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Plaquette order in the SU(6) Heisenberg model on the honeycomb lattice
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We revisit the SU(6) Heisenberg model on the honeycomb lattice, which has been predicted to be a chiral spin
liquid by mean-field theory [G. Szirmai et al., Phys. Rev. A 84, 011611(R) (2011)]. Using exact diagonalizations
of finite clusters, infinite projected entangled pair state simulations, and variational Monte Carlo simulations based
on Gutzwiller projected wave functions, we provide strong evidence that the model with one particle per site and
nearest-neighbor exchange actually develops plaquette order. This is further confirmed by the investigation of
the model with a ring-exchange term, which shows that there is a transition between the plaquette state and the
chiral state at a finite value of the ring-exchange term.
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With the recent progress towards achieving SU(N ) sym-
metry with ultracold fermionic atoms [1–10], the investigation
of the effective SU(N ) Heisenberg model on various one-
dimensional (1D) and two-dimensional (2D) lattices has
become a very active field of research. Several remarkable
ground state properties have been reported, including long-
range color order [11], algebraic correlations [12], translational
symmetry breaking valence-bond solid states in which groups
of N atoms form local singlets on plaquettes [13,14], and chiral
ground states, suggested by Hermele et al. [15,16] for Mott
insulators on a square lattice with several particles per site.
Interestingly, a mean-field calculation even predicted a chiral
spin liquid in the SU(6) Heisenberg model on the honeycomb
lattice with only one particle per site [17,18]. However, the
rather natural plaquette state in which six SU(6) spins form
singlets on nonadjacent hexagons was found to lie very close
in energy. So this result calls for further investigation with
methods that go beyond mean-field theory.

In this Rapid Communication, we have addressed this
problem with state-of-the-art numerical methods: variational
Monte Carlo (VMC) simulations based on Gutzwiller pro-
jected wave functions, exact diagonalizations (ED), and
infinite projected entangled pair state simulations (iPEPS).
VMC confirmed that the two phases are very close in energy,
with the plaquette state being just slightly lower in energy.
Only after turning to exact diagonalizations and iPEPS could
we find compelling evidence that the ground state indeed has
plaquette order. The chiral state is not far in parameter space,
however, and it does not take a large ring-exchange term to
stabilize it, as demonstrated by ED and VMC.

The SU(6) Heisenberg model is defined by the Hamiltonian

H =
∑
〈i,j〉

Pij , (1)

where the operator Pij = ∑
α,β |αiβj 〉〈βiαj | exchanges the

N = 6 colors α and β of the atoms on neighboring sites i,j of
a honeycomb lattice.

VMC. Gutzwiller projected wave functions [19,20] offer
a qualitative and potentially quantitative description for both
types of competing scenarios found by mean-field study [17].
In this method we project out the configurations having
multiple occupancy from the Fermi-sea constructed from a
mean-field model. The variational parameters are the hopping
amplitudes and the artificial fluxes given by their total phase
around the elementary hexagons (plaquettes). An importance
sampling Monte Carlo method was used to calculate the
energies and correlations of the projected states [12]. Our
calculations (shown in Fig. 1) reveal that the lowest energy
states are similar to those of Ref. [17]: (i) a configuration
with uniform 2π/3 flux before projection, corresponding to
a chiral spin liquid [21], and (ii) a translation symmetry
breaking configuration with 0 flux in a center plaquette
surrounded by π flux plaquettes with nonuniform hopping
integrals, corresponding to a plaquette-ordered phase. While
the mean-field results of Ref. [17] favored the chiral phase,
the plaquette-ordered phase turned out, after projection, to
have a slightly lower energy (see Table I), the first hint that
the system might actually have a plaquette ground state.
However, the energy difference becomes very small upon
increasing the size. So we have decided to attack the model
with alternative methods.

ED. With the standard exact diagonalization approach that
takes into account all spatial symmetries but only an Abelian
subgroup of the SU(N ) symmetry group (color conservation
plus cyclic color permutations), the currently largest accessible
cluster with a number of sites multiple of 6 (a requirement
for having a singlet ground state) is an 18-site cluster. The
spectrum is shown in Fig. 2(a). The plaquette state is expected
to be threefold degenerate in the thermodynamic limit (one
state at the � point and two states at the two K points in
the Brillouin zone), but in the 18-site cluster the plaquettes
can also wrap around the torus [14], artificially enlarging the
number of plaquette coverings to 6. By contrast, the chiral state
is 2 × N = 2 × 6 = 12-fold degenerate in the spontaneous
time-reversal symmetry (TRS) breaking scenario. While the
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FIG. 1. (a) Energies of Gutzwiller projected wave functions and
(b) the bond energies on td and th bonds after projection for the
different flux configurations as a function of td/th for Ns = 72.
(c)–(e) shows the considered flux configurations, where black bonds
represent hopping amplitude td , while dark and light purple bonds
denote hopping amplitudes th and −th, respectively. In the case of
the uniform 2π/3 flux configuration, red arrows represent complex
hopping amplitude ∝ ei2π/3, for which tj i = t∗

ij .

first three levels �B2, KA2(2×) (plus the symmetry related
level �E1 particular to Ns = 18) are in agreement with the
expectations for a plaquette state, [14] these states are very
close to many other excited states (including nonsinglets). So
the spectrum does not provide enough evidence for either of
the competing states.

To go further, we have used a newly developed method [22]
that allows one to take advantage of the full SU(N ) symmetry,
hence to work directly in the irreducible representations
of SU(N ). For the singlet and the smallest values of the
Casimir operator, this leads to Hilbert spaces of much smaller
dimension than the standard approach. The spectrum is shown
in Fig. 2(b). Interestingly enough, on 24 sites, the spectrum
consists of three low-lying states reasonably well separated
from the rest of the spectrum, the first indication that the
ground state might have plaquette order. The spin-spin and
dimer-dimer correlations are shown in Fig. 3. The spin-spin
correlations decay quite fast, consistent with some kind of spin
liquid, and the dimer-dimer correlations are consistent with a

18 sites
(a)

24 sites
(b)0

0.2

0.4

0.6

0.8

1

1.2

0 6 0 6

E−
E G

S

C2 C2

×6 Ae

×4 KE

×1 ΓB2

×1 ΓGB2

×4 ΓE1,KA2

×6 Ae
×2 ΓA2,ΓB1
×6 Ao

×1

×6

×2

×2

FIG. 2. Spectrum of the 18-site (left) and 24-site (right) clusters
as a function of the quadratic Casimir C2. The degeneracies of some
states are indicated, as well as the spatial quantum numbers for the
18-site cluster. For the 24-site cluster, the presence of three low-lying
states is a strong indication of a plaquette phase (see text for details).
Inset: Broken-symmetry plaquette state reconstructed from ED. It
breaks translations, but the D6 symmetry is preserved. The bond
energy is −0.81 (−0.56) for the thick (thin) lines.

plaquette phase on the honeycomb lattice [see, for instance,
the discussion of the SU(3) case in Ref. [14]].

As an additional test, we have determined the spatial
quantum numbers of the first excited doublet by applying
one of the two elementary translations of the lattice. The
corresponding eigenstates belong to the two K points in
the Brillouin zone. The correlations in these states are very
similar to those in the ground state, which suggests that
these three states could correspond to the degenerate ground
state of the thermodynamic limit split by finite-size effects.
To demonstrate that this is the case, we have constructed
the symmetric sum of these states, which corresponds to
the finite-size approximation of a broken-symmetry state
(a simple task since the numerical wave functions are real
and not complex). In that state, the strong bonds correspond
to a covering of the lattice with hexagons [see the inset of
Fig. 2(b)], with a difference between strong and weak bond
energies of 0.25, in good agreement with the extrapolated
iPEPS estimate [see Fig. 4(c) below].

However, one should not forget that we have access to only
one cluster with the appropriate number of low-lying states,
and that the gap to the next levels is comparable to the gap
between the ground state and the first pair of low-lying states.
So, below, we turn to the results obtained with iPEPS.

TABLE I. VMC energies of Gutzwiller projected wave functions for the competing 0ππ (plaquette) and the 2π/3 flux configurations for
different system sizes, compared to the mean-field (MF) and iPEPS (D = 36) results. The statistical error of the calculations is smaller than
O(10−4). The optimized energies are obtained by considering the overlap between projected states with different boundary conditions before
projection.

Ns 24 24 opt 72 72 opt 288 MF [17] iPEPS

Plaquette −1.039 −1.057 −1.0079 −1.0123 −1.0082 −1.010 −1.031
2π

3 chiral −1.0064 −1.0104 −1.0077 −1.0087 −1.0077 −1.025
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FIG. 3. (a) 〈P0i〉 − 1/6 spin-spin and (b) 〈P12Pkl〉 − 〈P12〉〈Pkl〉 dimer-dimer correlations in the exact ground state of the 24-site cluster. As
a reference, we present the dimer-dimer correlations of the translational invariant linear combination of (c) the variational 0ππ flux projected
states with |td/th| = 0.8, and of (d) the variational 2π/3 flux projected state. The pattern of the dimer-dimer correlations of (b) the ED and (c)
the 0ππ variational states is an indication of long-range plaquette ordering.

iPEPS. An iPEPS is a variational tensor network ansatz
to represent a 2D wave function in the thermodynamic limit
[23–25]. The ansatz on the honeycomb lattice consists of a
unit cell of rank-4 tensors which is periodically repeated on
the infinite lattice, for each tensor one physical index carries
the local Hilbert space of lattice site, and three auxiliary
indices connect to the nearest-neighbor tensors. The accuracy
of the ansatz can be systematically controlled by the bond
dimension D of the auxiliary indices. For the experts we note
that the contraction of the tensor network is performed using
a variant [26,27] of the corner-transfer matrix method [28,29],
and the optimization is done by an imaginary time evolution
using a combined simple and (fast) full update [30,31]. To
increase the efficiency of the simulations we make use of
Abelian symmetries [32,33]. A similar approach has been used
in previous calculations of SU(N ) Heisenberg models (see,
e.g., Refs. [12,14]). For an introduction to iPEPS we refer to
Refs. [30,31].

We have used a six-site unit cell which is compatible with
both plaquette and uniform (possibly chiral) states. As initial
states we started either from completely random tensors or
from a plaquette state made of SU(6) singlets on hexagons. In
the former case, using bond dimensions up to D = 24, a new
competing state appears, in which each site in the unit cell
exhibits a different dominant color. For D � 24 this color-
ordered state has a lower variational energy than the plaquette
state, as shown in Fig. 4(a). However, the slope in 1/D is larger
for the plaquette state. So we have pushed the calculation to
very large values of D, up to D = 36. Around D = 30 the
energies of the two ordered states indeed cross such that the
plaquette state clearly becomes energetically favored. We have
not found a competing uniform chiral state with iPEPS, which
is an indication that at least for the bond dimensions studied
here the plaquette state is the lowest energy state.

In Fig. 4(b) we present the results for the color-order
parameter of the two competing states, given by the local
moment

m =
√√√√6

5

∑
α,β

(〈
S

β
α

〉 − δαβ

6

)2

, (2)

averaged over all sites in the unit cell, where Sβ
α = |α〉〈β| are

the SU(6) spin operators and α,β run over all local basis states.
For the color-ordered state m is large for low D. It decreases

with increasing D but tends to a finite value in the infinite D

limit. The local moment of the plaquette state is much more
strongly suppressed with increasing D, and vanishes in the
large D limit, consistent with a singlet without color order.

Figure 4(c) shows the difference between the highest and
lowest bond energy in the unit cell which measures the
magnitude of the plaquette order. For the color-ordered state
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FIG. 4. iPEPS results for the SU(6) Heisenberg model on the
honeycomb lattice. (a) Comparison of the ground state energy
obtained with iPEPS, VMC, and ED, as a function of inverse bond
dimension D and inverse system size. The bold symbols mark
improved VMC results for Ns = 24 and 72 (see Table I and main
text). For large bond dimension with iPEPS the plaquette state has the
lowest variational energy, in agreement with VMC. (b) Color-order
parameter as a function of inverse D. It is finite for the color-ordered
state and vanishes for the plaquette state. (c) Difference in energy
between the strongest bond and the weakest bond in the unit cell,
which is strongly suppressed in the color-order state, and finite in
the plaquette state, consistent with plaquette long-range order. The
dotted lines are a guide to the eye.
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it is strongly suppressed with increasing D and vanishes for
large D, in contrast to the plaquette state which exhibits a
large difference in bond energy, where the strong bonds form
hexagonal plaquettes.

Ring-exchange term. Since the energy difference between
the plaquette and chiral phases found by VMC is very small,
it is tempting to speculate that the chiral phase might be
stabilized by a ring-exchange term around the hexagons. We
have thus considered

H = cos θ
∑
〈i,j〉

Pij + sin θ
∑

plaquettes

i(P� − P −1
�), (3)

where the sum in the second term runs over all hexagonal
plaquettes, and the operators P� and P −1

� permute the
configuration on a hexagon clockwise and anticlockwise (also
called ring-exchange terms). The new term directly couples
to the scalar chirality on the hexagons, breaks time-reversal
invariance, and is a bona fide SU(6) generalization of an SU(2)
Hamiltonian on the kagome lattice which has been shown to
give rise to an extended SU(2) chiral spin liquid phase [34,35].
Alternatively it can be viewed as a drastically truncated version
of a parent Hamiltonian for a SU(N ) chiral spin liquid [36].
In the following, we will discuss the properties of that model
as a function of θ , noting that θ = 0 corresponds to the pure
Heisenberg model (1).

The ED spectrum on 24 sites (Fig. 5) shows a clear change
of behavior between the small θ range, with a twofold excited
state well separated from the rest of the spectrum, and the
range above θ � 0.2, where a manifold of six singlet states
becomes almost degenerate and very well separated from the
rest of the spectrum. Two of these states are at the � point, and
the remaining four are at the K points, in agreement with the
momenta of the six chiral VMC states (discussed below). So,
the ED results are clearly consistent with a phase transition
between a plaquette phase and a chiral phase upon increasing
the ring-exchange term. Note that the degeneracy of the chiral
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FIG. 5. Comparison of the ED spectrum (black points) of the
model of Eq. (3) with the variational energies (continuous lines)
based on Gutzwiller projected wave functions for the 0ππ plaquette
phase and the 2π/3 chiral phase. The inset shows the (ordered)
eigenvalues λj of the overlap matrices of the projected states
with different twisted boundary conditions before projection as a
function of j .

state is only equal to 6 and not 12 because the Hamiltonian of
Eq. (3) explicitly breaks the time-reversal symmetry.

This interpretation is further supported by the comparison
with VMC on 24 sites. To access the low energy spectrum
and not just the ground state, we have constructed a large
family of Gutzwiller projected states by changing the boundary
conditions (BCs) of the fermionic wave functions [37],
considering up to 30 different BCs for the 2π/3 flux states,
and up to 90 for the 0ππ flux states (30 for each translation
breaking state), and we have diagonalized the overlap matrix
and the Hamiltonian in this variational subspace [38,39]. The
results are summarized in Fig. 5. For the chiral state, this parton
construction leads to six (and only six) significant eigenvalues
of the overlap matrix, which themselves lead to six low-lying
states very close in energy [40]. There is not such a clear cutoff
for the plaquette states, and the three low-lying states are not
so well split from the other states. Although the variational
plaquette and chiral states are higher in energy, their overall
behavior is qualitatively consistent with ED. In particular, the
energy of the plaquette state is minimal at θ = 0, while that of
the chiral states is minimal around θ = 0.36, and their energies
cross around θ = 0.16.

Similar overlap calculations were carried out for Ns = 72
sites, with 30 different BCs for the 2π/3 flux case, and 12
for each translation breaking state (36 in total) for the 0ππ

flux case. The energy corrections for the 0ππ case turn out to
be larger (see Table I), again promoting the plaquette-ordered
phase over the chiral liquid phase at the Heisenberg point [41].

Interestingly, Gutzwiller projected wave functions turn out
to be much better for the chiral phase than for the plaquette
phase on 24 sites. In fact, the energy minimum for the 0ππ

flux states, shown in Fig. 1, occurs for td/th ≈ −0.85. Now,
for td � −th/2, which includes the optimal energy value, the
fermionic wave function is gapless at the Fermi energy: the
lowest band (the only filled one) touches the empty band
above it at the � point (the Fermi surface is confined to a
point) [14]. So, by contrast to the plaquette phase of the SU(3)
Heisenberg on the honeycomb lattice, which is described by
a gapped fermionic wave function [14], the plaquette phase
discussed here for SU(6) corresponds to a gapless spectrum
before projection, hence possibly also to a gapless spectrum
after projection. Since this gapless point is not protected (the
spectrum is gapped for td > −th/2), we suspect that this is
an artifact, and that adding additional terms in the fermionic
Hamiltonian might open a gap and further lower the variational
energy of that state. This is supported by the fact that the
variational energy of the plaquette phase obtained with VMC
is much higher than that obtained by iPEPS for the same
phase.

Discussion. Altogether, we believe that the numerical
results reported in this Rapid Communication provide com-
pelling evidence in favor of a plaquette ground state for the
SU(6) Heisenberg model on the honeycomb lattice. We have
also shown that there is, however, a chiral phase close by in
parameter space. In particular, let us emphasize that the varia-
tional energy obtained by iPEPS for the plaquette state is much
lower than that of the chiral state obtained by VMC, which, as
shown when introducing a ring-exchange term, is very good
at describing the chiral phase. This situation is reminiscent
of the SU(2) honeycomb model for intermediate values of
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the next-nearest-neighbor exchange interaction (J2/J1 ≈ 0.3):
Several numerical methods [42–46] found a plaquette-ordered
phase, while mean-field [47], variational Monte Carlo [48], and
entangled-plaquette variational ansatz [49] approaches could
not reproduce these results but reported instead gapped spin
liquid/columnar valence bond solid phases in that parameter
range.

Even if it led to the wrong conclusion, the mean-field
approach should be given credit for identifying the right
candidates with very similar energies [17]. This lends further
support to the mean-field prediction by Hermele et al. [15,16]
of a chiral phase for several particles per site since there does

not seem to be competing VBS states too close in energy in
that case. Numerical work along the lines of the present Rapid
Communication to test this prediction is in progress.
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[11] T. A. Tóth, A. M. Läuchli, F. Mila, and K. Penc, Phys. Rev. Lett.
105, 265301 (2010).
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