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Abstract

We apply field theory methods to SU(3) chains in the symmetric representation, with p boxes in the 
Young tableau, mapping them into a flag manifold nonlinear σ -model with a topological angle θ = 2πp/3. 
Generalizing the Haldane conjecture, we argue that the models are gapped for p = 3m but gapless for 
p = 3m ± 1 (for integer m), corresponding to a massless phase of the σ -model at θ = ±2π/3. We confirm 
this with Monte Carlo calculations on the σ -model.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Almost thirty-five years ago, the “Haldane conjecture” [1,2] was a revolutionary discovery in 
both condensed matter and high energy physics. It was already well-known that antiferromag-
netic chains did not have Néel-ordered ground states, due to the Mermin–Wagner–Coleman [3,4]
theorem forbidding spontaneous breaking of continuous symmetries in (1 + 1) dimensions. But 
Haldane argued that the behaviour was qualitatively different for integer and half-integer spin (s). 
For half-integer spin there is power-law decay of the alternating spin correlations and gapless ex-
citations. For integer spin there is exponential decay of the correlation function and a gap to all 
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excited states. Previously it had generally been expected that they were gapless for all s, largely 
based on Bethe ansatz results for s = 1/2. Haldane’s argument hinged on the large-s limit, in 
which he mapped the low energy degrees of freedom of spin chains into the relativistic O(3) 
nonlinear σ -model with topological angle θ = 2πs. This model was quite popular in the high 
energy theory community at that time, as a simplified lower dimensional version of Quantum 
Chromodynamics (QCD) [5]. Like QCD, the model is asymptotically free, with a renormalized 
coupling constant that flows to strong coupling at low energies, resulting in the perturbatively 
massless particles becoming massive. The models also share an integer-valued topological charge 
and an associated topological angle. The O(3) nonlinear σ -model was already well-understood 
for θ = 0, due to its integrability, having a simple spectrum consisting of a massive triplet [6]. 
While no exact results existed at that time for θ = π , numerical results seemed to indicate that 
it remained massive [7,8]. Haldane argued that, in fact, the model was massless for θ = π , an 
unexpected result, which might have implications for QCD at θ = π . Ironically, the surprise to 
the condensed matter community was the massive behaviour for integer s and the surprise to the 
high energy community was the massless behaviour for θ = π! In the following years, Haldane’s 
results have been confirmed experimentally, with the measurement of gaps for quasi-1D spin-1 
chains [9], and numerically for chains of s = 1 and higher [10–15]. The field theory prediction 
has also been confirmed numerically [16–21] by Monte Carlo calculations, although the topolog-
ical term presents severe challenges since the Boltzmann factor is not positive-definite for θ �= 0. 
A massless integrable model corresponding to θ = π was eventually found [22].

Extension of these results to the group SU(n) is of interest for several reasons. Cold atom 
experiments can realize SU(n) chains with various representations [23–33]. Mappings to rela-
tivistic field theories are also possible, in the limit of large representations, raising the possibility 
that other nonlinear σ -models might have massless phases driven by topological terms. A possi-
ble application of such field theory results to condensed matter physics exists. It was argued that 
the replica limit, n → 0, of the U(2n)/[U(n) × U(n)] nonlinear σ -model with θ = π describes 
the delocalization transition in the integer quantum Hall effect [34–36]. While this transition has 
been studied numerically [37–43], no exact solution has yet been found for the critical exponents, 
despite thirty-five years of efforts.

The goal of this paper is to extend Haldane’s results to SU(3) chains with a particular set of 
representations having a Young tableau consisting of a single row of p boxes. We will argue 
that a gap exists for p = 3m, where m is an integer, but that the models are gapless for other 
values of p. Following Haldane, our approach is based on mapping the models into a relativistic 
quantum field theory at large p: the SU(3)/[U(1) ×U(1)] nonlinear σ -model, defined on a space 
known as a “flag manifold”. Since π2

[
SU(3)/[U(1) × U(1)]]= Z ×Z, there are two topological 

angles which can appear in the Hamiltonian. We find that for translationally invariant systems 
the corresponding topological angles have equal and opposite values, ±θ , with θ = 2πp/3. We 
present Monte Carlo (MC) results indicating that the models are massive for θ = 0 but massless 
for θ = ±2π/3. This leads to an extension of the “Haldane conjecture”: we expect the SU(3) 
chains to be massive for p = 3m but massless in other cases. We note that a gap for p = 3m was 
conjectured by Greiter et al. [44].

A novel feature of this flag manifold nonlinear σ -model is that its Lagrangian contains an 
additional term, linear in both space and time derivatives, which is not a total derivative and 
therefore not a topological term and which is generated from the SU(3) chain models. We study 
this term using the renormalization group (RG) [45], finding that the corresponding coupling 
constant flows to zero at low energies.
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Fig. 1. (a) The renormalization group flow diagram of the O(3) nonlinear σ -model, as proposed in Ref. [46]. At θ = π

the system undergoes a phase transition from a gapless phase at g < gc into a gapped phase with a spontaneously broken 
Z2 symmetry at g > gc . For θ �= π the system is gapped with a unique ground state for all values of g. (b) Proposed 
renormalization group flow diagram for the SU(3)/[U(1) × U(1)] nonlinear σ -model in the special case where the two 
topological angles are equal and opposite. At θ = 2π/3 and 4π/3 the system undergoes a phase transition from a gapless 
phase at g < gc into a gapped phase with a spontaneously broken Z3 symmetry at g > gc . For 2π/3 < θ < 4π/3 the 
system is gapped with a spontaneously broken Z2 symmetry, while for θ < 2π/3 and θ > 4π/3 the system is gapped 
with a unique ground state for all values of g.

A detailed picture of the RG flow has been obtained in the SU(2) case, with direct implications 
for spin chains [46]. This is sketched in Fig. 1a. The massless critical point of the σ -model at 
θ = π was shown to correspond to a different nonlinear σ -model which is conformally invariant: 
the SU(2)1 Wess–Zumino–Witten (WZW) model [35,47]. It is important to note that the O(3)

σ -model is not conformally invariant, but flows to this conformally invariant critical theory for 
θ = π and sufficiently small bare coupling, g < gc. The appearance of this conformal field theory 
(CFT) is very natural, given the SU(2) symmetry and the fact that the SU(2)k models for k > 1
contain relevant operators allowed by symmetry [48]. For g > gc, the model goes into a gapped 
phase with a spontaneously broken Z2 symmetry. In the spin chain, this symmetry corresponds 
to translation by one site, so the symmetry broken phase is dimerized [49,50]. The bare coupling 
constant, g, can be increased by adding frustrating antiferromagnetic next nearest neighbour 
exchange, J2, which has been shown to produce this transition, with g − gc ∝ J2 − J2c [51,52]. 
Moving θ away from π also produces a gapped phase. This can be achieved in the spin chain by 
adding alternating exchange interactions, breaking translation symmetry by hand. The scaling of 
the gap with g − gc and θ − π was predicted using the SU(2)1 WZW model [35]. The transition 
along the θ = π line is controlled by the marginal, symmetry preserving operator �JR · �JL where 
�JR/L are the right and left-moving current operators, with coupling constant ∝ g − gc. One sign 

of the coupling is marginally irrelevant and the other marginally relevant, leading to the transition 
at g = gc and the gap is exponentially small in g − gc . Moving θ away from π corresponds 
to adding a term (θ − π)trg to the effective Hamiltonian, where g is the primary field of the 
WZW model, an SU(2) matrix field of dimension d = 1/2. Thus the gap is expected to scale 
as |θ − π |1/(2−d) = |θ − π |2/3, up to log corrections coming from the marginal operator. Our 
predicted phase diagram for the SU(3) σ -model in the special case when the two topological 
angles are equal and opposite is sketched in Fig. 1b. We identify the critical theory at θ = ±2π/3
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with the SU(3)1 WZW model. We again expect a gapped phase for g > gc and for non-zero 
θ ∓ 2π/3 and can again predict the gap scaling. A more general phase diagram in which the two 
topological angles can vary independently will be discussed in Sec. 7.

There are three pieces of rigorous evidence for the SU(2) phase diagram. One is the Bethe 
Ansatz solution for s = 1/2 [53], giving the expected gapless ground state with no broken 
symmetries. Another is provided by the Lieb–Schultz–Mattis–Affleck (LSMA) theorem [54,55]
which proves that the model is either gapless or has a ground state degeneracy for half-integer 
(but not integer) spin. The third is provided by the Affleck–Kennedy–Lieb–Tasaki (AKLT) mod-
els for integer spin [56]. The exact ground states were found for these models and seen to be 
gapped with no broken symmetries. We observe that these results carry over simply to SU(3). 
The p = 1 case is the Sutherland model, solvable by Bethe ansatz [57], and known to have a 
gapless low energy theory corresponding to SU(3)1 [58–60]. The LSMA theorem was proven 
for general SU(n) and implies, for SU(3), either a gapless ground state or a ground state de-
generacy for p �= 3m [55]. The AKLT construction was also generalized to different SU(n) spin 
chains [61–64], in particular to the fully symmetric SU(3) case with p = 3m by Greiter et al. 
[44], who constructed Hamiltonians whose exact ground states can be found and which appear 
to be gapped with no ground state degeneracy.

Several important apparent contradictions and open questions are raised by our results. Ac-
cording to the most recent numerical results [65,66], there is no indication of a gap or finite 
correlation length for p = 3. Besides, while numerical results are consistent with no gap for 
p = 2, the corresponding critical exponents appear to be those of SU(3)2, not SU(3)1 [65,66]. 
(For a detailed discussion of numerical results, see Sec. 9.) Analogous to the SU(2) case, we 
argue that the WZW models with k > 1 are unstable, containing relevant operators allowed by 
symmetry, so SU(3)1 appears to be the only viable candidate for the critical point [60]. We sus-
pect that these two discrepancies may be a result of a long cross-over length scale beyond which 
the true low energy physics becomes observable. In this regard it is interesting to recall that the 
Haldane conjecture remained controversial for several years until reliable numerical results be-
came available for sufficiently large systems, greatly aided by the development of the Density 
Matrix Renormalization Group (DMRG) technique [13,14,67]. Finally, we have not been able to 
obtain the critical exponents of SU(3)1 for the flag manifold σ -model because of the limitations 
of the MC approach in extracting the critical exponents.

In Sec. 2 we write the Hamiltonian for our SU(3) lattice model and discuss flavour wave 
theory. Although this erroneously predicts a classical ground state with spontaneously broken 
SU(3) symmetry it still provides the starting point for the field theory. In Sec. 3 we review the 
Bethe ansatz integrable p = 1 model, the LSMA theorem for the SU(3) case and discuss the 
AKLT models of Greiter et al. [44]. Sec. 4 contains the derivation of the flag manifold σ -model 
at large p; we show that for translationally invariant spin models the two topological angles 
have opposite values ±θ with θ = 2πp/3 and derive the unusual new term. In Sec. 5 we exam-
ine the symmetries of the σ -model, and their relation to the symmetries of the underlying spin 
model. Sec. 6 contains our perturbative RG results; notably these show that the unusual term 
renormalizes to zero. Sec. 7 discusses the general phase diagram spanned by the two topologi-
cal angles based on calculations in the strong coupling limit and numerical Monte Carlo results. 
Sec. 8 discusses the nature of the gapless critical point, arguing that it should be the k = 1 WZW 
model. Sec. 9 contains conclusions and a discussion of open questions. Details and additional 
information can be found in a series of appendices.
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2. Flavour wave calculations

2.1. The model

The goal of this paper is to investigate the properties of the SU(3) antiferromagnetic Heisen-
berg model with symmetric representations at each site, the generalization of the SU(2) Heisen-
berg model with arbitrary spin. The model is defined by the Hamiltonian

H = J
∑

i

Sα
β (i)Sβ

α (i + 1) , (2.1)

with J > 0, and where the sum runs over the lattice sites i and the repeated flavour indices α and 
β that can take values 1, 2 or 3 corresponding to spins states A, B or C. The operators Sα

β (l) are 
the generators of SU(3). They obey the SU(3) Lie algebra[

Sα
β ,Sα′

β ′
]

= Sα′
β δα

β ′ − Sα
β ′δα′

β (2.2)

where δα
β is the Kronecker δ function.

The model is further specified by choosing the irreducible representation at each site. In this 
paper, we will concentrate on models with the same totally symmetric irreducible representation 
at each site. Fully symmetric representations correspond to Young-tableaux drawn with p boxes 
arranged horizontally: , , , . . . . For p = 1, this is the fundamental representa-
tion, the model is equivalent to quantum permutation of 3-flavour objects, and it is integrable by 
Bethe ansatz (see Sec. 3).

For general p, the model can be reformulated using Schwinger bosons with three flavours. 
The generators at site i can be written as

Sα
β (i) = b

†
β(i)bα(i), (2.3)

and the local Hilbert spaces are defined by putting p bosons at each site, i.e. by the constraints

b†
α(i)bα(i) = p. (2.4)

The resulting Hamiltonian is quartic in bosonic operators:

H = J
∑

i

b
†
β(i)bα(i)b†

α(i + 1)bβ(i + 1). (2.5)

We note that the spin operators are usually defined to be traceless, i.e. Sα
α = 0, which would 

correspond to the bosonic representation Sα
β (i) = b

†
β(i)bα(i) − pδα,β/n. For convenience we 

use a slightly different definition in Eq. (2.3), which leads to Sα
α = p. The difference between 

the two conventions only gives constant terms in our calculations and doesn’t change any of our 
conclusions.

2.2. The classical limit

In the following, we will investigate the properties of the model with the help of a field theory 
that describes fluctuations around a reference state that should correspond to the ground state in 
the p → +∞ limit. As in SU(2), the candidate states are product wave functions in which, at each 
site, all bosons are in the same state. This could be a pure flavour state, or a state corresponding 
to an SU(3) rotation in flavour space. If the coupling between two sites is antiferromagnetic, 
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the energy is minimized if the flavour states are orthogonal, which will be achieved for instance 
if the states are pure flavour states with different flavours. It the coupling is ferromagnetic, the 
energy is minimized if the flavour states are the same. Now, for the model of Eq. (2.1), the 
classical ground state is not unique. The energy will be minimal as soon as neighbouring sites 
have orthogonal states, and this can be achieved in an infinite number of ways ranging from the 
Néel state ABABAB... to the three sublattice state ABCABCABC... . Further ground states 
can be generated e.g. by changing locally A or B into C in the Néel state, or by choosing after 
two consecutive orthogonal states, say AB , a state which is a rotation of the first one around the 
second one, i.e. a linear combination of A and C. This is a major obstacle to the development of 
a field theory to describe quantum fluctuations for two reasons. First of all, it is not clear a priori
around which ground state the fluctuations should be introduced. Secondly, and maybe more 
importantly, the semiclassical theory will have local zero modes, i.e. branches with vanishing 
velocity that make the theory non relativistic.

There are several reasons however to believe that the three sublattice state ABCABCABC...

is the appropriate starting point. First or all, it is clear from the Bethe ansatz solution of the 
p = 1 case that short-range order is of that type [57]. Besides, in the large p limit, it can be 
easily shown that zero point fluctuations are minimal in that state because this is the only state 
where harmonic fluctuations are limited to pairs of neighbouring sites, leading to a vanishing 
frequency for all modes, by contrast to any other state where at least some harmonic fluctuations 
will live on longer clusters, leading to some non-vanishing frequencies [68]. This suggests that 
the first effect of quantum fluctuations will be to select the three sublattice state by an ‘order-
by-disorder’ mechanism that generates effective additional couplings of order 1/p that lift the 
classical degeneracy. The simplest couplings that do the job are an antiferromagnetic coupling 
J2 between next nearest neighbours or a ferromagnetic coupling J3 between third neighbours. It 
will prove convenient to keep both couplings for the discussion. So the model we will effectively 
study is defined by the Hamiltonian:

H =
∑

i

(J1Hi,i+1 + J2Hi,i+2 − J3Hi,i+3) (2.6)

with

Hi,j = Sα
β (i)Sβ

α (j) (2.7)

and with J1, J2, J3 > 0. It should be kept in mind however that all the properties discussed in the 
rest of the paper are expected to apply to the nearest neighbour Hamiltonian of Eq. (2.1), and that 
the couplings J2, J3 = O(1/p) have been introduced as a first effect of quantum fluctuations in 
that model.

2.3. Flavour wave theory

For further reference, it will be useful to know the form of harmonic fluctuations around the 
ABCABC... state, even if it is clear that these fluctuations will destroy the order since we are 
in 1D. The calculation of these harmonic fluctuations is most easily done using linear flavour 
wave theory [69–71], the extension of the usual SU(2) spin wave theory to SU(N) models. At 
each site, the boson corresponding to the color of the classical ground state is condensed, and the 
generators are rewritten entirely in terms of the uncondensed bosons. Keeping only terms that are 
quadratic in the Hamiltonian, and after a Fourier transform on each sublattice, the Hamiltonian 
can be diagonalized by a Bogoliubov transformation, leading to
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H = p
∑

k∈RBZ

∑
α

∑
β �=α

ω(k)b̃
(α)†
β,k b̃

(α)
β,k + const. (2.8)

In this expression, k runs over the reduced Brillouin zone (RBZ) corresponding to the three site 
unit cell, and the operators b̃(α)†

β,k , b̃(α)
β,k are Bogoliubov quasiparticles. The superscript (α) just 

keeps track of the sublattice. Details can be found in Appendix A. The dispersion of the flavour 
waves is given by

ω(k) = p

√(
J1 + J2 + 2

[
1 − cos(3ka)

]
J3

)2 −
(
J 2

1 + J 2
2 + 2J1J2 cos(3ka)

)
(2.9)

There are 6 degenerate branches in the reduced Brillouin zone, and 6 Goldstone modes. For 
small k, the dispersion is linear:

ω(k) � 3p
√

J1J2 + 2J1J3 + 2J2J3 ka. (2.10)

3. Rigorous results and SU(3)k critical points

3.1. Lieb–Schultz–Mattis–Affleck theorem

Let |ψ〉 be a ground state of the model defined in Eq. (2.1) on a system of length L (periodic 
boundary conditions assumed). Then we can obtain a low energy state by acting on |ψ〉 with the 
unitary operator [55]:

U = exp

⎡
⎣i

2π

3L

L∑
j=1

jQj

⎤
⎦ , (3.1)

where Qj = S1
1(j) +S2

2(j) −2S3
3(j) = p−3b

†
3(j)b3(j) is a generator of SU(3). See Appendix B

for details. There we show that

〈ψ |T −1UT |ψ〉 = ei2πp/3〈ψ |U |ψ〉, (3.2)

where T is the operator which translates states by 1 site. Thus, translational invariance of |ψ〉
implies

〈ψ |U |ψ〉 = ei2πp/3〈ψ |U |ψ〉. (3.3)

This implies that 〈ψ |U |ψ〉 = 0 for p �= 3m, i.e. U |ψ〉 is a low energy state which is orthogonal 
to |ψ〉. This leaves two possibilities. If the ground state is unique, then there is a low energy 
excitation. Alternatively, there may be degenerate ground states in the thermodynamic limit, 
with the finite system containing an exponentially low energy excited state which is essentially a 
linear combinations of these ground states. It can also be seen (Appendix B) that

〈ψ |U2|ψ〉 = ei4πp/3〈ψ |U |ψ〉, (3.4)

implying that U2|ψ〉 is another low energy state which is orthogonal to |ψ〉 and U |ψ〉, for 
p �= 3m. Furthermore, |ψ〉, U |ψ〉 and U 2|ψ〉 are all invariant under T 3, translation by 3 sites. 
Thus, if there are no low energy excited states, we might expect a triplet of trimerized ground 
states, as illustrated in Fig. 2a. These 3 states map into each other under translations by 1 or 2 
sites. For a long finite system, we then expect linear combinations of these 3 ground states to 
give, to good approximation, the ground state and the two exponentially low-lying excited states 
as discussed above.
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Fig. 2. Illustration of the exact ground states discussed by Greiter et al. [44]. (a) Threefold degenerate trimerized ground 
states in the p = 1 case, and (b) the uniqe ground state of an AKLT construction for the p = 3 case. See sections III.A 
and VIII.B of Ref. [44] for the construction of the corresponding Hamiltonians.

We remark that, for p = 1, a Hamiltonian was found by Greiter and Rachel [44] that has the 
simple trimer ground states. Their Hamiltonian can be written as a sum of projection operators 
onto the total spin of each set of 4 nearest neighbour spins. Noting that for the trimer ground 
states, 4 neighbouring spins can only be in the 3 or 6̄ representation, the Hamiltonian is chosen 
to give zero for those states and a positive energy for the other two possible representations that 
can occur from a product of 4 fundamental representations (15 and 15′). These ground states 
have very short range correlations, vanishing for distances > 2, and the model is expected to 
have a gap to all excitations.

3.2. Bethe ansatz results and SU(3)k critical points

The nearest neighbour p = 1 model, was solved using the Bethe ansatz by Sutherland [57]
and its low energy degrees of freedom were shown to correspond to the SU(3)1 WZW model 
[58–60]. A simple way of understanding this result is to observe that, for p = 1, we may represent 
the operators by 3 flavours of fermions1:

Sα
β (j) = ψ

†
β(j)ψα(j) (3.5)

with the constraint of 1 particle on each site:

ψ†
α(j)ψα(j) = 1. (3.6)

The Hamiltonian becomes a simple exchange term:

H = J
∑
j

ψ
†
β(j)ψα(j)ψ†

α(j + 1)ψβ(j + 1). (3.7)

We may obtain this model from an SU(3) Hubbard model,

H =
∑
j

{
−t[ψ†

α(j)ψα(j + 1) + h.c.] + U [ψ†
α(j)ψα(j) − 1]2

}
(3.8)

in the limit U/t � 1. Starting at small U , we may take the continuum limit, giving 3 flavours 
of relativistic Dirac fermions. We may then use non-abelian bosonization, which gives a charge 
boson plus the SU(3)1 WZW model. The Hubbard interactions can be seen to gap the charge 
boson without effecting the low energy behaviour in the spin sector, yielding the SU(3)1 WZW 
model as the low energy effective theory.

1 We remind the reader that for convenience we use a non-traceless convention for the spin operators.
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Integrable SU(3) spin chain models have been found for all p [72–74], with more complicated 
nearest neighbour interactions, and have been shown to correspond to the SU(3)p WZW models 
at low energies [60,75,76]. This can again be understood from non-abelian bosonization. In this 
case we must introduce fermions with p colours as well as 3 flavours, and write a generalized 
Hubbard model. Non-abelian bosonization now gives the SU(3)p WZW model in the flavour 
sector, together with a charge boson and an SU(p)3 WZW model for the colour degrees of 
freedom. However it is now seen that the Hubbard interactions will generally gap the flavour 
sector as well as the charge and colour sector, unless the interactions are fine-tuned. This can 
be understood from the fact that the SU(3)p WZW models contain relevant operators allowed 
by symmetry for all p > 1, which are expected to appear in the Hamiltonian and destabilize 
the critical theory. We understand the fine-tuned nature of the Bethe ansatz integrable models 
as, remarkably, corresponding to fine-tuning the field theory to eliminate all relevant operators. 
The only SU(3) invariant relevant operator in the SU(3)1 model is tr(g) with dimension 2/3. 
But the field theory representation implies that, under translation by 1 site, g → ei2π/3g, so 
this interaction is forbidden by translation symmetry, stabilizing the SU(3)1 critical point. For 
p �= 3m, we may expect an RG flow from SU(3)p to SU(3)1, consistent with the Zamolodchikov 
c-theorem [77], which states that the central charge should decrease under RG flow. For p = 3m

we expect an RG flow from SU(3)p to a gapped phase.

3.3. Affleck–Kennedy–Lieb–Tasaki states for p = 3m

Greiter et al. [44] also found a Hamiltonian for p = 3m which has a unique, translationally 
invariant ground state, with spin correlations decaying with a finite correlation length. For the 
case p = 3 this state is depicted in Fig. 2b. We regard each p = 3 spin as consisting of three 
p = 1 spins projected onto the symmetrized state. Then we combine three of these p = 1 spins 
on three neighbouring sites to form a singlet. As can be seen from the figure, this state is actually 
translationally invariant since at each site, there is a trimer starting there and going to the right, 
a trimer starting there and going to the left, and a trimer centred there. The Hamiltonian is again 
written as a sum a projection operators, this time acting just on pairs of neighbouring sites. This 
time the energy is zero if two neighbouring sites are in the 1̄0 or 27 rep and is otherwise positive. 
The model is expected to have an excitation gap. This construction can be straightforwardly 
generated to all cases where p = 3m by decomposing each spin into 3m p = 1 spins and again 
drawing trimers, with m going to the left, m going to the right and m centred at each site.

Note that the above results are all consistent with the LSMA theorem. For p = 3m a gapped 
Hamiltonian can be found which is translationally invariant but for p = 1 a gapped Hamiltonian 
can only be found which is trimerized, breaking translational symmetry.

4. SU(3)/[U(1) × U(1)] nonlinear σ -model

Based on the discussion in Sec. 2 we consider an SU(3) spin chain with the p-box symmet-
ric representation at each site, and we investigate the low energy behaviour of a Hamiltonian 
with antiferromagnetic nearest and next nearest and ferromagnetic third neighbour Heisenberg 
interactions defined as

H =
∑

i

[
J1S

α
β (i)Sβ

α (i + 1) + J2S
α
β (i)Sβ

α (i + 2) − J3S
α
β (i)Sβ

α (i + 3)
]
, (4.1)

keeping in mind that, in the large p limit, the J2 and J3 terms can be considered as generated 
by quantum fluctuations. Here we only present the outline of our results, but we provide step by 
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step calculations in Appendix D. To serve as a comparison, we also provide similar calculations 
for the SU(2) case in Appendix C.

Using a spin coherent state path integral approach [78–81], one can write the imaginary time 
action of the model in Eq. (4.1) as

S =
β∫

0

dτ
∑

i

[
p2
(
J1

∣∣∣ ��∗(i) · ��(i + 1, τ )

∣∣∣2 + J2

∣∣∣ ��∗(i, τ ) · ��(i + 2, τ )

∣∣∣

− J3

∣∣∣ ��∗(i, τ ) · ��(i + 3, τ )

∣∣∣2 )+ p
( ��∗(i, τ ) · ∂τ

��(i, τ )
)]

,

(4.2)

where ��(i, τ) is a three dimensional complex unit vector at site i and imaginary time τ , while 
β is the inverse temperature. For antiferromagnetic J1, J2 and ferromagnetic J3 the real part 
of the action is minimal for the classical three sublattice ground state manifold, which can be 
parametrized by a set of three orthogonal spin states corresponding to the rows of U , a unitary 
matrix. Since the action is invariant under changing the overall phase of each of the three spin 
states in U , we argue that ground state manifold is isomorphic to SU(3)/[U(1) × U(1)] [82]: 
two phases can be changed independently, later referred to as gauge invariance (see Sec. 5.2), 
while the third phase is fixed by setting the determinant of U to 1. SU(3)/[U(1) × U(1)] has 6 
generators, namely the six off-diagonal Gell–Mann matrices corresponding to the six Goldstone 
modes discussed in the flavour-wave approximations in Sec. 2.

Considering low energy fluctuations around the classical ground state manifold, on the one 
hand the U matrix can depend on the position, corresponding to the slow joint rotation of the 
orthogonal states of the three site unit cell. On the other hand the states inside a unit cell can also 
be non-orthogonal to each other. Accordingly, following the convention of Fig. 3, the low energy 
configurations can be described as [83,84]⎛

⎜⎝
��T

1 (j, τ )

��T
2 (j, τ )

��T
3 (j, τ )

⎞
⎟⎠= L(j, τ )U(j, τ ) (4.3)

where the rows of U(j, τ) can be seen as three orthogonal states in unit cell j ,

U(j, τ ) =
⎛
⎜⎝

�φT
1 (j, τ )

�φ2(j, τ )

�φ3(j, τ )

⎞
⎟⎠ , (4.4)

and L(j, τ) describes the transverse fluctuations, which make the spin states non-orthogonal 
inside the unit cell:

L(j, τ )

=

⎛
⎜⎜⎜⎝
√

1 − a2

p2 (|L12|2 + |L13|2) a
p
L12

a
p
L13

a
p
L∗

12

√
1 − a2

p2 (|L12|2 + |L23|2) a
p
L23

a
p
L∗

13
a
p
L∗

23

√
1 − a2

p2 (|L13|2 + |L23|2)

⎞
⎟⎟⎟⎠ .

(4.5)
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Fig. 3. Sketch of the low energy fluctuations around the classical three sublattice ground state. The spin states are given 
by Eq. (4.3). The lattice constant a is the distance between neighbouring sites.

For compactness we omitted the (j, τ) dependence of the matrix elements of L. In this expres-
sion, a stands for the lattice spacing and p for the number of the boxes of the spin representation. 
The a/p factors emphasize that these fluctuations are small, as large fluctuations are expo-
nentially suppressed in the path integral. The L matrix can be chosen to be hermitian as the 
skew-hermitian part would describe an infinitesimal joint rotation of the three spin states and 
could thus be merged into the unitary U matrix. The diagonal elements of L have been chosen 
to keep the spin states normalized.2

Substituting the above parametrization of the low-energy fluctuations into the action in 
Eq. (4.2), the functional integral over the L variables can be carried out, leading to a form of 
the imaginary time action in terms of the U(x, τ) field only:

S[U ] =
∫

dxdτ

(
3∑

n=1

1

g

[
v tr

[
�n−1U∂xU

†�n∂xUU†
]
+ 1

v
tr
[
�n−1U∂τU

†�n∂τUU†
]]

+ i

3∑
n=1

θn

2πi
εμν tr

[
�n∂μU∂νU

†
]
+ i

λ

2πi
εμν

3∑
n=1

tr
[
�n−1U∂μU†�n∂νUU†

])
,

(4.6)

where the �n matrices are defined by

�1 =
⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ , �2 =

⎛
⎝ 0 0 0

0 1 0
0 0 0

⎞
⎠ , �3 =

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ , (4.7)

while εμν is the two dimensional Levi-Civita tensor (εxτ = −ετx = 1). The coupling constant 
1/g = p

√
J1J2 + 2J3J1 + 2J3J2/(J1 + J2) and the velocity v = 3ap

√
J1J2 + 2J3J1 + 2J3J2, 

in agreement with the flavour wave calculations in Sec. 2.
The imaginary term containing the θn parameters is topological, with the integer valued topo-

logical charges [82]

Qn = 1

2πi
εμν

∫
dxdτ tr

[
�n∂μU∂νU

†
]
. (4.8)

2 Since the rows of U(j) form an orthonormal basis, the spin states will be normalized if the rows of L are also 
normalized.
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The λ-term is also imaginary, but non-topological. In fact, the value of λ is non-universal:

λ = p
2π

3

2J2 − J1

J1 + J2
. (4.9)

For simplicity, let us introduce the notation

qmn = 1

2πi

∫
dxdτ εμν tr

[
�mU∂μU†�n∂νUU†

]
, (4.10)

where qmn = −qnm. In terms of these quantities, the λ-term of the action can be written: 
iλ (q12 + q23 + q31). The topological charges can also be expressed using the qmn’s as

Q1 = q12 + q13 , Q2 = q21 + q23 , Q3 = q31 + q32 . (4.11)

The antisymmetry of the qmn implies that Q1 + Q2 + Q3 = 0. So the action is invariant un-
der a global shift of the topological angles, and one can set one of them to 0. Unless specified 
otherwise, we will work with the convention θ2 = 0.

For the translationally invariant model of Eq. (4.1), and with this convention, the topological 
angles are given by θ1 = −θ3 = p2π/3, and the action actually takes the form

S[U ] =
∫

dxdτ

(
3∑

n=1

1

g

[
v tr

[
�n−1U∂xU

†�n∂xUU†
]
+ 1

v
tr
[
�n−1U∂τU

†�n∂τUU†
]]

+ i
θ

2πi
εμν tr

[
(�1 − �3)∂μU∂νU

†
]

+ i
λ

2πi
εμν

3∑
n=1

tr
[
�n−1U∂μU†�n∂νUU†

])
,

(4.12)

with a topological angle given by

θ = 2π

3
p. (4.13)

It is the phase diagram of this action (with λ = 0) that is sketched in Fig. 1b. To discuss the 
properties of that model, it will be useful to consider the general case of Eq. (4.6) where the 
topological angles are free to vary.

The action in Eq. (4.6) can be written using the three orthogonal fields �φ1, �φ2, �φ3 forming the 
U matrix. Setting the velocity to v = 1, the action can be rewritten as

S =
∫

dxdτ

(
3∑

n=1

1

2g

(∣∣∣∂μ
�φn

∣∣∣2 −
∣∣∣ �φ∗

n · ∂μ
�φn

∣∣∣2)+ i

3∑
n=1

θn

2πi
εμν

(
∂μ

�φn · ∂ν
�φ∗
n

)

+ i
λ

2πi
εμν

3∑
n=1

( �φ∗
n+1 · ∂μ

�φn

)( �φn+1 · ∂ν
�φ∗
n

)) (4.14)

In this form, it is apparent that the action consists of three copies of a CP2 field theory [82,85], 
each with a topological term, while the λ-term couples the three theories. Of course, they are 
also coupled due to the orthogonality constraint, which leads to Q1 + Q2 + Q3 = 0, and which 
allows one in general to set one of the topological angles to 0.
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If the λ-term is neglected, it is also possible to rewrite the action in terms of three gauge fields, 
An

μ [82,86]:

S =
∫

dxdτ

(
3∑

n=1

[
1

2g

∣∣∣(∂μ + iAn
μ

) �φn

∣∣∣2 + iθn

2π
εμν∂μAn

ν

])
. (4.15)

We may actually impose the constraint:

A1
μ(x) + A2

μ(x) + A3
μ(x) = 0 (∀x,μ), (4.16)

which follows from the orthogonality of the three �φ fields. The equivalence to Eq. (4.14) follows 
by carrying out the functional integral over the An

μ fields (see Appendix D for details). All three 
forms of the action in Eqs. (4.6), (4.14) and (4.15) are useful in different contexts of our study.

5. General properties of the field theory

In this section we briefly review the symmetries and other general properties of the field theory 
of Eq. (4.6) or Eq. (4.14).

5.1. SU(3) symmetry

Throughout this paper we only consider spin models with global SU(3) symmetry, hence the 
resulting σ -models are also invariant under SU(3) rotations. These are of the form U ′(x, τ) =
U(x, τ)V , or equivalently �φ′

n(x, τ) = V T �φ(x, τ) where the unitary V matrix clearly cancels out 
in every term of the action in Eq. (4.6) or Eq. (4.14).

5.2. Gauge invariance

The overall phases of the spin coherent states shouldn’t change the form of the action. This 
manifests in the gauge invariance of the action in Eq. (4.6) under the transformation U ′(x, τ) =
D(x, τ)U(x, τ), where

D(x, τ) =
⎛
⎝ eiϑ1(x,τ ) 0 0

0 eiϑ2(x,τ ) 0
0 0 eiϑ3(x,τ )

⎞
⎠ (5.1)

with ϑ3(x, τ) = −(ϑ1(x, τ) +ϑ2(x, τ)). In terms of the fields, this transformation corresponds to 
�φ′
n = eiϑn �φn. A proof of gauge invariance in this language can be found in E.1. Gauge invariance 

is also evident in the formulation of Eq. (4.15), where gauge fields are explicitly introduced.

5.3. Time reversal symmetry

Another fundamental symmetry is time reversal symmetry. The effect of time reversal (in 
real time) is simply T U(x, t)T = U(x, −t), or equivalently T �φn(x, t)T = �φn(x, −t), as well as 
complex conjugation of c-numbers: i → −i. The first term in the action in Eq. (4.14) is clearly 
invariant under T-reversal. The topological θ -term and the λ-terms pick up a factor of i when 
going to real time, which makes these terms real (Hermitian). The i to −i transformation then 
compensates for ∂t → −∂t , also leaving these terms time reversal invariant.
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5.4. Z3 symmetry

The field theory has an additional global Z3 symmetry: U ′(x, τ) = RZ3 U(x, τ), with

RZ3 =
⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ , (5.2)

which cyclically permutes the three �φn fields. This symmetry is a consequence of the invariance 
of the spin model under translation by one site. In the field theory derivation we assumed a three 
sublattice ordered ground state, which is only suitable for spin models which are invariant under 
three site translation, hence R3

Z3
= I is a symmetry independently of the parameters of the field 

theory.
It is clear in any formulation that the real part of the action in Eq. (4.14) is invariant under Z3

as long as the coupling g is the same for all three CP2 theories. When θ1 = −θ3 = p2π/3, the 
topological term is also invariant. Indeed it transforms as

ip
2π

3
(Q1 − Q3) → ip

2π

3

(
Q2 − Q1

)
= ip

2π

3

(
Q1 − Q3

)+ ip
2π

3

(
Q1 + Q2 + Q3

)− i3p
2π

3
Q1.

(5.3)

Since Q1 + Q2 + Q3 = 0 and Q1 is integer-valued, the second term of the right hand side is 0, 
and the third term gives an integer multiple of 2π , leading to:

ei(2pπ/3)(Q1−Q3) ≡ ei(2pπ/3)(Q2−Q1). (5.4)

Finally, the λ-term is clearly invariant under Z3 symmetry as q12 + q23 + q31 transforms into 
itself.

5.5. Parity symmetry

The action in Eq. (4.14) is invariant under parity symmetries as well, which correspond to 
mirror symmetries between two neighbouring sites in the spin model. Since a three site transla-
tion symmetry is always conserved, there are three non-equivalent mirror symmetries in the spin 
model, resulting in three non-equivalent parity symmetries in the σ -model. Take for example 
a mirror plane between two sites in sublattices 1 and 3 (see Fig. 4). The corresponding parity 
symmetry of the field theory transforms U matrices as U ′(x, τ) = R13 U(−x, τ), with

R13 =
⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ . (5.5)

In terms of the fields it corresponds to �φ1(3)(x, τ) → �φ3(1)(−x, τ) and �φ2(x, τ) → �φ2(−x, τ), 
i.e. it exchanges fields 1 and 3. This means that in the real part of the action the terms for the 
fields 1 and 3 will be exchanged, while the terms for field 2 will be unchanged. This is clearly a 
symmetry of the action of Eq. (4.14).

The topological term transforms as θ(Q1 − Q3) → −θ(Q3 − Q1), which is the same as the 
original one. The extra − sign appears as there is always exactly one spatial derivative in the 
expression of the topological charges (see Eq. (4.8)), and the parity transformation inverts the x
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Fig. 4. Breaking translational symmetry of the system by weakening the nearest neighbour bonds between sublattices 1 
and 3. The R13 mirror symmetry and a three site translational symmetry still remains.

coordinate. Similarly, the λ-term becomes −λ(q21 + q32 + q13), which is equal to the original 
term as qmn = −qnm.

The invariance of the action in Eq. (4.14) under the other two parity symmetries R12 and R13

can be shown in a similar way as for R13.

5.6. Breaking lattice symmetries and general form of the action

If the spin model is not invariant under the translation and the mirror symmetries, the Z3 and 
parity symmetries of the σ -model will be broken, and the action will take the form

S =
∫

dxdτ

[
3∑

n=1

(
vn

2gn

(∣∣∣∂x
�φn

∣∣∣2 −
∣∣∣ �φ∗

n · ∂x
�φn

∣∣∣2)+ 1

2vngn

(∣∣∣∂τ
�φn

∣∣∣2 −
∣∣∣ �φ∗

n · ∂τ
�φn

∣∣∣2)
)

+ i

3∑
n=1

θnQn + iλ(q12 + q23 + q31)

]
,

(5.6)

In general, the three copies of the CP2 model do not have the same coupling constants and ve-
locities any more. The topological angles can also take arbitrary values, but since the topological 
charges still satisfy Q1 + Q2 + Q3 = 0 because of the orthogonality of the fields, one can still 
set one of them to 0, and one is left with two independent topological charges, for instance θ1

and θ3. All these statements are illlustrated in the case where the nearest neighbour interaction 
takes three different values between each pair of sublattices discussed in E.3. We also show that 
assuming SU(3), gauge and time reversal invariance, Eq. (5.6) is indeed the most general form 
of the σ -model.

Here we present an intermediate situation where the translation symmetry is broken but one 
of the mirror symmetries is still present, say R13. This is achieved by weakening/strengthening 
the nearest neighbour bond between sublattices 1 and 3 as shown in Fig. 4. In this case the 
CP2 theories of the fields �φ1 and �φ3 will have the same parameters, but not that describing �φ2. 
The topological angles are not fixed to ±2pπ/3, but they still satisfy the additional constraint 
θ1 = −θ3 due to the R13 symmetry,

θ1 = −θ3 = p
2π

(
1 + J2 − J2

)
(5.7)
3 J1 + J2 J1(1 + δ) + J2



M. Lajkó et al. / Nuclear Physics B 924 (2017) 508–577 523
If δ < 0, the bond is weakened and θ1 = −θ3 < p2π/3, while if δ > 0, the bond is strengthened 
and θ1 = −θ3 > p2π/3. Since θ �= p2π/3, the topological term is no longer invariant under Z3, 
or under R12 and R23.

5.7. Additional remarks about the field theory

Due to the gauge invariance discussed above, this nonlinear σ -model is defined on the man-
ifold SU(3)/[U(1) × U(1)], which is called a flag manifold. It was discussed earlier by Bykov 
[87] in the context of SU(n) chains with alternating representations on adjacent sites and by Ueda 
et al. [82] in the context of two dimensional SU(3) magnets at finite temperature.

We believe it is possible to factorize any SU(3) matrix in the form

U = exp
[
i
∑
a

θaTa

]
exp

[
i
∑
α

θαTα

]
. (5.8)

Here the Ta are the 6 off-diagonal generators of SU(3) and the Tα are the 2 diagonal generators. 
It would then follow, due to the gauge invariance discussed above, that the diagonal factor could 
be dropped, with the off-diagonal generators giving the SU(3)/[U(1) × U(1)] manifold. Related 
factorizations have been proven earlier [88–90]. We give a proof of this factorization to third 
order in the θa’s and θα’s in Appendix G. We have also checked numerically that for random 
unitary matrices a factorization according to Eq. (5.8) could always be found.

Since π2
[
SU(3)/[U(1) × U(1)]] = Z × Z, there are 2 topological invariants, as discussed 

above. This field theory may be regarded as a natural generalization of the O(3) σ -model, which 
is defined on the manifold SU(2)/U(1) and has one topological invariant. An interesting differ-
ence is the presence of the “λ-term” discussed above, which respects all symmetries including 
Lorentz invariance. It has the very unusual property of being antisymmetric in space and time 
derivatives, and consequently imaginary for imaginary time, but not being a total derivative (topo-
logical invariant). This means that the coupling constant, λ, can renormalize perturbatively and 
could potentially have important effects on the behaviour of the model and therefore of the spin 
chains. We analyze it using the perturbative renormalization group in the next section.

6. Renormalization group analysis

We rewrite the matrices U in terms of the Gell–Mann matrices (GM) TA, as defined in 
Eq. (F.1). Due to the factorization property of SU(3) matrices (discussed in Sec. 5.7 and Ap-
pendix G), and the gauge symmetry (see Eq. (5.1)), we can replace U with eiθaTa in Eq. (4.6). 
Here and throughout, lowercase Roman letters index the off-diagonal GM, lowercase Greek let-
ters index the diagonal GM, uppercase Roman letters index all eight GM, and repeated indices 

are summed over. After rescaling θ →
√

g
2 θa , we find

L = 1

2
∂μθa∂μθa + iλg

3
2 εμνRabcθa∂μθb∂νθc + gPabcdθaθb∂μθc∂μθd +O(λg2) +O(g2)

(6.1)

where Rabc and Pabcd are tensors of real coefficients that can be expressed in terms of the SU(3) 
structure factors. At this order in perturbation theory, the imaginary λ-term has coupling constant 
λ̃ = λg3/2. We will calculate the beta function of λ̃, showing that it renormalizes to zero at large 
length scales. We’ll also calculate the beta function of g, showing that it renormalizes to large 
values, so that our flag manifold σ -model is asymptotically free.
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To perform the RG calculations, we rewrite the fields U in terms of ‘slow’ (Us ) and ‘fast’ 
(Uf ) fields, as

U = Uf Us (6.2)

These ‘fast’ fields have momentum modes restricted to a Wilson shell [b�, �), where � is 
a reduced cutoff, and b � 1. The RG step of integrating over this shell is then equivalent to 
integrating out the fields Uf from the theory. This factorization of U is motivated by Polyakov’s 
work on the nonlinear-σ -model, which found the model’s RG equations by a quadratic expansion 
of the ‘fast fields’ [45]. In F.3, we show the equivalence between Polyakov’s decomposition and 
Eq. (6.2) for the SU(2) case.

Now, we insert Eq. (6.2) into an equivalent form of the Lagrangian, derived in F.4:

L = 1

8g
tr ∂μ[U†Tγ U ]∂μ[U†Tγ U ] + λ

√
3

2
εμν tr[∂μUU†T8∂νUU†T3] (6.3)

We’ve suppressed the topological term, as it does not contribute to the perturbative RG equa-
tions. The utility of this expression becomes apparent when we expand Uf = eiθaTa , since we 
know how to express products of Ta and Tγ in terms of the SU(3) structure constants fABC (see 
Appendix F.2). Such an expansion again follows from the gauge symmetry (Eq. (5.1)) and the 
factorization of SU(3) matrices. Defining MA = U

†
s TAUs and Nμ = ∂μUsU

†
s , the first term in 

Eq. (6.3) gives

1

8g

[
tr(∂μMγ ∂μMγ ) + 8∂μθa∂μθa + 4faγ cfbγ dθaθb tr(∂μMc∂μMd)

+ 8ifabe∂μθaθb tr(NμTe) + 16ifabγ ∂μθaθb tr(NμTγ )

− 2θaθb[fabγDfγbc + fbcDfγac] tr(∂μMγ ∂μMD) + (
linear terms in θ

)+O(θ3)

]
.

(6.4)

In F.5, we argue that the linear terms can be dropped in the � → 0 limit, which follows from the 
fact that such terms produce four-derivative operators after the integration over θa . The second 
term in Eq. (6.3), after dropping linear terms, gives

εμνλ

√
3

2

[
tr
(
NμT8NνT3

)+ ∂μθaθb tr
(
NνTb [T3TaT8 − T8TaT3]

)

+ 1

2
∂μ(θaθb) tr

(
Nν[T8TaTbT3 − T3TaTbT8]

)
+ θaθb

(
4fb3dfa8c tr

(
NμTcNνTd

)+ tr
(
NνTDNμ [hab8DT3 − hab3DT8]

))

+ 2i∂μθaθb tr
(
TaTcNν

[
fb8cT3 − fb3cT8

] )]
. (6.5)

We now Fourier transform the sum of Eq. (6.4) and Eq. (6.5), and perform the Gaussian integral 
over θa . Details of this step, which includes the application of numerous nontrivial identities 
involving the fABC , are included in F.6. The result is
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Leff = 1

8g

(
1 + 5g logb

4π

)
tr ∂μMγ ∂μMγ + λ

(
1 + 9g

4π
logb

)
εμν trNμT8NνT3

+O(g) +O(λ2) +O(λg) (6.6)

where the logb dependence comes from the integral∫
|k|∈[b�,�)

d2k

(2π)2

1

k2
= − logb

2π
(6.7)

Recalling the definitions of MA and Nμ, we recognize that to our order of accuracy, Leff is of 
the same form as L, with U replaced by Us . This allows for the identification of the first two 
operators’ factors with 1

8geff
and λeff, respectively, leading to the following β functions:

βλ(λ,g) = 9gλ

4π
βg(λ,g) = −5g2

4π

(
βx := dx

d logb

)
(6.8)

Therefore, g flows to large values at large length scales. Moreover, since

βλ̃(λ, g) = g
3
2 βλ + 3

2
g

1
2 λβg = 3g

8π
λ̃ > 0 (6.9)

the imaginary term in Eq. (6.1) flows to zero at large length scales.

7. General phase diagram

Based on the renormalization calculations we have argued that the λ-term renormalizes to 
zero. Therefore from now on we will consider the action of Eq. (4.14) with λ = 0. First we 
give an overview of the phase diagram based on considerations in the large g limit and on the 
correspondence with SU(3) spin models, then we present results of Monte Carlo simulations for 
finite couplings.

7.1. g → ∞ limit

In this limit the action consists only of a topological term. Following the argument of Seiberg 
[91] and Plefka and Samuel [92] for CPN−1 models we study the θ1 − θ3 phase diagram. As 
those authors discuss, a lattice version of the gauge field formulation of the action, Eq. (4.15), is 
most suitable for studying the strong coupling limit. We work on a square lattice and introduce a 
unitary matrix, U or equivalently 3 orthogonal vectors �φn on every lattice site. Gauge fields are 
introduced on the links of the lattice, giving the real part of the action [93–95]:

SR = − 1

2g

∑
�r,n,μ

[ �φn(�r)V n(�r, �r + �δμ) · �φ∗
n(�r + �δμ) + c.c.

]
, (7.1)

where �δx, �δτ are unit vectors of the square lattice. V n(�r, �r + �δμ) is a complex number of unit 
modulus,

V n(�r, �r + �δμ) = eiAn(�r,�r+�δμ) (7.2)

and An(�r, �r + �δμ) becomes the gauge field, An
μ(�r) in the continuum limit. The topological term 

is written in terms of the product of the V variables around a plaquette, namely
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SI = i
∑

�r

3∑
n=1

θn

2πi
lnV n

P (�r), (7.3)

where

V n
P (�r) ≡ V n(�r, �r + �δx)V

n(�r + �δx, �r + �δx + �δτ )V
n(�r + �δx + �δτ , �r + �δτ )V

n(�r + �δτ , �r). (7.4)

The lnV n
P contribution of each plaquette is restricted to lie in the range:

−π <
1

i
lnV n

P ≤ π (7.5)

and, as discussed in Sec. 4, the constraint:

3∑
n=1

An(�r, �r + �δμ) = 0 (7.6)

is imposed on every link. Defining the topological charge density

qn(�r) ≡ 1

2πi
lnV n

P (�r), (7.7)

this translates to
3∑

n=1

qn(�r) = 0 (∀�r). (7.8)

This implies that the partition function is invariant under shifting all three topological angles by a 
common constant so, without loss of generality, we set θ2 = 0. As discussed in [91,92], periodic 
boundary conditions implies that the total topological charges are integers:

Qn ≡
∑

�r
qn(�r) ∈ Z. (7.9)

In the g → ∞ limit, the partition function becomes:

Z(θ1, θ3, g → ∞)

=

⎧⎪⎨
⎪⎩
∏
�r

1/2∫
−1/2

dq1(�r)dq2(�r)dq3(�r) δ[q1(�r) + q2(�r) + q3(�r)]

⎫⎪⎬
⎪⎭

exp
[
i
∑

�r

(
θ1q1(�r) + θ3q3(�r)

)]∑
Q1

δ

(∑
�r

q1(�r) − Q1

)∑
Q3

δ

(∑
�r

q3(�r) − Q3

)
.

(7.10)

Using the Fourier transform of the Dirac Comb,∑
Q

δ(x − Q) =
∑
m

e2πimx, (7.11)

Z(θ1, θ3, g → ∞) =
∑

m1,m3∈Z
z(θ1 + 2πm1, θ3 + 2πm3)

V (7.12)

where
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Fig. 5. (a) The different Rm,n sector on the θ1–θ3 plane derived from the g → ∞ calculations, and (b) a zoomed 
in version with the expected RG flow. The phase diagram is similar for all g values, the flow in the θ1–θ3 plane is 
everywhere complemented with a flow towards g → ∞. The transition lines correspond to a conserved parity symmetry, 
which is spontaneously broken on the solid, but not dotted, lines. At the intersection of the lines, at (2π/3, −2π/3) a Z3
symmetry is also present.

z(θ1, θ3) =
1/2∫

−1/2

dq1dq2dq3 δ(q1 + q2 + q3) exp
[
i(θ1q1 + θ3q3)

]

= 2
(
(θ1 − θ3) cos

(
θ1−θ3

2

)− θ1 cos
(

θ1
2

)+ θ3 cos
(

θ3
2

))
θ1θ3(θ1 − θ3)

(7.13)

and V is the area (more precisely the number of plaquettes) of the system. In the thermodynamic 
limit (V → ∞), and for any value of the angles, the largest term in the sum will dominate it. 
Thus the free energy density is

f (θ1, θ3, g → ∞) = − 1

V
logZ(θ1, θ3, g → ∞)

= − log
(

max
m,n

z(θ1 + 2πm,θ3 + 2πn)
)
.

(7.14)

In Fig. 5a, we show the sectors Rm,n where the z(θ1 + 2πm, θ3 + 2πn) term is the largest. 
Moving from one Rm,n sector to an adjacent one, the free energy has a cusp, i.e. a phase transition 
takes place. The partition function and the free energy of Eqs. (7.12) and (7.14) are 2π periodic 
in both θ1 and θ3, as they should be since the topological charges are integer valued so that a 2π

shift in the topological angle leaves the path integral (or more specifically exp(−S)) invariant. 
Therefore we only discuss the phase diagram for the 0 ≤ θ1, −θ3 < 2π region, referred to as 
reduced phase diagram in the following.

There are three high symmetry points in the reduced phase diagram defined by θ1 = −θ3 =
2mπ/3(mod 2π) with m = 0, 1, 2. At these points the action has a Z3 symmetry, which can be 
understood as a cyclic permutation of the three fields (see Sec. 5.4). Additionally, three parity 
symmetries are also present, each corresponding to the exchange of two out of the three fields 
(complemented by an invertion of the space coordinates as explained in Sec. 5.5). At each high 
symmetry point three special lines meet, each corresponding to the conservation of one of the 
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Fig. 6. The transformation of different points in the θ1–θ3 phase diagram under the Z3 and parity transformations. 
(a) A point on the θ1 = −θ3 line is transformed into points on the θ1 = −θ2 and θ2 = −θ3 lines. Each point is conserved 
by one of the three parity transformations. (b) Transformation of a generic point resulting in 6 equivalent points in the 
phase diagram (mod 2π ).

three parity symmetries. Consider for example the θ1 = −θ3 = 2π/3 point, and the parity sym-
metric lines meeting there, illustrated on Figs. 5, 6. The θ1 = −θ3 line is invariant under the R13
parity transformation defined in Sec. 5.5, which exchanges the fields φ1 and φ3. On the other 
two lines (−θ3 = π − θ1/2 and −θ3 = 2π − 2θ1) the parities exchanging fields �φ1 ↔ �φ2 and 
�φ2 ↔ �φ3 are conserved, respectively.3 In one direction the parity symmetric lines are also transi-
tion lines between different Rm,n sectors until they reach another high symmetry point equivalent 
to θ1 = −θ3 = 4π/3 (mod 2π ) (solid lines in Fig. 5b), while in the other direction they run inside 
a sector towards a high symmetric point equivalent to θ1 = −θ3 = 0 (dashed lines in Fig. 5b). 
A general point in the phase diagram transforms under the Z3 symmetry as

(θ1Q1 + θ3Q3) →
Z3

(θ1Q2 + θ3Q1) = (θ3 − θ1)Q1 − θ1Q3

(θ1Q1 + θ3Q3) →
Z

−1
3

(θ1Q3 + θ3Q2) = −θ3Q1 + (θ1 − θ3)Q3
(7.15)

Under the Z3 transformation the high symmetry points are mapped into themselves modulo 
2π as was discussed in Sec. 5.4. The parity symmetric lines meeting at a Z3 symmetric point 
transform into each other modulo 2π . For example, along the θ1 = −θ3 line the topological term 
is given by iθ(Q1 − Q3), which transforms to iθ(Q2 − Q1) = i(−2θQ1 − θQ3) under Z3. The 
transformed term is along the θ3 = θ1/2 line which is equivalent to the θ3 = θ1/2 − π line going 
through the θ1 = −θ3 = 2π/3 point. Similarly, under Z−1

3 the iθ(Q1 − Q3) term transforms into 
iθ(Q3 −Q2) = i(θQ1 +2θQ3) along the θ3 = 2θ1 line, which is equivalent to the θ3 = 2θ1 −2π

line going through θ1 = −θ3 = 2π/3.
In the same spirit, one can follow the action of a parity transformation for a general point 

inside the reduced phase diagram:

3 Expressing the topological term with Q1 and Q2 along −θ3 = π − θ1/2 one finds that θ1 = −θ2 (mod 2π), hence 
the R12 parity is conserved, while using Q2 and Q3 along −θ3 = 2π − 2θ1 one finds that θ2 = −θ3 (mod 2π), hence 
the R23 parity is conserved.
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(θ1Q1 + θ3Q3) →
R13

(−θ1Q3 − θ3Q1)

(θ1Q1 + θ3Q3) →
R12

(−θ1Q2 − θ3Q3) = θ1Q1 + (θ1 − θ3)Q3

(θ1Q1 + θ3Q3) →
R23

(−θ1Q1 − θ3Q2) = (θ3 − θ1)Q1 + θ3Q3

(7.16)

The high symmetry points are once again invariant, while each parity transformation conserves 
one parity symmetric line and maps the other two into each other. For example the θ1 = −θ3 line 
is invariant under R13, and maps to θ3 = θ1/2 ≡ θ1/2 − π or to θ3 = 2θ1 ≡ 2θ1 − 2π under R23
or R12, respectively. All these transformation properties are illustrated in Fig. 6.

In the g → ∞ limit the system is gapped for all values of θ1 and θ3. This can be seen from the 
gauge field formulation of the action in Eq. (4.15) (or Eqs. (7.1) and (7.3) for the lattice model). 
In the g → ∞ limit the action only consists of the topological term, which only depends on the 
gauge fields, thus the �φn(x) fields are correlation free. This means that the mass gap, which is 
the inverse of the correlation length, diverges in this limit for all values of the topological angles.

At θ1 = −θ3 = 2π/3 this is accompanied by a spontaneous breakdown of the Z3 and parity 
symmetries. By calculating the expectation value of the topological charge densities [91]

〈q1〉 = −i
∂f (θ1, θ3, g → ∞)

∂θ1

〈q3〉 = −i
∂f (θ1, θ3, g → ∞)

∂θ3

〈q2〉 = −〈q1 + q3〉 = i
∂f (θ1, θ3, g → ∞)

∂θ1
+ i

∂f (θ1, θ3, g → ∞)

∂θ3
,

(7.17)

depending on from which sector we approach the high symmetry θ1 = −θ3 = 2π/3 point we get

θ1 → 2π/3
θ3 → −2π/3

〈q1〉 〈q2〉 〈q3〉
from R0,0 −i 3

2π
+ i

√
3

8 0 i 3
2π

− i
√

3
8

from R−1,0 i 3
2π

− i
√

3
8 −i 3

2π
+ i

√
3

8 0

from R0,−1 0 i 3
2π

− i
√

3
8 −i 3

2π
+ i

√
3

8 .

(7.18)

These three cases are connected by the Z3 transformation. Also under each parity symmetry 
one scenario is invariant, while the other two transform into each other. The situation is similar at 
θ1 = −θ3 = 4π/3. Along the transition lines running from θ1 = −θ3 = 2π/3 to a point equivalent 
to θ1 = −θ3 = 4π/3, the free energy has a cusp and the remaining parity symmetry is also 
spontaneously broken. The transition across these lines is first order since the expectation values 
of the topological charge densities have a jump. By contrast, along the parity symmetric lines 
running from to θ1 = −θ3 = 2π/3 to a point equivalent to θ1 = −θ3 = 0, as well as at θ1 =
−θ3 = 0 itself, all symmetries are preserved since the free energy is continuously differentiable 
inside the Rmn sectors.

7.2. Finite g and connection with spin models

We believe that the structure of the phase diagram is the same for finite values of the cou-
pling g as well, since the transitions coincide with high symmetry lines/points, although the 
nature of the transitions can change. According to the discussion of Sec. 5, the phase diagram 
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of the σ -model can be illustrated by specific spin models. As mentioned, the Z3 transformation 
corresponds to a translation by one site in the spin chain, while the parity symmetries corre-
spond to the mirror symmetries between two neighbouring spins. The high symmetry points 
of the phase diagram of the σ -model correspond to translationally invariant spin models; the 
θ1 = −θ3 = 0 point corresponds to spin models with p = 3m boxes, while the θ1 = −θ3 = 2π/3
and θ1 = −θ3 = 4π/3 points describe the low energy behaviour of spin chains with p = 3m + 1
and p = 3m + 2, respectively.

First, we focus on the neighbourhood of the θ1 = −θ3 = 2π/3 point, which can be illustrated 
by p = 1 spin models. From Bethe ansatz results we know that the p = 1 nearest neigh-
bour Heisenberg model is gapless. However, Corboz et al. [96] showed that a transition to a 
trimerized phase occurs in the J1 − J2 model. This transition from a gapless to the trimer-
ized phase suggests that a phase transition takes place for the σ -model at θ1 = −θ3 = ±2π/3
at some critical coupling gc. Now the expression for the coupling constant derived in Sec. 4
(1/g = p

√
J1J2 + 2J3J1 + 2J3J2/(J1 + J2)) shows that g is an increasing function of J2 (for 

all J2 > 0 if J3 ≥ J1/2 or for J2 > (J 2
1 − 2J1J3)/(J1 + 2J1J3) ortherwise). So we expect that 

for g < gc the system is gapless, while for g > gc it is gapped with a spontaneous breakdown of 
the Z3 symmetry, in agreement with the results of the previous section in the g → ∞ limit.

If the translational symmetry is explicitly broken, but a mirror symmetry is preserved in the 
nearest neighbour Heisenberg system (g < gc), the corresponding σ -model is along one of the 
parity symmetric lines. For example, changing the strength of the bonds between sublattices 1 
and 3, the σ -model is tuned along the θ1 = −θ3 line (see Sec. 5.6). If the bond is weakened, 
θ1 = −θ3 < 2π/3, and we move towards the θ1 = −θ3 = 0 point. This corresponds to a system 
with ...WSSWSS... bonds, where W stands for weaker and S for stronger. In this case SU(3)

singlets form on the sites connected by stronger bonds, and the system is gapped with a unique 
ground state. By contrast, if every third bond is strengthened (...SWWSWW...), pairs of sites 
connected by strong bonds will tend to form 3̄ states and the system behaves as a 33̄ chain, 
which spontaneously dimerizes with a finite gap [97,98]. This corresponds to a σ -model with 
θ1 = −θ3 > 2π/3, i.e. along a transition line between sectors running from θ1 = −θ3 = 2π/3 to 
θ1 = −θ3 = 4π/3. If a different mirror symmetry is conserved in the spin model, the underlying 
σ -model moves along a different parity symmetric line. If both the translational and mirror sym-
metries are explicitly broken, the spin system is gapped, and therefore away from the symmetric 
lines the σ -model is also expected to be gapped.

Considering the p = 1, J1 −J2 spin model with spontaneous translational symmetry breaking 
[96] (i.e. g > gc), if every third nearest neighbour bond is weakened (strengthened), one (two) 
out of the three ground states will be selected, and in both cases the system remains gapped. This, 
once again, corresponds to moving along one of the parity symmetric lines around θ1 = −θ3 =
2π/3 in the σ -model phase diagram. As a consequence we can expect that along the transition 
lines between different R sectors the system is gapped and twofold degenerate, while inside the 
sectors the system is gapped for any of value of g.

In terms of the σ -model the neighbourhood of the θ1 = −θ3 = 4π/3 point is connected to 
that of the θ1 = −θ3 = 2π/3 case by a complex conjugation, therefore the above considerations 
translate straightforwardly to the θ1 = −θ3 = 4π/3 case as well. This would correspond to spin 
systems with p = 3m + 2, which thus would show similar general behaviour as p = 3m + 1
systems. In the case of θ1 = −θ3 = 0, i.e. for spin systems with p = 3m, explicitly breaking 
the translational or mirror symmetries in the spin chain will tune the σ -model away from the 
θ1 = −θ3 = 0 point, but it will still stay in the same phase. Thus, we expect that the σ -model is 



M. Lajkó et al. / Nuclear Physics B 924 (2017) 508–577 531
Fig. 7. (a) The free energy along cuts in the θ1–θ3 plane in the g → ∞ limit. We show the f (θ, −θ), and f (θ, 0) cases for 
which we carried out MC extrapolation calculations at finite g values. (b) Free energy as a function of θ2 for imaginary 
and real topological angles for the mentioned two cases at g → ∞. It is clear that the extrapolation breaks down for real 
topological angles beyond a phase transition.

gapped for any value of the coupling inside the R sectors away from transition lines, even for 
θ1 = −θ3 = 0.

7.3. Monte Carlo simulations

To confirm our predictions for finite g values, we turn to classical Monte Carlo simulations. In 
the SU(2) case, several methods have been developed to address the issue raised by the imaginary 
topological term [16,99]. Here we choose the extrapolation scheme of Allés and Papa [18], which 
consists in carrying out simulations for imaginary topological angles θ = iϑ , and in extrapolating 
those results to real angles. This extrapolation method can be illustrated in the g → ∞ limit. 
Using the results of Sec. 7.1, the free energy for imaginary angles is given by

f (iϑ1, iϑ3, g → ∞)

= − 1

V
logZ(iϑ1, iϑ3, g → ∞) = − log

(
max
m,n

z(iϑ1 + 2πm, iϑ3 + 2πn)
)
.

(7.19)

In this case the m = n = 0 term will always dominate. Therefore

f (iϑ1, iϑ3, g → ∞)

= − log

⎛
⎜⎜⎝

2

(
− (ϑ1 − ϑ3) cosh

(
ϑ1−ϑ3

2

)
+ ϑ1 cosh

(
ϑ1
2

)
− ϑ3 cosh

(
ϑ3
2

))
ϑ1ϑ3(ϑ1 − ϑ3)

⎞
⎟⎟⎠ (7.20)

In Fig. 7 we show the free energy f (aθ, bθ, g → ∞) as a function of θ2 for different fixed 
values of a, b. Since we know that the system undergoes a phase transition between different 
Rm,n sectors, we can only hope to get information for points inside or at the boundary of R0,0. 
Fortunately due to the symmetries of the phase diagram, this is all that we need. For example, 
the high symmetry point θ1 = −θ3 = 2π/3 can be reached by extrapolation along the θ1 = −θ3
line (a = −b = 1). The point θ1 = −θ3 = π cannot be reached by extrapolating along this line 
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Fig. 8. Discretization of the 1 + 1 dimensional space–time as a square lattice. The fields �φ1(j), �φ2(j), �φ3(j) are defined 
on each lattice site j . They are mutually orthogonal, giving the rows of the unitary matrix U(j). The topological term on 
the lattice is the sum of contributions from distinct triangles defined in Eq. (7.22). The index n denotes the three fields.

since it is beyond a phase transition. However, this point is related to the point θ1 = π, θ3 = 0 by 
a Z3 transformation, and this latter point is reachable by an extrapolation with a = 1, b = 0. In 
the following we present numerical Monte Carlo results along these two lines, but in general one 
can choose any values of a, b to reach any point of the R0,0 sector via an extrapolation.

To implement the lattice Monte Carlo calculation, we discretize the action in Eq. (4.14) on a 
1 + 1 dimensional square lattice for imaginary topological angles θ = iϑ , extending the scheme 
of Allés and Papa [18] to the SU(3) case. We discretize the real part of the action as [94,95]

3∑
n=1

∑
μ=x,τ

1

2g

(∣∣∣∂μ
�φn

∣∣∣2 −
∣∣∣ �φ∗

n · ∂μ
�φn

∣∣∣2)

→ − 1

2g

3∑
n=1

∑
μ=x,τ

∣∣∣ �φn(�rj ) · �φn(�rj + �δμ)

∣∣∣2 + const. ,

(7.21)

where rj is a site on the discretized two dimensional space time and �δx, �δτ are the lattice unit 
vectors of the discretized square lattice. One can show that this discretization gives back the 
continuum case in second order. The topological part of the action is discretized following the 
recipe of Berg and Lüscher [100]. Every square plaquette is further split into two triangles, and 
three topological charge densities are defined on each triangle, as shown in Fig. 8, by

exp(i2π qn(�ijk)) =
( �φ∗

n(�ri) · �φn(�rj )
)( �φ∗

n(�rj ) · �φn(�rk)
)( �φ∗

n(�rk) · �φn(�ri)
)

∣∣ �φ∗
n(�ri) · �φn(�rj )

∣∣∣∣ �φ∗
n(�rj ) · �φn(�rk)

∣∣∣∣ �φ∗
n(�rk) · �φn(�ri)

∣∣ . (7.22)

With this notation, the topological charge on the lattice system is calculated as Qn =∑
�ijk

qn(�ijk), where on each triangle the indices i, j, k follow the same (e.g. counter-
clockwise) direction. Each qn(�) can take values between ±1/2. We note that this scheme 
is different from that of Seiberg [91] and Plefka and Samuel [92] that we used to discuss the 
g → ∞ limit, but they give the same continuum limit (see Appendix D).

We implemented a single site Metropolis type Monte Carlo algorithm [18,21,100,101] to mea-
sure the correlations of the discretized model. In this method we sweep the lattice and on each site 
we replace the U matrix with a uniformly generated [81,102] one with a probability given by the 
Metropolis acceptance ratio. To reduce autocorrelation times and increase accuracy we also com-
plement the single site update with a multigrid update method [103], where we rotate all matrices 
within LB ×LB square blocks of increasing size. The rotation is done by selecting a Gell–Mann 
generator T A and by updating the matrices in the block according to U ′(j) = U(j) exp(iϕLB

T a), 
with an angle ϕLB

uniformly selected in [−ϕmax1/L
1/2
B , ϕmax1/L

1/2
B ] in order the keep the ac-

ceptance rate of the updates similar for all LB . In this method one multigrid sweep consists of a 
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Fig. 9. Extrapolation of the inverse of the correlation length from Monte Carlo calculations of imaginary θ angles along 
the θ1 = −θ3 line, for a system of 192 × 192 sites. The inset shows the extrapolated value of the mass gap at θ = 2π/3.

single site sweep, then a sweep of non-overlapping blocks of size LB = 2, 4, 8... , respectively. 
For each LB , the blocks are selected by a random shift.

In the Monte Carlo algorithm we sample the time averaged correlation function [91,92]

C(x) = 1

L

∑
τ

〈( �φ1 (0,0) · �φ∗
1 (x, τ )

)( �φ∗
1 (0,0) · �φ1 (x, τ )

)〉
(7.23)

and extract the correlation length by an exponential fitting. C(x) is the generalization of the 
spin–spin correlation function to the SU(n) case (see Appendix C for details). For each value 
of θ = iϑ and g we sampled 2 × 105 configurations with a sampling distance of 10 multigrid 
sweeps after 5 × 104 thermalizing multigrid sweeps. The numerical errors were estimated by 
the binning method [104]. In Fig. 9 we show the inverse of the correlation length – which is 
proportional to the mass gap – as a function of θ2 for the extrapolation along the θ1 = −θ3 line. 
Following Allés and Papa [18], we extrapolate the mass gap to real θ values by fitting it with a 
function of the form (c1 + c2θ

2)/(1 + c3θ
2).

We find that upon increasing ϑ the mass gap has a change of behaviour. For small imaginary 
angles, the mass gap increases, i.e. the correlation length decreases. But, after a maximum in 
1/ξ , the mass gap decreases. In this region the system is characterized by a uniform saturated 
topological charge density. This is reminiscent of the results of Imachi et al. [99] for the CP2

model, who argue that beyond some imaginary angle where the average topological charge of 
the system becomes comparable to its maximal value (1/2 per triangle), the partition function is 
no longer an analytic continuation of the real θ case. This means that in the extrapolation method 
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Fig. 10. Extrapolation of the inverse of the correlation length from Monte Carlo calculations of imaginary θ angles, for a 
system of 192 ×192 sites, and for two different values of the coupling constant g: (a) g = 0.286 > gc ; (b) g = 0.227 < gc . 
In each case, we compare the extrapolations along the θ3 = 0, θ = θ1 line with those along the θ = θ1 = −θ3 line. It is 
clear that in the θ3 = 0, θ = θ1 case the gap remains open at θ = π for both g > gc and g < gc .

one should only consider imaginary angles smaller than this threshold. This is why we chose as 
a limit for the fitting the inflection points in the mass gap results.

The Monte Carlo results clearly show that the mass gap is finite for θ1 = −θ3 = 0. This 
point corresponds to spin systems with p = 3m boxes. This finding agrees with the proposal of 
Greiter et al. [44] for the possibility of gapped phases for such systems. However, for small g, the 
extrapolated mass gap vanishes around θ = 2π/3. So our Monte Carlo results predict that spin 
representations with p = 3m + 1, or 3m + 2 are gapless. Upon increasing g, beyond gc ≈ 2.55, 
the extrapolated mass gap remains finite even at θ = 2π/3. We believe that this corresponds to a 
phase transition from a gapless into a gapped phase in accordance with the LSMA theorem. This 
also agrees with our earlier conclusion that for g → ∞ the system should be gapped.

We also followed the same extrapolation procedure along the θ1 �= 0, θ3 = 0 line (see Fig. 10). 
These results show that at θ1 = π, θ3 = 0 (and thus for θ1 = π, θ3 = −π ) the gap remains finite 
both below and above gc, as predicted in Sec. 7.2.

8. Phase diagram of the flag manifold σ -model

Our expected θ1 − θ3 phase diagram for the flag manifold σ -model is summarized in Fig. 5b, 
which must be complemented with an RG flow towards g → ∞. A cut along the θ1 = −θ3 = θ

line is shown in Fig. 1b with the topological angle on the vertical axis and the coupling constant 
g on the horizontal axis. We ignore the coupling constant λ for the non-topological term linear 
in space and time derivatives since we have shown that it renormalizes to zero. For generic 
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values of θ1 and θ3, we expect the model to be gapped, with g renormalizing to infinity. But for 
θ1 = −θ3 = ±2π/3 we expect a critical point to occur at g = gc, corresponding to the SU(3)1
WZW model. It is important that the model has an extra symmetry at these values of θ1, θ3
which prevents it from renormalizing. This is the Z3 symmetry which permutes the three fields 
( �φ1 → �φ2 → �φ3), discussed in Sec. 5.4.

For θ1 = −θ3 = ±2π/3, the phase transition at g = gc is driven by the topological term 
λ′JA

R JA
L . In this term, JR/L are the right and left moving currents in the WZW model given 

by:

JA
R/L ∝ trg†∂∓gT A (8.1)

where ∂∓ ≡ ∂t ∓ ∂x and the T A are the generators of SU(3). This interaction is marginally 
irrelevant for one sign of λ′ and marginally relevant for the other. Thus, we expect λ′ to change 
sign at g = gc and for g > gc the gap to turn on exponentially slowly, as � ∝ e−c/(gc−g).

On the other hand, shifting θ1, θ3 slightly away from ±2π/3 corresponds to breaking the Z3
symmetry. We expect this symmetry to correspond to g → ei2π/3g in the SU(3)1 WZW model, 
the symmetry which forbids a trg term in the effective Hamiltonian. When this symmetry is 
broken we expect a relevant perturbation ∝ trg. This operator has dimension d = 2/3 so we 
expect the gap to scale as |θ − 2π/3|1/(2−d) = |θ − 2π/3|3/4, up to log corrections coming from 
the marginal operator JA

R JA
L . If the Z3 symmetry is broken, but a parity symmetry is preserved, 

along the θ1 = −θ3 = θ line for example, we believe that the extra term should have the form 
trg + trg† since g → g† corresponds to the parity transformation. In this case the extra term 
in the SU(3)1 WZW model should have the form ∝ (θ − 2π/3)(trg + trg†). If we write the 
diagonal elements of g as eiαj for α = 1, 2, 3 with 

∑
j αj ≡ 0(mod 2π), the extra term takes the 

form

V ∝ (θ − 2π/3)
∑
j

cosαj . (8.2)

For θ < 2π/3, this term has a unique minimum with αj = 0. But if θ > 2π/3, there are two 
minima, with αj = 2π/3 or αj = −2π/3 . As discussed in Sec. 7.1, the two cases correspond 
to spin chains with ...SSWSSW... and ...WWSWWS... bond patterns, with a unique and gapped 
ground state in the former, and gapped twofold degenerate ground states in the latter case. The 
situation is similar along the other two parity conserving lines (−θ3 = π − θ1/2 and −θ3 =
2π − 2θ1), which are connected to the θ1 = −θ3 line by the Z3 transformation. Therefore along 
these lines the extra term in the WZW model should be ∝ (e±i2π/3 trg+e∓i2π/3 trg†), which will 
also have 1 or 2 minima depending on the sign. For a generic point around θ1 = −θ3 = 2π/3 the 
extra term should have the form (μ trg + μ∗ trg†), where μ is complex in general, and vanishes 
at the Z3 symmetric point. Based on the above considerations we believe the general form is 
μ = exp(iθ1) + exp(iθ2) + exp(iθ3), where in our discussion we fixed θ2 = 0.

It is interesting to contrast these results with those of the CP2 model with a topological term. 
If we ignore the non-topological term whose coupling constant λ renormalizes to zero, the flag 
manifold σ -model we have studied can be seen as three copies of the CP2 model coupled by 
the orthogonality constraint. Now, it is well established that, as soon as n > 2, the CPn−1 model 
with a topological term is gapped for all values of the coupling constant and of the topological 
angle [91,105,106]. The model undergoes a phase transition with spontaneous breaking of charge 
conjugation symmetry at θ = π , but it is first order, and the gap does not close. So the coupling 
between the fields appears to be essential to produce the interferences that close the gap at θ =
2π/3.
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Fig. 11. Extrapolation of the inverse of the correlation length from Monte Carlo calculations of imaginary θ angles for 
the CP2 model on a 192 × 192 lattice. The results are consistent with the expectation, that the mass gap remains open for 
all values of θ .

We also carried out shorter MC simulations (with 5 × 104 samples) for the CP2 model, shown 
in Fig. 11. The correlation lengths are extracted the same way as for the SU(3) case. The extrap-
olation clearly shows that the gap remains open even for θ = π .

9. Conclusions and open questions

Let us first summarize the implications of our field theory results for the SU(3) chains in 
the p-box symmetric representation. For a translationally invariant system, the model can be 
defined by a single topological angle θ = 2πp/3. When p = 3m, θ is a multiple of 2π , so 
there is no topological term in the action, and the model is expected to be gapped whatever 
the coupling constant. This prediction is the generalization of Haldane’s prediction of a gap 
for integer spin in the SU(2) case. When p = 3m ± 1, there is a nontrivial topological term 
in the action with topological angle θ = ±2π/3. In that case, we have shown that there is a 
critical coupling constant gc below which the model is gapless in the SU(3)1 WZW universality 
class. Starting from the original SU(3) lattice model, the coupling constant is given by g =
(J1 + J2)/p

√
J1J2 + 2J3J1 + 2J3J2, where the additional interactions J2 and J3 are effective 

couplings that have been included to account for the effect of the zero point fluctuations, which 
select the three sublattice order. In the large p limit, these additional exchange integrals J2, J3 ∝
1/p, and the coupling constant g ∝ 1/

√
p becomes very small. So, our field theory results predict 

that for p = 3m ± 1 and large m, the model of Eq. (2.1) should be gapless. Since this is known 
to be true also for p = 1 from Sutherland’s Bethe ansatz solution, we conjecture that the same 
conclusion holds for all p not multiple of 3.

The field theory also predicts that, if the topological angle θ = ±2π/3, i.e. for p = 3m ± 1, 
there should be a phase transition into a gapped phase upon increasing the coupling con-
stant g beyond a critical value gc. According to the Lieb–Schulz–Mattis–Affleck theorem [54,
55], this phase should be at least three-fold degenerate. So we expect it to be spontaneously 
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trimerized, with a gap turning on exponentially slowly. The form of the coupling constant 
g = (J1 + J2)/p

√
J1J2 + 2J3J1 + 2J3J2 suggests that this transition can be induced by increas-

ing the next nearest neighbour coupling J2. This prediction is consistent with the spontaneous 
trimerization reported for the SU(3) chain with p = 1 and next nearest neighbour interactions 
[96].

By contrast, the gapped phase that occurs for g < gc when θ is shifted from ±2π/3 should 
arise from breaking the translation symmetry by hand, with a period 3 exchange term. We expect 
that the coefficient of the periodic exchange coupling λ3 will be proportional to |θ ∓ 2π/3|, and 
accordingly that the gap will scale as λ3/4

3 .
Let us now briefly review the issues that deserve further investigation. The first one is about the 

additional couplings J2 and J3 that we have introduced to get rid of the zero modes. To introduce 
additional interactions to mimic the effect of zero point fluctuations is a standard approach in 2D 
and 3D frustrated magnets when the classical ground state is infinitely degenerate. In particular, 
if the system develops long-range magnetic order because of zero point fluctuations, an effect 
known as “order by disorder” [107], introducing additional effective couplings is necessary to 
restore the appropriate structure of Goldstone modes. These couplings must come form higher 
order spin wave interactions, but even in the simpler context of SU(2) models, there is no known 
systematic way to calculate the 1/s expansion of these couplings. So how to actually calculate 
these couplings in the context of the present paper remains an open question.

The other open issue concerns the determination of the critical exponents of the field theory at 
θ = 2π/3. For the CP1 model, the critical exponents of the mass gap (main term and logarithmic 
correction) have been determined on the basis of the numerical results obtained for imaginary 
topological angles [17,21]. This approach relies on a change of variable that is motivated by 
exact results obtained on the Ising model in imaginary magnetic field [108]. Whether a similar 
approach with an appropriate change of variable can be used in the present case to extract the 
exponents from the imaginary topological angle data remains to be seen.

The numerical check of our predictions for p > 1 in the context of the lattice SU(3) model 
is a real challenge for all types of simulations: Quantum Monte Carlo simulations suffer from a 
severe minus sign problem, exact diagonalizations are limited to very small system sizes because 
the local Hilbert space grows very fast, and DMRG simulations require to keep a huge number 
of states to reach convergence. As a consequence, the results obtained so far are not conclusive, 
and the nature of the ground state and of the low-energy spectrum is an open numerical issue as 
soon as the number of boxes p is larger than one. Let us briefly review the current status of the 
numerical investigation of these models to substantiate this conclusion.

The first numerical study of the SU(3) Heisenberg chain with p = 2 and 3 is a DMRG investi-
gation by Rachel et al. [109]. In this paper, the authors report on a calculation of the entanglement 
spectrum of a chain of 48 sites with periodic boundary conditions, keeping 5000 states for p = 2
and 1650 states for p = 3. For p = 2, fitting the curve with the Calabrese–Cardy formula [110], 
they found a central charge equal to 2.48, which they interpret as being evidence that the model 
is in the SU(3)1 universality class with central charge 2, the difference being attributed to log-
arithmic corrections. For p = 3, they found that the entanglement entropy saturates after a few 
sites, which was taken as an indication that the system is gapped.

The second numerical study is an exact diagonalization investigation by Nataf and Mila [65]
based on a new approach that allows one to work directly in the irreducible representations of the 
global SU(n) symmetry [111]. This has allowed one to investigate the properties of the SU(3) 
model with p = 2 up to 15 sites and with p = 3 up to 12 sites with periodic boundary conditions, 
and to extract the properties of the model using standard finite-size analysis. Quite surprisingly, 
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the results turn out to be consistent with a gapless spectrum in both cases, with a central charge 
c = 3.23 for p = 2, in good agreement with the SU(3)2 universality class (central charge 3.2), 
and with a central charge c = 4.09 for p = 3, in good agreement with the SU(3)3 universality 
class (central charge 4). These results have led the authors of Ref. [65] to suggest that there is 
a length scale in the problem beyond which the system might cross-over to another universality 
class or to a gapped behaviour, and below which the system looks SU(3)p .

At first sight, these conclusions might look in agreement with the conclusions of Rachel et al. 
[109], who worked on much larger systems (48 sites), but they are not. In particular, the saturation 
of the entanglement entropy of the p = 3 case reported in Ref. [109] points to a correlation length 
of the order of 6 lattice sites, as for the spin-1 SU(2) chain, a result clearly incompatible with the 
ED results of Ref. [65], where no sign of gap (i.e. no curvature of the finite-size gap) could be 
detected up to 12 sites, in sharp contrast with the spin-1 SU(2) chain.

According to recent DMRG results, the problem comes from the number of states kept in 
Ref. [109], which was too small to reach convergence for the entanglement entropy. Using codes 
where the SU(n) symmetry is fully implemented, Weichselbaum et al. [66] and Nataf et al. 
[112] have been able to keep a much larger number of states. This has allowed them to reach 
convergence on very large systems with open boundary conditions, with conclusions that differ 
significantly from those of Ref. [109]. For p = 2, and up to at least 300 sites, the central charge is 
larger than 3, in agreement with ED and with the SU(3)2 universality class [66,112]. For p = 3, 
the entanglement entropy does not saturate but is compatible with a central charge larger than 4
up to 120 sites, and larger systems are currently under investigation to see if the presence of a 
gap can be detected [112].

Finally, with the help of Monte Carlo calculations, we have provided strong evidence that the 
SU(3)/[U(1) × U(1)] nonlinear σ -model is massless for θ = ±2π/3. This represents the first 
generalization of Haldane’s argument for the SU(2)/U(1) σ -model at θ = π and leaves open 
the intriguing possibility that a more general set of σ -models have massless phases for special 
values of their topological angles. [We are currently studying the generalization of our results to 
SU(n) chains for general n.] This may have implications for field theories with topological terms 
in higher dimensions [including QCD in (3 +1) dimensions] and might be useful in finding exact 
exponents for the quantum Hall effect localization transition.
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Appendix A. Flavour wave theory

The calculation of the harmonic fluctuations around an ordered state is most easily done using 
linear flavour wave theory, the extension of the usual SU(2) spin wave theory to SU(n) models. 
It has been formulated in Refs. [69] and [70] for the SU(3) case and in Ref. [71] for the SU(4) 
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case. The notations used in this appendix are those of Ref. [114], where the triangular and square 
lattices are treated.

To treat fluctuations around a three sublattice ordered state where the spins on the sites lα
belonging to sublattice Lα point in the direction α, we start from the p → ∞ limit in which the 
bosons α have condensed at the sites of sublattice Lα , and we do a 1/p expansion, by analogy 
with the spin wave theory that is a 1/s expansion for SU(2) systems. Starting from the ordered 
state we can use the following expansion for the spin operators Sβ

γ for sites lα ∈ Lα in the large-p
limit:

Sα
α (lα) = p − μα(lα),

Sα
β (lα) = b

(α)†
β (lα)

√
p − μα(lα) � √

p b
(α)†
β (lα),

Sβ
α (lα) =√

p − μα(lα)b
(α)
β (lα) � √

p b
(α)
β (lα),

S
β ′
β (lα) = b

(α)†
β (lα)b

(α)

β ′ (lα),

(A.1)

where we have introduced the shorthand notation

μα(lα) =
∑

β( �=α)

b
(α)†
β (lα)b

(α)
β (lα). (A.2)

The b(α)†
β (lα) operators with β �= α now correspond to the Holstein–Primakoff bosons on sublat-

tice Lα , and the superscript (α) keeps track of the sublattice. Expanding in 1/p and keeping the 
quadratic terms only, the exchange term between sites lα ∈ Lα and mα′ ∈ Lα′ is given by∑

β,γ

S
γ
β (lα)Sβ

γ (mα′) = p
[
b

(α)†
α′ (lα)b

(α)

α′ (lα) + b(α′)†
α (mα′)b(α′)

α (mα′)

+ b
(α)†
α′ (lα)b(α′)†

α (mα′) + b
(α)

α′ (lα)b(α′)
α (mα′)

] (A.3)

for α �= α′, and by∑
β,γ

S
γ
β (lα)Sβ

γ (mα) = p
∑

β( �=α)

[− b
(α)†
β (lα)b

(α)
β (lα) − b

(α)†
β (mα)b

(α)
β (mα)

+ b
(α)†
β (lα)b

(α)
β (mα) + b

(α)†
β (mα)b

(α)
β (lα)

] (A.4)

for α = α′. Note that when α �= α′ the exchange term does not involve bosons with flavours 
different from the ordered ones α and α′.

Assuming a three sublattice ordered state, we further define the following Fourier transforma-
tion:

b
(α)
β,k =

√
3

|L|
∑

lα∈Lα

b
(α)
β (lα)eiklα (A.5)

where the summation is over the |L|/3 sites of sublattice Lα (|L| is the number of lattice sites). 
The Hamiltonian involving bosons with subscripts and superscripts α and β then reads

Hαβ = p
∑

k

[
2(J1 + J2 + 2(1 − cos(3ka))J3)b

(β)†
α,k b

(β)
α,k

+ (J γ 1 + J γ 2)b
(α)†

b
(β)† + H.c.

]
,

(A.6)
1 k 2 k β,−k α,k
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where the factors γ 1
k and γ 2

k are given by

γ 1
k = eika, γ 2

k = e−2ika. (A.7)

The full Hamiltonian is H = HAB + HBC + HCA. It can be diagonalized via a Bogoliubov 
transformation, leading to

H = p
∑

k∈RBZ

∑
α

∑
β �=α

ω(k)b̃
(α)†
β,k b̃

(α)
β,k + const. (A.8)

The dispersion of the flavour waves is given by

ω(k) = p

√(
J1 + J2 + 2

[
1 − cos(3ka)

]
J3

)2 −
(
J 2

1 + J 2
2 + 2J1J2 cos(3ka)

)
(A.9)

There are 6 degenerate branches in the reduced Brillouin zone [−π/3, π/3], and 6 Goldstone 
modes.

Appendix B. Details of Lieb–Schultz–Mattis–Affleck theorem

To show that U |ψ〉 has low energy, consider the term in H involving the two neighbouring 
sites, j and j + 1:

Hj,j+1 ≡ J1S
α
β (j)Sβ

α (j + 1). (B.1)

Since [Qj + Qj+1, Hj,j+1] = 0, and the other Qi’s commute with Hj,j+1,

U†Hj,j+1U = e−i(π/3L)(Qj+1−Qj )Hj,j+1e
i(π/3L)(Qj+1−Qj )

≈Hj,j+1 + i
π

3L

[
Hj,j+1,Qj+1 − Qj

]+O(1/L2)

=Hj,j+1 + i
2π

3L

[
Hj,j+1,

∑
j

jQj

]+O(1/L2)

(B.2)

Summing over all terms in H,

〈ψ |U†HU |ψ〉 = 〈ψ |H|ψ〉 + i
2π

3L
〈ψ |[H,

L∑
j=1

jQj ]|ψ〉 +O(1/L). (B.3)

The second term on the right hand side vanishes, since |ψ〉 is an eigenstate of H. The remainder 
is seen to be O(1/L) because there are O(L) terms in H and each contributes a term ∝ 1/L2 as 
follows from Eq. (B.2). Now we wish to prove that U |ψ〉 is orthogonal to |ψ〉. To do this, we 
can assume that |ψ〉 is translationally invariant, T |ψ〉 = |ψ〉, where T generates translations by 
1 site.

T −1UT = exp
[
i
2π

3L

L∑
j=1

jQj+1
]
. (B.4)

Using periodic boundary conditions, QL+1 = Q1, we obtain:

T −1UT = U exp
[− i

2π

3L

L∑
Qj

]
exp

[
i
2π

3
Q1

]
. (B.5)
j=1
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Next, we use the fact that (
∑

j Qj )|ψ〉 = 0, which follows from the SU(3) invariance of the 
ground state, so

exp
[− i

2π

3

L∑
j=1

Qj

]|ψ〉 = |ψ〉. (B.6)

Finally we use

exp
[
i(2π/3)Q1

]= exp
[
i2πp/3

]
exp

[− i2πb
†
3(1)b3(1)

]= ei2πp/3I. (B.7)

Appendix C. Spin coherent state path integral of the SU(2) Heisenberg chain

Typically, when discussing Haldane’s conjecture a derivation of the O(3) nonlinear σ -model 
from the Heisenberg model is presented (see for example Refs. [115,116]). To make the con-
nection with the calculations of Sec. 4 more explicit, we provide here a derivation of the CP1

nonlinear σ -model directly starting from the SU(2) nearest neighbour Heisenberg model. We 
also show the equivalence between the CP1 and O(3) formulations.

We start from the nearest neighbour antiferromagnetic Heisenberg model

H =
∑

i

J1 �S(i) · �S(i + 1) (C.1)

where �Si = (Sx
i , Sy

i , Sz
i ) are the conventional SU(2) generators in the �S2 = s(s + 1) representa-

tion. These are connected to the general form defined in Eq. (2.2) as

Sx = S2
1 + S1

2

2
, Sy = S2

1 − S1
2

2i
, Sz = S1

1 − S2
2

2
. (C.2)

In a Schwinger boson representation, b†
1(b

†
2) corresponds to creating an ↑ (↓) spin, respectively. 

The spin operators can be written as

�S(i) = 1

2
b†
α(i)�σαβbβ(i) or Sα

β (i) = b
†
β(i)bα(i), (C.3)

where �σ = (σx, σy, σz) is a vector of the Pauli matrices. In this representation, the Heisenberg 
interaction is given by

�S(i) · �S(i + 1) = 1

2
Sα

β (i)Sβ
α (i + 1) + const. (C.4)

To write down the imaginary time partition function, we use a spin coherent state path integral 
approach. In terms of Schwinger bosons, the SU(2) spin coherent states can be written as

| ��〉 = 1√
(2s)!

(
�1b

†
1 + �2b

†
2

)2s |0〉 (C.5)

where �� is a two component complex unit vector which is usually parametrized in terms of 
two angles as �� = (cos(θ/2), sin(θ/2)eiϕ), with 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π and with the inte-
gral measure d� �� = sin(θ)/(4π)dθdϕ. The partition function in the path integral language is 
formally the same as in Eq. (D.10)
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Tr
(
e−βH

)

=
∫

D[�] exp

[
−

β∫
0

dτ
[
〈{ ��(·, τ )}|H |{ ��(·, τ )}〉 + 2s

∑
j

��∗(j, τ ) · ∂τ
��(j, τ )

]]
,

(C.6)

where |{ ��(·, τ )}〉 represents a direct product of spin coherent states of each spin at time τ . When 
calculating the expectation value of the Hamiltonian the spin operators can be replaced by clas-
sical three dimensional real vectors

〈 ��| �S| ��〉 = s
(
�1∗�2 + �2∗�1,−i

(
�1∗�2 − �2∗�1),�1∗�1 − �2∗�2

)
= s

(
cosϕ sin θ, sinϕ sin θ, cos θ

)
= s

(
n1, n2, n3

)
,

(C.7)

where �n has unit length and

�n = �α∗ �σαβ�β. (C.8)

Similarly

〈 ��|Sα
β | ��〉 = 2s �β∗�α. (C.9)

The Heisenberg interaction in the path integral is given by

〈 ��(i)| �S(i)| ��(i)〉 · 〈 ��(i + 1)| �S(i + 1)| ��(i + 1)〉

= s2�n(i) · �n(i + 1) = 4s2

2

∣∣∣ ��(i)∗ · ��(i + 1)

∣∣∣2 + const.
(C.10)

In the classical ground state, the �n vectors on neighbouring sites should be antiparallel, or, equiv-
alently, the �� vectors should be orthogonal. In the path integral, we consider fluctuations around 
the classical ground state manifold, which are conventionally parametrized as

�n(2j) =
√

1 − a2

s2
|�l|2 �m(j) + a

s
�l(j)

�n(2j + 1) = −
√

1 − a2

s2
|�l|2 �m(j) + a

s
�l(j),

(C.11)

where the index j runs through the two site unit cells, the vector �m(j) (with | �mj | = 1) describes 
the local staggered magnetization, and the vector �l(j), which is perpendicular to �m(j) describes 
the local uniform magnetization. Equivalently, the complex vectors �� can be parametrized as

( ��(2j)T

��(2j + 1)T

)
=
⎛
⎝
√

1 − a2

s2 |L12(j)|2 a
s
L(j)12

a
s
L(j)∗12

√
1 − a2

s2 |L12(j)|2

⎞
⎠U(j), (C.12)

where, similarly to the SU(3) case, the unitary U(j) matrix describes the slow joint rotation, 
while the L(j) matrix parametrizes the non-orthogonality of spin states inside the unit cell. The 
form of the resulting spin matrices S(αβ) = 〈 ��|Ŝα | ��〉 = 2s �β∗�α read as
β
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S(2j) = 2sU†�1U + aU†
(

0 L12
L∗

12 0

)
U

+ a2

s
U†

(−|L12|2 0
0 |L12|2

)
U +O(a3/s2)

S(2j + 1) = 2sU†�2U + aU†
(

0 L12
L∗

12 0

)
U

+ a2

s
U†

( |L12|2 0
0 −|L12|2

)
U +O(a3/s2)

(C.13)

where we omitted the (j) argument on the right hand side.
The two formulations are equivalent up to O(a2/s) (higher order terms are neglected in the 

path integral anyway). From Eq. (C.8), by using the completeness property of the Pauli matrices 
(i.e. σαβ

μ σ
γ δ
μ = 2δαδδβγ − δαβδγ δ) and setting L12(j) and �lj to 0 we have

�m(j)�σ = (
2U(j)†�1U(j)

)∗ − I = (
U(j)†σzU(j)

)∗ (C.14)

where

�1 =
(

1 0
0 0

)
, �2 =

(
0 0
0 1

)
. (C.15)

The connection between L(j) and �l(j) is given by

�l(j)�σ = 2

(
U(j)†

(
0 L12(j)

L12(j)∗ 0

)
U(j)

)∗
(C.16)

This implies in particular that 4|L12(j)|2 = |�l(j)|2. Furthermore the orthogonality of �m(j) and 
�l(j) is equivalent to the orthogonality of the 0th and 1st order terms in Eq. (C.13)

tr

[
�1

(
0 L12

L∗
12 0

)]
= lμσαβ

μ mνσ
βα
ν = 2�l · �m (C.17)

Also the O(a2/s) term in Eq. (C.13) is a normalization similarly to the 
√

1 − a2

s2 in Eq. (C.11) in 

the vector formalism, which guarantees that the spin matrices has the correct Casimir, SαβSβα =
4s2.

In the following we use the matrix formulation of Eq. (C.12) to write the action. The terms in 
the partition function can be expanded up to O(a2/s0) corrections as

2s2
∣∣∣ ��∗(2j) · ��(2j + 1)

∣∣∣2 = 8a2|L12|2

2s2
∣∣∣ ��∗(2j + 1) · ��(2j + 2)

∣∣∣2
= 8a2|L12|2 + 8s2a2|(U∂xU

†)12|2 + 8a2s(∂xUU†)21L12 + 8a2s(U∂xU
†)12L

∗
12

2s
( ��∗(2j) · ∂τ

��(2j) + ��∗(2j + 1) · ∂τ
��(2j + 1)

)
= 2s tr(U∗∂τU

T ) + 4a
(
L12(∂τUU†)21 + L∗

12(∂τUU†)12

)
(C.18)

On the right hand sides every quantity is taken at unit cell j , but we omitted the indices for 
compactness. Once again, tr(U∗∂τU

T ) = 0 since U is unitary and its row vectors are orthogonal. 
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After taking the continuum limit and replacing the sum with an integral (2a
∑

j = ∫
dx), the full 

action becomes

S[U,L] = a

∫
dxdτ

[
4s2J1 tr

[
�1U∂xU

†�2∂xUU†
]
+ 8J1|L12|2

+L12

(
4J1s(∂xUU†)21 + 2

a
(∂τUU†)21

)

+ L∗
12

(
4J1s(U∂xU

†)12 + 2

a
(∂τUU†)12

)]
.

(C.19)

At this point the L12 fluctuations can be integrated out:

∫
dL12dL∗

12 exp

[
a
[
− 8J1|L12|2 − L12

(
4J1s(∂xUU†)21 + 2

a
(∂τUU†)21

)

− L∗
12

(
4J1s(U∂xU

†)12 + 2

a
(∂τUU†)12

)]]

= exp

[
a

8J1

[
16s2J 2

1 (∂xUU†)21(U∂xU
†)12 + 4

a2
(∂τUU†)21(∂τUU†)12

+ 8J1s

a

(
(∂xUU†)21(∂τUU†)12 + (U∂xU

†)12(∂τUU†)21

)]]
.

(C.20)

The resulting action only contains the U matrices and reads

S[U ] =
∫

dxdτ

(
2

g

[
v tr

[
�1U∂xU

†�2∂xUU†
]
+ 1

v
tr
[
�1U∂τU

†�2∂τUU†
]]

+ i
θ

2πi
εμν tr

[
�1U∂μU†�2∂νUU†

])
,

(C.21)

where 2/g = s, v = 2sJ1a, θ = 2πs (we introduced g this way to follow the convention). The 
θ -term is topological, with an integer topological charge

Q1 = 1

2πi

∫
dxdτ εμν tr

[
�1U∂μU†�2∂νUU†

]

= 1

2πi

∫
dxdτ

(
εμν tr

[
�1U∂μU†�2∂νUU†

]
+ εμν tr

[
�1U∂μU†�1∂νUU†

])

= 1

2πi

∫
dxdτ εμν tr

[
�1∂μU∂νU

†
]

= − 1

2πi

∫
dxdτ εμν tr

[
�2∂μU∂νU

†
]

= −Q2. (C.22)

The second term in the second equation vanishes since the expression in the trace is symmet-
ric under exchanging μ and ν. Comparing this result to the action of the SU(3) case given in 
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Eq. (4.6), we see that there is no non-topological imaginary term. The term similar to q12 defined 
in Eq. (4.10) is equivalent to the topological charge in the SU(2) case.

Writing U in terms of two orthogonal row vectors

U =
( �φT

1
�φT

2

)
, (C.23)

leads to the action

S =
∫

dxdτ

(
2

g

∣∣∣ �φ∗
2 · ∂μ

�φ1

∣∣∣2 + i
θ

2πi
εμν∂μ

�φ1 · ∂ν
�φ∗

1

)

=
∫

dxdτ

(
2

g

(∣∣∣∂μ
�φ1

∣∣∣2 −
∣∣∣ �φ∗

1 · ∂μ
�φ1

∣∣∣2 )+ i
θ

2πi
εμν∂μ

�φ1 · ∂ν
�φ∗

1

)

=
∫

dxdτ

(
2

g

(∣∣∣∂μ
�φ1

∣∣∣2 + ( �φ∗
1 · ∂μ

�φ1
)2
)

+ i
θ

2πi
εμν∂μ

�φ1 · ∂ν
�φ∗

1

)
,

(C.24)

This is just a CP1 theory with a topological term [46]. This theory is equivalent to the O(3)

σ -model [115,116]

S =
∫

dxdτ

(
1

2g

(
∂μ �m)2 + i

θ

8π
εμν �m · (∂μ �m × ∂ν �m))

. (C.25)

Indeed, using identities of the Pauli matrices (tr(σkσl) = 2δkl and tr(σkσlσm) = 2i εklm) and 
Eq. (C.14) we can write

2(∂μ �m)2 = tr
(
∂μ( �m · �σ)∂μ( �m · �σ)

)
= 4 tr

[
∂μ(U†�1U)∂μ(U†�1U)

]
= 8 tr

[
∂μU†�1U∂μU†�1U

]+ 8 tr
[
∂μU∂μU†�1

]
= 8( �φ1 · ∂μ

�φ∗
1 )2 + 8|∂μ

�φ1 |2
(C.26)

and

2i εμν �m · (∂μ �m × ∂ν �m)= εμν tr
(
( �m · �σ)∂μ( �m · �σ)∂ν( �m · �σ)

)
= 4εμν tr

[
(2U†�1U − I )∂μ(U†�1U)∂ν(U

†�1U)
]

= 8εμν tr
[
�1∂μU∂νU

†]+ εμν

(
terms symmetric in μν

)
= 8εμν∂μ

�φ1 · ∂ν
�φ∗

1 .

(C.27)

In the σ -model of Eqs. (C.24) or (C.25), the topological term is written iθQ1. For translation-
ally invariant spin models, θ = 2πs, which distinguishes integer and half integer spin models. 
For integer spins the topological term is trivial and the σ -model is gapped [116], while for half 
integer spins θ ≡ π (mod 2π). As discussed in Sec. 1, a phase transition is expected at θ = π for 
some critical coupling gc. For g < gc the system is expected to be gapless, while for g > gc the 
system is gapped with a spontaneous breakdown of a Z2 symmetry. This transition corresponds 
to the gapless-dimerized transition in the J1 −J2, s = 1/2 spin chain, [51,52]. Using the extrapo-
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Fig. C.12. Extrapolation of the inverse of the correlation length from Monte Carlo calculations of the CP1 σ -model with 
imaginary θ for a system of 192 × 192 sites. The inset shows the extrapolated value of the mass gap at θ = π .

lation method of Allés and Papa [18] this transition can be observed in the CP1 σ -model as well. 
Fig. C.12 shows our Monte Carlo results for the mass gap at different couplings. The mass gap 
is extracted from the spin–spin correlation function,

C(x) = 1

L

∑
τ

〈
�m(0,0) · �m(x, τ)

〉

= 2
1

L

∑
τ

〈(
U†(0,0)�1U(0,0)

)∗ (
U†(x, τ )�1U(x, τ)

)∗
〉

= 2
1

L

∑
τ

〈( �φ1 (0,0) · �φ∗
1 (x, τ )

)( �φ∗
1 (0,0) · �φ1 (x, τ )

)〉
.

(C.28)

The equivalence of the above forms can be shown using Eq. (C.14) and the identity σαβ
i σ

βα
j =

2δi,j . Notice that the correlation function used in the SU(3) case (see Eq. (7.23)) is a di-
rect generalization of this spin–spin correlation function. The gap opening can be seen around 
gc ≈ 0.7. For g < gc, the system is gapless at θ = π , as reported in Ref. [18], where cal-
culations for 0.57 < g < 0.67 have been carried out, while for g > gc the system is gapped. 
The spontaneous breakdown of Z2 was explicitly shown in the g → ∞ limit in Refs. [91,92]. 
The Monte Carlo results also confirm that the gap remains finite away for θ �= π for all values 
of g.
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Appendix D. Supplementary calculations for the derivation of the SU(3)/[U(1) × U(1)]
σ -model.

We consider an SU(3) spin chain with antiferromagnetic nearest and next nearest, and ferro-
magnetic third nearest Heisenberg interactions as defined in Eq. (4.1)

H =
∑

i

[
J1S

α
β (i)Sβ

α (i + 1) + J2S
α
β (i)Sβ

α (i + 2) − J3S
α
β (i)Sβ

α (i + 3)
]
, (D.1)

We use a spin coherent state path integral approach [78–81] to calculate the imaginary time 
partition function of the model in Eq. (4.1). In the bosonic picture, spin coherent states in the 
p-box representation can be written as

| ��〉 = 1√
p! (�

μb†
μ)p|0〉 (D.2)

where �� = (�(1), �(2), �(3)) is a three component complex unit vector (i.e. | ��|2 = 1), while 
b†
μ is the creation operator for a boson of flavour μ [81,102]. These spin coherent states are 

normalized, and form a complete set over the fully symmetric p-box representation:

〈 ��| ��〉 = 1

(p + 2)(p + 1)

2

∫
d� ��| ��〉〈 ��| = I.

(D.3)

The overlap between two spin coherent states is given by

〈 ��| ��〉 = (�μ∗�μ)p. (D.4)

Parametrizing �� as

�� = (sin θ cosϕ eiα1, sin θ sinϕ eiα2, cos θeiα3) (D.5)

with 0 ≤ θ, φ ≤ π/2, 0 ≤ α1, α2, α3 ≤ 2π , the Haar-measure d� �� can be defined by∫
d� �� =

∫
1

π3
sin3 θ cos θ cosϕ sinϕ dθ dϕ dα1 dα2 dα3 = 1. (D.6)

Using the Lie–Trotter decomposition of the imaginary time partition function, one can insert a 
complete set of spin coherent states at each time slice for each spin

Tr
(
e−βH

)=
∫

D[�]
N−1∏
n=0

〈{ ��(·, n + 1)}|e−dtH|{ ��(·, n)}〉 (D.7)

where dt = β/N and

|{ ��(·, n)}〉 = ⊗L
j=1| ��(j,n)〉 (D.8)

is the direct product of spin coherent states at each site of the chain at time step n (note that 

|{ ��(·,0)}〉 = |{ ��(·,N)}〉), and 
∫
D[�] = ∫ L∏

j=1

N∏
n=1

d� ��(j,n) is the integral over the spin coher-

ent states at each site and each time step. Up to first order in dt ,
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〈{ ��(·, n + 1)}|e−dtH|{ ��(·, n)}〉 =
= 〈{ ��(·, n + 1)}|{ ��(·, n)}〉 − dt〈{ ��(·, n + 1)}|H|{ ��(·, n)}〉 +O(dt2)

=
∏
j

(
��(j,n + 1)∗ ��(j,n)

)p

−dt〈{ ��(·, n)}|H|{ ��(·, n)}〉 +O(dt2)

=
∏
j

(
1 + p δ ��(j,n)∗ ��(j,n)

)
−dt〈{ ��(·, n)}|H|{ ��(·, n)}〉 +O(dt2)

= exp
[
−dt〈{ ��(·, n)}|H|{ ��(·, n)}〉 − p

∑
j

��∗(j, n) · δ ��(j,n)
]
+O(dt2),

(D.9)

where δ ��(j, n) = ��(j, n + 1) − ��(j, n), and we used the fact that δ ��∗ �� + ��∗δ �� = δ| ��|2 = 0. 
Thus, as N → ∞ the path integral will take the form

Tr
(
e−βH)=

∫
D[�] exp

[
−

β∫
0

dτ
[
〈{ ��(·, τ )}|H|{ ��(·, τ )}〉 +

∑
j

p ��∗(j, τ )∂τ
��(j, τ )

]]

(D.10)

with τ ≈ ndt . The second part of the action is imaginary and describes the Berry phase for each 
spin coming from the overlap of spin coherent states of different time slices.

Upon calculating the expectation of the Hamiltonian the spin operators are replaced by clas-
sical matrices as

〈 ��(j, τ )|Sα
β (j)| ��(j, τ )〉 = p�β∗(j, τ )�α(j, τ ). (D.11)

Using the parametrization of Eq. (4.3) the spin matrices Sn(j)βα = 〈 ��(3j + n)|Sα
β | ��(3j + n)〉

take the form

S1(j) = p
(
U†�1U

)+ aU†

⎛
⎝ 0 L12 L13

L∗
12 0 0

L∗
13 0 0

⎞
⎠U

+ a2

p
U†

⎛
⎝−|L12|2 − |L13|2 0 0

0 |L12|2 L∗
12L13

0 L12L
∗
13 |L13|2

⎞
⎠U +O(a3/p2)

S2(j) = p
(
U†�2U

)+ aU†

⎛
⎝ 0 L12 0

L∗
12 0 L23
0 L∗

23 0

⎞
⎠U

+ a2

p
U†

⎛
⎝ |L13|2 0 L12L23

0 −|L12|2 − |L23|2 0
L∗

12L
∗
23 0 |L23|2

⎞
⎠U +O(a3/p2)

(D.12)

S3(j) = p
(
U†�3U

)+ aU†

⎛
⎝ 0 0 L13

0 0 L23
L∗

13 L∗
23 0

⎞
⎠U

+ a2

p
U†

⎛
⎝ |L13|2 L13L

∗
23 0

L∗
13L23 |L23|2 0

0 0 −|L |2 − |L |2

⎞
⎠U +O(a3/p2)
13 23
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where the �n matrices are defined by

�1 =
⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ , �2 =

⎛
⎝ 0 0 0

0 1 0
0 0 0

⎞
⎠ , �3 =

⎛
⎝ 0 0 0

0 0 0
0 0 1

⎞
⎠ . (D.13)

This form of the spin matrices can be compared to the SU(2) case discussed in Appendix C. 
The leading term Pn(x, τ) = U†(x, τ)�nU(x, τ) corresponds to the staggered magnetization �m
in the SU(2) case (see Eq. (C.14)). The first order term describes fluctuations orthogonal to the 
leading term. For example,

tr

⎡
⎣�1

⎛
⎝ 0 L12 L13

L∗
12 0 0

L∗
13 0 0

⎞
⎠
⎤
⎦= 0, (D.14)

while the O(a2/p) terms can be thought of as a normalization which guarantees that the Casimirs 
of the spin matrices are correct: SαβSβα = p2 +O(a4/p2) and SαβSβγSγα = p3 +O(a4/p). 
Note that we use a non-traceless definition of the spin operators, therefore the Casimirs are 
different from those of the traceless convention. The action of Eq. (4.2) can be rewritten in terms 
of the three fields inside a unit cell as

S =
β∫

0

dτ
∑
j

[
p2
[
J1

∣∣∣ ��∗
1(j) · ��2(j)

∣∣∣2 + J2

∣∣∣ ��∗
1(j) · ��2(j − 1)

∣∣∣2

− J3

∣∣∣ ��∗
1(j) · ��1(j + 1)

∣∣∣2 + J1

∣∣∣ ��∗
2(j) · ��3(j)

∣∣∣2 + J2

∣∣∣ ��∗
2(j) · ��3(j)

∣∣∣2
+ J3

∣∣∣ ��∗
2(j) · ��2(j + 1)

∣∣∣2 + J1

∣∣∣ ��∗
3(j) · ��1(j + 1)

∣∣∣2
+ J2

∣∣∣ ��∗
3(j) · ��1(j)

∣∣∣2 + J3

∣∣∣ ��∗
3(j) · ��3(j + 1)

∣∣∣2]

+ p
( ��1(j)∗ · ∂τ

��1(j)
)

+
( ��∗

2(j) · ∂τ
��2(j)

)
+
( ��∗

3(j) · ∂τ
��3(j)

)]

(D.15)

where the sum over j runs through the three site unit cells. In the continuum limit (x ≈ 3aj ) the 
sum can be replaced by an integral 3a

∑
j → ∫

dx and the fields/matrices on neighbouring unit 
cells can be expanded as U(j ±1) = U(j) ±3a∂xU(j) +9a2∂2

xU(j)/2 +O(a3). Here we show 
an example of how each type of term reads after inserting the parametrization of Eq. (4.3) into 
the action:

J1p
2| ��∗

1(j) ��2(j)|2 = 4J1a
2|L12|2 +O(a3)

J2p
2| ��∗

1(j) ��2(j − 1)|2 = 4J2a
2|L12|2 + 9J2p

2a2|(U∂xU
†)12|2

− 6J2a
2p(∂xUU†)21L12 − 6J2a

2p(U∂xU
†)12L

∗
12 +O(a3)

−J3p
2| ��∗

1(j) ��1(j + 1)|2 = − J3p
2 − 9J3a

2p2|(U∂xU
†)11|2

− 9

2
J3a

2p2[(U∂2
xU†)11 + (∂2

xUU†)11
]+O(a3).

(D.16)
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The other terms can be expanded similarly. Up to O(a2/p) corrections, the Berry phase term is 
given by

3∑
n=1

p
(
�∗

n(j)∂τ
��n(j)

)

= p tr(U∗∂τU
T ) + a

3∑
n=1

(
Ln,n+1(∂τUU†)n+1,n + L∗

n,n+1(∂τUU†)n,n+1

)
.

(D.17)

The first term on the right hand side is identically 0 since U is a unitary matrix. Indeed, writing 
the rows of U as �φ1,0, �φ2,0 and �φ3,0 = �φ∗

1,0 × �φ∗
2,0, then expanding the trace we get

tr(U∗∂τU
T ) = �φ∗

1,0∂τ
�φ1,0 + �φ1,0∂τ

�φ∗
1,0 + �φ∗

2,0∂τ
�φ2,0 + �φ2,0∂τ

�φ∗
2,0

= ∂τ | �φ1,0|2 + ∂τ | �φ2,0|2 = 0.
(D.18)

Using the following simple identities:

I = �1 + �2 + �3

∂x(UU†) = ∂xUU† + U∂xU
† = 0

(U∂xU
†)∗n,n+1 = (∂xUU†)n+1,n

∂2
x (UU†) = ∂2

xUU† + U∂2
xU† + 2∂xU∂xU

† = 0

(D.19)

and rewriting the J3 terms as

3∑
n=1

(
− |(U∂xU

†)nn|2 − 1

2
(U∂2

xU†)nn − 1

2
(∂2

xUU†)nn

)

= −
3∑

n=1

tr
[
�nU∂xU

†�n∂xUU†]+ tr
[
∂xU∂xU

†]

= −
3∑

n=1

tr
[
�nU∂xU

†�n∂xUU†]+
∑
n,m

tr
[
�n∂xUU†�mU†∂xU

†] (D.20)

=
3∑

n=1

(
tr
[
�nU∂xU

†�n+1∂xUU†]+ tr
[
�n+1U∂xU

†�n∂xUU†])

= 2
3∑

n=1

tr
[
�nU∂xU

†�n+1∂xUU†]

the action has the following form up to O(a2) and O(a/p) corrections
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S[U,L] = a

3

∫
dxdτ

[
9p2(J2 + 2J3) tr

[
�1U∂xU

†�2∂xUU†]
+ 9p2(J2 + 2J3) tr

[
�2U∂xU

†�3∂xUU†]
+ 9p2(J1 + 2J3) tr

[
�3U∂xU

†�1∂xUU†]
+ 4

(
J1 + J2

)(|L12|2 + |L23|2 + |L13|2
)

+ L12

(
− 6J2p(∂xUU†)21 + 2

a
(∂τUU†)21

)
+ L∗

12

(
− 6J2p(U∂xU

†)12 + 2

a
(∂τUU†)12

)
+ L23

(
− 6J2p(∂xUU†)32 + 2

a
(∂τUU†)32

)
+ L∗

23

(
− 6J2p(U∂xU

†)23 + 2

a
(∂τUU†)23

)
+ L∗

13

(
6J1p(∂xUU†)13 + 2

a
(∂τUU†)13

)

+ L13

(
6J1p(U∂xU

†)31 + 2

a
(∂τUU†)31

)]
,

(D.21)

where we omitted the (x, τ) variables of the U and L matrices for the sake of compactness. At 
this point the L matrices can be integrated out in Eq. (D.21) using the Gaussian identity∫

dzdz∗ exp
(− z∗ωz + u∗z + vz∗)= π

ω
exp

(u∗v
ω

)
. (D.22)

For example, integrating out (L12, L
∗
12) leads to

∫
dL12dL∗

12 exp

[
a

3

[
− 4(J1 + J2)|L12|2 − L12

(
− 6J2p(∂xUU†)21 + 2

a
(∂τUU†)21

)

− L∗
12

(
− 6J2p(U∂xU

†)12 + 2

a
(∂τUU†)12

)]]

= exp

[
a

12(J1 + J2)

[
36p2J 2

2 (∂xUU†)21(U∂xU
†)12 + 4

a2
(∂τUU†)21(∂τUU†)12

− 12J2p

a

(
(∂xUU†)21(∂τUU†)12 + (U∂xU

†)12(∂τUU†)21

)]]
.

(D.23)

Similar integrals can be done for the L23 and L13 terms as well. The maximum of the exponential 

occurs at aL12/p ∝
(
−6aJ2(U∂xU

†)12 + 2
p
(∂τUU†)12

)
while the standard deviation for the 

L12 variable is O(1/
√

a), or O(
√

a/p) for aL12/p. So as we mentioned before large fluctuations 
in Eq. (4.3) are indeed suppressed for large p and a → 0

After carrying out the integrals in the L variables, we arrive at the action presented in 
Eq. (4.6)
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S[U ] =
∫

dxdτ

(
3∑

n=1

1

g

[
v tr

[
�n−1U∂xU

†�n∂xUU†
]
+ 1

v
tr
[
�n−1U∂τU

†�n∂τUU†
]]

+ i
θ

2πi
εμν tr

[
(�1 − �3)∂μU∂νU

†
]

+ i
λ

2πi
εμν

3∑
n=1

tr
[
�n−1U∂μU†�n∂νUU†

])
,

where the three topological charges defined in Eq. (4.8)

Qn = 1

2πi
εμν

∫
dxdτ tr

[
�n∂μU∂νU

†
]

are not independent, namely Q1 + Q2 + Q3 = 0. This can be also seen from

Q1 + Q2 + Q3 = 1

2πi
εμν

∫
dxdτ tr

[
∂μU∂νU

†
]

= 1

2πi
εμν

∫
dxdτ∂ν tr

[
∂μUU†

]
,

(D.24)

where the tr
[
∂μUU†

]
is identically 0 as was shown in Eq. (D.18). Note that not only 

the sum of the topological charges is zero, but the sum of the charge densities also van-
ishes.

The equivalence of the forms in Eq. (4.6) and Eq. (4.14) can be proven by rewriting the real 
part as

SR = 1

g

3∑
n=1

tr
[
�n−1U∂μU†�n∂μUU†

]
= 1

g

3∑
n=1

∣∣∣ �φ∗
n−1 · ∂μ

�φn

∣∣∣2

= 1

2g

3∑
n=1

(∣∣∣ �φ∗
n−1 · ∂μ

�φn

∣∣∣2 +
∣∣∣ �φ∗

n+1 · ∂μ
�φn

∣∣∣2)

= 1

2g

3∑
n=1

(∣∣∣∂μ
�φn

∣∣∣2 −
∣∣∣ �φ∗

n∂μ
�φn

∣∣∣2) ,

(D.25)

where we used the fact that the three fields �φ1, �φ2, �φ3 form an orthonormal basis on C3.
Another equivalent formulation of the action in Eqs. (4.6) and (4.14) can be given using the 

Pn(x, τ) = U†(x, τ)�nU(x, τ) matrices introduced below Eq. (D.12) [100,117]:

S[U ] =
∫

dxdτ

(
3∑

n=1

1

4g
tr
[
∂μPn∂μPn

]

+ i
θ

2πi
εμν tr

[
P1∂μP1∂νP1 − P3∂μP3∂νP3

]

+ i
λ

2πi
εμν

3∑
n=1

tr
[
Pn∂μPn+1∂νPn+1

])
.

(D.26)

The equivalence between Eq. (4.14) (with λ = 0) and Eq. (4.15) follows straightforwardly by 
integrating out the gauge fields. Only considering the real term
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SR = 1

2g

3∑
n=1

∣∣∣(∂μ + iAn
μ

) �φn

∣∣∣2 (D.27)

this follows since∣∣∣(∂μ + iAn
μ

) �φn

∣∣∣2 =
∣∣∣∂μ

�φn

∣∣∣2 + (An
μ)2 − 2iAn

μ
�φ∗
n · ∂μ

�φn.

=
∣∣∣∂μ

�φn

∣∣∣2 +
(
An

μ − i �φ∗
n · ∂μ

�φn

)2 −
∣∣∣ �φ∗

n · ∂μ
�φn

∣∣∣2 .

(D.28)

Upon shifting An
μ by i �φ∗

n · ∂μ
�φn, the An

μ integral gives a constant factor.
Including the topological terms, the action becomes, as written in Eq. (4.15)

S =
3∑

n=1

[
1

2g

∣∣∣(∂μ + iAn
μ

) �φn

∣∣∣2 + iθn

2π
εμν∂μAn

ν

]
.

Once again, shifting An
μ, as above, the imaginary term gives:

εμν∂μAn
ν → εμν∂μAn

ν + iεμν∂μ
�φ∗
n · ∂ν

�φn. (D.29)

The second term in Eq. (D.29) gives the topological term Qn, while integrating over the terms 
quadratic or linear in An

μ simply gives a constant, as they are decoupled from the �φ fields after 
the shift.

The constraint

A1
μ(x) + A2

μ(x) + A3
μ(x) = 0 (∀x,μ) (D.30)

can be imposed since

3∑
n=1

�φ∗
n · ∂μ

�φn = 0. (D.31)

This follows because the terms in the real part of the action involving A1
μ and A3

μ become:

(
A1

μ

)2 +
(
A3

μ

)3 +
(
A1

μ + A3
μ

)2 − 2iA1
μ

�φ∗
1 · ∂μ

�φ1 − 2iA3
μ

�φ∗
3 · ∂μ

�φ3

− 2i
(
A1

μ + A3
μ

)( �φ∗
1 · ∂μ

�φ1 + �φ∗
3 · ∂μ

�φ3

)
=
(
A1

μ − i �φ∗
1 · ∂μ

�φ1

)3 +
(
A3

μ − i �φ∗
3 · ∂μ

�φ3

)2

+
(
A1

μ + A3
μ − i �φ∗

1 · ∂μ
�φ1 − i �φ∗

3 · ∂μ
�φ3

)2

−
∣∣∣ �φ∗

1 · ∂μ
�φ1

∣∣∣2 −
∣∣∣ �φ∗

3 · ∂μ
�φ3

∣∣∣2 −
∣∣∣ �φ∗

1 · ∂μ
�φ1 + �φ∗

3 · ∂μ
�φ3

∣∣∣2 .

(D.32)

Again, the integrals over A1
μ and A3

μ simply give constant factors after shifting them by i �φ∗
1 ·∂μ

�φ1

and i �φ∗
3 · ∂μ

�φ3 respectively. This continues to work when the topological terms are included. 
Shifting the Aμ now gives the real part of the action written in terms of the �φn together with 
i(θ1 − θ2)Q1 + i(θ3 − θ2)Q3. We see that the partition function is invariant under shifting all 
three topological angles by the same constant.
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Appendix E. Additional calculations for Sec. 5

E.1. Gauge invariance

As mentioned in the main text, the overall phases of the spin coherent states shouldn’t change 
the form of the action. This manifests in the gauge invariance of the action in Eq. (4.6) under the 
transformation U ′(x, τ) = D(x, τ)U(x, τ), where

D(x, τ) =
⎛
⎝ eiϑ1(x,τ ) 0 0

0 eiϑ2(x,τ ) 0
0 0 eiϑ3(x,τ )

⎞
⎠ (E.1)

with ϑ3(x, τ) = −(ϑ1(x, τ) + ϑ2(x, τ)). In terms of the fields, this transformation corresponds 
to �φ′

n = eiϑn �φn.
To check the invariance of the real part of Eq. (4.14) we use Eq. (D.25) to rewrite it as

(∣∣∣∂μ
�φn

∣∣∣2 −
∣∣∣ �φ∗

n · ∂μ
�φn

∣∣∣2)=
∣∣∣ �φ∗

n+1 · ∂μ
�φn

∣∣∣2 +
∣∣∣ �φ∗

n−1 · ∂μ
�φn

∣∣∣2 . (E.2)

Now, the terms on the right hand side transform as

∣∣∣ �φ′∗
n±1 · ∂μ

�φ′
n

∣∣∣2 =
∣∣∣ �φ∗

n±1e
−iϑn±1 ·

(
∂μ

�φneiϑn + �φn∂μeiϑn

)∣∣∣2 . (E.3)

Since �φn and �φn±1 are orthogonal the second term on the right hand side gives 0. So these terms 
are invariant under gauge transformation. The λ-term can be similarly shown to be invariant since 
the phase factors cancel out. Finally, the topological charges transform as

εμν

(
∂μ

�φ′
n · ∂ν

�φ′∗
n

)
= εμν

(
∂μ

�φn · ∂ν
�φ∗
n

)
+ εμν

(
∂μ(iϑn)∂ν(−iϑn)

)
+ εμν

(
∂μ

�φn · �φ∗
n∂ν(−iϑn)

)
+ εμν

(
∂μ(iϑn) �φn · ∂ν

�φ∗
n

)
.

(E.4)

The second term on the right hand side is 0 since (∂μϑn∂νϑn) is symmetric under exchanging μ
and ν. Also, noticing that ∂μ

�φn · �φ∗
n + �φn · ∂μ

�φ∗
n = ∂μ( �φn · �φ∗

n) = 0, one can easily show that the 
third and fourth terms cancel each other, thus proving that the topological term is also invariant 
under the gauge transformation.

E.2. Breaking lattice symmetries of the spin model and the general form of the action

If the spin model is not invariant under the translation and the mirror symmetries, the Z3 and 
parity symmetries of the σ -model will be broken. This can be achieved, for example, by setting 
the strength of nearest neighbour interactions to be different between different sublattices, i.e. 
J

(1,2)
1 , J (2,3)

1 and J (3,1)
1 between sublattices 1 and 2, 2 and 3, and 3 and 1, respectively. In this 

case the field theory can be derived as in Sec. 4, and the action becomes
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S[U ] =
∫

dxdτ

(
3∑

n=1

1

gn−1,n

[
vn−1,n tr

[
�n−1U∂xU

†�n∂xUU†
]

+ 1

vn−1,n

tr
[
�n−1U∂τU

†�n∂τUU†
]]

+ i

3∑
n=1

θn

2πi
εμν tr

[
�n∂μU∂νU

†
]

+ i
λ

2πi
εμν

3∑
n=1

tr
[
�n−1U∂μU†�n∂νUU†

])
,

(E.5)

where the coupling constants and velocities are given by

1

gn−1,n

= p

√
J

(n−1,n)
1 J2 + 2J3 J

(n−1,n)
1 + 2J3 J2

(J
(n−1,n)
1 + J2 )

,

vn−1,n = 3ap

√
J

(n−1,n)
1 J2 + 2J3 J

(n−1,n)
1 + 2J3 J2 .

(E.6)

Still using the convention θ2 = 0, the topological angles become

θ1 = p
2π

3

(
2J2

J
(1,2)
1 + J2

+ J
(3,1)
1

J
(3,1)
1 + J2

− J2

J
(2,3)
1 + J2

)

θ3 = −p
2π

3

(
2J2

J
(2,3)
1 + J2

+ J
(3,1)
1

J
(3,1)
1 + J2

− J2

J
(1,2)
1 + J2

) (E.7)

while the λ coefficient takes the value

λ = p
2π

3

(
J2

J
(1,2)
1 + J2

+ J2

J
(2,3)
1 + J2

− J
(3,1)
1

J
(3,1)
1 + J2

)
. (E.8)

The action written in terms of the φ fields still has the form of three copies of CP2, as in 
Eq. (4.14), but this time the three theories have different parameters:

S =
∫

dxdτ

[
3∑

n=1

(
vn

2gn

(∣∣∣∂x
�φn

∣∣∣2 −
∣∣∣ �φ∗

n · ∂x
�φn

∣∣∣2)+ 1

2vngn

(∣∣∣∂τ
�φn

∣∣∣2 −
∣∣∣ �φ∗

n · ∂τ
�φn

∣∣∣2)
)

+ i

3∑
n=1

θnQn + iλ(q12 + q23 + q31)

]
.

(E.9)

The coupling constants and velocities in this language are related to those in Eq. (E.5) by the 
following equations:

vn

gn

= vn−1,n

gn−1,n

+ vn,n+1

gn,n+1
− vn+1,n−1

gn+1,n−1

1 = 1 + 1 − 1
.

(E.10)
vngn vn−1,ngn−1,n vn,n+1gn,n+1 vn+1,n−1gn+1,n−1
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Note that, since there are multiple velocities in the field theory, one can no longer set all three of 
them to 1 by rescaling the space and time directions. In particular, this simple calculation shows 
that if all symmetries are broken, the topological angles θ1 and θ3 can take arbitrary values.

In the special case discussed in Sec. 5.6 the translational symmetry is broken, but one of 
the mirror symmetries is conserved. As shown in Fig. 4, the nearest neighbour couplings take 
the values J (1,2)

1 = J
(2,3)
1 = J1 and J (3,1)

1 = J1(1 + δ). In this case the coupling constants and 
velocities are given by

1

g1,2
= 1

g2,3
= p

√
J1J2 + 2J3J1 + 2J3J2

(J1 + J2)
,

1

g3,1
= p

√
J1J2(1 + δ) + 2J3J1(1 + δ) + 2J3J2

(J1(1 + δ) + J2)
,

v1,2 = v2,3 = 3ap
√

J1J2 + 2J3J1 + 2J3J2,

v3,1 = 3ap
√

J1J2(1 + δ) + 2J3J1(1 + δ) + 2J3J2.

(E.11)

Based on Eq. (E.10), the parameters of the three CP2 theories become

1

g1
= 1

g3
= 1

g3,1
,

v1 = v3 = v1,3,

(E.12)

while g2 and v2 will be different:
v2

g2
= v1,2

g1,2
+ v2,3

g2,3
− v3,1

g3,1
,

1

v2g2
= 1

v1,2g1,2
+ 1

v2,3g2,3
− 1

v3,1g3,1
.

(E.13)

Since g1 = g3 (and v1 = v3), the R13 parity symmetry is conserved (corresponding to the re-
maining mirror symmetry), but the Z3 and the other two parity symmetries are explicitly broken 
since g2 takes a different value.

In that case, the topological term is given by

ip
2π

3

(
1 + J2

J1 + J2
− J2

J1(1 + δ) + J2

)
(Q1 − Q3). (E.14)

So θ1 = −θ3. As a consequence, R13 is still a symmetry. However, the topological angle deviates 
from p2π/3. If δ < 0, the bond is weakened and θ1 = −θ3 < p2π/3, while if δ > 0, the bond 
is strengthened and θ1 = −θ3 > p2π/3. Since θ �= p2π/3, the topological term is no longer 
invariant under Z3, or under R12 and R23.

If instead of R13, R12 or R23 was conserved, the topological term would become iθ
(
Q2 − Q1

)
≡ iθ

(− 2Q1 − Q3
)

or iθ
(
Q3 − Q2

)≡ iθ
(
Q1 + 2Q3

)
, respectively. Note that if two parity sym-

metries are conserved, then the Z3 and the third parity are conserved as well. This is easy to 
understand in terms of the symmetries of the spin model: if two different mirror symmetries are 
conserved, then the translation symmetry is also necessarily present.4 And vice versa, if Z3 sym-
metry is present, it necessarily means that the action is invariant under all three parities. In terms 

4 As we mentioned before, spin models are always invariant under a three site translation. If on top of that two inequiv-
alent mirror symmetries are present (i.e. not connected by the three site translation), invariance under two site translation 
and thus under one site translation follows as well.
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of the spin model, the translation symmetry implies the mirror symmetries as well. This is due 
to the form of the Heisenberg interaction, which satisfy Sα

β (i)S
β
α (j) = Sα

β (j)S
β
α (i).

The coefficient of the λ-term is also modified and becomes

p
2π

3

(
2J2

J1 + J2
− J1(1 + δ)

J1(1 + δ) + J2

)
(q12 + q23 + q31) , (E.15)

but since it was non-universal to begin with, this change is of no particular importance.

E.3. General form of the action

Assuming SU(3), gauge, and time reversal invariance of the action, one can show that there 
are no other possible terms with two derivatives apart from those appearing in Eqs. (E.5), or 
(E.9). A general term can be written φα(∗)

m φ
β(∗)
n ∂μφ

γ (∗)
o ∂νφ

δ(∗)
p , where (∗) means that it is ei-

ther complex conjugated or not. m, n, o, p index the three different fields, while the α, β, γ, δ
indices run through the components of the fields. Such a term would transform under the gauge 
transformation as

φα(∗)
n φβ(∗)

m ∂μφ
γ (∗)
o ∂νφ

δ(∗)
p

→ φα(∗)
m φβ(∗)

n ∂μφ
γ (∗)
o ∂νφ

δ(∗)
p e±iϑme±iϑne±iϑoe±iϑp

+ φα(∗)
m φβ(∗)

n φ
γ (∗)
o ∂νφ

δ(∗)
p e±iϑme±iϑn(±i∂μϑo)e

±iϑoe±iϑp

+ φα(∗)
m φβ(∗)

n ∂μφ
γ (∗)
o φδ(∗)

p e±iϑme±iϑne±iϑo (±i∂νϑp)e±iϑp

+ φα(∗)
m φβ(∗)

n φ
γ (∗)
o φδ(∗)

p e±iϑme±iϑn(±i∂μϑo)e
±iϑo (±i∂νϑp)e±iϑp .

(E.16)

For this term to be invariant there must be exactly two complex conjugates, and the field index of 
each complex conjugated field should be the same as one of the non conjugated ones, otherwise 
the e±iϑ phases wouldn’t cancel in the first term on the right hand side. Furthermore to conserve 
SU(3), the fields should form scalar products. With these restrictions, the possible terms are:

Aμ,ν
n,m

(
∂μ

�φ∗
n · ∂ν

�φn

)( �φ∗
m · �φm

)= Aμ,ν
n

(
∂μ

�φ∗
n · ∂ν

�φn

)
,

Bμ,ν
n,m

(
∂μ

�φ∗
n · �φn

)(
∂ν

�φ∗
m · �φm

)
,

Cμ,ν
n,m

(
∂μ

�φ∗
n · ∂ν

�φm

)( �φ∗
m · �φn

)= δm,nC
μ,ν
n,n

(
∂μ

�φ∗
n · ∂ν

�φn

)
,

Dμ,ν
n,m

(
∂μ

�φ∗
n · �φm

)(
∂ν

�φ∗
m · �φn

)
.

(E.17)

Note that the Cμ,ν
n,n term gives the same term as the Aμ,ν

n . The D-term is gauge invariant if m �= n, 
while the m = n case is already considered in the B-term. The other terms transform under the 
gauge transformation as

Aμ,ν
n

(
∂μ

�φ∗
n · ∂ν

�φn

)+ Aμ,ν
n

(
i∂νϑn∂μ

�φ∗
n · �φn + i∂μϑn∂ν

�φ∗
n · �φn + ∂μϑn∂νϑn

)
,

Bμ,ν
n,m

(
∂μ

�φ∗
n · �φn

)(
∂ν

�φ∗
m · �φm

)+ Bμ,ν
n,m

(− i∂μϑn∂ν
�φ∗
m · �φm − i∂νϑm∂μ

�φ∗
n · �φn − ∂μϑn∂νϑm

)
.

(E.18)

The A-term is gauge invariant in itself if Aμ,ν
n is antisymmetric in μ, ν. If m �= n, the B-term 

can’t be made gauge invariant, and there is no other possible term with which it would give a 
gauge invariant combination either. Note, however, that in the case m = n, setting Aμ,ν

n = B
μ,ν
n,n

leads to a gauge invariant combination. So the most general form of an SU(3) and gauge invariant 
term is given by
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εμνAn

(
∂μ

�φ∗
n · ∂ν

�φn

)+ Bμ,ν
n

[(
∂μ

�φ∗
n · ∂ν

�φn

)+ (
∂μ

�φ∗
n · �φn

)(
∂ν

�φ∗
n · �φn

)]
+ Dμ,ν

n,m(1 − δm,n)
(
∂μ

�φ∗
n · �φm

)(
∂ν

�φ∗
m · �φn

)
.

(E.19)

Under time reversal symmetry (for real time) this would transform as

−εμν(An)
∗(∂μ

�φ∗
n · ∂ν

�φn

)+ (−1)εμ,ν (Bμ,ν
n )∗

[(
∂μ

�φ∗
n · ∂ν

�φn

)+ (
∂μ

�φ∗
n · �φn

)(
∂ν

�φ∗
n · �φn

)]
+ (−1)εμ,ν (Dμ,ν

n,m)∗(1 − δm,n)
(
∂μ

�φ∗
n · �φm

)(
∂ν

�φ∗
m · �φn

)
.

(E.20)

The factor (−1) only appears if there is exactly one time derivative term. Based on these, for 
real time, we have An = −A∗

n, (Bμ,ν
n )∗ = (−1)εμ,ν (B

μ,ν
n ), and (Dμ,ν

m,n)
∗ = (−1)εμ,ν D

μ,ν
m,n. So An

should be imaginary for real time, hence real for imaginary time. Similarly, Dμ,μ and Bμ,μ are 
real, while Dμ,ν and Bμ,ν for μ �= ν are imaginary for real time (therefore all the elements of 
D

μ,ν
m,n and Bμ,ν

n are real in imaginary time). Furthermore, every term in the action should be real 
for real time t = −iτ . This constrains Dx,t

m,n = −D
t,x
m,n, as they are pure imaginary and they are 

coupled to terms which are complex conjugates of each other. Similarly Bx,t
n = −B

t,x
n has to be 

fulfilled, but these terms drop out since they are coupled to terms which are symmetric under 
x ↔ t . Hence finally we arrive at a general form

Dμ,μ
m,n (1 − δm,n)

(
∂μ

�φ∗
n · �φm

)(
∂μ

�φ∗
m · �φn

)+ Bμ,μ
n

[(
∂μ

�φ∗
n · ∂ν

�φn

)+ (
∂μ

�φ∗
n · �φn

)(
∂ν

�φ∗
n · �φn

)]
+ εμνAn

(
∂μ

�φ∗
n · ∂ν

�φn

)+ εm,nD
x,τ
m,n

(
∂μ

�φ∗
n · �φm

)(
∂ν

�φ∗
m · �φn

)
.

(E.21)

Note however that some of these terms are redundant. The Dμ,μ
m,n - and the Bμ,μ

n -terms both ex-
press the real part of the action. The Dμ,μ

m,n -terms correspond to the formulation in Eq. (E.5), 
while the Bμ,μ

n -terms actually give the form of the real part in Eq. (E.9). The transformation 
between the Dμ,μ

m,n and Bμ,ν
n parameters is similar to that in Eq. (E.10). The An-terms give the 

three topological charges (up to a factor of 2πi). As we mentioned before, since the three charges 
sum up to zero only two independent parameters remain. The Dx,τ

m,n-terms give the qm,n terms 
as defined in Eq. (4.10). In general, the Dx,τ

1,2 , Dx,τ
2,3 , Dx,τ

3,1 can have different values. Using the 
relation between the qmn quantities and the topological charges (Eq. (4.11)) the Dx,τ

m,n-terms give

2πi
(
D

x,τ
1,2 q12 + D

x,τ
2,3 q23 + D

x,τ
3,1 q31

)

= 2πi
D

x,τ
1,2 + D

x,τ
2,3 + D

x,τ
3,1

3
(q12 + q23 + q31) + 2πi

2D
x,τ
1,2 − D

x,τ
2,3 − D

x,τ
3,1

3
Q1

+ 2πi
D

x,τ
1,2 − 2D

x,τ
2,3 + D

x,τ
3,1

3
Q3

(E.22)

Thus, the Dxτ
m,n-terms actually give both the unusual imaginary λ-term and the topological terms. 

Therefore the An-terms are also redundant. Reviewing Eqs. (E.5) and (E.9), we find that those 
already have the most general form compatible with SU(3), gauge and time reversal invariance.

Appendix F. Details of renormalization group calculation

Throughout this appendix, lowercase Roman letters index the off-diagonal Gell–Mann Ma-
trices (GM), lowercase Greek letters index the diagonal GM, uppercase Roman letters index all 
eight GM, and repeated indices are summed over.
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F.1. Definitions and identities of SU(3) structure constants

We label the Gell–Mann matrices TA of SU(3), according to

T1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ T2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ T3 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠

T4 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ T5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠

T6 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ T7 =

⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠ T8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠

(F.1)

These matrices satisfy the su(3) algebra

[TA,TB ] = 2ifABCTC, (F.2)

where the fABC structure constants are fully antisymmetric. In what follows we prove various 
identities involving fABC . By construction, the Gell–Mann matrices satisfy

trTATB = 2δAB. (F.3)

Using the completeness of SU(3) generators,

(TA)ij (TA)kl = 2δi
l δ

k
j − 2

3
δi
j δ

k
l , (F.4)

we prove

fABCfABD = 3δCD. (F.5)

Proof: From (F.2) and (F.3)

tr
([TA,TB ][TA,TC])= tr

(
2TATBTATC − T 2

ATCTB − T 2
ATBTC

)= −8fABDfACD, (F.6)

then using (F.4) on the middle term:

tr
(
2TATBTATC − T 2

ATCTB − T 2
ATBTC

)
= 2(TA)ij (TB)

j
k(TA)kl (TC)li − (TA)ij (TA)

j
k(TCTB + TBTC)ki

= −4

3
trTBTC − 6 tr(TCTB + TBTC) + 2

3
tr(TCTB + TBTC)

= −12 trTBTC = −24δBC,

(F.7)

where in the last step, we used (F.3). This completes the proof.
Now we prove two partial completeness results:

fcγ afcγ b = δab. (F.8)

Proof: We write

fcγ afcγ b = fc3afc3b + fc8afc8b, (F.9)

with the structure constants f123 = 1, f345 = f376 = 1
2 , f458 = f678 =

√
3

2 . The first term in (F.9)
equals
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fc3afc3b = δa2δb2 + δa1δb1 + 1

4
δa5δb5 + 1

4
δa4δb4 + 1

4
δa6δb6 + 1

4
δa7δb7 (F.10)

and the second term equals:

fc8afc8b = 3

4
(δa5δb5 + δa4δb4 + δa6δb6 + δa7δb7) . (F.11)

Adding (F.10) and (F.11) completes the proof.
The second partial completeness result is

fabCfabD =
{

δCD if C = c is off diagonal,

3δCD if C = γ is diagonal.
(F.12)

Proof: Expand (F.5) as

3δCD = fABCfABD = fabCfabD + 2faβCfaβD. (F.13)

If C = γ is a diagonal index, the second term vanishes, and the second case of (F.12) follows. 
If C is off-diagonal, the second term gives 2δCD according to (F.8), which proves the first case 
of (F.12).

Next, the Jacobi Identity

[TA, [TB,TC]] + [TB, [TC,TA]] + [TC, [TA,TB ]] = 0 (F.14)

gives us an identity for the structure constants,

fADEfBCD + fBDEfCAD + fCDEfABD = 0. (F.15)

Finally, using this Jacobi identity, we prove

faγ dfbγ efCde =
{

1
2fabC if C = c is off-diagonal,

fabC if C = ρ is diagonal.
(F.16)

Proof: A special case of the Jacobi identity is:

fCdefbγ e + fCγ efdbe = fCbefdγ e. (F.17)

Now we multiply this Jacoby identity by fdγ a and sum over d , γ ,

fdγ afCdefbγ e + fdγ afCγ efdbe = fdγ afCbefdγ e = fCba, (F.18)

where we used (F.8) on the RHS. Now, if C is diagonal, the second term on the LHS vanishes, 
and we prove case 2. If C is off-diagonal, the two terms on the LHS of (F.18) are equal, which 
can be checked, term by term. This proves case 1.

F.2. Polyakov’s renormalization of O(N) nonlinear σ -model

We review Polyakov’s calculation of the beta function for the O(N) nonlinear σ -model [45],

L = 1

2g
|∂μ�n|2. (F.19)

The idea is to construct a ‘slow’ unit vector �ns out of �n’s momentum modes below b�, where 
� is a reduced cutoff, and b � 1. The remaining modes of �n can then be written in terms of an 
orthonormal basis {�ea}, orthogonal to �ns :



M. Lajkó et al. / Nuclear Physics B 924 (2017) 508–577 561
�n = �ns(1 − φ2)1/2 +
N−1∑
a=1

φa�ea, (F.20)

where φ2 = ∑N−1
a=1 φaφa . The fields φa consist entirely of ‘fast’ modes, with momentum lying 

in the Wilson shell [b�, �). Integration over the shell is then equivalent to integrating out the 
fields φa . Inserting this expansion (F.20) into L gives (to quadratic order in φa)

2gL = (∂μ�ns)
2(1 −φ2)+ (∂μφa)

2 +φaφb∂μ�ea · ∂μ�eb + 2φa∂μφb∂μ�ea · �eb − 2φa∂
2
μ�ns · �ea .

(F.21)

A naive argument would claim that the term linear in φa can be neglected, since ns, ea contain 
slow modes only. However, their product will generically have modes lying in the Wilson shell; 
a better argument is presented in (F.5). Dropping linear terms, we are left to evaluate the Gaussian 
integral∫

D[φ] exp

[
− 1

2g

∫
d2x

[
(∂μ�ns)

2(1 − φ2) + (∂μφa)
2

+ φaφb∂μ�ea · ∂μ�eb + 2φa∂μφb∂μ�ea · �eb

]]
.

(F.22)

Using∫
D[φ] =

∫ ∏
b�<k<�

Dφ(k)Dφ(−k) (F.23)

the effective Lagrangian is

2gLeff =(∂μ�ns)
2

+ g tr
[
log

(
δab − Gabδab(∂μ�ns)

2 + Gab∂μ�ea · ∂μ�eb + 2∂μGab∂μ�ea · �eb

)]
,

(F.24)

where Gab(x) is the Green’s function of the fields φa . Since terms involving more than two 
derivatives of slow fields are irrelevant, we can expand the trace-logarithm:

tr log
[
δab − Gabδab(∂μ�ns)

2 + Gab∂μ�ea · ∂μ�eb + 2∂μGab∂μ�ea · �eb

]
= −

∫
d2x Gab(0)δab(∂μ�ns)

2 +
∫

d2x Gab(0)(∂μ�ea · ∂μ�eb)

+ 2
∫

d2x ∂μGab(0)∂μ�ea · �eb

− 1

2
4
∫

d2xd2y ∂μG(x − y)[∂μ�ea · �eb](x), ∂νG(y − x)[∂ν �eb · �ea](y) + irrelevant,

(F.25)

where we defined G(x) by Gab(x) = δabG(x).) The third term vanishes since

∂μG(0) = −i

∫
d2k

2

kμ

2
= 0. (F.26)
(2π) k
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Rewriting G(0) = ∫
b�<k<�

d2k

(2π)2
δab

k2 , the expansion in (F.25) reduces to

=
∫

b�<k<�

d2k

(2π)2

1

k2

∫
d2x

(
− (N − 1)(∂μ�ns)

2 + (∂μ�ea · ∂μ�ea)
)

− 2
∫

d2kd2q

(2π)4

kμ

k2

(q + k)ν

(q + k)2
[∂μ�ea · �eb](q)[∂ν �eb · �ea](−q) + irrelevant,

(F.27)

where we Fourier transformed the last term, and both �k and �k + �q lie in the Wilson shell [b�, �). 
Now we expand 

∫
b�<|�q+�k|<�

(q+k)ν
(q+k)2 in powers of q , and keep the zeroth order term only, since 

terms with more powers of q will correspond to irrelevant operators:∫
d2kd2q

(2π)4

kμ

k2

(q + k)ν

(q + k)2
=
∫

d2kd2q

(2π)4

kμkν

k4
+ irrelevant = 1

2

∫
d2kd2q

(2π)4

1

k2
+ irrelevant.

(F.28)

Inserting this expansion into (F.27), and integrating over k, the effective Lagrangian becomes

2gLeff = (∂μns)
2 + g logb

π

[
(N − 1)(∂μ�ns)

2 − ∂μ�ea · ∂μ�ea + (∂μ�ea · �eb)
2
]
. (F.29)

Finally, we insert a complete set of states to obtain the identity

(∂μ�ea)
2 = ∂μei

a∂μe
j
a

[
ei
be

j
b + ni

sn
j
s

]
= (∂μ�ea · �eb)

2 + (∂μ�ea · �ns)
2

= (∂μ�ea · �eb)
2 + (∂μ�ns)

2
(F.30)

since �ns · �ea = 0. Thus,

Leff = 1

2g
(∂μ�ns)

2
[

1 + g
(N − 2)

2π
logb

]
. (F.31)

From this, we conclude

β(g) = dg

d logb
= − (N − 2)

2π
g2. (F.32)

F.3. Polyakov’s renormalization in SU(2) language

In F.2, the RG calculation relied on an expansion of the field �n in terms of ‘slow’ and ‘fast’ 
components:

�n = �ns(1 − φ2)1/2 +
2∑

a=1

φa�ea. (F.33)

We would like to generalize this to matrix field theories, by writing

U = Uf Us (F.34)

for U, Uf , Us ∈ SU(n) , where Uf contains the fast modes of U , and Us the slow modes. Rewrit-
ing the O(3) nonlinear σ -model in terms of SU(2) matrices,

�n · �σ = U†σzU U ∈ SU(2), (F.35)
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we prove that (F.34) is equivalent to (F.20) in the SU(2) case. We expand the fast matrix as

Uf = I + iθaσa − θaθbσaσb +O(θ3) (F.36)

and only keep terms up to quadratic order in θ (higher order terms will correspond to diagrams 
beyond one loop). Now

U†σzU = U†
s Uf σzUf Us

= U†
s

(
I − iθaTa − 1

2
θaθbTaTb

)
σz

(
I + iθaTa − 1

2
θaθbTaTb

)
Us

= U†
s σzUs − θaθbU

†
s σzTaTbUs + iθaU

†
s [σz, Ta]Us − 1

2
θaθbU

†
s {TaTb, σz}Us

= U
†
SσzUs(1 − 2θ2) + −2θxU

†
s σyUs + 2θyU

†
s σxUs. (F.37)

Defining

�e1 = tr
1

2
�σU†

s σyUs, �e2 = 1

2
tr �σU†

s σxUs, (φ1, φ2) = (2θy,−2θx), (F.38)

we find

�σ · �n = �σ · �ns(1 − 1

2
φ2) + φ1U

†
s σyUs + φ2U

†
s σxUs. (F.39)

To read off the components of n, we use

na = 1

2
trσa �σ · �n = 1

2
trσaU†σzU. (F.40)

So applying 1
2 trσ to the above expression, we find

�n = �ns(1 − 1

2
φ2) + φ1

1

2
tr �σU†

s σyUs + φ2
1

2
tr �σU†

s σxUs

= �ns(1 − φ2)1/2 +
2∑

a=1

φa�ea +O(φ3).

(F.41)

Finally, we check that we’ve found an orthonormal basis:

�e1 · �e2 = 1

2
tr(�e1 · �σ)(�e2 · �σ) = 1

2
trU†

s σyUsU
†
s σxUs = 0,

�ns · �ea = 1

2
tr(σ · �ns �σ · �ea) = 1

2
trU†

s σzUsU
†
s σaUs = 0.

(F.42)

Therefore, our expansion (F.34) is equivalent to Polyakov’s expansion (F.20).

F.4. Rewriting the Lagrangian

We rewrite �j in terms of T3, T8 and I , and expand the two terms of the imaginary time 
Lagrangian. Our results are (F.47) and (F.54).
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Real part:
We start with

L = −
3∑

j=1

tr∂μUU†�j∂μUU†�j+1. (F.43)

This can be rewritten as

L = −(1/2)

3∑
j=1

tr∂μ(U†�jU)∂μ(U†�j+1U) (F.44)

since tr
(
∂μU∂μU†�j�j+1

)= 0. Note that

6�1 = √
3T8 + 2I + 3T3,

6�2 = √
3T8 + 2I − 3T3,

3�3 = I − √
3T8,

(F.45)

where I is the identity matrix. Substituting this into Eq. (F.44), we may drop the I terms since 
∂μ(U†U) = 0. Thus

36L= − (1/2)∂μ[U†(
√

3T8 + 3T3)U ]∂μ[U†(
√

3T8 − 3T3)U ]
− ∂μ[U†(

√
3T8 − 3T3)U ]∂μ[U†(−√

3T8)U ]
− ∂μ[U†(−√

3T8)U ]∂μ[U†(
√

3T8 + 3T3)U ].
(F.46)

Collecting terms,

L = (1/8)tr∂μ[U†Tγ U)]∂μ[U†Tγ U)]. (F.47)

This result doesn’t depend on how we choose the diagonal Gell–Mann matrices. Note that the 
diagonal matrix elements of the two diagonal Gell–Mann matrices together with 

√
2/3I form a 

complete orthogonal set of real vectors with norm 
√

2. Thus:∑
γ

(Tγ )ii(Tγ )
j
j = 2δij − 2

3
. (F.48)

Thus we may also write:

L = (1/8)
∑
i,j,k

∂μ[(U†)ijU
j
k]∂μ[(U†)kjU

j
i]. (F.49)

The 2/3 term can be dropped because it gives a term containing ∂μ(U†U). The same result is 
obtained with any basis of diagonal Gell–Mann matrices which obey the same completeness 
condition and the same normalization.

Imaginary λ-term:
We start with

−εμν

3∑
j=1

tr ∂μUU†�j∂νUU†�j+1 (F.50)

and use (F.45). Defining Nμ := ∂μUU†, we have
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36 trNμ�1Nν�2 = trNμ(
√

3T8 + 2I + 3T3)Nν(
√

3T8 + 2I − 3T3)

= 2
√

3 trNμNνT8 + 3
√

3 trNμT3NνT8 + 2
√

3 trNμT8Nν

+ 6 trNμT3Nν − 3
√

3 trNμT8NνT3 − 6 trNμNνT3

= − 12 trNμNνT3 − 6
√

3 trNμT8NνT3

(F.51)

and

36 trNμ�2Nν�3 = 2 trNμ(
√

3T8 + 2I − 3T3)Nν(I − √
3T8)

= 2
√

3 trNμT8Nν − 6 trNμT3Nν

− 4
√

3 trNμNνT8 + 6
√

3 trNμT3NνT8

= 6 trNμNνT3 − 6
√

3 trNμNνT8 − 6
√

3 trNμT8NνT3

(F.52)

and

36 trNμ�3Nν�1 = 2 trNμ(I − √
3T8)Nν(

√
3T8 + 2I + 3T3)

= 6
√

3 trNμNνT8 + 6 trNμNνT3 − 6
√

3 trNμT8NνT3.
(F.53)

Taking the sum of all three, we find

36εμν

3∑
j=1

tr ∂μUU†�j∂νUU†�j+1 = −18
√

3 tr ∂μUU†T8∂μUU†T3. (F.54)

F.5. Discussion of linear terms

Both terms in the Lagrangian in (6.3) have pieces linear in the fast fields θa . After integration 
by parts, they are of the form

θaFa(�x) (F.55)

where Fa(�x) is a function of the slow matrices Us , and involves two derivatives. Naively, we 
may argue that 

∫
d2xθaFa(�x) = 0, since θa only contains fast modes, while Fa is made of slow 

functions. However, since Fa contains products of slow modes, it will generically have some fast 
modes; thus a different argument is required to justify neglecting these terms.

Argument 1: Upon integrating out the fast fields, the contribution to Leff is

δL = 1

2

∫
d2 �xd2 �yFa(�x)Gab(�x − �y)Fb(�y) (F.56)

where Gab(�x) is the Green’s function of the θ fields. In �k-space, this is

δL(�k) = 1

2

∫
b�<|�k|<�

d2�k
(2π)2

1

k2
Fa(�k)Fa(−�k) (F.57)

because the θ fields only have momentum modes in the Wilson shell. Since F(�k) involves no 
more than four slow fields, k is restricted to |k| < 4�̃, where �̃ := b� and � is a reduced cutoff. 
Following Polyakov [45], we will take the limit �̃ → 0, and argue that |δL(�k)| → 0. Indeed, 
since Fa(�k) contains two derivatives of slow modes,

|F(�k)| < �̃2|F̃ (�k)| (F.58)
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for some operator F̃ (�k) involving up to four slow fields, without derivatives. Therefore,

|δL| < 3

2
�̃3 max

�̃<|k|<4�̃

|F̃ (�k)||F̃ (−�k)|. (F.59)

Since F̃ (�k) just involves products of slow fields, this maximum should be bounded by some �̃
independent constant. �̃ → 0, say max0<|k|<�|F(�k)||F̃ (−�k)|. Therefore |δL| vanishes as �̃3. 
This is to be compared with the marginal kinetic term, (∂μθa)

2, which only vanishes as �̃2. This 
agrees with our naive intuition, that since Fa(�x) involves two derivatives, δL should consist of 
irrelevant operators; however, we are more careful here, since the momenta of Gab(�x − �y) in 
(F.56) is restricted to the Wilson shell.

Argument 2:
In the perturbative Lagrangian in (6.1), the leading term that arises from θa(x)Fa(x) will 

correspond to a Feynman diagram with a single internal line. Since the leading g-dependent in-
teraction is a four-point vertex, the simplest O(λ) diagram arising from θa(x)Fa(x) will serve 
to renormalize a five-point or six-point interaction in (6.1). Such diagrams can be excluded from 
a first-order perturbative calculation of β(g) and β(λ), which consider the four-point and three-
point interactions, respectively.

F.6. Calculation of β functions

We begin by studying the two terms of (6.3) separately.

First term of (6.3):
Start by inserting U = Uf Us into the first term of (6.3), and expanding Uf = I + iθaTa −

1
2θaθbTaTb +O(θ3). Then

U
†
f Tγ Uf = Tγ − iθa[Ta,Tγ ] + θaθbTaTγ Tb − 1

2
θaθb{TaTb,Tγ }. (F.60)

The quadratic term can be simplified by noting that since θaθb is symmetric in a and b,

θaθb

(
TaTγ Tb − 1

2
{TaTb,Tγ }

)
= 1

4
θaθb

([Ta, [Tγ ,Tb]] + [Tb, [Tγ ,Ta]]
)
. (F.61)

Now using (F.2), and defining

habγD = (
facDfγbc + fbcDfγac

)
MA := U†

s TAUs (F.62)

we obtain

U†Tγ U = Mγ + 2faγ bθaMb − θaθbhabγDMD. (F.63)

Derivatives and traces are now taken, resulting in

tr(∂μ[U†Tγ U ])2

= tr(∂μMγ )2 + 4faγ cfbγ d∂μθa∂μθb trMcMd + 4faγ cfbγ dθaθb tr ∂μMc∂μMd

+ 4faγ b∂μθa tr ∂μMγ Mb + 4faγ bθa tr ∂μMγ ∂μMb + 8faγ cfbγ d∂μθaθb trMc∂μMd

− 4∂μθaθbhabγD tr ∂μMγ MD − 2θaθbhabγD tr ∂μMγ ∂μMD +O(θ3).

(F.64)
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We can simplify some terms. Using (F.3)

trMcMd = trU†
s TcUsU

†
s TdUs = trTcTd = 2δcd . (F.65)

Additionally,

trMA∂μMB = trUs∂μU†
s TBTA + tr ∂μUsU

†
s TATB

= tr ∂μUsU
†
s [TA,TB ]

= 2ifABC tr ∂μUsU
†
s TC

(F.66)

and

habγDfDγC = −fDaEfbγEfDγC − fDbEfaγEfDγC = 0 (F.67)

imply that the term proportional to ∂μθaθbhabγD vanishes. The result is

(∂μ[U†Tγ U ])2 = tr(∂μMγ )2 + 8(∂μθa)
2 + 4faγ cfbγ dθaθb tr ∂μMc∂μMd

+ 8ifabe∂μθaθb tr ∂μUsU
†
s Te + 16ifabρ∂μθaθb tr ∂μUsU

†
s Tρ

− 2θaθbhabγD tr ∂μMγ ∂μMD

(F.68)

plus linear terms in θa and higher order corrections. Based on F.5, these linear terms can be 
ignored. Therefore, to quadratic order in θa , the first term of (6.3) can be written as

1

8g
tr ∂μ[U†Tγ U ]∂μ[U†Tγ U ]

= 1

8g
tr(∂μMγ )2 + 1

8g

[
8(∂μθa)

2 + 4faγCfbγDθaθb tr ∂μMC∂μMD

+ 8ifabe∂μθaθb tr ∂μUsU
†
s Te + 16ifabρ∂μθaθb tr ∂μUsU

†
s Tρ

− 2θaθbhabγD tr ∂μMγ ∂μMD

]
.

(F.69)

Second term of (6.3):
We now want to perform the same expansion of Uf to simplify the second term of (6.3). 

Define

Lq := εμν tr ∂μUU†T8∂νUU†T3, Nμ := ∂μUsU
†
s . (F.70)

Then we have

Lq = εμν tr ∂μUf U
†
f T8∂νUf U

†
f T3 + εμν tr ∂μUf U

†
f T8Uf NνU

†
f T3

+ εμν trNμU
†
f T8∂νUf U

†
f T3Uf + εμν trNμU

†
f T8Uf NνU

†
f T3Uf .

(F.71)

Using (F.63), this is

Lq = εμν tr ∂μUf U
†
f T8∂νUf U

†
f T3

+ εμν tr ∂μUf (T8 + 2fa8bθaTb − θaθbhab8DTD)NνU
†
f T3

+ εμν trNμU
†
f T8∂νUf (T3 + 2fa3bθaTb − θaθbhab3DTD)

+ εμν trNμ(T8 + 2fa8bθaTb

− θ θ h T )N (T + 2f θ T − θ θ h T ).

(F.72)
a b ab8D D ν 3 a3b a b a b ab3D D
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Expanding the remaining Uf , and dropping a term proportional to∂μθa∂νθbεμν which vanishes 
after Fourier transforming, we find

λLq = εμνλ

√
3

2

[
trNμT8NνT3 + ∂μθaθb trNνTb [T3TaT8 − T8TaT3]

+ 1

2
∂μ(θaθb) trNν[T8TaTbT3 − T3TaTbT8]

+ θaθb

(
4fb3dfa8c trNμTcNνTd + trNνTDNμ [hab8DT3 − hab3DT8]

)
+ 2i∂μθaθb trTaTcNν

[
fb8cT3 − fb3cT8

]]
. (F.73)

Integration:
Using (F.69) and (F.73) in (6.3), we will evaluate the following Gaussian integral:∫

D[φ]e− ∫
d2x(L−L0) = Ne− 1

2 tr log
∫
O (F.74)

where O is a formal expression involving the Green’s functions of θa . Following the steps in F.2, 
we expand the tr log to second order, since higher-order terms will involve more than two deriva-
tives acting on the Us , and correspond to irrelevant operators. The slow functions appearing in 
the linear term of this expansion can be replaced by their averages, as in (F.25). Meanwhile, the 
quadratic terms of the tr log can be approximated using (F.28). Notice that terms proportional to 
∂μθaθb do not contribute to linear order, according to (F.26). The result is

tr logO =
∫

d2x

(∫
d2k

(2π)2

[
1

2k2
faγCfaγD tr ∂μMC∂μMD − 1

4k2
haaγD tr ∂μMγ ∂μMD

]

− 1

2

∫
d2k

(2π)2

kμkν

k4
tr
(
fabE trNμTE + fabρ trNμTρ

)2

+
√

3

2

∫
d2k

(2π)2

[ 2

gk2
λfa3dfa8cεμν trNμTcNνTd

+ g

2k2
λεμν trNνTDNμ[haa8dT3 − haa3DT8]

]
(F.75)

+
√

3

2
λg

∫
d2k

(2π)2

kμkρερν

k4

[
fabE trNμTE + fabγ trNμTγ

]

×
[
+ i

2
[trTbT8NνTaT3 − trNνTaT8TbT3] − trNν

[
fa8cT3TbTc − fa3cT8TbTc

]
+ i

4
trNν [T8{Ta,Tb}T3 − T3{Ta,Tb}T8]

])
+ higher order corrections.

Here the integration over k is restricted to the Wilson shell. The first line can be simplified using 
haaγD = 6δγD , and (F.8). The second line can be simplified using

tr
(
fabE trNμTE + fabρ trNμTρ

)2 = −12(trNμTγ )2 − (trNμTa)
2. (F.76)

The third line can be simplified too. Since fa8cfa3d vanishes unless c = d , the first term is 
proportional to εμν trNμTcNνTc = 0. Using haaγD = 6δγD , the whole third line is
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3
√

3gλεμν

∫
d2k

(2π)2

1

k2
trNνT8NμT3. (F.77)

The last line can be dropped, since it is symmetric in a, b and multiplies terms proportional to 
fabγ . Finally, we use the momentum-shell integrals∫

b�<k<�

d2k

(2π)2

1

k2
= −1

2π
logb

∫
b�<k<�

d2k
kμkν

k4
g(k2) =

∫
d2k

1

2k2
g(k2) (F.78)

for a general function g(k2). At last, we arrive at

tr logO ≈
∫

d2x

[
− logb

4π

[
tr(∂μMc)

2 − 3 tr(∂μMγ )2
]

− logb

8π
tr
(

12(trNμTA)2 − 11(trNμTa)
2
)

− 3

2

√
3(logb)gλεμν trNνT8NμT3

+ i

√
3

2

εμνλg logb

8π

[
fabE trNμTE + fabγ trNμTγ

]
(F.79)

×
[
[trNνTaT3TbT8 − trNνTaT8TbT3]

+ 2i trNν

[
fa8cT3TbTc − fa3cT8TbTc

]]]
.

To proceed, we use a variety of identities, proven in F.7. The identities (F.90) and (F.96) let us 
rewrite the first line as

5 logb

16π
tr(∂μMγ )2. (F.80)

Now consider the last term:

A := i

√
3

2

εμνλg logb

8π

[
fabE trNμTE + fabγ trNμTγ

]

×
[

[trNνTaT3TbT8 − trNνTaT8TbT3] + 2i trNν

[
fa8cT3TbTc − fa3cT8TbTc

]]
.

(F.81)

The first term of the second line is simplified using (F.99). Then antisymmetry in a and b imply

A = −
√

3

2

εμνλg logb

8π

[
fabE trNμTE + fabγ trNμTγ

]

×
[
f3bc trNν[TaTcT8 − T8TaTc] + f8bc trNν[T3TaTc − TaTcT3]

+ f3ac trNν[T8TbTc − TbTcT8] + f8ac trNν[TbTcT3 − T3TbTc]
]
.

(F.82)
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Now we use (F.101) to simplify this to:

A = −√
3i

εμνλg logb

8π

[
fabE trNμTE + fabγ trNμTγ

]

× trNνTdTc

[
f3bcfa8d + f8bcf3ad + f3acf8bd + f8acfb3d

]
. (F.83)

Recognizing the antisymmetry, this is

A = −√
32i

εμνλg logb

4π
trNνTdTc

[
fabE trNμTE +fabγ trNμTγ

](
f8bcf3ad +f3acf8bd

)
.

(F.84)

Now we use (F.103). The result is

A =
√

3

2
i
εμν

√
3λg logb

2π

[
trNμT1 trNνT2 − trNμT4 trNνT5 + trNμT6 trNνT7

]
. (F.85)

Now we need to prove that the operator appear here is proportional to Lq

0. This is (F.108):

εμν

[
trNμT1 trNνT2 − trNμT4 trNνT5 + trNμT6 trNνT7

]
= −i

√
3 trNμT8NνT3. (F.86)

Therefore,

A = λ

√
3

4

3g logb

4π
εμν trNμT8NνT3. (F.87)

Now we return to the Lagrangian, which requires dividing (F.79) by 2. Using (F.87) and (F.80), 
this is

L = 1

8g

(
1 + g

5 logb

16π

)
tr ∂μMγ ∂μMγ +

√
3

2
λεμν trNμT8NνT3

[
1+ 3g

2π
logb+ g logb

4π
3
]
.

(F.88)

This allows for the identification of

λeff = λ

(
1 + 9g

4π
logb

)
geff = g

(
1 + 5g logb

4π

)−1

(F.89)

from which we can read off the β functions:

F.7. Additional identities

Identity 1∑
A

tr(∂μMA)2 = −6
∑
A

(trNμTA)2. (F.90)

Proof: Using (F.4),

(MB)ij (MB)kl = (U†
s )in(TB)nm(Us)

m
j (U†

s )kp(TB)
p
q (Us)

q
l (F.91)

= (U†
s )in(Us)

q
l (Us)

m
j (U†

s )kp

[
2δn

qδ
p
m − 2

δn
mδ

p
q

]
= 2δi

l δ
k
j − 2

δi
j δ

k
l .
3 3
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Also, using (F.66):

trMB∂μMA = 2ifBAC tr ∂μUsU
†
s TC. (F.92)

On the one hand:∑
A,B

(trMB∂μMA)2 =
∑
A,B

(MB)ij (∂μMA)
j
i (MB)kl (∂μMA)lk (F.93)

=
∑
A

(∂μMA)
j
i (∂μMA)lk

[
2δi

l δ
k
j − 2

3
δi
j δ

k
l

]
= 2

∑
A

tr(∂μMA)2 − 2

3
(tr ∂μMA)2

= 2
∑
A

tr(∂μMA)2 (F.94)

since tr∂μMa = ∂μ trTa = 0. On the other hand∑
A,B

(trMB∂μMA)2 = −4
∑

A,B,C,D

fBACfBAD(trNμTC)(trNμTD)

= −12
∑
C

(tr ∂μUsU
†
s TC)2.

(F.95)

This proves (F.90).

Identity 2

−2
∑

c

(trNμTc)
2 =

∑
γ

tr(∂μMγ )2. (F.96)

Proof: Follow the proof of (F.90), but reduce the summation over A to being a diagonal summa-
tion. On one hand,∑

γ,B

(trMB∂μMγ )2 =
∑
γ,B

(MB)ij (∂μMγ )
j
i (MB)kl (∂μMγ )lk

=
∑
γ

(∂μMγ )
j
i (∂μMγ )lk

[
2δi

l δ
k
j − 2

3
δi
j δ

k
l

]

= 2
∑
A

tr(∂μMγ )2 − 2

3
(tr ∂μMγ )2 = 2

∑
γ

tr(∂μMγ )2.

(F.97)

On the other hand∑
γ,B

(trMB∂μMγ )2 = −4
∑

γ,B,C,D

fBγ cfBγd(trNμTc)(trNμTd)

= −4
∑

c

(tr ∂μUsU
†
s Tc)

2
(F.98)

where we used (F.8). This proves (F.96).

Identity 3

trNνTa [T3TbT8 − T8TbT3] = 2i trNνTa (f3bcTcT8 − f8bcTcT3) . (F.99)

Proof: This follows from:



572 M. Lajkó et al. / Nuclear Physics B 924 (2017) 508–577
T3TaT8 = [T3, Ta]T8 + TaT3T8 = 2if3acTcT8 + 1√
3
TaT3. (F.100)

Identity 4

f3bc trNν[TaTcT8 − T8TaTc] + f8bc trNν[T3TaTc − TaTcT3]
+ f3ac trNν[T8TbTc − TbTcT8] + f8ac trNν[TbTcT3 − T3TbTc]
= 2i trNνTdTc

[
f3bcfa8d + f8bcf3ad + f3acf8bd + f8acfb3d

]
.

(F.101)

Proof: Rewrite the LHS as

f3bc trNν[TaTc, T8] + f8bc trNν[T3, TaTc] + f3ac trNν[T8, TbTc] + f8ac trNν[TbTc, T3]
(F.102)

which can be rewritten as

f3bc trNν (Ta[Tc, T8] + [Ta,T8]Tc) + f8bc trNν ([T3, Ta]Tc + Ta[T3, Tc])
+ f3ac trNν ([T8, Tb]Tc + Tb[T8, Tc]) + f8ac trNν (Tb[Tc, T3] + [Tb,T3]Tc) .

Replacing commutators with structure constants gives

= 2i
[
f3bc trNν (Tafc8dTd + fa8dTdTc) + f8bc trNν (f3adTdTc + Taf3cdTd)

+ f3ac trNν (f8bdTdTc + Tbf8cdTd) + f8ac trNν (Tbfc3dTd + fb3dTdTc)
]

which can be reorganized into

= 2i
[
f3bcfc8d trNνTaTd + f3bcfa8d trNνTdTc + f8bcf3ad trNνTdTc

+ f8bcf3cd trNνTaTd + f3acf8bd trNνTdTc + f3acf8cd trNνTbTd

+ f8acfc3d trNνTbTd + f8acfb3d trNνTdTc

]
.

Now, terms of the form f3bcfc8d vanish unless b = d . This means the first and fourth terms 
cancel. Likewise, the sixth and seventh terms cancel. What remains is

= 2i
[
f3bcfa8d trNνTdTc +f8bcf3ad trNνTdTc +f3acf8bd trNνTdTc +f8acfb3d trNνTdTc

]
.

Identity 5

εμν trNνTdTc

[
fabE trNμTE + fabγ trNμTγ

](
f8bcf3ad + f3acf8bd

)
= −εμν

√
3
[

trNμT1 trNνT2 − trNμT4 trNνT5 + trNμT6 trNνT7

] (F.103)

Proof: We check explicitly that the term

fabE

(
f8bcf3ad + f3acf8bd

)
(F.104)

vanishes unless E is diagonal. In fact, it is either zero or ±
√

3
4 . We find the LHS of (F.103) equals

=
√

3

4
εμν

[
trNμT1 trNν({T4, T7} − {T5, T6}) + trNμT2 trNν({T4, T6} + {T5, T7})

+ trNμT4 trNν({T1, T7} + {T2, T6}) + trNμT5 trNν({T2, T7} − {T1, T6}) (F.105)

+ trNμT6 trNν({T2, T4} − {T1, T5}) + trNμT7 trNν({T1, T4} + {T5, T2})
]
.
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Using

{T5, T6} = −{T4, T7} = T2, {T4, T6} = {T5, T7} = T1,

{T1, T7} = {T2, T6} = T5, {T1, T6} = −{T2, T7} = T4,

{T1, T5} = −{T2, T4} = T7, {T1, T4} = {T5, T2} = T6,

(F.106)

the LHS of (F.103) becomes

=
√

3

2
εμν

[
− trNμT1 trNνT2 + trNμT2 trNνT1 + trNμT4 trNνT5

− trNμT5 trNνT4 − trNμT6 trNνT7 + trNμT7 trNνT6

]
.

(F.107)

The εμν tensor allows us to combine these terms, proving (F.103).

Identity 6

εμν

[
trNμT1 trNνT2 − trNμT4 trNνT5 + trNμT6 trNνT7

]
= −i

√
3 trNμT8NνT3. (F.108)

Proof: First note that

trNμT1 = [Nμ]ij [T1]ji = [Nμ]21 + [Nμ]12,

trNνT2 = [Nν]ij [T2]ji = −i[Nν]21 + i[Nν]12,
(F.109)

so

εμν trNμT1 trNνT2 = iεμν

[[Nμ]21 + [Nμ]12
]

[−[Nν]21 + [Nν]12]

= iεμν

([Nμ]21[Nν]12 − [Nμ]21[Nν]21

+ [Nμ]12[Nν]12 − [Nμ]12[Nν]21
)

= 2iεμν[Nμ]21[Nν]12.

(F.110)

Similar results hold for T4, T5, T6, T7. Therefore the LHS of (F.108) is

2iεμν

[
[Nμ]21[Nν]12 − [Nμ]31[Nν]13 + [Nμ]32[Nν]23

]
= 2iεμν

3∑
j=1

trNμ�jNν�j+1.

(F.111)

Now, the proof of (F.47) with U replaced by Us , shows that this equals

−i
√

3εμν trNμT8NνT3. (F.112)

Appendix G. Factorization of SU(3) matrices

Since the Lagrangian (4.6) is invariant under (5.1), the factorization

U = eiθγ Tγ eiθaTa U ∈ SU(3) (G.1)

would allow for L to be written purely in terms of the θa . Though we believe (G.1) is true in 
general, our calculations only require a factorization to hold to cubic order in θa , and this is what 
we prove here. We have
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eiθATA − eiθαTα eiθaTa = −(1/2)θAθBTATB

+ (1/2)θαθβTαTβ + (1/2)θaθbTaTb + θαθaTαTa + O(θ3)

= (1/2)θaθα[Tα,Ta] + O(θ3) = ifαabθaθαTb + O(θ3).

(G.2)

To correct this O(θ2) error, add a correction to θa in eiθaTa of O(θ2)called δθa . Then:

eiθATA − eiθαTα ei(θa+δθa)Ta = ifαabθaθαTb − iδθbTb + O(θ3). (G.3)

By choosing

δθb = fαabθaθα (G.4)

we make the identity true to second order.
Now, let’s make it true to 3rd order. Let’s calculate the O(θ3) term in Eq. (G.3). The 3rd order 

term in Eq. (G.2) is:

i

6
[−θAθBθCTATBTC + θαθβθγ TαTβTγ + θaθbθcTaTbTc

+ 3θαθβθaTαTβTa + 3θαθaθbTαTaTb]
= i

6
[θαθβθa(2TαTβTa − TαTaTβ − TaTαTβ) + θαθaθb(2TαTaTb − TaTαTb − TaTbTα)]

= i

6
{θαθβθa(2Tα[Tβ,Ta] + [Tα,Ta]Tβ) + θαθaθb(2[TαTa]Tb + Ta[Tα,Tb])}.

(G.5)

This can be written:

i

3
[θαθβθa(2ifβacTαTc + ifαacTcTβ) + θαθaθb(2ifαacTcTb + ifαbcTaTc)] (G.6)

The δθaθB cross term in Eq. (G.3) is:

θαδθaTαTa + (1/2)θaδθb{Ta,Tb} = θαfβcaθβθcTαTa + (1/2)θafβcbθβθc{Ta,Tb} (G.7)

The sum of O(θ3) terms in Eq. (2) is:

(1/3)θαθβθafβac[Tα,Tc] + (1/6)θαθaθbfαac[Tb,Tc]
= [(2/3)fβacfαcDθαθβθa + (1/6)fαacfbcDθαθaθb]TD.

(G.8)

(In the first term, D can be restricted to d , off-diagonal terms.) The important thing about this re-
sult is that all terms are proportional to TD . Therefore, we can add a cubic correction to Eq. (G.3)
to made the factorization work:

eiθATA = eiφαTα eiφaTa (G.9)

where

φα = θα + (1/6)fβacfbcαθβθaθb + O(θ4)

φa = θa + fαbaθbθα + [(2/3)fβdcfαcaθαθβθd + (1/6)fαdcfbcaθαθdθb] + O(θ4)
(G.10)
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