CVB5 environmental isolates corresponded to 99%, but was only 92 

and 90% when compared to CVB4 isolates and E11, respectively (Table A.4). The distribution 

of isolated serotypes is consistent with literature reporting that CVB5 is the most recurrent 

enterovirus, with high isolation frequencies114 and high annual prevalence115,116.  
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Figure 2.2. Violin plot of inactivation rate constant distribution. 
Violin plots of showing the distribution and probability density of rate constants k associated with inactivation by 

UV254 (panels A and B), sunlight (C and D), FC (E and F), ClO2 (G and H) and heat (I and J). The values of k for 

individual viruses (MS2 and all enteroviruses) are shown in the left panels. The right panels show the probability 

distribution of grouped serotypes (E11, CVB1, CVB4, and CVB5). The exact values of k are given in Table A4.. 

Inactivation kinetics 

The distributions of the inactivation rate constants for all viruses and treatment methods 

studied is shown in Figure 2.2. The values of the inactivation rate constants, along with the 

inactivation curves and associated statistics, are shown in the annexes (Table A.4. and Figure 

A.1 to Figure A.5). From these data it is evident that variability exists among different viruses 

in their susceptibility to disinfectant, and that the extent of this variability differs between 

the inactivation methods tested. An ANCOVA analysis furthermore confirmed that the 
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observed rate constant were consistent between experimental replicates, even if stock 

solutions produced by different amplification were used (see A). 

UV and Sunlight inactivation. 

Inactivation by UV254 and sunlight were first-order with respect to fluence (Figure A.1. and 

Figure A.2). The mean UV254 inactivation rate constants (kUV) for all enteroviruses tested 

ranged from 0.28 to 0.38 mJ-1·cm2 (Figure 2.2A). These rate constants are consistent with 

those previously reported for different enteroviruses (Hijnen et al. 2006, and references 

therein117). If only strains of the CVB5 serotype are considered, the variability is smaller, with 

mean values of kUV ranging from 0.32 to 0.37 mJ-1·cm2. MS2 was more resistant to UV254 

(0.15 mJ-1·cm2) than all enteroviruses. 

Inactivation by sunlight led to a wider distribution of inactivation rate constants. Specifically, 

the mean kSUN values for the different enteroviruses spanned a range from 1.3·10-3 to 9.0·10-

3 mJ-1·cm2 (Figure 2.2C). These values correspond well to those previously reported for the 

inactivation of PV3 by simulated sunlight in PBS118. The variability of inactivation by sunlight 

was slightly reduced if only CVB5 strains were considered, with the most resistant strain 

(Faulkner) exhibiting a mean rate constant of 3.2·10-3 mJ-1·cm2. As for UV254, MS2 was more 

resistant than any of the enteroviruses tested. 

The differences in susceptibility of the different viruses to UV254 and sunlight can be partly 

explained by the difference in the genome length. Given that all viruses tested have the 

same genome type (ssRNA), and assuming a constant rate of genome lesion formation 

during exposure to radiation, a longer genome will result in a higher number of lesions per 

genome119. Correspondingly, if k of each virus is normalized by its respective genome length, 

the variability in k decreases, though does not disappear (Figure A.6). 

Free chlorine and chlorine dioxide. 

Inactivation by FC was first-order with respect to dose (Figure A.3.), and yielded enterovirus 

inactivation rate constants (kFC) ranging from 0.8 to 8.0 mg-1·min-1·L (Figure 2.2E). As such, 

inactivation by FC exhibited the greatest variability among the disinfectants tested. 

Considerable variability was also observed within the different CVB5 strains, for which the 

kFC ranged from 0.8 to 4.9 mg-1·min-1·L. This range also includes FC inactivation rates 

constants of CVB5 Faulkner determined by others under similar experimental conditions120. 

The kFC of MS2, which corresponded to 5.9 mg-1·min-1·L, fell within the upper range of 

enteroviruses. 
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In contrast to FC, inactivation by ClO2 deviated from first-order and exhibited a tail at higher 

ClO2 doses (Figure A.4. ). This tail could not be attributed to ClO2 depletion, as the ClO2 

concentration was approximately constant throughout the experiment (see Experimental 

Section). Tailing during ClO2 disinfection has frequently been reported and has been 

attributed to various causes including virus aggregation59, heterogeneity of the virus 

population121, or the accumulation of oxidation products that form a protective layer around 

the residual infective viruses122. Aggregation at neutral pH was not observed among the 

viruses studied herein (see Experimental Section), which rules out this feature as a cause of 

tailing (Figure A.10). Among enteroviruses, the earliest onset of the tail was observed at a 

dose of approximately 0.5 mg·min·L-1. Therefore only doses up to 0.5 mg·min·L-1 were 

included in the first-order kinetic model (equation 2) to determine kClO2. Values of kClO2 for all 

viruses tested ranged from 9.6 to 26.1 mg-1·min-1·L (Figure 2.2G). A similar range in mean 

kClO2 values was observed among strains of CVB5, which ranged from 9.6 to 24.3 mg-1·min-1·L. 

The kClO2 for MS2 (14.8 mg-1·min-1·L) fell within the lower range of the enteroviruses. 

For E11, it was previously found that FC and ClO2 act on both the viral proteins and 

genome60. Differences in the chemical reactivity of the viral proteins or genome toward FC 

and ClO2 may thus explain some of the variability in the observed inactivation rate constants 

of the viruses considered in the present study. The abundance of readily oxidizable, solvent-

exposed amino acids on the structural proteins was correlated with kFC (Pearson’s r=0.79), 

but not with kClO2 (Pearson’s r=-0.22; Figure A.7). At the genome level, guanosine is the most 

reactive nucleotide toward both FC and ClO2
123,124, and the degradation of the 5’ non-coding 

region was previously found to correlate with inactivation by ClO2
125. Here, we therefore 

explored if the guanosine content of the 5’ non-coding region could be used as an indicator 

of a virus susceptibility to FC or ClO2. A weak correlation with the respective inactivation rate 

constants was observed for FC (Pearson’s r=0.51), but weakly with ClO2 (Pearson’s r=0.31; 

Figure A.8.). To improve these correlations, further information on the RNA and protein 

secondary and tertiary structure may be needed. This analysis indicates that kinetics of 

inactivation by FC may be influenced by the chemical virus composition, whereas 

inactivation by ClO2 is mainly linked to biological factors, such as the use of different host 

cell receptor sites or different recombination efficiencies. 

Heat. 

Similar to inactivation by ClO2, exposing the different enteroviruses to a temperature of 55 

°C resulted in tailing inactivation curves (Figure A.5). The onset of the tail varied greatly 

between the different viruses, ranging from 15 seconds of heat exposure (CVB5-Faulkner, 
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CVB5-L030315, CVB5-L061815, CVB4-M063015, and E11, Figure A.5) to no observable tail 

throughout the experimental time considered. For the early tailing viruses, only the linear 

part of the inactivation curve was considered to determine the inactivation rate constant 

kheat (equation 3). The mean values of kheat for the enteroviruses considered ranged from 

0.15 to 2.11 sec-1. The corresponding range for only CVB5 strains was slightly narrower, 

reaching from mean values of 0.16 to 0.63 sec-1, whereas MS2 displayed a much lower mean 

value of kheat of 0.006 sec-1 (Figure 2.2I). 

Changes in capsid amino acid residues have been previously linked to increases in the 

thermal stability of foot-and-mouth disease virus, another virus in the Picornaviridae 

family126. A similar effect may be caused by small differences in the amino acid content of 

the structural virus proteins (Table A.4), which may cause the observed differences in kheat 

among the different enteroviruses considered. Furthermore, at the treatment temperature 

used (55°C), capsid disruption followed by RNA escape is a probable reason for the 

inactivation of enteroviruses127,128. Heat resistance is thus likely linked to the strength of the 

interaction between the virus capsid subunits128, which may differ among the different 

serotypes and strains. A corresponding analysis is the subject of an ongoing study in our 

laboratory. 

 

Figure 2.3. Intra-serotype probability 
comparison of inactivation rate 
constants. 
Bar plots showing a comparison of the probabilities 

of inactivation rate constants (k values) for all 

environmental isolates of CVB5 with the CVB5-

Faulkner laboratory strain. Grey bars indicate the 

probability that the environmental isolate is more 

resistant than the Faulkner strain; black bars 

indicate the probability that the environmental 

isolate is less resistant than the Faulkner strain. 

 

Inter-serotype comparison of inactivation kinetics 

The different enterovirus strains considered herein exhibit similar genomic and protein 

features (Table A.3 and Table A.4), yet the different serotypes are still genetically distant 

from one another (Figure 2.1). To determine how this genetic diversity is reflected in 

disinfection susceptibility, we grouped the tested viruses by serotype (Figure 2.2B, D, F, H, 
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and J) and compared the corresponding overall mixture distribution of the observed rate 

constants. We then determined the probability that a given serotype is more or less 

resistant than any of the other serotypes tested Because the different disinfectants 

inactivate viruses via different mechanisms129, these analyses were carried out for each 

disinfectant individually, to capture mechanism- or disinfectant-specific variability in virus 

resistance. 

UV254 and Sunlight inactivation. 

Comparisons between the four different serotypes revealed that despite their similarity in 

genome length and composition, their sensitivities to UV254 nevertheless differed (Figure 

2.2B). Specifically, CVB1 exhibited a >99% probability of being more resistant than the other 

serotypes tested, whereas the rate constants for the other serotypes grouped more closely. 

However, while the observed differences in kUV between CVB1 and the other enterovirus 

serotypes were quantifiable, they are of little practical significance: to achieve a 4-log10 

inactivation, CVB1 required a UV254 dose of 32.5 mJ·cm-2, whereas the most susceptible 

serotype (CVB4) required a similar dose of 25.3 mJ·cm-2 (Table A.2). 

A very different resistance pattern was observed for inactivation by sunlight (Figure 2.2D). 

CVB5 was the least resistant virus, with a >85% probability of being less resistant than any 

other serotype, whereas E11 had a >99% probability of being the most resistant. In contrast 

to UV254 inactivation, this variability translate into a substantial differences in the 

environmental persistence in sunlit waters, or the inactivation performance by devices 

relying on disinfection by solar UVB: to achieve a 4-log10 inactivation, CVB5 required a UVB 

dose of 1369 mJ·cm-2, which is the equivalent of 2.3days of solar UVB exposure at the 

equator. To achieve the same log10 reduction, E11 required a dose of 5430 mJ·cm-2, which 

corresponds to approximately 9.1 days of solar UVB exposure at the equator. 

The discrepant resistance patterns of viruses toward UV254 and sunlight indicates that the 

mechanism of action of these two inactivating treatments differ. This can be rationalized by 

a number of causes. First, the wavelength spectrum and fluence rates of these two methods 

are different, and thus the type and yield of lesions to the viral genome likely differs130. 

Second, differences in thermal stability of the viruses may influence the observed 

inactivation rates, in particular if thermal inactivation during the lengthy sunlight 

inactivation experiments synergistically promoted inactivation by sunlight. And finally, 

inactivation by sunlight may involve a greater portion of protein damage compared to UV254, 

which may contribute to inactivation131. 
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Free chlorine and chlorine dioxide. 

FC and ClO2 treatment varied in their effect on the different enterovirus serotypes (Figure 

2.2F and H). For inactivation by FC, E11 had a >98% probability of being less resistant than 

the other serotypes, whereas CVB1 was the most resistant serotype (>85%probability). The 

susceptibility of the different serotypes result in considerable differences in the FC dose to 

achieve a 4-log10 inactivation: E11 required a dose of 1.15 mg·min·L-1 while CVB1 required a 

dose of 6.41 mg·min·L-1.  

For disinfection by ClO2, CVB4 and CVB5 had high probabilities (>99% and>92%, respectively) 

of being more resistant than CVB1 or E11. The latter two serotypes exhibited comparable 

susceptibility to ClO2 as E11. This latter finding is surprising, as CVB1 was the most resistant 

serotype toward FC.  The observed extent of variability in disinfection kinetics among 

serotypes did not lead to significant differences in the ClO2 disinfection requirements. 

Specifically, the most resistant serotype (CVB4) required a dose of 0.23 mg·min·L-1 for a 3-

log10 inactivation, and the most susceptible serotype (CVB1) a dose of 0.1 mg·min·L-1. These 

dose requirements, however, differ more dramatically if the individual strains within the 

serotypes are considered, as for some environmental isolates a 4-log10 inactivation could not 

be achieved due to extensive tailing of the disinfection curve (Figure A.4. and Table A.2). 

Heat. 

Inactivation by heat was the least effective against CVB1 and CVB5, which were more 

thermally stable than the other two serotype tested with >99% probability (Figure 2.2J). The 

most heat sensitive serotype was CVB4, though the two strains contained in this serotype 

exhibited vastly different susceptibilities to heat. 

In summary, the results of this study demonstrate pronounced variability in disinfection 

susceptibility among four different enterovirus serotypes. While disinfection requirements 

were fairly homogeneous across serotypes and strains for UV and ClO2, the sunlight, FC and 

heat requirements for a given enterovirus serotype were not predictive of other serotypes. 

Assessment of enterovirus lab strains or MS2 as surrogates for the disinfection of 

environmental isolates 

Many virus disinfection studies to date rely on laboratory strains68,120,132–136, which are easy 

to obtain because they are commercially available. Results from such studies should be 

interpreted with caution, since we showed here that a single laboratory strain of a single 

serotype may not accurately reflect the inactivation kinetics of other serotypes (Figure 2.2). 
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Additionally, as illustrated below, environmental isolates of CVB5 may not even be suitable 

representatives for other strains from the same serotype. 

Specifically, inactivation kinetics of different isolates of CVB5 by sunlight and heat were only 

poorly represented by the corresponding laboratory strain (Figure 2.2 and Figure 2.3). While 

the Faulkner strain was more resistant to solar disinfection compared to the environmental 

isolates, it had a lower thermal tolerance. This indicates that the lab strain is not a good 

surrogate to assess the environmental stability of isolates. Similarly, the Faulkner strain was 

also not a good surrogate for inactivation of environmental isolates by FC. All but one of the 

CVB5 isolates (CVB5-L060815) had a high (>99%) probability of being more resistant to FC 

than the Faulkner strain, and exhibited inactivation rate constants that were up to five times 

lower than the Faulkner strain (Figure 2.2 and Table A.2). 

The Faulkner strain appeared to be more suitable as a surrogate for the inactivation of 

environmental CVB5 strains by UV254 and ClO2. While several of the environmental isolates 

(CVB5-L061815, CVB5-L070215 and CVB5-L030315) were more resistant to UV254 than the 

Faulkner strain, others (CVB5-L060815, CVB5-L070915 and CVB5-M063015) had similar 

probabilities of being more or less resistant than the Faulkner strain. For ClO2, half of the 

isolates was more resistant and the other half was less resistant than the Faulkner strain. 

The Faulkner strain thus fell well within the range of UV254 and ClO2 inactivation kinetics of 

the environmental CVB5 isolates tested. 

Our data thus imply that disinfection studies based on lab strains may not be representative 

of many viruses circulating in the environment. Reliance on laboratory strains may therefore 

lead to the underestimation of actual treatment requirements. This latter point is 

emphasized in Figure 2.4, which compares our data with the US EPA’s recommended Ct 

value for a 4 log10 inactivation of viruses by FC at 20°C49. While both laboratory strains (E11 

Gregory and CVB5 Faulkner) tested fall well below the EPA Ct requirement, several of the 

environmental isolates exceed it, such that the EPA recommendation would not guarantee a 

4-log10 reduction for these viruses. 
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Figure 2.4. Ct values to achieve 4-log10 
inactivation by FC. 
The dashed line corresponds to the US EPA’s 

recommendation for Ct value at 20°C49 (3 mg·min·L-1). 

The bar plots indicate the mean Ct (black line) 

calculated based on the kFC measured herein, along 

with the upper and lower 95% confidence intervals 

(top and bottom of box). 

 

Bacteriophages such as MS2 have also been proposed as surrogates for the disinfection of 

enteric viruses79, since they have similar properties as enteric viruses137. This approach is 

popular because phages are easier and cheaper to handle than actual human viruses. 

However, as is evident from Figure 2.2 and confirmed by Bayesian analysis (Figure A.9.), MS2 

is not always a good indicator for the inactivation kinetics of enteroviruses species present in 

the treatment systems. Specifically, MS2 was significantly more resistant to heat than any 

enterovirus studied, making it a poor surrogate for thermal inactivation. In contrast, MS2 

underestimated the inactivation of enteroviruses by UV254 and sunlight; as such, it can be 

considered a good conservative indicator for enterovirus inactivation by these two 

disinfection methods. As discussed above, this can be partly explained by the difference in 

the genome length of MS2 (3569 bases) and enteroviruses (ca. 7400 bases). However, even 

if corrected for genome length (Figure A.6. ), MS2 still mostly underestimated enterovirus 

inactivation by UV254 and sunlight. 

For disinfection by FC, MS2 was conservative surrogate for E11, and representative of the 

inactivation of the two CVB4 strains considered. However, the other coxsackievirus strains 

were more resistant. For ClO2, MS2 was conservative for CVB1-L071615, representative for 

E11 and CVB5-L061815, but all the other coxsackievirus B strains were more resistant (Figure 

A.9.). 

Overall, this analysis reveals that neither the lab strains nor MS2 bacteriophage can 

satisfactorily model inactivation behavior of all enteroviruses. Given the significant 

variability of inactivation kinetics among commonly occurring enteroviruses, we therefore 
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recommend that future disinfection studies be conducted based on a range of viruses that 

include environmental isolates, as well as different serotypes. 
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CHAPTER 3 Effect of salt and pH on virus thermostability. 

Experimental design, inactivation experiments, and data analysis were performed by Meister S.; structural 

modeling was performed by Prunotto A. (Laboratory for Biomolecular Modeling, EPFL). 

INTRODUCTION 

Role of temperature in virus persistence outside the host 

Temperature is an important factor controlling virus stability outside the host (Bertrand et 

al. 2012 and references therein138). Several studies highlight its importance in different 

topics, such as food preservation and consumption, vaccine storage, as well as virus 

persistence in the aqueous environment. Few examples are exposed below. 

In food preservation, the freezing temperature has little to no effect on enteric virus 

stability139, and only high temperature processing, such as pasteurization or sterilization are 

efficient treatments for foodborne viruses (Hirneisen et al. 2010 and references therein56). 

Nevertheless, the risks of virus contamination were described to be relevant, especially for 

raw or lightly cooked foods such as shellfish140–142. 

Temperature was also described as significant factor in the stability of attenuated vaccines. 

Cold chain problems during storage can lead to an undetected vaccine potency loss due to 

thermal inactivation143,144. Despite the implementation of heat-sensitive vaccine vial 

monitors, the cold chain is difficult to maintain in rural areas of developing countries145. 

Several studies demonstrate that a targeted engineering of recombinant virus capsid can 

efficiently increase the vaccine stability against heat126,128,146. 

Finally, temperature was found to be a major determinant of environmental virus 

persistence, regardless the type of matrix. For example, heat was found to decrease virus 

persistence in groundwater147, soil148, or on non-porous surfaces149. However, a higher 

environmental persistence was observed in specific viruses and strains, potentially allowing 

them to increase their chances to find a new host150. This indicates that the thermostability 

of a virus is an important trait for the virus. Yet, the exact mechanism responsible of an 

enhanced thermostability in environmental viruses is unknown, and requires an inquiry. 

Thermostability of enterovriruses  

Waterborne viruses are known to survive over long periods of time in environmental 

matrices, making them important contributors to water and foodborne disease outbreaks 
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(Sinclair et al. 2009 and references therein12). Among them, the Picornaviridae family is 

known to significantly contribute to these outbreaks10. 

In chapter 2, we described a high variability in the thermostability of different environmental 

strains of coxsackievirus B (CVB) species151, both among strains and serotypes. Specifically, 

coxsackievirus B4, as well as echovirus 11 (E11) were more heat sensitive than 

coxsackievirus B5 and B1 serotypes. In addition, the CVB5 laboratory strain was generally 

more heat sensitive than CVB5 environmental isolates, indicating that the environmental 

exposure may lead to the selection of the most thermostable viruses. 

Enteroviruses have been shown to readily adapt to high temperatures. Specifically, Shiomi et 

al. (2004)152 subjected poliovirus to successive passages of thermal inactivation, which 

resulted in the emergence of a thermostable strain. Furthermore, enterovirus 

thermostability appears to be determined by two structural components: first, the interface 

of the different capsid pentamers has been identified as a critical features128. A single 

introduction of a disulfide bond at this interface can increase the thermostability of the viral 

capsid146. Similarly, decreasing the electrostatic repulsion forces between the capsid 

pentamers also resulted in a higher thermostability126. Second, the VP1 pocket region was 

also described to influence thermostability, and few mutations in this region resulted in a 

thermostabilizing effect in foot-and-mouth-disease virus153. 

In this study, we combined structural modelling and in vitro experiments to identify the virus 

characteristics determining the thermostability of enteroviruses. Specifically, we tested the 

tolerance of various environmental coxsackievirus B strains and serotypes to different 

temperatures and in different simple aqueous matrices, and evaluated the results against 

modelled capsid parameters typically associated with thermostability, including salt bridges, 

disulfide bonds, electrostatic forces at the capsid subunits interfaces, or structural 

differences located in the VP1 pocket region. Finally, our findings were invoked to explain 

the observed differences in thermostability among different serotypes of coxsackievirus B. 

EXPERIMENTAL SECTION 

Cells and viruses 

Environmental strains of Coxsackievirus B serotypes were purified from untreated domestic 

sewage as described elsewhere151. Five coxsackievirus B5, two coxsackievirus B4 and one 

coxsackievirus B1 were isolated and their whole genome sequenced (GenBank accession 

numbers: MG845887 to MG845895). CVB5 Faulkner strain (ATCC VR-185) and echovirus 11 
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Gregory strain (ATCC VR-41) were obtained from LGC Standards (Molsheim, France). Buffalo 

Green Monkey Kidney cells were obtained from the Spiez Laboratory (Switzerland) and were 

cultured in Minimum Essential Medium (MEM) completed with 1% penicillin-streptomycin 

together with 10% (growth medium) or 2% (maintenance medium) of heat-inactivated fetal 

bovine serum (all purchased from Gibco (Molsheim, France). Stocks of viral strains from 107 

to 108 MPNCU mL-1 were produced by propagating the viruses on n BGMK cells, followed by 

purification by polyethylene glycol precipitation and chloroform treatment, as described 

elsewhere151. 

Infectivity assay 

The concentration of infectious viruses was determined by endpoint dilution with Most 

Probable Number (MPN) statistics92, using confluent BGMK cells on 96-well plates, with five 

replicates and eight dilutions for each experimental sample. The cytopathic effect was 

determined through microscopy after five days of incubation at 37°C with 5% CO2The 

infectious concentration is reported as most probable number of cytopathic units per mL 

(MPNCU mL-1). 

Antigenic divergence assay 

To quantify the possible virus antigenic divergence, we used two horse sera: a CVB5 

Faulkner specific antiserum (ATCC: VR-1036AS), and a pre-immunization serum (ATCC: VR-

1036PI) as negative control. The viruses were separately incubated with and without the 

two sera diluted at a final dilution of 1:200 and incubated for 1h at room-temperature. Then, 

the infectivity was measured by MPNCU ml-1. 

Thermal inactivation experiments 

Thermal inactivation experiments were performed at two different temperatures (30 and 

55°C) in aqueous buffers with different pH and ionic strengths. Experiments were conducted 

in 25 mM glycine-HCl (pH3), neutral pH experiments in 5 mM Na2HPO4 (pH7.4), and high pH 

experiments in 25 mM glycine-NaOH (pH9). The ionic strength was varied by addition of 10 

mM to 1 M of NaCl. The information on the chemicals and providers are detailed in the 

annexes (see Annexes – Chapter 3). 

Kinetic experiments at 55°C and were performed in a PCR thermocycler (Applied Biosystems, 

GeneAmp PCR system 9700). 10 µl of virus stock were spiked into PCR tubes containing 90 µl 

of pre-heated buffer to reach an initial concentration around 107 MPNCU mL-1. Samples 
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were maintained at 55°C for varying amounts of time ranging from 0 to 2 minutes, and were 

then quickly cooled down by placing them on an aluminium PCR cooling block on ice. The 

residual infectious virus concentration in each sample was enumerated the same day. 

Kinetic experiments at 30°C were performed in an incubator (Memmert Modell 300, 

Schwabach, Germany). 100 µl of virus stock was spiked into a 900 µl of buffer to an initial 

concentration of 106 MPNCU mL-1. Over the course of 9 days, 100 µl aliquots were sampled 

daily. Each sample was directly mixed with 900 µl of cell culture medium and stored at -20°C 

prior to enumeration by the infectivity assay described above. Each experiment was 

conducted at least in replicate. 

The inactivation curves were fitted to a first-order model, where N and N0 are the infective 

virus concentration at time 0 and time t, and k is the inactivation rate constant in day-1 (at 30 

°C) or sec-1 (at 55 °C). C is the concentration of disinfectant, which in the case of heat 

inactivation is constant and equals to 1. 

(1) 𝑙𝑙𝑙𝑙 � 𝜕𝜕𝜕𝜕0� = −𝑘𝑘𝐶𝐶𝑘𝑘 

At 55°C, several isolates displayed a rapid, initial decay, followed by a tailing curve. For these 

viruses, only the initial decay was taken in account to determine rate constants. 

Determination of the capsid melting temperature (breakpoint). 

The melting temperature, or breakpoint, of the viral capsids was determined by a thermal-

shift assay. The assay was performed in an PCR thermocycler as described above, but each 

PCR tube was held at a different temperature ranging from 25 to 60°C at 2 degree intervals, 

and was incubated for one minute at each temperature. The capsid melting temperature 

was determined by modelling a segmental linear regression and extracting the breakpoints 

values together with their respective standard errors. The modelling was applied to at least 

on two pooled experimental replicates. 

Assay to measure genome integrity 

The extent of genome damage upon thermal inactivation was quantified by real-time 

quantitative polymerase chain reaction (RT-qPCR) as described elsewhere154. Briefly, seven 

primer couples were designed (Table B.1. Primers couples for genome damage assay), which 

targeted amplicons that jointly covered approximately 45 % of the total CVB5 genome. Prior 

to and after thermal inactivation, the integrity of each amplicon was quantified separately 

by RT-qPCR. The integrity of the total genome was then determined by extrapolation as 
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follows, where (Nt/N0) is the extent of genome damage at time t, ΔCqt is the measured 

difference in qPCR signal at time t in the amplicon i, and i is one of each seven amplicons 

tested: 

(2) 𝜕𝜕𝑡𝑡
𝜕𝜕0

= �∏ 2−∆𝑘𝑘𝐶𝐶𝑡𝑡𝑖𝑖 �
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑙𝑙𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡ℎ

𝑡𝑡𝑔𝑔𝑡𝑡𝑡𝑡𝑙𝑙 𝑡𝑡𝑔𝑔𝑎𝑎𝑙𝑙𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔 𝑙𝑙𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡ℎ 

RNA was extracted using PureLink viral RNA/DNA kit from Invitrogen (Carlsbad, USA), and 

the qPCR was performed using One Step SYBR PrimeScript RT-PCR kit from Takara (Dalian, 

China), and using a MIC qPCR cycler from Thermofisher (Waltham, USA). Cycling conditions 

were the following: 20 minutes at 42°C for reverse transcription, then (repeated 40 times) 

15 seconds at 95°C, 30 seconds at 60°C, 20 seconds at 72°C, and a final incubation for 45 

seconds at 72°C. 

Structural modelling 

Details concerning the modeling protocol and conditions are explained in depth in chapter 4. 

Brielfy, 3D capsid models were built using the known crystal structure of coxsackievirus B3 

as a scaffold (PDB accession code: 1cov)155. As the main structural investigations are focused 

on the pentamer interface, one single pentamer together with a portion the neighboring 

pentamer was generated (Figure 3.1), and different parameters were calculated in this 

region, specifically the number of hydrogen bonds and salt bridges, as well as the 

electrostatic interactions and Van der Waals forces interactions (in kcal/mol*Å). The overall 

pentamer interaction forces were calculated as the sum of the electrostatic interactions and 

Van der Waals forces. The modelling of the interaction forces was performed seven times, 

and outlier values were excluded (< ± 1000 kcal/mol*Å). 
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Figure 3.1 Scheme of the pentamer interface. 
Right: schematic representation of the icosahedral structure of the virus capsid. In dark grey are re presented a 

single pentamer. Left: single pentamer with its neighbor. The axes are represented by 3 vector forces, x, y and z. 

X and z represent the interface shearing forces, and y the opposing forces of interest. 

Data analysis 

Data handling, MPN calculation and statistical analyses were performed in R (R development 

core team). The following CRAN packages were used: ggplot2102, gridExtra103, segmented105 

and peptides156. The virus breakpoint was determined using the segmented function from 

the segmented package using the linear model function (lm) as object, with 40 as the 

starting value estimate. 

RESULTS 

Effect of temperature and solution composition on inactivation 

Inactivation at 30°C 

At pH7.4 and 10 mM NaCl the inactivation of all viruses was slow, with rate constants k 

ranging from 0.13 (± 0.09 95% CI) to 0.54 (± 0.11 95% CI) day-1. No effect on inactivation was 

observed when increasing the pH from 7.4 to 9. (Figure 3.2C). At pH3, all viruses displayed 

faster inactivation kinetics with k ranging from 0.71 (± 0.16 95% CI) to 1.36 (± 0.38 95% CI) 

day-1. This rapid inactivation may be an artefact caused by viral aggregation, known to occur 

at low pH in low ionic strength solutions58. The observed loss in infective virus at pH3 and 10 

mM NaCl is thus likely a combination of true inactivation and aggregation (see also Figure 

5.10). At pH 3 with 1M NaCl, the inactivation was too fast to determine an inactivation rate 
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constant. Salt did not affect inactivation kinetics at pH7.4 (Figure 3.2D). Interestingly, 

however, 1 M NaCl and pH 9 synergistically led to very rapid virus inactivation. (Figure 3.2E). 

As virus aggregation is unlikely under these conditions of pH and salt, the decrease in 

infective virus titer must stem from virus inactivation. 

 

Figure 3.2 Thermostability of different enterovirus strains and serotypes at 30°C. 
Overview over all measured inactivation rate constant k of the different viruses included in this study. The results 

for pH3 and 0.01 M NaCl are not shown, as the inactivation kinetics were too fast to determine a k-value. The 

error bars correspond to the 95% confidence intervals. 

No major differences in the inactivation rate constants of the different viruses were 

observed at pH7.4 (both low and high salt concentration; Figure 3.2B and D), or at pH9 for 

low salt concentration (Figure 3.2C). At pH9 and 1M NaCl, CVB4 displayed a higher 

inactivation rate constant, but the difference was only significant compared to the CVB1 

strain. (Figure 3.2E). Finally, at pH3 and low salt, CVB4 and E11 were significantly less 

thermostable than the other viruses (Figure 3.2A). Still, viral aggregation should be taken in 

account for this condition.  
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Genome degradation at 30°C 

 

Figure 3.3 Effect of salt and pH on virus infectivity and genome integrity of CVB5-Faulkner 
at 30°C  
A to C: inactivation. D to E: genome degradation, as determined by RT-qPCR. Black line: low salt condition (10 

mM NaCl); dotted line: high salt condition (1M NaCl). Differences in inactivation can only be observed at extreme 

pH in the presence of 1 M NaCl. Virus inactivation at pH 3 (panel A) reflects both true inactivation and 

aggregation. For clarity, only the data for the CVB5-Faulkner strain are displayed. The remaining inactivation rate 

constants and breakpoints values are shown in the appendix B (Table B2 to B3). The error bars correspond to the 

95% confidence intervals 

No genome degradation was observed at pH7.4 for low and high salt conditions (Figure 

3.3E), which is consistent with the lack of inactivation observe at this pH. Genome 

degradation did occur at pH3, in both salt conditions, but to a larger extent at the high salt 

concentration (Figure 3.3D). At pH9, genome degradation was observed only at the high salt 

concentration (Figure 3.3F), indicating a potential synergistic effect of pH and salt. 

Inactivation at 55°C 

Inactivation at 55 °C was much more rapid compared to 30 °C for all viruses studied, with 

rate constants k ranging from 0.16 (± 0.05 95% CI) sec-1 for CVB5-L061815 to 1.48 (± 0.69 

95% CI) sec-1 for CVB4-T051217 (Table B.). At low salt, CVB4 strains as well as E11 appeared 

to be the less thermoresistant compared to CVB5 isolates, with CVB1-L071615 being the 

most thermoresistant (Table 1.1). In addition, CVB5 Faulkner laboratory strain was always 
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found less thermostable than the CVB5 isolates. For CVB5-Faulkner, the pH was found to 

have no obvious effect on inactivation at 10 mM NaCl, a notable tail in the inactivation curve 

was observed after around 20 seconds of treatment. However, the level of this tail appeared 

to be lower at pH9 (Figure 3.4C). On the other hand, the addition of 1M NaCl alone 

dramatically increased the thermostability, shifting the rate constant k of the Faulkner strain 

from 0.62 (± 0.06 95% CI) sec-1 for low salt to undetected inactivation (k ≅ 0) for high salt at 

pH7.4 (Figure 3.4B). 

 

Figure 3.4 Effect of salt and pH on virus infectivity of the CVB5-Faulkner strain 
Black line: low salt condition (10 mM NaCl); dotted line: high salt condition (1M NaCl). (A to C) inactivation. 

 

Breakpoint temperatures 

The breakpoint temperatures ranged from 38.8 to 51.2 °C (Figure 3.5). Interestingly, and 

consistent with the 55°C inactivation kinetics, serotypes CVB4 and E11 were the least 

thermoresistant, with breakpoint temperatures of 38.8, 44.4 and 43.3 °C for CVB4-T051217, 

CVB4-M063015 and E11, respectively. A protective effect of salt was also observed for the 

capsid breakpoint, shifting the CVB5-Faulkner breakpoint temperature around 15 °C upward 

(Figure 3.6). A destabilizing effect of increasing pH on the capsid breakpoints could be 

observed at low salt conditions, with breakpoint temperatures of 47.0 (± 1.9 95% CI) °C, 44.9 

(± 1.4 95% CI) °C and 40.7 (± 1.6 95% CI) °C for pH3, 7.4 and 9, respectively. A strong 

negative correlation of the breakpoint temperatures and the inactivation rate constants at 

55 °C (Pearon’s r = -0.97) was found (Figure 3.7). 
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Figure 3.5 Breakpoint temperature for the 
viruses. 
Both CVB4 strains, as well as E11 have the lowest 

breakpoint temperatures. The laboratory strain 

CVB5-Faulkner appeared more thermosensitive 

than the corresponding CVB5 isolates. The error 

bars correspond to the 95% confidence intervals. 

 

 

 

Figure 3.6 Effect of salt and pH on virus 
breakpoints temperature. 
Effect of salt and pH on the breakpoints temperatures of 

CVB5-Faulkner strain. In the presence of 10 mM NaCl 

(black circles), an increase in pH lowered the breakpoint. 

In 1 M NaCl (open squares) the breakpoint increase close 

to 60 C for all pH conditions considered. The error bars 

correspond to the 95% confidence intervals. 

 

 

 

Figure 3.7 Correlation of breaking points 
with the rate constants k at 55°C. 
Inactivation rate constants at 55 C exhibit a strong 

negative correlation with breakpoints (Pearson’s r = 

-0.97), whereby the CVB5 isolates are clustered in 

the lower right quadrant. The error bars 

correspond to the 95% confidence intervals 
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Antigenic divergence 

An antigenic divergence assay was conducted in order to assess if the CVB5 laboratory strain 

differed in structure from the CVB5 environmental isolates. Interestingly, a divergence was 

observed where the isolates were only partially inactivated by the CVB5 Faulkner specific 

antiserum, whereas the Faulkner strain was fully inactivated (Figure 3.8), indicating a 

structural change from the lab strain to the environmental isolates. No effect of the serum 

was observed on CVB4 and CVB1 serotypes, indicating that they are structurally sufficiently 

different from the CVB5-Faulkner strain to not being targeted by the polyclonal CVB5 

Faulkner antibodies present in the serum. 

 

Figure 3.8 Antigenic divergence from CVB5-
Faulkner strain. 
Viruses were exposed to an antiserum specific to the 

CVB5-Faulkner strain. The smaller the infectivity loss 

caused by the antiserum, the greater is the antigenicity 

shift of the capsid compared to the Faulkner strain. As 

expected, non-CVB5 serotypes exhibit no infectivity 

loss.  CVB5 isolates only display a partial infectivity loss, 

indicating a partial antigenicity shift from the Faulkner 

strain. The error bars correspond to the 95% confidence 

intervals. 

Structural analysis 

Hydrophobic core pocket, disulfide bonds, H bonds and salt bridges 

No differences in the total hydrophobic core pocket volume was found except for E11, which 

appeared as a strong outlier. Similarly, no differences in the number of disulfide bonds could 

be found between any of the viruses studied (data not shown). At the pentamer interface, 

CVB1 and E11 displayed a higher number of H bonds compared to all CVB4 and CVB5 

serotypes (Figure 3.9A). In addition, discrepancies in the number of salt bridges could be 

noted. Both CVB4 isolates displayed six salt bridges, compared to for the CVB1 and CVB5 

serotypes, and two for E11 (Figure 3.9B). 
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Figure 3.9. Number of H bonds and salt bridges at the pentamer interface. 
 

Pentamer interaction forces 

The resulting directions (attractive or repulsive) of interaction forces at the pentamer 

interface were variable from one virus to another. Van de Waal forces were always 

attractive (negative values) and electrostatic forces always repulsive (positive values) (Figure 

3.10A and B). The overall force was negative (Figure 3.10C), indicating that the Van der Waal 

forces provide enough attraction to overcome the repulsive forces from the electrostatics, 

and prevent the natural disruption of the virus capsid, without any external stressor. 

 

Figure 3.10 Interaction forces at the pentamer interface. 
Vand der Waals forces and electrostatic forces in the y axis component of the capsid pentamer interface. The y-

axis corresponds to the forces in [kcal/mol*A]. Negative values indicate an attraction, positive values indicate a 

repulsion. The overall forces correspond to the sum of both Van de Waals and electrostatics. The error bars 

correspond to the 95% confidence intervals. 
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Pocket factor interactions 

The pocket factor of coxsackievirus B3 was previously modelled as palmitate and specific 

hydrophobic residues were described to potentially interact with it155. These residues were 

compared to those of the CVB5 Faulkner and environmental strains by protein sequence 

alignment. Several mutations on these residues or residues located in their vicinity were 

found (Figure 3.11A), with different hydropathy indexes. Interestingly, the total 

hydrophobicity of the whole pocket factor-interacting zones exhibited a correlation with the 

respective breakpoint temperatures of the viruses (Pearson’s r = 0.84), with a lower 

hydrophobicity for the most thermolabile viruses (CVB4 isolates and E11) (Figure 3.11B). 

 

 

Figure 3.11 Pocket factor 
(A) VP1 region potentially responsible of the 

interaction with the pocket factor. In red: amino 

acids binding to the pocket factor for CVB3. In blue: 

highlighted mutations from the Faulkner strain. In 

the Left: table displaying the total hydrophobicity 

with the corresponding viruses. (B) Plot of the total 

hydrophobicity versus the corresponding breakpoint 

temperatures of all viruses tested. The units of 

hydrophobicity are based on the HPLC retention time 

differences with Glycine as amino acid reference157. 

The error bars correspond to the 95% confidence 

intervals 

DISCUSSION 

Proposed mechanisms of inactivation 

Thermal inactivation at 30°C is either not affected by salt (pH 7.4), or inactivation is 

enhanced (pH 3 and 9). In contrast, at 55 °C, salt protected all viruses studied from 

inactivation. This finding indicates that thermal inactivation must proceed by two 
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fundamentally different mechanisms at the two temperatures studied, consistent with 

previous reports152,158. 

Proposed mechanisms at 30°C 

An inactivation-enhancing effect of acidic and alkaline pH, as well as of salt, is consistent 

with a mechanism involving genome cleavage via RNA transesterification and hydrolysis. 

Specifically, this RNA degradation mechanism is catalysed by both acidic and basic solution 

constituents159. Furthermore, at alkaline pH, increasing concentrations of monovalent ions 

were found to lower the pKa of the 2’-hydroxyl group, which in turn favoured its 

deprotonation and enhanced the rate of nucleophilic attack of the 2’-oxyanion at the 

phosphodiester (transesterification)160. For an encapsidated RNA molecule, the effect of pH 

may additionally be linked to the capsid conformational state. Specifically, at pH3, well 

below the lower isoelectric point coxsackievirus B5161, the virus adopts a conformation that 

exposes the RNA to degradation, while at a higher pH (>6.75) the capsid conformation 

allows efficient protection. Finally, an inactivation mechanism involving genome degradation 

is also supported by our finding of extensive genome degradation at 30 °C under inactivating 

conditions of pH and salt (Figure 3.3). 

Proposed mechanisms at 55°C 

The correlation of the inactivation rate constants at 55°C with the breakpoint temperature 

(Figure 3.7) suggests that protein degradation is the main inactivating mechanism at higher 

temperatures. The protective effect of salt then stems from its shielding effect of the 

electrostatic repulsion forces at the capsid pentamer interfaces (Figure 3.6). 

Two different hypotheses may explain the dependence of the breakpoint temperatures on 

pH. First, and as explained above, a pH change may shift the capsid into a more 

thermosensitive conformation. Alternatively, pH may modify the protonation state of amino 

acids residues located at the pentamer interfaces, thus changing overall attraction forces, 

which result in a different temperature breakpoint. 

 

Structural features leading to enhanced thermostability 

Antigenic divergence 

As described by Presloid and colleagues162, a shift in antigenicity can be accompanied by an 

increase in thermostability. Here we observed a shift of antigeniciy from the CVB5 

laboratory strain to the CVB5 environmental isolates. This shift may be linked with the 
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differences in breakpoint temperatures observed between the laboratory strain and the 

environmental isolates (Figure 3.5). Yet, this observation can only be meaningful for viruses 

within the same serotype, since the serum required a minimum of specificity. 

Pentamer interface or pocket factor ? 

At the outset of this study, we expected that stronger overall attraction forces at the 

pentamer interface would increase the breakpoint temperature, as more energy would be 

required to disrupt the capsid. Interestingly, however, the interaction forces at the 

pentamer interface of the studies viruses were different but did not correlate with the 

respective capsid breakpoint temperatures, indicating that the variability of 

thermoresistance between the different strains stems from a different mechanism. 

A potential alternative to pentamer interaction forces for capsid stability is the role of the 

VP1 hydrophobic pocket region. It was described that this region can contain a pocket-factor 

ligand, which is modelled in various ways, but mostly as a fatty acid-like structure155,163. Its 

function is related to the injection of the viral RNA following the binding of the virus capsid 

to a cell-receptor. Briefly, the current model of its function is the following: upon cell-

receptor binding, the pocket factor is released, which destabilizes the capsid, allowing it to 

complete conformational rearrangements in order to inject the viral RNA into the host (J. 

Hogle 2002 and references therein163), and suggest that it has a role in the capsid thermal 

stability164. Specific antiviral compounds were described to block the virus cell infection by 

binding this specific pocket region, making the capsid unable to undergo conformational 

rearrangement and inject its RNA165. WIN 51711 antiviral compound, known to bind in the 

VP1 pocket region, appeared to prevent the thermal inactivation of poliovirus infectivity, 

thus indicating a direct stabilizing effect of the virion166. Muckelbauer and colleagues155, 

described the WIN 66393 compound to inhibit the CVB3 uncoating but not the cell 

attachment, demonstrating that the central role of this pocket region in virus capsid 

uncating. Later, the antiviral drug Pleconaril was described to inhibit enterovirus D68 

infectivity, by binding to this pocket region and displacing the fatty acid-like structure 

present therein167. All these findings indicate that the role of the VP1 pocket in capsid 

stabilization, and its interaction with the pocket factor may take place within the whole 

Picornaviridae family. 

Herein, we observed a correlation of the hydrophobicity index of residues located in the VP1 

pocket factor with the breakpoint temperatures. The mechanism would be that a lower 

hydrophobicity index may induce weaker interactions with the fatty acid-like pocket factor, 
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and reducing the energy required for its release from the capsid, thus decreasing the 

breakpoint temperature. 

CONCLUSION 

Overall, this study demonstrates a major impact of simple matrix variation on virus 

thermostability. We demonstrate that even simple matrix modifications, such as changing 

the pH or the salinity, can have a strong capsid stabilizing effects. Different inactivation 

mechanisms were determined, depending on the temperature applied. Salt appears to 

enhance genome degradation at acidic and alkaline pH conditions. Yet, the exact 

mechanisms involved in genome degradation are still an open question, but could be linked 

to a combination of the capsid conformational state and RNA cleavage. Finally, and in 

contrary to expectations, the variation in thermostability between different viruses was not 

linked to the protein interaction forces, but potentially due to a variation in the interaction 

with the pocket factor. 
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CHAPTER 4 Structural mechanisms causing heat resistance mediated 

by thermal adaptation or salt. 

Experimental design and data analysis were performed by Meister S.; structural modeling was performed by 

Prunotto A. (Laboratory for Biomolecular Modeling, EPFL); inactivation experiments were performed by 

Bachmann V. and Meister S. 

INTRODUCTION 

Temperature is an important parameter controlling virus persistence in the environment. 

For example, temperature was found to modulate virus persistence in groundwater147, 

soil148, and on non-porous surfaces149. Temperature can affect viruses in the environment 

either indirectly, e.g., by increasing the grazing rate of bacteria and porotozoa168–170, or 

directly by inducing structural changes on the virus capsid that result in inactivation. The 

selection of thermotolerant viruses would naturally improve the chances of environmentally 

transmissible viruses to find a new host, by extending their environmental persistence150. 

In this study, we assess the mechanisms that control and promote thermotolerance in 

coxsackievirus B5 (CVB5), an enteric human pathogen that is frequently detected in the 

aqueous environment171, and that it is notoriously resistent to disinfection69. CVB5 is a 

member of the Enterovirus genus of the Picornaviridae family. These viruses have a single-

stranded RNA genome, surrounded by and icosahedral capsid composed of 60 protomer 

repeats composed of four structural proteins (VP1 to VP4), and organized in pentameric 

subunits. Single-stranded RNA viruses have high mutation rates, because they lack 

proofreading during viral replication. This allows enteroviruses to rapidly adapt to a specific 

host (i.e., cell receptor), or increase their resistance to specific antivirals or physical-chemical 

stressors75,77,172,173. Adaptation of an enterovirus (poliovirus) to heat was described by Shiomi 

and colleagues152, who subjected the virus to three successive cycles of thermal inactivation 

at 50°C followed by plaque selection. This resulted in the emergence of thermo-resistant 

strain, which could be attributed to a single valine to alanine mutation in VP1. 

The mechanism of thermal inactivation of enteroviruses has been linked to disintegration of 

the viral capsid. Specifically, the dissociation of the capsid into pentameric subunits with 

increasing temperature was observed for foot-and-mouth disease virus (FMDV)128. This 

indicates that interaction forces between the capsid pentamers determine the virus’s 

thermostability. Therefore, one option for the virus to improve its thermoresistance is to 

increase the interaction forces between the pentameric subunits, by selective mutation of 

the amino acids at the interface. For example, engineering a disulfide bond into the 
46 

 



pentameric interface via the mutation of a single amino acid in VP2 efficiently increased the 

thermostability of FMDV by shifting the capsid breakpoint (melting temperature) by few 

degrees128,146. Rincón and colleagues126 demonstrated that a similar effect can be achieved 

by reduction of electrostatic repulsion forces at this interface. Here, they engineered 

mutations that reduced carboxylate-mediated repulsion forces at the pentameric interface, 

leading to a more thermostable virus capsid. 

The goal of this study was to determine the thermoresistance of CVB5 prior to and after 

adaptation to temperature, and to determine the associated molecular mechanisms. To this 

end, we conducted four investigative stages. First, we produced thermoresistant strains by 

adaptation of CVB5 Faulkner strain to two temperatures (50 and 55 °C), and analysed the 

mutations selected through this process. Second, we applied structural modelling tools to 

quantify the protein interaction forces in the viral capsids, and analysed their variation 

between the thermo-adapted and non-adapted CVB5-Faulkner viruses. Third, we artificially 

disturbed these electrostatic interactions by increasing the ionic strength of the solution and 

analysed these effect on the capsid breakpoints. Finally, we investigated possible 

appearance of fitness trade-offs in the thermoresistant mutants. 
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MATERIAL AND METHODS 

Cells and viruses 

Human coxsackievirus B5 Faulkner strain (ATCC VR-185) was purchased from LGC Standards 

(Molsheim, France). Buffalo Green Monkey Kidney (BGMK) cells were kindly provided by the 

Spiez Laboratoy (Switzerland). Virus stock solutions were prepared by amplification in BGMK 

cells as described previously151, and were stored in phosphate-buffered saline (PBS; 5 mM 

Na2HPO4, 10 mM NaCl, pH7.4). Virus infectivity was determined by endpoint dilution with 

Most Probable Number (MPN) statistics method92, using confluent BGMK cells on 96-well 

plates, with five replicates and eight dilutions for each experimental sample. The cytopathic 

effect (CPE) was determined through microscopy after five days post-infection and 

incubation at 37°C with 5% CO2. The infectivity was then reported as most probable number 

of cytopathic units per mL (MPNCU mL-1). 

Thermal inactivation and determination of breakpoint temperatures. 

Two thermal inactivation assays were performed: a time-shift assay, where the virus 

infectivity is measured at different time points at fixed temperature (55°C) to determine 

first-order inactivation rate constants (see Chapter 3); and a thermal-shift assay, where 

different temperatures were applied over a fixed incubation time of one minute, to 

determine breakpoint temperatures (i.e., the temperature at which viral capsids break 

down, causing viruses to become inactivated, see Chapter 3). Both inactivation experiments 

were performed with a PCR thermocycler (Applied Biosystems, GeneAmp PCR system 9700). 

PCR tubes containing 90 µl of PBS were heated at the desired temperature, then 10 µl of the 

virus stock solution was spiked in the tube. The tubes were removed from the PCR machine 

at the designated time points and quickly placed into an aluminium PCR cooling block on ice. 

The initial virus concentration was measured by spiking 10 µl of virus into 90 µl of room-

temperature PBS. 

Thermal adaptation 

Virus adaptation to high temperature was performed in two specific steps: a founder 

population (CVB5-Faulkner) was first exposed to 10 passages of cell culture adaptation, 

followed by 10 passages of thermal adaptation (Figure 4.1A). The cell culture adaptation 

consisted in infecting confluent T25 flasks of BGMK cells (at a concentration around 105 

MPNCU ml-1) until reaching full CPE. The cell lysate was harvested, clarified by 
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centrifugation, and diluted by 2-log10 for the following infection passage. The 10th cell culture 

adaptation passage was used for the thermal adaptation. 

 

Figure 4.1 Scheme of the thermal adaptation assay. 
This assay way performed in two steps, (A) cell-culture adaptation assay, where the Founder strain was passaged 

10 times in BGMK cell lines, and (B) where the adaptation occurred, with 5 different replicates and three 

condition. The negative control (CTRL-) consisted in 2-log10 dilution titre by dilution of the virus at each passage, 

and the 50 and 55°C a 2-log10 reduction titre by thermal inactivation. 

 

Temperature adaptation was performed under three separate passaging conditions: 

negative control (dilution in PBS), inactivation at 50°C, and inactivation at 55°C. Each 

condition was replicated five times in order to identify the appearance of temperature-

unrelated mutations (Figure 4.1B). For the negative control, a simple 2-log10 dilution was 

applied between each passage, whereas for 50 and 55°C inactivation conditions, the cell 

lysates were concentrated to 100 µl with an Amicon 100 kDa molecular weight cut-off 

column (Sigma-Aldrich, Germany) and inactivated by approximately 2-log10 by thermal 

selective pressure. The entire concentrate was then used for the next infection passage. 

After reaching full CPE, all cell lysates were harvested and clarified by centrifugation. 

Thermal inactivation was performed with a PCR thermocycler, with an incubation time of 2 

minutes for 50°C and 25 seconds for 55°C to reach 2-log10 reduction. 
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Genome sequencing 

Whole genome sequencing was performed as described in Chapter 2, after the 10th 

adaptation passage. Mutations were identified by alignment with the original CVB5-Faulkner 

sequence (GenBank accession number: AF114383).  

Competition assay to determine viral fitness 

The fitness of the different adapted viruses was compared in a competition assay (Figure 

4.2). This assay consisted in co-infecting (at the same titer, to a total of 106 MPNCU ml-1) the 

negative control and one of the thermo-adapted viruses. The combined virus sample was 

then either diluted by 2-log10, or was subjected to a 2-log10 inactivation by heat at 55°C. 

Subsequently, the sample was inoculated onto BGMK cells and was regrown. This process 

was repeated over four passages. At the end of the fourth passage, the VP1 region was 

sequenced to identify the dominant strain in the virus sample. 

 

 

Figure 4.2 Schematic representation of the competition assay. 
The competition assay consisted in mixing at the same titer the negative control (CTRL-) and one of the thermo-

adapted virus. Two different selective pressure were used, a 2-log10 dilution and a 2-log10 inactivation by heat at 

55°C. After reduction in the infective titer, the virus sample was regrown on BGMK cells. After four passages, the 

VP1 region was sequenced 

Structural modelling. 

3D capsid models were built using the known crystal structure of coxsackievirus B3 as a 

scaffold (PDB accession code: 1cov)155. All models for the different strains were aligned 

through the Visual Molecular Dynamics (VMD) software174 in order to recreate the basic unit 

of the capsid. In particular, for each strain we generated one single pentamer, together with 
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a portion of the neighboring pentamers. The same procedure was applied for the protomer 

interface (Figure 4.3). The protonation states of the aminoacids that compose the proteins 

were assigned with Propka175. All the models were solvated using a TIP3P water model176, 

and ionized. In order to assess the influence of salt concentration on the structural 

properties of each strain, we tested different levels of NaCl concentration (10 mM, 500 mM, 

1 M, 2 M, 3 M). The large size of the systems (~900’000 atoms) did not allow performing 

long molecular dynamics studies. However, the structures were minimized with 1500 steps 

of conjugate gradient algorithm, in order to remove eventual clashes encountered during 

the homology modeling and aligning procedures. The presence of hydrogen bonds within 

the different models was detected with the HBonds plugin of VMD. The SaltBridges plugin 

was employed for the analysis of the salt bridges. In both cases, we examined both the total 

number of bonds within a pentamer, and within two specific interfaces, i.e. the pentamer 

interface and the protomer interface. Hydrogen bonds and salt bridges are considered to be 

part of an interface when the two residues that compose the bond are not part of the same 

domain (pentamer or protomer), but belong to two separate domains. 

 

Figure 4.3 Schematic representation of the pentamer and protomer interfaces. 
Left: capsid pentamer representation delimited by a black dotted line. Right: capsid protomer representation 

delimited by a blue dotted line. The black arrows show the direction of each interface. The axes are represented 

by 3 vector forces, x, y and z. X and z represent the interface shearing forces, and y the opposing forces of 

interest. 

The NAMD molecular dynamics software engine177 was used to calculate the Van der Waals 

(VdW) and electrostatic forces (ELEC) acting at these interfaces, with the unit of kilocalories 

per mole*Ångström (kcal/mol*Å). Those forces were divided in three axes: x and z for 
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shearing forces, parallel to the interface, and our vector of interest, y for the perpendicular 

forces. The overall interface force was calculated by calculating the sum of VdWy and ELECy 

force vectors. These forces were determined separately for the pentamer and protomer 

interfaces. The modelling of the interaction forces were performed seven times, and the 

aberrant outlier values were removed (< ± 1000 kcal/mol*Å). 

Data analysis. 

Data handling, MPN calculation and statistical analysis were performed using R software100. 

The following CRAN packages were used: ggplot2102, gridExtra103 and segmented105. The 

breakpoint temperature was calculated using the segmented function from the segmented 

package using the linear model function (lm) as object. The 55°C inactivation was considered 

as first order and were calculated based on the log-linear portion of the decay curve, as 

described in Chapter 2. 

RESULTS AND DISCUSSION 

Thermal adaptation and its effects on virus inactivation, composition and fitness 

Breakpoint temperatures and thermal inactivation rate constants of founder and evolved 
strains 

The breakpoints of thermo-adapted viruses and the negative controls, together with the 

breakpoint of the founder virus, are shown in Figure 4.4. As is evident from the breakpoints 

of the negative controls, cell culture adaptation led to a reduction in the thermotolerance of 

CVB5, resulting in a > 6°C reduction in breakpoint temperature compared to the founder 

population. In contrast, thermo-adapted viruses were more resistant than the founder 

population (> 2°C higher breakpoints). 

 

Figure 4.4 Temperature breakpoints after 
thermal adaptation. 
Breakpoints of the five experimental replicates (A to E) 

of the negative controls (CTRL-), the 50 °C adapted 

populations and the 55 °C adapted populations. A 

thermo-adaptation in the condition 50 and 55°C is 

found, reflected by higher temperature breakpoints. 

The adapted strains were also more heat resistant 

than the founder strain (in black). The error bars 

correspond to the 95% confidence intervals. 
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After 10 passages of thermal adaptation, the 50 and 55°C adapted viruses exhibited a 

breakpoint shift of about 10°C compared to the negative controls. The breakpoint 

temperatures for the 55°C adapted viruses range from 45.9 to 49.1°C, from 47.1 to 49.2 °C 

for 50°C and from 36.5 to 38.4°C for the negative controls (Figure 4.4). 

 

 

Figure 4.5 Correlation of the capsid 
breakpoint temperatures and 
inactivation rate constants at 55°C. 
The measured breakpoint temperatures of the 

founder strain and the three evolved populations 

(five replicates each) are shown versus their 

corresponding inactivation rate constant measured 

at 55 °C. A clustering can be observed which divides 

the negative controls (CTRL-) from the thermo-

adapted viruses, together with the founder strain. 

The error bars correspond to the 95% confidence 

intervals. 

The breakpoint temperature of all evolved virus populations as well as the founder 

population were correlated against their inactivation rate constants determined at 55°C 

(Figure 4.5). A strong correlation was observed between the two variables (Figure 4.5) 

(Pearson’s r=-0.97), though this is largely driven by the clustering of the negative controls 

and the thermo-adapted viruses. Taken separately, the negative control displayed no 

correlation, whereas within the thermo-resistant virus cluster, the correlation was still 

robust (Pearson’s r=-0.93). This correlation is consistent with the notion that virus 

inactivation at 55 °C may be driven by melting of the viral capsid. 

Mutations linked to thermoresistance 

Sequencing the structural region of all adapted virus populations revealed no change in the 

consensus sequence between the founder strain and the negative control (Table 4.1). The 

observed loss in thermostability of the negative control (Figure 4.4) is thus likely associated 

with different minority mutations, which are not captured by the sequencing technique 

(Sanger) used here. The relevant minority mutations can only be identified by next-

generation sequencing techniques, though this was out of the scope of this project. 
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Table 4.1 Mutation after thermal-adaptation 
Table showing the occurrence of the mutation in each experimental replicate and condition. In grey: no 

mutation. Orange or red, occurrence of the mutation at 50 and 55°C, respectively. 

 

 

 

 

 

Figure 4.6 Location of the mutations linked to 
thermo-resistance. 
A) Top view of the capsid protomer composed of VP1 

(blue) and VP2-4 (grey). The light blue dotted line 

represents the protomer interface and the grey dotted line 

the pentamer interface. E26V is located near the pentamer 

interface, while I209F and N213D near the protomer 

interface. (B) Side view of the capsid protomer. M180V is 

located near the VP1 pocket of VP1. 

In the heat-adapted strains, four non-synonymous mutations were found, exclusively 

located in VP1 (Figure 4.6). Two mutations were specific to 50°C-adapted viruses, either 

I209F or M180V, and two were specific to 55°C adapted strains E26V and N213D. Except for 

M180V, which only appeared in a single replicate, mutations were repeatedly found in at 

least four of the five biological replicates per condition. Mutations N213D and I209F 
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appeared close to the interfaces between capsid protomers, whereas E26V is located close 

to the pentamer interface. Mutation M180V is located near the binding pocket of VP1, at 

the center of the pentameric subunit (Figure 4.6A and B). 

Comparative fitness of adapted viruses 

If heat-adapted viruses were co-infected with the negative control during four passages 

(Figure 4.2), no mutations associated with the thermoresistant population was found in the 

final population, indicating that the thermoresistant strain is less efficient than the negative 

control at replicating on BGMK cells. However, if a mixed population was first inactivated by 

heat and then co-infected, a thermo-adaptive mutation (M180V) was conserved in the final 

population (Figure 4.2). Unexpectedly, however, the conserved mutation observed (M180V) 

was not originally detected in the thermo-adapted strain used (replicate A, containing the 

mutation I209F), but only observed in the thermo-adapted replicate D (Table 4.1). The 

appearance of the M180V mutation in at the end of the competition assay suggests that this 

mutation was present in replicate A, but only as a minority mutation. In addition, a second 

mutation, Q162K, was also present after the competition through heat-selective pressure.  

Based on the results of this competition assay, we conclude that a higher breakpoint 

temperature is detrimental to viral fitness, if the only selective pressure between passages is 

dilution. A higher breakpoint temperature, however, gives a selective advantage under 

thermal pressure. 
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Influence of protein interaction forces on the thermostability of CVB5 

Effect of salt on thermostablity of CVB5 

To investigate the role of protein interaction forces on virus stability, we determined the 

breakpoint temperature in buffer solutions with varying salt concentrations. Salt influences 

the magnitude of protein interaction forces, which in turn may influence thermal stability. 

The effect of salt on thermal stability was highly significant. Increasing the NaCl 

concentration from 10 mM to 1 M completely suppressed the virus inactivation of the 

founder strain at 55 C (Figure 4.7A), which was accompanied by a dramatic increase of 

temperature breakpoint from 44.9°C to 59.5°C. A strong correlation could be observed 

between the breakpoints temperatures and the salt concentration, until reaching a plateau 

around 2 M NaCl (Figure 4.7B). 

 

Figure 4.7 Effect of salt on the thermal stability on the founder virus. 
(A) Inactivation curve measured at 55°C. Black dots correspond to 10 mM NaCl and white squares correspond to 

1M NaCl. (B) Capsid breakpoints at different salt concentrations. The error bars correspond to the 95% 

confidence intervals. 

Increasing the salt concentration affected the adapted strains to a similar extent. From 10 

mM to 1 M NaCl, from 12 to 15°C difference in the breakpoints occurred for the founder 

population, the negative control, the I209F mutant, and the E26V_N213D double mutant 

(Table 4.2). 
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Table 4.2 Structural parameters of thermo-adapted and founder strains. 
This table summarize the results obtained for the structural parameter of the capsid for the thermo-adapted 

strains as well as the founder strain. SE: standard error. The unit the overall forces and its standard error is 

[kcal/mol*Å], and for the breakpoints and its standard error is [°C]. For the viruses: Orange and red corresponds 

to respectively 50 and 55°C adapted strains. 

 

Effect of salt on protein interaction forces of the founder strain 

In a next step, we determined how different protein interactions are influenced by salt, 

using the founder strain as the example. To this end, we determined the total electrostatic 

and van der Waals forces at the interface of viral proteins, and we analyzed the number of 

hydrogen bonds and salt bridges. Hereby, we focused on two interfaces: the pentamer 

interface, which previous reports have described as the location of capsid disintegration 

during thermal inactivation128, and the protomer interface, which is the interface in closest 

vicinity to the mutations found herein (Figure 4.6A). 
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Figure 4.8 Effect of salt on the pentamer and protomer interaction forces 
(A-C) Effect of salt on the pentamer interface interaction forces. (D-E) effect of salt on the protomer interface 

interaction forces. The error bars correspond to the 95% confidence intervals, based on 7 computational 

replicates. The data displayed here is based on the founder strain (CVB5-Faulkner). 

 

Increasing salt concentrations at the pentamer resulted in a decrease in electrostatic 

repulsion and a strong increase in van de Waals attraction forces (Figure 4.8A and B). Hence, 

the presence of salt resulted in an increased of overall attractive forces (Figure 4.8C), which 

correlated with the capsid breakpoints measured under the corresponding solution 

conditions (Figure 4.9). Surprisingly, an opposite effect in electrostatic interactions was 

observed at the protomer interface, with an increase in electrostatic repulsion with 

increasing salt concentrations (Figure 4.8D and E). Nevertheless the strong concurrent 

increase in Van de Waals forces still resulted in of an overall increase of attractive forces 

(Figure 4.8F). The overall attractive forces at both interfaces are in accordance with the 

rational fact that the virus needs a stable capsid, requiring a significant amount of energy to 

be disrupted (i.e. by heating). 
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Figure 4.9 Effect of salt concentration on 
the interaction forces at the pentamer 
interface of the founder population. 
A high correlation was observed between the 

overall interaction forces at the pentamer 

interface and the corresponding breakpoint 

temperature (Pearson’s r=-0.86). The error bars 

correspond to the 95% confidence interval. . The 

data displayed here is based on the founder strain 

(CVB5-Faulkner). 

 

The salt concentration did not affect the number of salt bridges at either interfaces, but had 

a strong effect on H bonds (Figure 4.10). From 10 mM to 3M, their number reduced by ~40 

for the pentamer interface, and by ~15 for the protomer interface (Table 4.2). Interestingly, 

this major reduction of the number of bonds within all interfaces appears to have a minimal 

effect compared to the combined thermo-stabilizing effect of reduced repulsions and 

enhanced Van de Waals forces. 

Effect of mutations on protein interaction forces 

Given that salt increases thermostability by altering protein interaction forces, it is thus 

reasonable to assume that mutations associated with thermoresistance may have a similar 

effect. To test this assumption, we compared the different force components between the 

evolved viruses and the founder stain. However, very few differences were found. 

Specifically, the number of salt bridges and hydrogen bonds was slightly lower in the 

pentamer interface than in the protomer interface. For the pentamer interface, the number 

of H bonds ranged from 140 to 143. All viruses had four salt bridges in the pentamer, except 

for the E26V_N213D mutant, which only displayed two salt bridges. At the protomer 

interface, the number of H bonds ranged from 143 to 147, and all viruses contained six salt 

bridges (Table 4.2). The capsid mutations that appeared during thermal adaptation did not 

significantly changed the interaction forces at either the pentamer nor the protomer (Figure 

4.11). Changes in protein interaction forces thus cannot explain the role of mutations in 

thermostability. 
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Figure 4.10 Effect of salt on the number of H bonds. 
(A) Pentamer interface, and (B) Protomer interface. The error bars correspond to the 95% confidence intervals 

associated with 7 computational replicates. The data displayed here is based on the founder strain (CVB5-

Faulkner). 

An alternative explanation for the role of mutations is that they alter thermostability via 

changing the structure of the VP1 pocket. Specifically, Adeyemi et al. (2016)153 described a 

thermo-stabilizing effect of mutations in the VP1 pocket of poliovirus 1 (I194V). Here, we 

also observed a mutation situated in the VP1 pocket (M180V), which appeared to be located 

at the exact position of I194V, by performing a VP1 structural overlay (data not shown). A 

similar mutation, M180I, was also present in CVB5 environmental isolates (see Chapter 3), 

changing the methionine to an amino acid with a higher hydrophathy index. Conversely, 

mutations in this region, acquired during the adaptation to capsid-binding compounds, were 

found to decrease the thermostability of enterovirus 71 and coxsackievirus A16178. 

Combined, these findings indicate that mutation in this region may have a role in the 

interaction of the VP1 pocket with its pocket factor, and that this interaction is involved in 

thermostability of a virus. 
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Figure 4.11 Effect of mutation on pentamer and protomer components. 
(A and B) Effect on the overall interaction forces, and (C and D) effect on the H bond number. The error bars 

correspond to the 95% confidence intervals associated with 7 computational replicates. The data displayed here 

is based on the founder strain (CVB5-Faulkner). 

 

CONCLUSION 

We identified two modes of increasing a virus’s tolerance to temperature: thermostability 

driven by the matrix (salt concentration), and thermostability driven by adaptive mutations. 

Salinlity has a strong effect on the interaction forces at the capsid pentamer interfaces, by 

reducing the repulsion forces and increasing attraction forces, leading to a stronger overall 

attraction force. In contrast, mutations associated with thermoresistance do not significant 

affect protein interaction forces. Instead, a mutation located near the VP1 pocket region 

may be involved in the interaction and release of the pocket factor, thus changing the 

thermal stability, but along with a fitness cost. Finally, another study found a mutation 

responsible of thermostability overlaying exactly with M180V in poliovirus 1, indicating that 

this specific way of structural thermostabilisation may be exclusive to coxsackievirus 

serotypes but to the whole Picornaviridae family.  
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CHAPTER 5 CONCLUSION AND PERSPECTIVES 

In this study, we described that the laboratory strains are not representative of their 

respective environmental isolates in terms of disinfection. This may lead to an inaccurate 

estimation of the disinfection guidelines, and therefore to underestimation of water 

treatments. Also, a strong variability in inactivation kinetics was observed in the 

environmental isolates. As raised in Chapter 1, the actual problem of the Ct value database 

is that it contains predominantly laboratory strains, and should be completed by including a 

range of environmental isolates for each problematic serotype. Also, periodical isolation of 

environmental viruses may provide information about the current state of disinfection 

sensitivity of circulating viruses, and about changes that could occur over time, caused by 

numerous factors in constant evolution (i.e. climate change and demographics). The two 

main challenges of periodical virus isolation can be described. First, the volume of the 

specific matrix required to catch a “living” virus could be problematic. Here, a single litre 

wastewater influent was used as source, but other environmental matrices may require 

much larger volumes, with a more intricate isolation method. Second, isolation methods 

required to be specific enough to target the wanted serotype. Also, we emphasize that the 

maintenance of the virus laboratory strains stocks should be carefully performed. We 

observed that few cell culture-adaptation passages can induce a strong decrease of virus 

thermoresistance, with non-observable mutations through standard Sanger sequencing 

technique. The number of passages should be limited, and infections for virus stocks should 

be performed only at a high multiplicity of infection (MOI) to reduce the number of infection 

cycles. 

We also demonstrated that even simple matrices can have a strong stabilizing effect on the 

virus. This effect was observed with the addition of NaCl at 55°C, and may be relevant for 

high temperature treatments for food processing. Interestingly, this protective effect 

appeared to be inverse at 30°C, with the contribution of an acidic or alkaline pH (3 or 9) on 

the degradation of the virus genome. Nevertheless, additional experiments are required to 

assess the effect of salt on the genome at high temperature, as well as protein damage at 

low temperature. High and low temperature assays have highly different incubation time-

range (seconds versus days), and the inactivation mechanisms implied could have different 

kinetic speeds. 

Finally, two thermostabilizing mechanisms were found, one matrix-related, and the other 

virus-related. The first one, implying the ionic strength, induced an increase of attraction 
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forces between the capsid pentamers, and the other, implying specific mutations, 

potentially inducing an increase of hydrophobicity in the VP1 binding region of the pocket 

factor. This indicates, in an adaptive point of view, that significantly increasing the 

interaction forces at the capsid interfaces may be too deleterious for the virus infectivity. 

The method of increasing these interaction forces by molecular engineering was proven to 

be efficient, although only for keeping the integrity of the virus capsid in vaccine design, 

without any regard in virus infectivity. Nevertheless, the thermostabilizing effect related to 

the pocket-region was accompanied by a competitive fitness trade-off as a cost, which could 

imply a slower host-receptor binding and RNA-injection kinetics. The implications of this 

pocket region in the virus environmental persistence are unknown, as other factors have to 

be taken in account (i.e. soil adsorption). Still, the interaction of the pocket region with the 

pocket factor appeared to be present in various viruses present in the Picornaviridae family, 

and higher interaction affinity may be also found in other virus serotypes originating from an 

environmental source. 

Overall, this study highlighted major experimental gaps for an efficient implementation of 

wastewater treatment guideline for viruses; described the impact of simple matrices on 

virus thermostability; and targeted the virus structural characteristics responsible of this 

thermostability. These findings have a great impact on several topics, such as processing and 

consumption of raw or light-cooked food (i.e. shellfish), where the matrix content may 

significantly increase the virus thermostability. Furthermore, the fast heat-adaptation 

observed in this study could also be an interesting alternative to molecular engineering for 

producing thermostable vaccines at reduced cost, or using the pocket region as an 

alternative molecular engineering target. Finally, these findings may have an impact on the 

study of environmental persistence of viruses, by screening the rate of thermostabilizing 

mutations appearance in various virus serotype populations shed into the environment. 
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A. Appendix – CHAPTER 2 

EXPERIMENTAL INFORMATION 

Chemicals 

Sodium thiosulfate (98.0%), polyethylene glycol (PEG)-8000, N,N-diethyl-p-

phenylenediamine (97%) and NaClO2 (puriss.) were obtained from Sigma-Aldrich (Germany); 

NaCl (99.5%), K2S2O8 (99%), HCl (1N) and KCl (99%) from Acros Organics (Geel, Belgium); 

EDTA (99%) from Roth (Karlsruhe, Germany); Na2HPO4 (99.0%) from Fluka (Honeywell 

International Inc.); Glycine (puriss.) from BioRad (Hercules, USA); Chloroform (for analysis) 

from Millipore (Billerica, USA); HOCl (13-15%) from Reactolab SA (Servion, Switzerland); 

agarose powder from Invitrogen (Carlsbad, USA), and Neutral red from Biotium (Fremont, 

USA). Cell culture media consisted of modified Eagle medium supplemented with 1% 

penicillin-streptomycin per ml and 10% (growth medium) or 2% (maintenance medium) 

heat-inactivated fetal bovine serum (all purchased from Gibco, Frederick, MD). 

Virus laboratory strains and cells 

Human coxsackievirus B5 Faulkner strain (ATCC VR-185) and echovirus 11 Gregory strain 

(ATCC VR-41) were purchased from LGC Standards (Molsheim, France). Bacteriophage MS2 

(DSMZ 13767) and its Escherichia coli host (DSMZ 5695) were obtained from the German 

Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). Buffalo 

Green Monkey Kidney (BGMK) cells were provided by Rosina Girones, University of 

Barcelona. 

Plaque assay 

Twelve dilutions of the amplified viruses were prepared, and 6-well plates of confluent 

BGMK cells were infected for 1 hour at 37°C with a volume of 1 mL of the virus stock. An 

agarose overlay was prepared by mixing 50% v/v of a preheated agarose solution (PBS, 1.5% 

agarose) and 50% v/v of cell culture media. After the incubation, the virus inoculum was 

removed, then the cells were covered with the agarose overlay, and the agarose was let to 

solidify prior to returning it to the cell incubator. After 4-5 days post-infection, the cells were 

covered with a similar agarose overlay, but additionally containing 0.01% Neutral Red to 

visualize the plaques. Individual plaques were cut out and were placed in tubes containing 

0.5 mL of cell culture media, and an equal volume of chloroform was added. This solution 

was mixed and centrifuged, and the chloroform-free fraction was harvested and used for 

downstream experimentation. 
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Bayesian model 

The Bayesian model was based on the following likelihood function, similar to the approach 

presented originally by Haas99: 

S1 𝐿𝐿�𝜽𝜽�𝑦𝑦𝑖𝑖𝑖𝑖� = ∏ ∏ �
𝑙𝑙𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖𝑖𝑖� �1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑔𝑔�𝑘𝑘𝑖𝑖� ∙ 𝑣𝑣𝑖𝑖𝑖𝑖)�𝑦𝑦𝑎𝑎𝑖𝑖�1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑔𝑔�𝑘𝑘𝑖𝑖� ∙ 𝑣𝑣𝑖𝑖𝑖𝑖)�𝑛𝑛𝑎𝑎𝑖𝑖−𝑦𝑦𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖  

where g(t) is the log-linear function for the concentration of viruses with respect to time and 

the dose of disinfectant. By using this approach, the inputs to the model were the raw 

endpoint dilution data (the number of positive and negative wells in a given dilution series), 

and the model outputs were posterior probability distributions of the rate constants (k). The 

following vague prior distributions were used for the inactivation rates of Echovirus 11 and 

the Faulkner strain of CVB5 (Equations S2 – S4). 

S2 𝑘𝑘~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇 = 0,𝜎𝜎2 = 104) 

S3 𝑏𝑏~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇 = 0,𝜎𝜎2 = 104) 

S4 𝑁𝑁𝑜𝑜~𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝛼𝛼 = 10−13,𝛽𝛽 = 10−13) 

The mean and variance of the posterior distribution of the inactivation rate for the Faulkner 

strain were used to construct an informative prior distribution for inactivation rate 

coefficients of environmental CVB5 isolates (Equation S5). 

S5 𝑘𝑘~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇 = 𝜇𝜇Faulkner,𝜎𝜎2 = 𝜎𝜎Faulkner
2) 

Gibbs sampling was performed in R100 with JAGS101 using three chains with 10,000 iterations 

and a burn-in period of 5,000 iterations. Convergence was verified by ensuring that Gelman 

and Rubin’s potential scale reduction factor (PSRF) was <1.05. 

ANCOVA analysis 

To control the possibility of a batch effect between the replicates and assess the significance 

of the effect of the viruses and disinfectant on the dose, we implemented an ANCOVA 

analysis with the following parameters: the disinfectant, the virus type, and the 

amplification replicate stock. By taking the global results, the disinfectant displayed a 

significant level with a p-value < 0.05. Then, by analysing each disinfectant separately, the 

virus factor displayed a significant factor with a p-values well below 0.05, except for ClO2 (p-

value = 0.07). Finally, by taking in account the virus variance, the “replicate” factor for each 

disinfectant did not displayed any significant level (p-value > 0.05), which indicates that its 

effect can be neglected from the analysis. 
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TABLES AND FIGURES 

Table A.1. Primer list. 
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Table A.2. Percentage of nucleotide identity. 
This table is base on the VP1 coding sequence. 

 

Table A.3. Percentage of protein identity. 
This table is based on the translated region of the virus structural proteins (VP1 to VP4). 
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Table A.4. Kinetic inactivation parameters for individual virus strains. 
Summary of k values and their 95% confidence intervals (CI95) for all viruses and all inactivation methods. The 

last three columns represent the Ct values for 1, 2 and 4-log10 virus inactivation, calculated based on the 

corresponding k values. The corresponding units for Ct values is mJ·cm-2 for UV254 and sunlight, mg·min·L-1 for 

free chlorine and chlorine dioxide, and seconds for heat. For ClO2, the k values are based on a disinfectant doses 

up to the segmental linear regression breakpoint, thus Ct greater required values are not shown (asterisk). 
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Figure A.1. UV254 inactivation curves for all viruses. 
The error bars represent the 95% confidence intervals associated with the measured infectivity loss. 
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Figure A.2. Sunlight inactivation curves for all viruses. 
The error bars represent the 95% confidence intervals associated with the measured infectivity loss. 
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Figure A.3. Free chlorine (FC) inactivation curves for all viruses. 
The error bars represent the 95% confidence intervals associated with the measured infectivity loss. 
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Figure A.4. Chlorine dioxide (ClO2) inactivation curves for all viruses. 
The error bars represent the 95% confidence intervals associated with the measured infectivity loss. 
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Figure A.5. Heat inactivation curves for all viruses. 
The error bars represent the 95% confidence intervals associated with the measured infectivity loss. 
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Figure A.6. Genome length normalization of 
kUV and kSUN. 
Boxplots displaying the kUV and kSUN values normalized 

for genome length in kilobases (kb). For MS2 and 

enteroviruses, a genome length of 3.569 and 7.400 kb, 

respectively, was assumed. 

 

 

 

Figure A.7. Correlation of kFC and kClO2 with exposed oxidizable amino acids. 
Correlation of the number of total surface-exposed, oxidizable amino acids (OAAs) on the virus capsid versus (A) 

kFC and (B) kClO2. OAAs include all amino acids with a reactivity greater than 104 M-1s-1 toward FC or ClO2. For FC, 

this included Methionine, Cysteine, Cystine, Histidine and Tryptophan, and for ClO2 Cysteine, Tyrosine and 

Tryptophan179,180. To identify surface-exposed OAAs, the 3D capsid structure of all viruses was modelled using 

the Swiss-MODEL181. The crystal structure of Coxsackievirus B3 (1COV, PDB) was used as template for homology 

modeling182, and the surface-exposed residues were identified using PyMOL183. 
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Figure A.8. Correlation of kFC and kClO2 with guanosine content. 
Total guanosine content present in the genomic 5’NCR correlated to (A) kFC and (B) kClO2. The chosen 5’NCR 

portion corresponds to residues 257-742 (based on Faulkner strain, accession number: AF114383184), which 

were identified for all viruses tested. 
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Figure A.9. Bayesian comparison of enteroviruses and MS2. 
Bar plot showing a comparison of the probabilities of inactivation rate constants (k values) for all viruses with 

MS2 bacteriophage. Grey bars indicate the probability that k of a given virus is smaller than the k associated with 

MS2 (the virus is more resistant than MS2); black bars indicates the probability that k of a given virus is greater 

than k of MS2 (the virus is less resistant than MS2). 
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Figure A.10. Dynamic light scattering analysis on virus particles. 
Dynamic light scattering (DLS) analysis on three viruses, under low salt (10 mM NaCl) and high salt conditions 

(1M NaCl), and under acid (pH 3), near neutral (pH7.4), and alkaline conditions (pH9). Intensities, volume and 

number units are in percentage (y axis), and the size in nanometers radius (x axis).  
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B. Appendix – CHAPTER 3 

Table B.1. Primers couples for genome damage assay 

 
 
Table B.2. Inactivation rate constants at 55°C 
Table showing the inactivation rate constants k at 55°C in [sec-1]. SE: standard error. 
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Table B.3. Inactivation rate constants at 30°C 
Table showing the inactivation rate constants k at 30°C in [day-1]. SE: standard error. 

 
 
Table B.4. Breakpoint temperature 
Table showing the breakpoint temperature in [°C]. SE: standard error. 
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C. Appendix – CHAPTER 4 

Table C.1. Breakpoint temperature 
Table with the breakpoint temperature of the heat adapted and non-adapted viruses. SE: standard error. 

 

 

Table C.2 Inactivation rate constant at 55°C 
Table with the rate constants k  at 55°C of the heat adapted and non-adapted viruses. SE: standard error. 
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