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Semiclassical theory of the magnetization process of the triangular lattice Heisenberg model
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Motivated by the numerous examples of 1/3 magnetization plateaux in the triangular-lattice Heisenberg
antiferromagnet with spins ranging from 1/2 to 5/2, we revisit the semiclassical calculation of the magnetization
curve of that model, with the aim of coming up with a simple method that allows one to calculate the full
magnetization curve and not just the critical fields of the 1/3 plateau. We show that it is actually possible to
calculate the magnetization curve including the first quantum corrections and the appearance of the 1/3 plateau
entirely within linear spin-wave theory, with predictions for the critical fields that agree to order 1/S with those
derived a long time ago on the basis of arguments that required going beyond linear spin-wave theory. This
calculation relies on the central observation that there is a kink in the semiclassical energy at the field where the
classical ground state is the collinear up-up-down structure and that this kink gives rise to a locally linear behavior
of the energy with the field when all semiclassical ground states are compared to each other for all fields. The
magnetization curves calculated in this way for spin 1/2, 1, and 5/2 are shown to be in good agreement with

available experimental data.
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I. INTRODUCTION

In strongly correlated electron systems quantum fluctua-
tions are responsible for the manifestation of a variety of
exotic behaviors. In the field of magnetic insulators, for
instance, their effect can range from the stabilization of
magnetic order to the emergence of nonmagnetic spin-liquid
phases [1]. Of recent theoretical and experimental interest are
the properties of frustrated magnetic insulators in external
magnetic fields. In these systems, quantum fluctuations, which
are enhanced by frustration, may lead to the presence of
anomalies of the magnetization curve. Of specific relevance
to our study are magnetization plateaux. These consist of a
constant magnetization at a rational value of the saturation
which persists over a finite field interval. While plateau states
break the translational symmetry of the lattice, the nature of
the plateau wave function greatly depends on the details of the
model. Examples include crystals of purely quantum objects
such as triplet excitations in ladder systems [2,3], crystals of
more involved objects such as bound states of triplets as in
the Shastry-Sutherland lattice [4], and valence-bond crystals
as identified for the S = 1/2 Heisenberg antiferromagnet on
the kagome lattice [5—7]. Such plateaux are usually referred
to as “quantum” plateaux because the state which is stabilized
has no classical analog.

By contrast, there are plateaux for which the magnetization
pattern has a simple classical analog consisting of a crystal of
down-pointing spins in a background of spins aligned with the
magnetic field [§—12]. Such plateaux are sometimes referred
to as “classical” plateaux. Given the essentially classical
nature of such plateaux, it seems logical to expect that a
purely semiclassical theory can be developed, and indeed,
the first prediction of a 1/3 plateau in the triangular lattice
Heisenberg antiferromagnet by Chubukov and Golosov was
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based on semiclassical arguments [9]. They showed, going
beyond linear spin-wave theory, that the 1/3 plateau state with
a three-sublattice up-up-down (uud) structure acquires a spin
gap in a finite field range and that the critical fields at which
the gap closes correspond to those at which the structure stops
being collinear. Since the seminal work of Chubukov et al.,
the existence of the 1/3 plateau was confirmed numerically by
exact diagonalizations of finite-size clusters for spin § = 1/2
[13] and S =1 [14,15], as well as by the coupled-cluster
expansion [16]. Moreover, several experimental realizations
have been discovered: the compound Cs,CuBry, although
with an orthorhombic distortion [17-20], and the much
closer realization of an ideal triangular lattice antiferromagnet
Baz;CoSb,0y [21,22]. Both compounds are relevant for the
spin S = 1/2 case. Additionally, we note that the compounds
Ba3NiSb,Og¢ and RbFe(MoQ,), are other realizations of the
same model, but this time the on-site magnetic moment is a
spin S = 1 [14,15] and a spin S = 5/2 [23-27], respectively.
In all of these systems magnetization measurements report the
existence of a 1/3 plateau.

Actually, Chubukov and Golosov did not calculate the mag-
netization curve outside the 1/3 plateau using a semiclassical
approach. Such a calculation was achieved years later in the
case of the square-lattice antiferromagnet by Zhitomirsky and
Nikuni [28], who showed that a semiclassical calculation of the
magnetization curve is actually possible without going beyond
the linear approximation if the magnetization is extracted from
the derivative of the energy with respect to the field. The
goal of the present paper is to show how this calculation
can be extended to the case of the triangular lattice. This
enterprise, which at first sight looks like a simple exercise,
turned out to be far more subtle than expected and to raise
a number of interesting questions. As we shall see, the
magnetization curve calculated along the lines of Zhitomirsky
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and Nikuni is unphysical around the field where the classical
ground state is the up-up-down state with magnetization 1/3,
and curing this unphysical behavior leads to an alternative
semiclassical theory of the 1/3 magnetization plateau entirely
based on energy considerations which do not require going
beyond linear order. The main conclusion is that it is indeed
possible to calculate the magnetization curve of the triangular-
lattice Heisenberg antiferromagnet (AFM) including the 1/3
plateau within linear spin-wave theory. Remarkably enough,
the critical fields derived by this alternative approach turn
out to have the same value as those predicted by Chubukov
and Golosov, whose approach required going beyond linear
spin-wave theory.

To achieve this we will start by recalling the classical
solution of the model (Sec. II) and the linear spin-wave
prediction for the magnetization (Sec. III). Then we will
discuss a phenomenological theory (Sec. IV) which we will
then put on a more microscopic basis in the context of a
variational argument (Sec. V). After comparing the results
with available experiments (Sec. VI), we will conclude with a
discussion of the validity and usefulness of the present results.

II. CLASSICAL SOLUTION

The Hamiltonian of the triangular-lattice Heisenberg anti-
ferromagnet in a magnetic field is given by [29]

J H
Hzﬁozj;si. SJ—EZS,.Z,

where the first sum is taken over all nearest neighbors of the
triangular lattice [see Fig. 1(a)].

Up to a constant the Hamiltonian (2.1) can be rewritten as
a sum over all triangular plaquettes of the lattice as

J HS\?
H = Z4_S2<Sp,l +Sp,2 +Sp,3 - g) )
P

@2.1)

(2.2)

with subscripts 1,2,3 denoting the three spins belonging
to the plaquette p. At the classical level, when the spin
operators are replaced by three-dimensional vectors of norm
S, Eq. (2.2) indicates that the energy of the system is
minimal when on all triangles of the lattice the total
spin fulfills the constraint (S, +S,2+S,3) = (S/3J)H.
The resulting classical ground-state manifold is accidentally
degenerate. For instance, both coplanar and umbrellalike
configurations minimize the classical energy. Chubukov and
Golosov showed that this accidental degeneracy is lifted
at T =0 by quantum fluctuations in favor of the coplanar
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FIG. 1. (a) Triangular lattice and three-sublattice structure. The
numbering indicates equivalent lattice sites. (b) Sketch of the three-
sublattice ¥ and V coplanar structures at different field values.
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states [9]. The three-sublattice coplanar states stabilized in
the linear spin-wave approximation can be parametrized by
three angles measured with respect to the field direction [see
Fig. 1(b)]. They are the Y state parametrized by (9,6, ,6)
with 6 =n and 6) = —60) =acos[(3J + H)/6J] for
0 < H < 3J and the V state parametrized by (0,6, ,67)
with 6 = —acos[(—27J% + H?)/6HJ] and 6) =6) =
acos[(27J% + H?)/12H J] for 3J < H < 9J. When the field
is at 1/3 of the saturation value the Y and V states are identical
to the uud structure with two spins pointing along the field and
one pointing down on each triangular plaquette of the lattice.

In the next section we present some basic results of the
spin-wave approximation for the Y and V coplanar structures.

III. LINEAR SPIN-WAVE APPROXIMATION

A. General formalism

The spin-wave approximation consists of the bosonic refor-
mulation of the quantum spin problem in terms of Holstein-
Primakoff (HP) particles which represent deviations from the
underlying classical order and assuming these deviations to
be small compared to the size of the classical moments. This
approach is formalized in two steps: first, the quantum spin
Hamiltonian is rewritten by expressing the spin operators in the
local basis of the classical spin orientations denoted (x',y’,7’).
Supposing that the coplanar ¥ and V structures lie in the xz
plane, this can be done as follows:

X _ s ing. o2
S = €086; Sy ; + sinb; Sg ;,

y oY
SR,i = SR,i’

(3.1
Sg; = cos0; Slz{,,i —sin6; Slx{:i,

where the angles 6; parametrize the Y and V states, R is a
vector of the superlattice, and i = 1,2,3 denotes the sublattice
[see Fig. 1(a)]. In this rotated frame, the classical ground state
is ferromagnetic by construction.

Second, deviations from the classical order are expressed
in terms of the Holstein-Primakoff [30] representation of spin
operators. To next to leading order the expressions take the
form

, 28 t 1 ;

Sxi =——(a ;Ta ,')_ —(n jag;tagn z)+ ,
RiT T RTIR T  pg ReOR T RTR
/ V28 t 1 ;

Sy[ = ——(ag;—ag;) — ——=g;ag; —ag Mg )+ -,
RiT T RITIRGT y ag RORETERITR,

Sg; =S —ng.. (3.2)

This transformation allows us to rewrite the quantum Hamil-
tonian (2.1) as a sum,

H=> H", (33)
n=0

where H®™ oc S7/2 contains only products of n bosonic
operators. The first term of this series, HO, is the classical
energy of the state around which fluctuations are considered.
By construction, ! vanishes identically since we expand
around the three-sublattice coplanar spin configurations, which
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are minima of the classical energy. H® describes the single-
particle dynamics, and all higher-order terms in the expansion
consist of many-particle interaction processes. Note that the
bosonic representation is an exact mapping of the original
quantum model. The spin-wave approximation consists of a
truncation scheme based on an expansion in powers of 1/,
the inverse of the magnetic moment being the small expansion
parameter.

B. Ground-state energy in the harmonic approximation

At the harmonic approximation, which consists of truncat-
ing the expansion (3.3) to n < 2, the Fourier space expression
of the fluctuation Hamiltonian is given by

1 ,
HO 4+ 1O L HO = NE, + s Zk:[alT(Mk(H)ak — Agl,

3.4)

where Eq = —3J/2 — H?/18J is the classical energy per
site of the three-sublattice coplanar states and N is the
number of lattice sites. Since the states considered have three
sites per unit cell, three distinct bosonic fields need to be
introduced, and thus, the term alT( in Eq. (3.4) denotes the vector
(al]; l,al]: 27“123’6171;,1’“4( 2,afm). My is a 6 x 6 matrix whose
structure is detailed in Ai)pendix A.The 1/S§ corrections to the
classical energy are obtained by diagonalizing the fluctuation
Hamiltonian (3.4) via a Bogolyubov transformation. The
diagonal representation of (3.4) consists of a sum over three
independent modes of free bosonic quasiparticles.

The ground-state energy per site corrected by fluctuations
at S = 1/2 is depicted in Fig. 2. As can be seen, the energy
presents a “kink” (discontinuity in the first derivative) at H =
Hgy /3, the value of the field at which the classical ground
state is the uud state, as first noticed by Nikuni and Shiba [31].
This cusp, present for all values of the expansion parameter
1/S, is most pronounced for S = 1/2. Quantum fluctuations
are responsible for the emergence of the kink in the energy,
whereas the classical energy is differentiable (see blue curve
in Fig. 2).
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FIG. 2. Energy per site corrected by harmonic fluctuations for
the coplanar Y- and V-type structures (green) and classical energy
(blue). Inset: harmonic corrections to the classical energy. A kink is
visible in the energy corrected by harmonic fluctuations at the field
Ha/3.

PHYSICAL REVIEW B 94, 075136 (2016)

1 T T
Classical
ors L x Re}lormalized angles |
— —0FE4/OH
————— m=1/3
g 05 ¢ )
0.25 )
0 ' :
0 Hsat/3 ZHsat/S Hsat

FIG. 3. Plots of the classical magnetization (gray solid line) and
of the magnetization including corrections to first order in 1/S for
S =1/2 (blue curve). The 1/S corrections to the magnetization
are computed in two equivalent ways: either as the derivative of
the energy with respect to the magnetic field (blue curve) or by
direct calculation taking into account the renormalization of the spin
orientations (crosses). The overall 1/S magnetization curve obtained
from our phenomenological approach is shown in red.

C. Magnetization curve

According to the Hellmann-Feynman theorem [32,33], the
zero-temperature expression of the average magnetization per
site is given by

m= —l%, 3.5
N 0H
where N denotes the number of lattice sites and Ej is the
ground-state energy. To first order in 1/S the magnetization
can be obtained from the derivative with respect to the field
of the energy corrected by the zero-point motion [28] Ega”“
according to

1 QEF™
N 0H

The average magnetization is presented in Fig. 3 for
S =1/2. When the 1/S corrections are included, the mag-
netization deviates from the straight-line classical behavior.
As a consequence of the kink in the spin-wave energy as a
function of the field, the magnetization displays a discontinuity
at H = Hg /3. Associated with the discontinuity there is a
“negative jump” in the magnetization occurring as the field is
increased above Hg, /3. This nonmonotonous behavior of the
magnetization is, of course, unphysical and must be an artifact
of the harmonic truncation of the 1/S expansion.

(3.6)

IV. PHENOMENOLOGICAL THEORY
OF MAGNETIZATION

Since it is known from the work of Chubukov and Golosov
that there is a plateau at 1/3, a phenomenological way to
correct this unphysical aspect of the semiclassical magneti-
zation of Fig. 3 consists of cutting the magnetization curve
horizontally at the value m = 1/3. This phenomenological
approach will be put on a more systematic basis in the next
section. For the moment, let us prove that it leads to the same
critical fields as those of Chubukov and Golosov.
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In this phenomenological approach, the critical fields are
defined by the intersection between the magnetization curve
and the line m = 1/3. In order to extract the expressions for
these critical fields one requires an analytic expression for the
magnetization. An expression for the magnetization can be
extracted from Eq. (3.6). This calculation, which turns out to
be more technical in the case of states with multiple sites per
unit cell for which the explicit expression of the Bogolyubov
transformation is not known, is presented in Appendix A.

Alternatively, an analytic expression of the magnetization
can be obtained by computing the quantum renormalization of
the spin orientations following the procedure of Refs. [28,34].
In Appendix A it is shown that this method and the one
presented in the previous paragraph yield rigorously the
same results for the magnetization. For noncollinear states
the angle renormalization procedure amounts to decoupling
the cubic boson term H® of the spin-wave expansion, which
yields an effective linear boson contribution denoted Hg; The
cancellation of the overall linear boson term H 4 'HSE
corresponds to a new stability condition which is fulfilled
by a new set of renormalized angles. The renormalized
spin orientations 6; are expressed for each sublattice i as
cosf; = cos6; + ¢; /S, with the coefficients ¢; given by

cly =0,
Y3 = cost) (ny — maz — An3) + 3(—ny +moy + Agy)

A.1)

for the Y state and by

3J
CY —2cos 92‘/(11121—‘1-A21) + COS@lvnl - E(n1—4n2),

v 1 1% 14 3J
Cr3 = —5 cos 8 (ma1+Az) + cosb,) ny + ﬁ(nl —4n,)

“4.2)

for the V state, where in the above expressions we have
introduced the following two-body averages computed in the
harmonic ground state:

n; = <a;{_iaR!i)s

t
m;; = <aR,iaR’,j)’ Aij = <aR,iaR’,j)’

“4.3)
with sites (R,7) and (R’, j) being nearest neighbors.

The expression of the magnetization per site in terms of the
renormalized angles is

vv 1 : A YV
=35 g cosd; (S — np). 4.4)
Collecting all terms up to order 1/S in (4.4) yields
m' = A + L[ 2086 (ma3 + Axz) + may + Ay ],
9J 3§ ’
m¥ = HQ——mn+mm) (4.5)
9J

This expression of the magnetization is a function of the
average quantities n;,m;;, and A;;, whose field dependence is
presented in Appendix A. The magnetization (4.5) is reported
in Fig. 3 and coincides with that obtained from Eq. (3.6).
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Now, Chubukov and Golosov [9] showed that, to leading
order in 1/S§, the fields at which the Y and V structures
become collinear [i.e., when the renormalized spin orienta-
tions, measured from the field direction, tend to (6;,6,,65) =
(7r,0,0)] correspond to the critical fields at which the gaps
of the renormalized spectra of the uud state vanish (see
Appendix A for more details). Below we show that the critical
fields obtained by cutting the 1/S magnetization curve at the
value 1/3 are the same as those predicted by Chubukov and
Golosov. For this purpose, let us introduce the quantities
H,=3/+«a/S and H., =3J + B/S defined such that
mY(H,) = m"(H.) = 1/3. Evaluating the magnetization of
the Y and V states at H.; and H,,, respectively, and expanding
in powers of 1/§ gives, to lowest order, [35]

1
m'(H.1) = + ﬁ + [ 2323 + Axz) + 1o + Agpl,
m¥ (Hea) = 1+il——< ). (4.6)
2 575 Ay 21 .

where the overbar denotes averages that are computed at H =
Hyyi/3. Imposing mY (H,.;) = m" (H,) = 1/3 and solving for
« and B, we obtain

Uins — A 0.084
H., = 3J<1 n %) = 3J<1 - T)

Ho,=3J1+ Ao =3J 0'215
C2 - S - S 9

which correspond exactly to the same 1/S behaviors of the
critical fields predicted by Chubukov and Golosov [9] (note
that /i, = Ay = 0; see Appendix A).

So we have shown that this very simple approach to
determine the plateau boundaries, which consists of cutting the
average magnetization to the value 1/3, produces consistent
results in the large-S limit. In the next section we present the
formal justification for why the magnetization curve should
be cut precisely at the value m = 1/3 as well as a novel
perspective on the stabilization of the 1/3 plateau which is
based on the energetic comparison of the uud state with the
other coplanar states.

4.7

V. VARIATIONAL THEORY OF MAGNETIZATION

To show that cutting the magnetization at 1/3 is the right
way to correct the unphysical behavior of the semiclassical
magnetization of Fig. 3, let us first show that the existence of
the kink in the energy curve corrected by harmonic fluctuations
implies that the uud state will be stabilized over a finite
field range. Our argument is the following: in the quantum
Hamiltonian of the system (2.1) the total spin projection in the
direction of the field is a conserved quantity. Hence the energies
of the eigenstates of (2.1) depend linearly on the field. Now,
the 1/ expansion of the Hamiltonian around the uud structure
preserves this property even if the expansion is truncated at
harmonic order. In the language of Holstein-Primakoff bosons
this translates into the fact that ZR (—nRr,1 +nr2+nRr3)
commutes with the quadratic fluctuation Hamiltonian (where
1 denotes the sublattice site with spin down and 2 and 3
the sublattice sites with spin up). Therefore it is possible to
determine the energy of the uud state, which can be computed
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to order 1/S only at Hg,/3, at other values of the field
according to

uud uud 1 Hsat
Esw(H) = Esw(Hsat/3) - 3 H — ) (5-1)

3

uud

where Egy(Hg,/3) is the energy per site of the uud state
corrected by the zero-point fluctuations at H = Hg, /3 and
1/3 is the average magnetization per site of the uud state.

The fact that the magnetization is strictly equal to 1/3 in
the uud state even when quantum fluctuations are included,
as anticipated in Ref. [9], is not completely trivial since the
local magnetizations are no longer equal to £1/2 but are
renormalized by quantum fluctuations. That this is true to
order 1/§ can be explicitly verified by calculating the local
magnetizations at the harmonic order, which indeed satisfy
(—nRr.1 + nr2 + nr3) = 0. The proof that this is true to all
orders is actually even simpler. Indeed, the full quantum
Hamiltonian (2.1) can be split into the sum of two parts, H* =
J Z<i,j> S 83 —~H > Sl and HY =J Z_(i,j) S; 87 +S:SJ>
The uud state is an eigenstate of H* with magnetization
equal to 1/3 of the saturation value and at the same time
an eigenstate of ) . S7 with eigenvalue N/3, while the
term H*Y is to be viewed as a perturbation to H*. Since
the commutator [H*?, Zi S71 =0 (i.e., the perturbation H*”
conserves the total spin projection in the z direction), any term
generated in perturbation theory starting from the uud state
has to be an eigenstate of ), S with the same eigenvalue
N/3. So the resulting eigenstate of the full Hamiltonian still
has a magnetization exactly equal to 1/3 of the saturation
value.

Now, since E\,q(Hgy/3) is located at the position of the kink
(and given the negative curvature of the energy as a function
of the field; see Fig. 2), this construction indicates that in
the vicinity of Hg, /3 the linear extrapolation of the uud-state
energy (5.1) is lower than the energy of the neighboring ¥ and
V states. Thus we predict that the energy as a function of the
field has a linear behavior around the kink’s location Hg,/3
and that the corresponding slope is —1/3 (see Fig. 4). This
translates into a finite field interval of constant magnetization
whose value is equal to 1/3.

E/J per site

-1 F — ESVV - Effyux ]
—6 1 1
0 Hsat/3 2Hsat/3 Hsat

FIG. 4. The blue curve is the classical energy, and the green curve
is the new energy curve constructed by extrapolating linearly the
energy of the different structures. Inset: energy measured with respect
to the energy of the uud state.
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Simply using the linear extrapolation of the uud-state
energy as a criterion for the stabilization of the plateau state
overestimates the plateau width compared to Chubukov’s
result. The reason of this overestimation is that a similar extrap-
olation should also be used for the neighboring noncollinear
Y and V states. Thus we propose to compare variationally the
energy of all states as follows: let |¢o) denote the ground state
(i.e., the Bogolyubov vacuum) of the harmonic fluctuation
Hamiltonian around the state classically stable at H = Hy;
then, the variational energy of this state (including harmonic
fluctuations) at a different field is given by

Eo(H) = (¢olH(Ho)l¢o) — (H — Ho)(¢o ZSf/S|¢o)-
(5.2)

A new energy curve E(H) is obtained by comparing, at any
given field H, the extrapolated energies of all structures. The
resulting envelope is given by

E(H) = 1\;11,%]11<(¢0IH(H0)|¢0) —(H — Ho){¢o| Z Sf/S|¢0)>.
(5.3)

In this construction we allow a given coplanar state to be
stabilized at a field which is different from the one for which
it is the minimum of the classical energy. This mimics the
mechanism by which quantum fluctuations renormalize the
classical spin orientations. Given that both (¢o|H(Hp)|do)
and (¢o| Y ; S7/S|¢o) are quantities which are the sum of
a classical contribution [of order O(1)] and of quantum
corrections [of order O(1/S5)], it can be shown that the value
of Hy minimizing Eq. (5.3) at a given H is such that the
difference H — Hj is also of order 1/S (see Appendix B
for details). This can be understood simply by requiring
that E(H) must be equivalent to the classical energy in the
limit § — oo, a condition that is fulfilled if the product
(H — Hoy){¢ol Y_; S7/S|¢po) is a quantity which behaves as
1/S. Therefore, to compare the energies of states to first order
1/8, only the classical contribution to (¢o| Y_; S7/S|¢o) needs
to be retained in Eq. (5.3).

In this construction the resulting energy curve E(H)
is strictly linear in the vicinity of Hg,/3. This behavior
corresponds to the plateau stabilization (see Fig. 4). The
plateau width obtained in this approach is reported as a
function of 1/S in Fig. 5. The same plot also presents the
plateau width estimates of Ref. [9] as well as the critical fields
obtained numerically by cutting the magnetization curve at
the value 1/3. In all cases the agreement with Chubukov and
Golosov’s prediction is excellent for large S.

One should note that given the nontrivial field dependence
of the magnetization curve corrected to first order in 1/,
solving the equation m(H) = 1/3 for H yields solutions whose
expression as a series in 1/S includes powers of 1/S greater
than 1. This explains the discrepancy between the critical field
prediction of this approach and that of Chubukov and Golosov
for large values of 1/S (see Fig. 5). Nevertheless, Fig. 5 is the
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FIG. 5. Plot of the 1/3 magnetization plateau width as a function
of 1/§ estimated by different approaches. Critical fields are deter-
mined by the condition m = 1/3 (blue curve) and the variational
energy construction E(H) (red points). The plot also presents the
extension of the lowest-order Chubukov and Golosov prediction [9]
to all S (dashed lines).

numerical confirmation that the leading 1/S behaviors are the
same as predicted analytically.

VI. COMPARISON WITH EXPERIMENTS

To assess the validity of our magnetization curve construc-
tion, we compare it to recent magnetization measurements on
different compounds which are the closest known experimental
realizations of the Heisenberg model on the triangular lattice.
Figure 6 compares the magnetization measurements for the
compounds Ba3;CoSb,0y, BazNiSb,Oy, and RbFe(Mo0Oy),
(corresponding to a magnetic moment of S = 1/2, S = 1, and
S =5/2, respectively) to our 1/§ prediction.

In spite of its simplicity, our theoretical prediction for
the magnetization curve, which consists of cutting the 1/S
magnetization at the value m = 1/3, yields results in good
agreement with the experimental data for both the plateau
width and position as well as for the magnetization curve away
from the plateau. We stress, however, that our approach mainly
provides an understanding of the plateau stabilization in the
semiclassical approach. Recent numerical studies for spin 1/2
[36,37] done in the context of the magnetization process
of Ba3;CoSb;0y, including an XX Z anisotropy, are clearly
more quantitative. For large spins, however, our semiclassical
approach is expected to be accurate.

In that respect, we note that, in spite of the larger value of
the magnetic moment, the agreement of our prediction with
the measurements for S = 5/2 compound [Fig. 6(c)] is not
as good as for the other compounds. We note, however, some
discrepancies between the pulsed and static field measure-
ments in RbFe(Mo0OQy),. Furthermore, for this compound, the
saturation field is much smaller than that of the other systems.
So, measured in units of the coupling constant, the effective
temperature is much larger, and temperature effects cannot
be neglected. The general trend that the plateau is a much
smaller anomaly for larger spin is nevertheless supported by
the experimental data.
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FIG. 6. Plot of the magnetization curve measurements for the
compounds (a) BazCoSb,0g (S = 1/2,T = 1.3 K, powder sample)
[21], (b) BazNiSb,Og (S =1/2,T = 1.3 K, powder sample) [14]
(b), and (c) RbFe(M0Oy4), (S =5/2,T = 1.3 K, pulsed field) [25]
and RbFe(Mo0Oy), (S = 5/2,T = 1.55 K, static field) [23] and of the
1/S prediction at different values of S.

VII. CONCLUSION

In conclusion, we have shown that a semiclassical calcula-
tion of the magnetization curve of the Heisenberg model on
the triangular lattice which includes the plateau at 1/3 and
which is correct to order 1/S can be simply obtained in two
steps: (i) calculate the magnetization as minus the derivative
of the harmonic energy with respect to the field and (ii) cut this
curve by a horizontal line at 1/3. The justification of cutting
this curve at 1/3 relies in an essential way on the presence of a
kink in the semiclassical energy for the field at which the uud
state is stabilized. Thus this simple method can be generalized
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to other models, with step (ii) being replaced by a cut around
each point where the semiclassical energy has a kink, with the
corresponding magnetization.

Of course, this simple approach does not give access to
all details of the magnetization curve. In particular, it leads
to cusps with finite slopes at the plateau boundaries, whereas
general arguments suggest that the transition into the plateau
state should be either of the first order accompanied by a
magnetization jump or continuous and display a logarithmic
singularity with an infinite slope since it belongs to the same
universality class as the transition into the saturated phase
[28,38-40]. To access these details requires to go beyond the
linear order in the spin wave expansion.

However, as demonstrated by the comparison with exper-
imental data, the present theory is quite accurate even for
S = 1/2, and it would presumably take experiments at very
low temperature in highly isotropic systems to actually observe
significant deviations from the present theory, provided, of
course, the system does not realize nonclassical ground states
on the way to polarization. Considering the difficulty in
pushing spin-wave theory beyond linear order, it is our hope
that the present approach, which relies on only the elementary
linear spin-wave theory, will be useful to both experimentalists
and theorists in the investigation of the magnetization process
of frustrated quantum magnets.

ACKNOWLEDGMENTS

We acknowledge many valuable discussions with S.
Korshunov at an early stage of this project. We are indebted to
the authors of Refs. [14,21,25] for providing the magnetization
measurement data presented in Fig. 6. This work has been
supported by the Swiss National Science Foundation and by
the Hungarian OTKA Grant No. K106047.

APPENDIX A: SPIN-WAVE THEORY

This section presents the explicit expression of some
results of the linear spin-wave approximation for a generic
three-sublattice coplanar state, as well as some aspects of the
calculation to higher order referred to in the text.

1. Linear spin-wave approximation and 1/S magnetization

The block structure of the harmonic fluctuation matrix My
entering Eq. (3.4) is

A« B
me= (25 K, (A1)
By  Ax
with
A wD wnH
Ac=|wnD B ywF|.
wH wF C
0 wE  wl
Be=|mwE 0 §®G (A2)

wl wG 0
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The coefficients entering Eq. (A2) are
A =[-3J(cos b+ cosb3)+ H cosb],
B =[-3J(cosO 2+ cosb3)+ H cosb],
C =[—-3J(cosO 3+ cosb3)+ Hcosbs],
D = J(cosB,+1)/2, E = J(cosb;,—1)/2,
F =J(cosbr3+1)/2, G =J(cosbr3—1)/2,
H = J(cosO 3+ 1)/2, I =J(cosO3—1)/2.

where 6; ; = 6; — 6; is the difference between the spin orien-
tations on sublattices i and j (see Fig. 1). The geometrical
coefficient yy is given by

Ve = (% 4 o~1kb | oik(-ath))

(A3)

(A4)
for the triangular-lattice basis vectors a and b defined in
Fig. 1(a). The additional term Ak in Eq. (3.4) is equal to
the trace of Ak, Ax = Tr[Ak].

The Bogolyubov transformation which diagonalizes (3.4)
consists of a 6 x 6 momentum dependent matrix 7k with

block structure
no= (% ")
Ve Uy

For any value of momentum, 7% simultaneously fulfills

the conditions that (i) le My Ty is diagonal with doubly
degenerate, real positive eigenvalues wy ,,

(A5)

T My T = Q.
WKk, 1 0 0
Qk=<“(’)" cg) ox=|0 wo 0] (A6
k 0 0 Wk, 3
and (ii)
YRYT =1, Y= (g _O]I). (A7)

In terms of the blocks Uy and Vk, this amounts to meeting the
two following requirements:

UU) — WV =1,

UV — WUl = 0. (A8)
This condition (A8) ensures that the Bogolyubov
quasiparticles, which are linear combinations of the

bosonic fields ay , and al:n, also obey bosonic statistics.
The zero-point energy per site can be expressed in terms
of Ty as

1

0E = 35N
N k

%Tr[TJ M Tyl — Tr[Akl. (A9)

According to Eq. (3.6), the 1/S correction to the
magnetization, dm, is equal to minus the derivative of

(A9) with respect to the magnetic field H. Given that
Tr[Ax] = 9J for both the Y and V states one obtains

! |7 M, —|—8T'1-MT—|—TTM 0T
m=——— — P —x iy

2SN =2 ['* 9H Y B Y 7]
(A10)
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Using Eq. (A6), the cyclic property of the trace, and the
normalization condition (A8) one can show that the last two
terms in (A10) vanish

T 8T“M Tw + T, M, 0T
r R—
9H Kk KoH

T, dTx
=Tr| Q KYyTY +YT)Y
r[ "(aH KL+ 8H):|
9 (LU — vV vl - WUl
=Tr Qk— t t 4 =0.
oH UkV UkUk - Vka

ViU
(A11)
The cancellation of the terms above, which is due to the nor-
malization conditions of the eigenvectors of M, is analogous
to that occurring in the Hellmann-Feynman theorem. Hence
the 1/S expression for the magnetization is given by

1 1 M,
om = ——— T[TT ka],

Al2
2SN &= 2 Kk o9H (Al2)

which, given the block structure of Ty, can be conveniently
rewritten as

| 0A . 0B
sm=——>S"T ViV UV, Al3
"TTSN L r|:8H e T g } (AL3)

The derivative with respect to the field of the coefficients
of Ay and By yields

. 0 w12 —p/12
04 = OBy = /12 0 *cos6) /3
5H _ 9H Yk Yk 2

/12 yk00592y/3 0
(A14)
for the Y state and
= = 0 - %
oAy 9BY H [ ok 0 ALS)
oH ~ oH 36| ™
% 0 0

for the V state. To make contact with the alternative method
to compute the 1/S magnetization presented in the main text,
we note that the two-body averages introduced in Eq. (4.3) are
given by the following Brillouin zone integrals:

Zwvm

Nanﬁm,
k

n, = (aRzaRz =

mij = (afag ;) = (A16)

1
A= (aR,iaR/,j> = N Z k(Uy V]j)i,j,
k
with the sites (R,i) and (R, j) being nearest neighbors. The
field dependence of the averages n;,m;;, and A;; is reported
in Fig. 7. The symmetries of the Y and V structures yield
ny =n3, mp =mi3, and Ay = Aygs.
Injecting Egs. (A14), (A15), and (A16) into Eq. (A13), one
recovers the 1/S contribution to the magnetization presented
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FIG. 7. Plot, as a function of the magnetic field, of the average
quantities (a) n; = (a;,iaR,,-), (b) m;; = (a;iamj), and (¢) A;; =
(ag;ar,j). We note that at H = Hg, /3, i.e., for the uud state, the
quantum corrections to the magnetization exactly compensate, that
iS, ny — 2}12 =0.

in Eq. (4.5), which is recalled here:
1
smY = ﬁ[—z CcoSs 92}1(1’)123 + Ay3) +mo + A21],

14

) = A Al7
m 9J( 21 + map). (A17)

S

2. Spectrum renormalization of the uud state

The three-sublattice uud structure turns out to be classically
stable at H = Hg, /3. Since, according to order by disorder,
collinear configurations tend to have a softer spectrum,
and hence a smaller zero-point energy [41,42], quantum
fluctuations stabilize this uud state over a finite field range
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around Hg, /3, leading to the 1/3 magnetization plateau [9].
For the specific field value Hg, /3, the harmonic spectrum of
the 1/S expansion turns out to have two gapless low-energy
modes and a higher-energy gapped mode. If the uud state is
to be stabilized over a given field range, it should be gapped
to spin excitations. Chubukov and Golosov [9] showed that
treating self-consistently the higher-order terms in the spin-
wave expansion yields an excitation spectrum in which the
two lowest bands are gapped. For completeness we reproduce
the main steps which led Chubukov and Golosov to this
conclusion.

Because of collinearity, the next nonvanishing term in
the 1/S expansion around the uud state is quartic in boson
operators. Decoupling the quartic terms [of order O(1/5%)]
yields an effective harmonic Hamiltonian which, up to a
constant, is given by

. 1 1
H = NE§ + ZaL[Mlg“d(H) + §M§H:|ak , (A18)
k

where M has the same block structure as My (Al). The

subblocks of Mg are denoted by AS™ and BE. Their
expression can be obtained by replacing in Eq. (A2) the
following coefficients:

A = 6J(—i1y + Ayy),

B = Cf = 3J (=i, 4 iy + Ay — in3),
Fff — J(ips — ip), D = G = Hef = 0,
ET = [ = J[— Ay + (71 + 712)/2],

(A19)

where the averages n;,m;;, and A;; have been defined in
Eq. (4.3) [see Fig. 7]. The overbar specifies that the average
quantities are computed for the field H = Hg,/3.

The contribution of the quartic terms renormalizes the
harmonic spectrum and opens two gaps atk = 0,

I 2nns — A
o) ~ E[H - 3J<1 + R >] +0(s7),

o1 Ag -3
wy A E[—H+3J<1+T)} + O0(S™). (A20)
The instability of the uud structure is resolved by determining
the fields at which the gaps to the first excited states close. To
firstorderin 1/S, the expression of the field values at which this
takes place coincides with that given in Eq. (4.7). Reference
[38] provides a refinement of this approach which consists of
a self-consistent treatment of the decoupling of quartic terms.

APPENDIX B: VARIATIONAL ENERGY ENVELOPE

In this Appendix we briefly mention some details of the
calculation leading to the construction of a new energy curve
which supports the 1/3 magnetization plateau in the triangular-
lattice Heisenberg antiferromagnet. Let us first introduce the
following notations to specify the different terms entering
Eq. (5.2):

1
(¢ H(Ho)l¢o) = Eci(Ho) + SO E(Ho), (BI)

PHYSICAL REVIEW B 94, 075136 (2016)

where E.(Hp) is the classical energy at H = Hp and
8E(Hy)/S is the 1/S correction to it. For states different from
the uud structure, the magnetization, correct to order 1/S, is
obtained by deriving (B1) with respect to the field H,

a 1
m(Hpy) = —8—HO<EC1(H0) + §5E(Ho)>

= ma(Ho) + %5"1(1'10), (B2)
where m;(Hp) is the classical magnetization and §m(Hy)/S is
the 1/§ correction to it. Note that Eq. (B2) is meaningless at
Hg,i /3. In fact, for this value of the field the harmonic energy
presents a cusp, and its derivative is not well defined.

The new energy curve which is proposed [Eq. (5.3)] consists
of the lower envelope of all the energies defined in Eq. (5.2). As
mentioned in the main text, to compare the energies of states to
order 1/S only the classical contribution to (¢o| D _; S;/S|¢o)
should be retained. Thus the minimization of (5.3) with respect
to Hy (again for Hy # Hgy/3) gives

0 1
B_Ho (ECI(HO) + §3E(H0))

0
+(1 —(H - Ho)a—Ho>mcl(Ho) =0

dme(Ho)\ ™'
JdHy

1
= (H — Hy) = —§5m(H0)<

1 §m(Hp)
= (H—Hp) = —— :
N Xel
where we have introduced the classical susceptibility x, =
om(H)./0H (note that x. is a constant since the classi-
cal magnetization depends linearly on the magnetic field).
Equation (B3) establishes that the difference H — Hy which
minimizes (5.3) behaves as 1/S. Retaining the 1/ corrections
of (¢ol >, S7/S|¢o) in the calculation would have produced a
l/S2 correction to (B3).

Next, we will show that, away from the plateau, the
magnetization defined as the derivative with respect to the
field of the new energy envelope E(H) differs from the 1/S
magnetization (4.5) only by terms of order O(1/5?). For this
purpose, let us compute

(B3)

_BE[Ho(H)]
oH
where E [Ho(H)] is the new energy curve, with Hy(H)

denoting the value of H, fulfilling (5.3) at a given field H.
After derivation one obtains

m(H) = , (B4)

dHy

a 1
m(H) = —[a—HO<Ecz[Ho(H)] + §5E[H0(H)])8—H

0 H,
- (1 - —°>md[Ho<H>]

RPN
dH, oH

= my[Ho(H)], (BS)

where we have used the first line of Eq. (B3) to simplify the
expression. Thus, in this construction, we are left with a new
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magnetization curve

m(H) = xqHo(H). (B6)

The minimization of (5.3) does not yield a closed form
Hy(H); however, starting from (B3) it is straightforward to
see that in the large-S limit we have

1 6m(H)
Hy=H + §

+0(1/8%. (B7)

cl

PHYSICAL REVIEW B 94, 075136 (2016)

Substituting (B7) into (B6) produces the result announced
earlier,

Bi(H) = mo(H) + éam(m + 01/

=m(H)+ 0(1/5%). (B8)

So we conclude that away from the~plateau, the magnetization
associated with the energy curve E(H) differs from the 1/S
magnetization (4.5) only by terms of order O(1/5%).
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