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Waterborne diseases are a diverse family of infections

transmitted through ingestion of—or contact with—water

infested with pathogens. Outbreaks of waterborne infections

often show well-defined spatial signatures that are typically

linked to local eco-epidemiological conditions, water-mediated

pathogen transport and human mobility. In this work, we

apply a spatially explicit network model describing the

transmission cycle of waterborne pathogens to determine

invasion conditions in metacommunities endowed with a

realistic spatial structure. Specifically, we aim to define

conditions under which pathogens can temporarily colonize a

set of human communities, thus triggering a transient

epidemic outbreak. To that end, we apply generalized

reactivity analysis, a recently developed methodological

framework for the study of transient dynamics in ecological

systems subject to external perturbations. The study of

pathogen invasion is complemented by the detection of the

spatial signatures associated with the perturbations to a

disease-free system that are expected to be amplified the most

over different time scales. Understanding the drivers of

waterborne disease dynamics over time scales that are relevant

to epidemic and/or endemic transmission is a crucial, cross-

disciplinary challenge, as large portions of the developing

world still struggle to cope with the burden of these infections.
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1. Introduction
Waterborne diseases are infections caused by ingestion of (or, more generally, contact with) water

contaminated by pathogenic organisms, ranging from micro- (protozoa, bacteria, viruses, algae) to

macro-parasites (helminths like flatworms and roundworms). They still represent a major threat to

human health, especially in low-income countries. Cholera and typhoid fever are among the best-

known examples of potentially lethal waterborne diseases. Also, diarrhea, commonly associated with

waterborne pathogens, is responsible for the deaths of about 1.5 million people every year, thus

representing one of the leading causes of death, especially among infants and children in the

developing world [1]. Unsafe water supply, lack of sanitation and poor hygienic conditions, which

either directly or indirectly affect exposure and transmission rates, are crucial factors in determining

the burden of waterborne infections [2].

Developing appropriate mechanistic tools is fundamental to understand, predict and control

waterborne disease transmission. Typically, the development of such tools lies at the interface between

mathematical biology, environmental science and epidemiology. A prototypical model for

microparasitic waterborne infections was proposed by Codeço [3], who developed a system of three

ordinary differential equations (ODEs) where, in addition to the compartments of susceptible (S) and

infected (I) that characterize traditional models for microparasite transmission, one equation accounts

for the population dynamics of pathogens (B) in the water reservoir used by the human community

under study. Spatial dynamics were not accounted for in early studies on waterborne disease

transmission. However, the spatial component of disease spread is at least as important as its

temporal dynamics in determining local changes in the abundances of the aforementioned

epidemiological compartments, especially in large-scale applications. The spatial spread of waterborne

diseases is driven by both water-mediated transport [4] and human mobility [5]. The former typically

occurs within a drainage basin, along natural or man-made network systems (i.e. rivers or canals,

respectively), while the latter provides an efficient means of across-catchment (and possibly long-

distance) pathogen dispersal. Therefore, spatially explicit modelling is crucial to understand how

different spatial transmission mechanisms interact with each other and influence the spread of

waterborne infections. It may also enable scientists and decision makers to reproduce with

unprecedented accuracy real-world epidemiological dynamics (e.g. [6–10]), provide scenarios for

future epidemic development over different time scales (e.g. [11–16]), and discuss the effectiveness of

controls in real (e.g. [17–20]) and realistic (e.g. [21,22]) case studies. Spatial modelling also radically

changed the traditional approach for the definition of conditions for pathogen establishment in

complex applications, classically based on the evaluation of the basic reproduction number, R0,

defined as the average number of secondary infections caused by one infectious individual introduced

in a completely susceptible community: in fact, it has been noted that values of R0 locally greater than

one are neither necessary nor sufficient for outbreaks to occur when spatial interactions are a factor, as

processes like hydrologic transport and human mobility can radically alter local transmission

dynamics [23–27].

While the study of the asymptotic properties of spatially explicit transmission models can help design

effective control strategies intended to permanently reduce pathogen spread (or even break disease

transmission), understanding transient phenomena of potential epidemiological interest can be

important as well, namely to possibly prevent transitory epidemics triggered by external perturbations

to a system in which endemic transmission is not possible—i.e. a system in which the so-called

disease-free equilibrium (DFE) is asymptotically stable. Neubert & Caswell [28] proposed a simple

measure of a system’s short-term instability to small perturbations. Specifically, they defined reactivity
as the maximum instantaneous rate at which perturbations to a stable steady state can be amplified.

Although reactivity has been studied in several ecological contexts (see e.g. [29] and references

therein), epidemiological applications are still relatively scarce: Hosack et al. [30] performed a complete

reactivity analysis of Ross’s [31] malaria model; Chitnis et al. [32] used reactivity analysis to derive

epidemicity thresholds for simple models of Rift Valley fever transmission; Woodall et al. [33] applied

reactivity analysis to a host–pathogen system with culling of the host population; Mari et al. [29]

studied short-term instabilities connected to disease transmission in spatially implicit metapopulations

and Mari et al. [34] studied the reactivity properties of simple (spatially implicit) models for

waterborne and water-related diseases.

In this work, we use the recently developed method of generalized reactivity (hereafter, simply,

g-reactivity), which is specifically tailored for ecological and epidemiological systems [29]. The definition
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of g-reactivity is based on the analysis of the maximum amplification rate of external perturbations to a

steady state as measured through a linear transformation of the state variables (the system output) that

can be chosen so as to be epidemiologically relevant. This is achieved, in particular, by including all the

infection-related components of the state space (such as the abundances of exposed or infected people, or

the concentration of pathogens in an environmental reservoir) in the output, while at the same time

excluding the others (such as the abundances of susceptible or recovered people; see [34]). Here, we

extend the g-reactivity framework to encompass the analysis of waterborne disease dynamics in

realistic, spatially explicit settings. Although reactivity has already been used in the analysis of

spatially extended metapopulation models (e.g. for the study of Turing instabilities; see [35]), to the

best of our knowledge the present paper represents one of the first attempts to study the reactivity

properties of a realistic spatial system (see [36] for an application to marine protected areas), and the

first to apply g-reactivity analysis in a spatially explicit context. Specifically, we aim to produce a

complete characterization of the g-reactivity properties of the DFE of a model describing the

transmission of waterborne microparasites in a metacommunity embedded in a realistic landscape.

The analysis of transient dynamics is contrasted with the study of the asymptotic stability of the DFE

(following [23,24]), to allow for a full comparison of the conditions leading to short- versus long-term

waterborne pathogen invasion in spatially explicit systems.

The manuscript is organized as follows. In the next section, we outline a network model aimed to

describe the transmission cycle of waterborne microparasites. Although general in its formulation, the

processes described in the model are actually inspired by cholera transmission dynamics. In the

following two sections, we derive spatially explicit conditions under which the DFE of the network

system is g-reactive (so that suitable perturbations to the DFE can be temporarily amplified in an

epidemiologically relevant system output, before eventually fading out) or unstable (so that pathogens

can invade the community and establish permanently therein). Next, we study the geographical

signatures of the largest-growing perturbations to the DFE, as well as the geography of epidemic

outbreak. Outbreak and establishment conditions are then numerically analysed in spatially explicit

systems, each consisting of a set of human settlements distributed along a realistic river network.

Finally, a short discussion of the main results of the work, with a focus on eco-epidemiological

implications, closes the paper.
2. The model
The study of waterborne pathogen transmission is here tackled by means of a network model [10] that

has already been used as starting point for both theoretical studies on waterborne disease dynamics

[5,24,26] and the analysis of real-world cholera epidemics [11–16,19,23]. The model describes local

epidemiological, demographic and ecological processes, pathogen transport along water systems and

the effects of short-term human mobility on disease propagation. Network nodes represent n human

communities of assigned population size, arranged in a given spatial setting, and connected by

hydrologic pathways and human mobility.

Let Si(t) and Ii(t) be the local abundances of susceptible and infected individuals in each node i of the

network at time t, and let Bi(t) be the concentration of pathogens in the local water reservoirs which

human communities have access to. Epidemiological dynamics and pathogen transport over the

hydrologic and human mobility networks can be described by the following set of 3n ODEs:

dSi

dt
¼ m(Ni � Si)� (1�mS

i )bi
Bi

K þ Bi
þmS

i

Xn

j¼1

Qijb j
B j

K þ B j

2
4

3
5Si,

dIi

dt
¼ (1�mS

i )bi
Bi

K þ Bi
þmS

i

Xn

j¼1

Qijb j
B j

K þ B j

2
4

3
5Si � (mþ dþ g)Ii

and
dBi

dt
¼ �(ni þ li)Bi þ

1

Wi

Xn

j¼1

l jP jiW jB j þ
pi

Wi
(1�mI

i )Ii þ
Xn

j¼1

mI
jQ jiI j

2
4

3
5: (2:1)

As for the human host population, the dynamics of the susceptible compartment in each community

(first equation of model (2.1)) is described as a balance between population demography and infections

due to exposure to the pathogen. The host population, if uninfected, is assumed to be at demographic

equilibrium Ni, with m being the human mortality rate. The parameter bi represents the site-specific
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rate of exposure to contaminated water, and Bi/(K þ Bi) is the dose–response function describing the

probability of becoming infected due to the exposure to a concentration Bi of pathogens (with K being

the half-saturation constant [3]). Exposure to contaminated water for susceptible people of community

i can occur either in their home community (with probability 1�mS
i , with mS

i being the overall

probability of exposure outside the home site i, as determined by the mobility of susceptible

individuals) or elsewhere (with probability mS
i Qij, with Qij representing the probability that water

contacts taking place outside the home site i occur in site j = i, Qii ¼ 0). Other routes of infections,

such as fast human-to-human transmission, which have been proposed for waterborne diseases like

cholera, are here neglected for simplicity, but could be dealt with within the same modelling

framework (e.g. [27]).

The evolution of the infected compartment (second equation of model (2.1)) is a balance between

newly infected individuals and losses due to recovery or natural/pathogen-induced mortality, with d

and g being the rates of disease-induced mortality and recovery from infection, respectively. Note that

the recovered compartment is not modelled explicitly, so that individuals who recover from the acute

phase of disease are simply removed from the population, as they were conferred life-long immunity

to reinfection. For cholera, as an example, recent estimates place the duration of immunity in the

range 2.3–3.0 years [13]. As such, loss of acquired immunity is unlikely to influence transient, short-

term epidemic dynamics, which are the main focus of the present work. Although simplistic, the

choice of neglecting the dynamics of recovered individuals is thus deemed reasonable for the problem

at hand.

As for the pathogen population, the dynamics of the local concentrations of pathogens in the aquatic

environment (third equation of model (2.1)) is given by a balance between water contamination,

pathogen mortality and hydrologic transport. Pathogens are released in water (e.g. excreted) by

infected individuals (from either the local community, with probability 1�mI
i , with mI

i being the

overall probability of contamination outside the home site i, as determined by the mobility of infected

individuals; or elsewhere, with probability mI
jQ ji) at a site-specific rate pi and immediately diluted in a

well-mixed local water reservoir of size Wi. Free-living pathogens are assumed to die at rate ni. They

can also move between any two neighbouring nodes of the hydrologic network (say from i to j) at

rate li and with probability Pij.

Some of the parameters of model (2.1)—namely those related to human demography (m) and the

physiological response to the disease (d, g, K)—are assumed to be constant over the spatial scales

considered in this study. All the other parameters are allowed to be possibly site-dependent. A

summary of the state variables and parameters of model (2.1) is given in table 1. We finally note that

setting mS
i ¼ mI

i ¼ 0 and li ¼ 0 for all i’s in model (2.1) produces a set of n disconnected models

accounting only for local disease transmission processes. Unless stated otherwise, all the analyses and

results presented in the next sections refer to the full model accounting also for spatial coupling

mechanisms.
3. Conditions for short-term pathogen outbreak
To study short-term pathogen outbreaks, we seek conditions under which small perturbations to

the DFE, the state of model (2.1) in which Si ¼ Ni, Ii ¼ 0 and Bi ¼ 0 for all i’s, can initially grow. If the

DFE is unstable, that is if the generalized reproduction number R0 is larger than one (note that R0

can be worked out from the analysis of the Jacobian J0, i.e. the matrix that describes the dynamics of

the system linearized in a neighbourhood of the DFE; for details, see appendix A in the electronic

supplementary material), virtually any perturbation can grow and generate an epidemic, which is

eventually followed by the establishment of endemic pathogen transmission. More subtle is the case

of a stable DFE (R0 , 1), in which perturbations can either decay monotonically or undergo transient

growth (thus possibly generating an epidemic wave) before eventually fading out. Neubert & Caswell

[28] proposed a simple, yet extremely effective method to characterize the transient dynamics

associated with a stable equilibrium of a linear (or linearized) system of ODEs after a pulse

perturbation. Specifically, they defined as reactive those stable steady states for which there exist small

perturbations that can yield a transient amplification of the Euclidean norm of the state vector. This

definition has recently been extended to a generalized, fully anisotropic reactivity framework

(g-reactivity, [29]).

Following Mari et al. [29], the DFE of model (2.1) is g-reactive if there exist small perturbations that

can lead to a transient growth of the Euclidean norm of a suitable system output (y) that is linked to the



Table 1. State variables and parameters of model (2.1), and parameters of the output transformation (3.2).

symbol definition

state variables

Si abundance of susceptible human hosts at site i (i ¼ 1 . . . n)

Ii abundance of infected human hosts at site i

Bi concentration of pathogens in the water reservoirs of site i

parameters: local processes

Ni human population size in absence of disease at site i

m baseline human mortality rate (site-independent)

bi rate of exposure to contaminated water at site i

K half-saturation constant of dose-response function (site-independent)

d disease-induced mortality rate (site-independent)

g recovery rate (site-independent)

pi [ui] rate of water contamination at site i [ui ¼ pi/K, rescaled contamination rate]

Wi size of the water reservoir of site i

ni pathogen mortality rate at site i

parameters: spatial coupling mechanisms

mS
i overall probability of exposure outside home site i

mI
i overall probability of contamination outside home site i

Qij probability of water contact at j conditional to occurring outside home site i

li hydrologic transport rate of pathogens at site i

Pij probability of hydrologic pathogen transport between sites i and j

parameters: output transformation

cIi weight assigned to infected hosts at site i

cBi weight assigned to bacterial concentration at site i
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full state of the system (x ¼ [sT, iT, bT]T, a 3n-dimensional vector whose components s ¼ [S1, . . . , Sn]T, i ¼

[I1, . . . , In]T and b ¼ [Bi/K, . . . , Bn/K ]T correspond to susceptible humans, infected humans and bacterial

concentrations (properly rescaled); the superscript T indicates matrix transposition) through a linear

transformation (y ¼ Cx, where C is a full-rank q � 3n real matrix, q � 3n; hence y is a q-dimensional

vector). In other words, the DFE is g-reactive if

djjyjj
dt

����
t¼0

. 0, (3:1)

at least for some perturbations x0 ¼ x(0), which identify the so-called g-reactivity basin of the equilibrium.

In epidemiological applications, inequality (3.1) also corresponds to the condition for the possible

occurrence of transient epidemic waves, contingent upon a suitable choice for matrix C: specifically,

the output matrix should include all and only the infection-related states of the system [34]. For the

sake of generality, here we define matrix C as

C ¼ 0n cI 0n

0n 0n cB

� �
, (3:2)

where 0n is the null matrix of dimension n; and cI and cB are diagonal matrices with positive elements

representing the weights given to the infected and bacterial components of the state space in the

output transformation, respectively. We thus have y ¼ [cI1 I1, . . . , cIn In, cB1 B1/K, . . . , cBn Bn/K]T. Note

that temporary fluctuations of the susceptible compartment cannot directly influence the g-reactivity

properties of the DFE, because susceptible human hosts do not contribute to the system output.
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Using definition (3.1) and the output transformation matrix C from (3.2), it is possible to show

(appendix B, electronic supplementary material) that the DFE of model (2.1) is g-reactive if

lmax(H0) . 0, (3:3)

where lmax (H0) indicates the dominant eigenvalues of matrix H0 ¼ H(CJ0Cþ) ¼ (1=2)(CJ0Cþþ
(Cþ)TJT

0 CT), that is the Hermitian part of matrix J0Cþ, with Cþ ¼ CT(CCT)21 being the right pseudo-

inverse of matrix C. Inequality (3.3) represents the necessary—yet not sufficient—condition for the

occurrence of a (short-term) epidemic outbreak. In fact, transient waves of infections may actually

occur only for perturbations lying within the g-reactivity basin of the DFE. A MATLABTM

implementation of the instructions required to evaluate the stability and g-reactivity properties of the

DFE of model (2.1) is provided in appendix C (electronic supplementary material).

It is also worth noticing that the g-reactivity properties of the DFE can actually be evaluated based on

a matrix of reduced order n, namely F0 ¼ T0 þ E0 þ ES
0 þ EI

0 þ ESI
0 (details in appendix B), where

T0 ¼ n�1(cBW�1PTWc�1
B �Un)l,

E0 ¼
n�1

4f
[cI(Un �mS)Nbc�1

B þ cBuW�1(Un �mI)c�1
I ]2,

ESI
0 ¼

n�1

4f
[cIm

SNQbc�1
B þ cBuW�1QTmIc�1

I ]2,

ES
0 ¼

n�1

2f
[cI(Un �mS)Nbc�1

B þ cBuW�1(Un �mI)c�1
I ]cIm

SNQbc�1
B

and EI
0 ¼

n�1

2f
[cI(Un �mS)Nbc�1

B þ cBuW�1(Un �mI)c�1
I ]cBuW�1QTmIc�1

I ,

correspond to the contribution of hydrologic pathogen transport (T0), locally occurring exposure and

contamination (E0), mobility-driven exposure and contamination (ESI
0 ), and a mixture of local and

mobility-driven processes (ES
0 and EI

0). In the above matrix definitions, Un is the identity matrix of

dimension n; f ¼ m þ d þ g; and N, W, b, u, n, mS, mI and l are diagonal matrices with positive

entries corresponding to the parameters Ni, Wi, bi, ui ¼ pi/K, ni, mS
i , mI

i and li, with i ¼ 1, . . . , n. The

transient epidemicity condition can thus equivalently be stated as

E0 ¼ lmax(F0) . 1: (3:4)

Condition (3.4) parallels the asymptotic stability criterion based on the generalized reproduction number

R0 (appendix A). Together, they generalize g-reactivity and stability analysis results found in spatially

implicit applications [34] to spatial settings of any complexity.
4. Identification of critical perturbations over different time scales
The analysis of the dominant eigenvalue of matrix H0 (or F0) enables us to determine whether small

perturbations to a stable DFE can be temporarily amplified in a suitable (i.e. epidemiologically

relevant) system output. By the Rayleigh principle [37], the eigenvector associated with the dominant

eigenvalue of H0 corresponds to the structure of the single perturbation (lying in the row space of C)

characterized by the largest rate of amplification in the limit t! 0, i.e. the optimal perturbation at

time 0 [28,38]. According to the Perron–Frobenius theorem for non-negative matrices [37], the

dominant eigenvector of H0 is characterized by strictly positive components. Because model (2.1) is

endowed with a well-defined spatial structure, the dominant eigenvector of matrix H0 can be

interpreted as the geographic signature of the perturbation leading to the fastest outbreak in the short

term. On the other hand, it is possible to show (see again appendix B) that the dominant eigenvector

of F0 refers to the bacterial components of the state space, although only close to the transient

epidemicity boundary E0 ¼ 1.

One could also wonder whether there exist ways to determine the geographic signature of the

perturbations leading to the largest epidemic amplification (measured as ay(t) ¼ jjy(t)jj/jjy(0)jj)
over longer time scales. In this respect, generalized stability theory (see again [38]) predicts that, in

a linear (or linearized) system, the perturbation leading to the largest growth of the Euclidean

norm of the system state (say, ax(t) ¼ jjx(t)jj/jjx(0)jj) for t! 1 can be obtained from the

eigenvectors of the Jacobian matrix of the system, specifically as the conjugate of the biorthogonal
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of the leading eigenvector of the Jacobian. Going back to our problem, we know (appendix A) that J0 is

block-triangular, with the infection-related components of model (2.1), namely infected people and

free-living pathogens, basically constituting an isolated sub-system that is not influenced by the

susceptible components of the model. The dynamics of this subsystem close to the DFE are thus

completely determined by J00, that is the submatrix of the Jacobian J0 of the full system restricted to

the infection-related state variables. Recalling that, with the definition of matrix C given in (3.2),

susceptibles are assumed not to influence the system output, it can immediately be verified that

H0 ¼ H(J00) ¼ (J00 þ J00
T
)=2 if cI and cB are both equal to the identity matrix of size n, Un. In this case,

in fact, ay(t) corresponds to ax(t) evaluated for the infection-related subsystem (in which x ¼ [i T,

b T]T). Therefore, we can conclude that the largest-growing perturbation in the system output for

t!1 is given by the conjugate of the biorthogonal of the leading eigenvector of J00, albeit only if

cI ¼ cB ¼ Un.

We finally remark that the asymptotic results drawn from generalized stability theory can provide

meaningful indications about the behaviour of a nonlinear system around an equilibrium point only if

the associated Jacobian can describe the dynamics of the system over relatively long time scales. In

the problem at hand, this may prove true for a stable DFE, in particular for parameter

combinations for which the initial depletion of the susceptible compartment is not too fast. If this

is the case, then the asymptotic optimal perturbation based on the eigenvectors of matrix J00 may

represent a heuristic upper bound to the long-term amplification of generic small perturbations to a

stable DFE.
1517
5. Outbreak and establishment conditions in a river network
5.1. Application to realistic settings
To analyse outbreak/establishment conditions in a realistic setting, we assume that human communities

constitute the nodes of a so-called optimal channel network (OCN), i.e. a mathematical structure

characterized by scaling forms that closely conform to the observed geomorphological features of real

river networks [39–42]. Because of this feature, OCNs have often been used as a template for the

structure of the landscape in epidemiological applications (e.g. [4,5,7,24,26,43]). We further assume,

without loss of generality, that the OCN landscape is embedded in a square of unitary side (this

condition can be relaxed by imposing periodic boundary conditions). We consider OCNs endowed

with three different spatial configurations, characterized by the position of the outlet (figure 1). OCNs

have been generated following the algorithm described in Bertuzzo et al. [44,45], based on the

procedure proposed by Rigon et al. [46]. Since the generation of OCNs is an intrinsically stochastic

process, we consider several (16) replicas for each network geometry. The total number of network

nodes (n � 500) is preserved in each geometry and replica.

As for water-mediated pathogen movement, we apply conservative transport everywhere except for

the outlet, from which pathogens are removed from the network. The specification of matrix P ¼ [Pij]

thus goes as follows. Let pd be the probability of downstream transport (and 1 2 pd the probability of

upstream transport). If h is a headwater node and j its downstream neighbour, Phj ¼ 1 (reflecting

boundary); for the inner nodes i of the network, Pij ¼ pd if j is the downstream neighbour, or

Pij ¼ (1� pd)=nu
i if j is one of the nu

i upstream neighbours of node i, with nu
i ¼ 2 for most i’s; at the

outlet, o, pathogens are discharged from the network with probability pd (absorbing boundary), while

Poj ¼ (1� pd)=nu
o if j is one of the nu

o upstream neighbours of node o. Note that absorbing conditions

prevent pathogens from accumulating at the network outlet.

On top of hydrologic connectivity, a second mobility layer accounting for human movement has also

to be specified in model (2.1). To that end, pairwise movement probabilities Qij are described through a

gravity model [47,48] in which the attractiveness of node j for node i is assumed to be directly

proportional to the population size of j and inversely proportional to the distance dij between the two

nodes (through an exponential kernel with scale factor D), i.e. Qij / Nj exp (2dij/D) (if i = j, Qii ¼ 0).

Movement probabilities Qij constitute the entries of the human mobility matrix (Q ¼ [Qij]). To

stipulate that Q is row-stochastic (i.e. a matrix in which rows sum up to one), outgoing mobility

fluxes are normalized by
Pn

k=i Nk exp (�dik=D). Different mobility models can be easily accommodated

in the formalism of system (2.1), provided that human mobility may be expressed in terms of

movement probability (as quantified by mS
i and mI

i ) and trip distribution (e.g. in the form of an

origin-destination matrix, as quantified by Q).



(a)

(b)

(c)

Figure 1. Examples of OCN topologies characterized by different positions of the outlet. (a) The network outlet (larger black node)
is located at the mid-point of the bottom side of the domain. (b) The network outlet is located half-way between the mid-point and
the right end-point of the bottom side of the domain. (c) The network outlet is located at the right end-point of the bottom side of
the domain. Three different replicas (out of 16 considered overall, see text) are representatively shown for each of the three
topologies.
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5.2. Numerical analysis of threshold conditions
Figure 2a shows the g-reactivity and stability properties of the DFE of model (2.1) as a function of the

human exposure and contamination rates (b and u ¼ p/K, respectively) when all model parameters,

including the weights given to infected prevalence and bacterial abundance in the different

communities, are assumed to be homogeneously distributed in space (therefore, N ¼ NUn, W ¼WUn,

b ¼ bUn, u ¼ uUn, n ¼ nUn, mS ¼ mSUn, mI ¼ mIUn, l ¼ lUn, cI ¼ cIUn and cB ¼ cBUn are all scalar

matrices). Results refer to the leftmost OCN replica shown in figure 1a, but the g-reactivity and

stability thresholds evaluated with all the other OCN structures are virtually indistinguishable from

those of figure 2a. This shows that, for an assigned specification of hydrologic transport and human

mobility, the g-reactivity and stability properties of model (2.1) may be quite robust to variations of

the underlying spatial domain, concerning e.g. the fine-scale structure of the OCN landscape or the

position of the outlet node.

If both the exposure rate b and the contamination rate u are small in magnitude, the DFE is stable

(R0 , 1)—which prevents long-term pathogen establishment—and non-g-reactive (E0 , 1, evaluated

for cI ¼ 1 and cB ¼ 1)—which rules out even transient epidemic outbreaks in the community. The

parameter regions characterized by either relatively large values of b and small values of u, or

relatively large values of u and small values of b correspond instead to a stable, g-reactive DFE

(R0 , 1, E0 . 1). In this case, transient epidemic waves can be triggered by suitable perturbations to

the DFE, provided that either exposure or contamination is sufficiently large, but long-term pathogen

establishment and endemic transmission are not possible. For these to happen, both b and u need to

be sufficiently large.
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Figure 2. Stability and g-reactivity analysis for the DFE of model (2.1). (a) The solid black line (R0 ¼ 1) separates the parameter
combinations for which the DFE is stable (R0 , 1) from those for which the DFE is unstable (R0 . 1), while the dashed black
line (E0 ¼ 1) marks the boundary between the parameter sets for which the DFE is g-reactive (E0 . 1) and those for which the
DFE is non-g-reactive (E0 , 1). These stability and g-reactivity thresholds refer to the leftmost OCN shown in figure 1b, but similar
results were obtained with all of the other OCNs tested. The stability/g-reactivity boundaries for a local model (i.e. a model
describing a set of disconnected local communities obtained from (2.1) by setting l ¼ 0 and mS ¼ mI ¼ 0) are shown as
thin grey lines: specifically, the local DFE is unstable above the solid line and non-g-reactive below the dashed line. The dots
indicate some of the parameter combinations explored in figures 3 – 5. (b) G-reactivity analysis for different choices of the
entries of matrix C (equation (3.2)). Parameter values [11]: m ¼ 4.2 � 1025, d ¼ 4.0 � 1024, g ¼ 1/5, n ¼ 1/30, l ¼ 1/3
(all rates in [day21]), pd ¼ 0.8, mS ¼ 0.2, mI ¼ 0.05, D ¼ 0.05 [ – ]. All parameters are assumed to be spatially homogeneous,
including the size of local communities (Ni ¼ N ¼ 1), the distribution of water resources (Wi ¼ W ¼ 1), and the weights of
infected humans and bacterial concentrations in the output transformation (cIi ¼ cI and cBi ¼ cB, respectively). See table 1 for a
summary of model parameters.
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We also note from figure 2a that higher values of b and u are needed in the network model (which

includes pathogen transport and human mobility) than in a spatially implicit setting (i.e. in a model with

li ¼ 0 and mS
i ¼ mI

i ¼ 0 for all i’s) for the DFE to be g-reactive/unstable. This is specifically due to the

presence of an absorbing boundary for hydrologic pathogen transport, which makes this spatial

coupling mechanism non-conservative. As a matter of fact, if hydrologic transport of pathogens is

negligible—or otherwise dominated by human mobility—a different result can be found, namely that

epidemic/endemic transmission requires lower values of b and u in a spatially explicit (rather than in

a spatially implicit) setting (e.g. [24]).

The definition of matrix C given in (3.2) clearly influences the g-reactivity properties of the DFE. In

fact, choosing different values for cI or cB can imply a change in the classification of the DFE from

g-reactive to non-g-reactive, or vice versa (figure 2b). Therefore, g-reactivity classification is not

absolute: in order to be meaningful, it requires a suitable (i.e. epidemiologically motivated) design of

the output transformation.

The role played by the transport/mobility parameters in triggering disease epidemicity or endemicity

is shown in figure 3. High values of the hydrologic transport rate l and the downstream transport

probability pd are associated with a stable, non-g-reactive DFE, while transient epidemics and endemic

transmission can be found for lower values of l and/or pd (panel a). On the other hand, human

mobility promotes both short-term outbreaks and long-term pathogen establishment (panel b). In fact,

for low levels of human mobility (small mS and mI) the pathogen cannot invade the system and the

DFE is non-g-reactive. Finally, it is possible to study the interplay between water-mediated pathogen

transport and human mobility (panel c). Again, high values of the hydrologic transport rate are

associated with a stable, possibly non-g-reactive DFE. Conversely, high human mobility can lead to a

g-reactive or unstable DFE. This general picture remains qualitatively unchanged for different values

of the baseline exposure and contamination rates, although quantitative details can obviously vary.

Interestingly, when looking at the parameters concerning spatial coupling mechanisms, we find that

network topology may indeed influence the g-reactivity and stability properties of the DFE of model
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Figure 3. The role of spatial coupling mechanisms in disease epidemicity and endemicity. (a) Hydrologic transport of pathogens. (b)
Human mobility. (c) Coupled effect of hydrologic pathogen transport and human mobility. Results are reported for 16 OCN replicas
like those shown in figure 1b. Specifically, in each panel, the solid (dashed) black line represents the median location of the replica-
specific stability (R0 ¼ 1) [g-reactivity (E0 ¼ 1)] boundary, while the grey-shaded areas are the envelopes of the boundaries
obtained from each OCN replica. Dots indicate the combination of parameters related to hydrologic transport and/or human
mobility used in figure 2a. Parameter values: b ¼ 0.3, u ¼ 0.03, mS ¼ m, mI ¼ m/4. Other parameters as in figure 2a.
Results obtained for different OCN configurations like those shown in panels a and c of figure 1 are reported in figure S1,
available as electronic supplementary material.
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(2.1), especially in parameter regions characterized by relatively high hydrologic transport and/or

human mobility (electronic supplementary material, figure S1).
5.3. Amplification of small perturbations to the DFE over different timescales
To verify that the analysis of the dominant eigenvector of matrix H0 does indeed make it possible to

identify perturbations that are critical in terms of their initial rate of amplification, we solve

numerically system (2.1) with different initial conditions and different OCN configurations.

Specifically, we consider small perturbations in the form

w0 ¼ (1� s)wopt þ swrand ¼ (1� s)
c�1

I iopt

c�1
B bopt

� �
þ s

irand

brand

� �
,

in which wopt is proportional to the optimal perturbation at time 0 (i.e. the dominant eigenvector of H0;

equivalently, iopt and bopt can be worked out from the dominant eigenvector of matrix F0 if E0 � 1) and

wrand is a spatially distributed random perturbation (with irand and brand being two independent random

vectors of length n drawn from a uniform distribution with non-negative support). The vectors wopt and

wrand are suitably rescaled so that they have the same norm. Coherently with the definition of matrix C

given in (3.2), the susceptible components of the state space are not perturbed (Si(0) ¼ Ni for all i’s). The

initial growth rate r0 of a given perturbation is then evaluated numerically as

r0 ¼
1

jjyjj
djjyjj

dt

� �����
t¼0

:

Note that, by definition, the initial growth rate of the optimal perturbation at time 0 corresponds to the

dominant eigenvalue of matrix H0 [28,29]. Figure 4a shows that r0 is a decreasing function of the weight s

of the random component of the perturbation (i.e. of the ‘distance’ from the optimal perturbation at

time 0).

One could argue that in real epidemics most perturbations of the DFE are likely to appear in the form

of localized imports of either infected humans or bacteria. Figure 4b shows simulations of model (2.1)

where the response of the system to different perturbations is measured by means of the output

amplification ay(t). Interestingly, the optimal perturbation at time 0 represents an empirical upper

bound for the amplification of point-source perturbations of a stable (yet g-reactive) DFE—not only in

the short term (as theoretically expected), but also over longer time scales. Actually, for the parameter

setting considered here (characterized, in particular, by a relatively high value of the exposure rate, b,

and a relatively low value of the contamination rate, u), randomly localized imports of infected

human hosts yield transient responses that wane monotonically over time, whereas randomly

localized exogenous pathogen loads can lead to a temporary amplification of the system output. These

transient responses are topped by the response associated with the optimal perturbation at time 0
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Parameter values: b ¼ 0.5, u ¼ 0.01 (stable, g-reactive DFE). Other parameters as in figure 2a. Results obtained for different
OCN configurations like those shown in figure 1a,c are reported in figure S2, available as electronic supplementary material.
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even over relatively long time scales (almost four months in this example). However, model simulations

show that the optimal perturbation at time 0 is far from being the most amplified perturbation over

longer time scales, actually being taken over by both random, distributed perturbations (e.g. in the

form of vector wrand defined above) and the asymptotic optimal perturbation. The latter, in particular,

is indeed found to be among the most amplified perturbations for long time scales, over which

linearization could indeed be expected to fail. All these results are robust to changes in the underlying

OCN configurations (compare figure 4 with figure S2, in electronic supplementary material).

5.4. Analysis of spatial patterns
The spatial signatures of the time-0 optimal perturbation are shown in the left panels of figure 5 (infected

components only, but note that bacterial components are qualitatively similar to those shown in the

figure) for different parameter combinations, all leading to a stable, g-reactive DFE. In the first two of

the four considered parameter sets (panels a and b; the two parameter combinations are those

indicated in figure 2a), the backbone of the optimal perturbation at time 0 is localized in a

neighbourhood of the network outlet—especially so in the second case, which is characterized by

smaller exposure and larger contamination rates. On the contrary, for parameter settings identifying

slower hydrologic pathogen transport (c) or higher levels of human mobility (d ), the backbone of the

optimal perturbation at time 0 covers larger regions of the landscape, stretching relatively far off

upstream the network outlet (which still remains an important focal point in the geography of this

critical perturbation), and away from the main course of the stream network. Qualitatively consistent

results are found with different OCN configurations (electronic supplementary material, figures S3

and S4).

Interestingly, the spatial structure of the asymptotic optimal perturbation (middle panels of figure 5)

seems to be quite robust to changes in the parametrization of hydrologic transport and human mobility,

and suggests that the contamination of headwaters or, more generally, of reaches that lie far away from

the network outlet may yield relatively large and long-lasting (albeit transient) epidemic waves. The
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Figure 5. The geography of critical perturbations and of disease spread. Panels show the infected components of the optimal
perturbation at time 0 (left), of the asymptotic optimal perturbation (middle) and of the dominant eigenvector of the Jacobian
matrix of system (2.1) (right) for different parameter settings. The quantity displayed in each panel is rescaled so that its
maximum is equal to 1. All results refer to the leftmost OCN configuration shown in figure 1b. (a) b ¼ 0.5, u ¼ 0.01, l ¼
1/3, mS ¼ 0.2, mI ¼ 0.05. (b) As in a, with b ¼ 0.01 and u ¼ 0.5. (c) As in a, with l ¼ 1/6. (d ) As in a, with mS ¼ 0.4
and mI ¼ 0.1. Other parameters as in figure 2a. Results obtained for different OCN configurations like those shown in figure
1a,c are reported in electronic supplementary material, figures S3 and S4.
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rationale behind this result is inherently spatial in nature, and can be summarized as follows. In a

homogeneous spatial setting, large outbreaks are expected for perturbations that develop into

transitory epidemics covering large areal extents in their spatio-temporal evolution; in the absence of

sustained transmission and in the presence of directional pathogen movement, this happens to be true

for initial conditions that are concentrated farthest from the outlet, as they can indeed generate

transient epidemics in which the peak values of local infected prevalence and pathogen concentration
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travel downstream as hydrologic transport move pathogens towards the absorbing outlet, thus

progressively spanning the whole network.

Finally, the spatial structure of the dominant eigenvector of matrix J00 (right panels of figure 5), which

describes the geography of the epidemic outbreak as it fades out after the transient phenomena

associated with the initial perturbation to the DFE have vanished (appendix A; see also [23,24]), turns

out to be pretty robust to changes in model parameters as well, and indicates again the network

outlet as a focal point of the spatial epidemic pattern. Interestingly, the perturbation that optimally

excites the dominant eigenvector of the Jacobian (the one that dominates in the long run, shown in

the middle panels) may bear little resemblance to the eigenvector itself. In fact, as noted by

Farrell & Ioannau [38], in generic, non-normal systems (i.e. systems in which the eigenvectors of the

associated Jacobian matrix do not form an orthonormal basis), an eigenvector and its biorthogonal

may differ greatly.
 os
R.Soc.open

sci.6:181517
6. Discussion and conclusion
In this work, we have analysed short- and long-term invasion dynamics for waterborne pathogens in

realistic riverine landscapes. Specifically, using a well-established, spatially explicit transmission

model, we have provided conditions for the DFE of the system (the state in which neither infected

human hosts nor free-living pathogens are present in any of the communities included in the region

under study) to be g-reactive [29]. Perturbations to a stable, g-reactive DFE may grow in the system

output, defined as a linear transformation of the system state that can be chosen to be

epidemiologically relevant [34], before eventually fading out. From an epidemiological perspective, a

g-reactive DFE may be associated with transient epidemic waves, while an unstable DFE will lead to

sustained epidemic dynamics followed by the establishment of endemic transmission.

Understanding the conditions under which short- and/or long-term pathogen transmission is

possible in an assigned spatial setting bears important implications for predicting—and possibly

controlling—disease spread. Our spatially explicit methods could in fact be used to determine

conditions for the occurrence of real-world outbreaks, as well as to assess which communities will

be hit with more strength during a waterborne disease epidemic [23]. Results of this kind could thus

assist in the planning of interventions aimed to minimize outbreak risk by reducing human

exposure and/or contamination, as well as in the management of emergencies in the aftermath of an

epidemic outbreak. In this respect, g-reactivity analysis could serve as an ideal companion to

asymptotic stability analysis in the definition of a multicriterial decision support framework (e.g.

[49]) in which possible trade-offs between short- and long-term objectives can be fully disclosed and

clearly examined.

The methods described in this paper can also help evaluate the spatial structure of the perturbations

to the DFE that are expected to grow the most in the short run (and, under suitable conditions, in the

mid-to-long run as well). Therefore, results from g-reactivity analysis of epidemiological models

applied to real case studies could serve as heuristics to define upper bounds of the growth of small

perturbations to the DFE, thus providing informed estimates about the maximum size of an outbreak

before it goes off. Suggestions from g-reactivity analysis could also be used to optimize the structure

of disease surveillance networks (e.g. [50]), specifically to make sure that critical perturbations can be

readily identified—and effective interventions set up in a timely manner. For instance, surveillance

proved fundamental in the containment of the cholera outbreak that struck Haiti in October 2010 and

that has rapidly become one of the largest waterborne disease epidemics of the recent past [51,52].

It has to be remarked, however, that predictions drawn from g-reactivity analysis may prove relevant

just shortly after the start of an epidemic in the presence of an unstable DFE. In this case, in fact,

linearization is indeed expected to fail rapidly. Needless to say, this scenario is critical from an

epidemiological standpoint, because virtually any small perturbation to an unstable DFE can lead to a

large outbreak. For waterborne infections, factors contributing to the instability of the DFE are high

exposure and contamination risk (say, because of inadequate water provisioning and sanitation

infrastructures), the availability of suitable water reservoirs for the thriving of local pathogen

populations, and human mobility. History retrospectively shows that all these conditions were

unfortunately met in post-earthquake Haiti, where a single contamination event (involving a tributary

of the Artibonite River, the largest Haitian fluvial system) from an external source was in fact

sufficient to cause a devastating epidemic (e.g. [53–56]). G-reactivity and stability analyses can help

understand the role played by different factors in the definition of transmission dynamics over a
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range of time scales also in the presence of an unstable DFE, and can be used to increase awareness about

the risk of potentially catastrophic outbreaks—a necessary condition to ensure that preventable disasters

like the Haiti cholera outbreak do not happen again in the future.

As far as surveillance is concerned, our analysis highlights the neighbourhood of the river network

outlet as a critical region for disease spread: on the one hand, in fact, it may constitute the spatial

backbone of the optimal perturbation at time 0; on the other, it represents a hotbed for epidemic

spread also over longer time scales. These results, together with historical data showing that most

outbreaks of cholera (a prototypical example among microparasitic waterborne diseases) originated in

coastal regions ([57] and references therein), indicate that the river network outlet should represent a

focal point for a surveillance network for waterborne infections and, possibly, for the deployment of

healthcare resources. On the other hand, epidemic surveillance and control should not be

geographically limited to the outlet region, as the upstream sections of the river network seem to also

play an important role, e.g. in the definition of the asymptotic optimal perturbation. Epidemic

surveillance and forecasting, design of ex-ante and ex-post interventions, and resource allocation for

transmission control are all crucial objectives of public health policies. Such goals could thus greatly

benefit from spatially explicit mathematical modelling.

An important aspect of pathogen transmission that has been neglected in this work is the seasonal

variability of model parameters, such as the human exposure and contamination rates, the average

pathogen lifespan, or the water reservoir volume [58]. Such temporal variability can result in marked

fluctuations of the force of infection, with remarkable consequences for long-term pathogen invasion,

as already shown by previous work on the stability properties of the DFE of waterborne disease

models in spatially explicit and time-periodic settings [26]. On the other hand, reactivity analysis has

never been performed in spatially explicit, time-varying environments. Indeed, the study of the

interplay between seasonality and reactivity has started only recently, specifically in spatially implicit

ecological systems (e.g. [59]). Because of the local properties of g-reactivity, though, it is safe to predict

that seasonal fluctuations of the transmission parameters must play an important—yet possibly

nontrivial to unravel—role in the short-term response of the DFE of an epidemiological model to

small, time-confined perturbations. A future extension of this work may thus usefully concern the g-

reactivity analysis of a seasonal model for waterborne disease dynamics in the framework of Floquet

theory (see again [26]).

Although tailored here for waterborne microparasites, spatially explicit tools for g-reactivity and

asymptotic stability can be applied to a suite of diverse epidemiological problems. In this respect, the

closest application would be the study of g-reactivity for waterborne macroparasitic infections (such as

schistosomiasis), which may possibly share similar hydroclimatological and socioeconomic drivers in

spite of the different underlying transmission mechanisms [60], and for which spatially explicit

modelling approaches are becoming increasingly available (e.g. [25,61–64]). Moreover, future studies

may also focus on spatially explicit models for diseases with different infection pathways, including

human-to-human, airborne, faecal-oral, sexual and vector-borne. Properly informed with the spatial

mechanisms relevant to each transmission route, g-reactivity and stability analyses could help

ecologists and epidemiologists better understand how pathogen transport and human mobility

interact with local transmission mechanisms in shaping short- and long-term invasion dynamics, with

important consequences for the effectiveness of infectious disease control.
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the output transformation defined in (3.2) is provided in appendix C (electronic supplementary material).
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