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Abstract: Alzheimer’s disease (AD) is characterized by amyloidosis of brain tissues. This
phenomenon is studied with genetically-modified mouse models. We propose a method to
quantify amyloidosis in whole 5xFAD mouse brains, a model of AD. We use optical projection
tomography (OPT) and a random forest voxel classifier to segment and measure amyloid plaques.
We validate our method in a preliminary cross-sectional study, where we measure 6136 ± 1637,
8477 ± 3438, and 17267 ± 4241 plaques (AVG ± SD) at 11, 17, and 31 weeks. Overall, this
method can be used in the evaluation of new treatments against AD.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Amyloidosis in brain tissues is associated with several neurodegenerative diseases, including
Parkinson’s and AD. In AD, toxic extracellular aggregates of a truncated and thus misfolded
amyloid precursor protein form deposits known as amyloid plaques [1, 2]. These plaques have a
spherical shape, and their size varies between approximately ten and one hundred micrometers.
The neuropathological nature of the plaques is hypothesized to play a central role in the etiology
of AD and is at the core of AD research [3]. The mechanisms of plaque formation and their
consequences remain elusive and are commonly studied in genetically modified rodent models,
such as the 5xFAD mouse model [4]. Such models are designed to reproduce the age-dependent
amyloid deposition observed in humans [5].
The standard technique used to visualize and quantify amyloid plaques is histopathology

wherein sections of brain tissue are sliced, mounted on glass cover slides, stained, and imaged with
either a widefield or a fluorescence microscope. Histopathology is an invaluable diagnostic tool
but has some limitations. Strict sample preparation protocols and a well-practiced and meticulous
expertise are required. In addition, reproducibility across samples is challenging to obtain, and
artefacts related to sample preparation are nearly unavoidable. Furthermore, three-dimensional
renderings of whole brains remain prohibitively time-consuming. As a consequence, this
technique only allows observing the development of amyloid plaques in local, arbitrarily chosen
areas of the brain, making an objective comparison between specimen difficult. Other less invasive
techniques exist to image amyloid plaque growth in vivo, such as two-photon microscopy [6],
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optical coherence microscopy [7], and photoacoustic microscopy [8]. All three techniques can
resolve individual plaques consistently while preserving brain integrity through the use of cranial
windows. They can cover several square millimeters of tissue over hundreds of micrometers in
depth, but fail at imaging over the whole brain. Differential phase contrast tomography [9] and
contrast-enhanced magnetic resonance microscopy [10] can produce images of amyloidosis in
whole intact rodent brains with a resolution of a few tens of micrometers. However, they require
expensive instruments with specific sample preparation protocols and are therefore not routinely
used. Ultramicroscopy [11] is another technique for visualizing amyloidosis in whole-excised
mouse brains [12, 13]. It is a mesoscopic adaptation of light sheet microscopy, where a sheet of
light illuminates the sample orthogonal to the detection path, thus producing optically sectioned
fluorescence images of the organ with minimal photobleaching. Similarly, optical projection
tomography (OPT) [14] can perform whole mouse brain neuroanatomical phenotyping [15]
and amyloidosis imaging [16] by acquiring fluorescence projections of the organ at different
angles over a complete turn. Although ultramicroscopy and OPT are complementary techniques,
ultramicroscopy often offers a better resolution, while OPT is generally easier to implement and
more robust to misalignment.
To quantify amyloidosis progression from image data, the standard protocol is to process

specimen with an amyloid plaques-specific staining such that the plaques stand out from other
tissue elements. A segmentation mask is then obtained by identifying which image elements
correspond to amyloid plaques. From there, the number of plaques and volume they occupy can
be estimated. When imaging the whole brain at once, a significant challenge is the staining of the
intact organ. For amyloid plaques, Methoxy-X04 [17] is one of the only probes that can be used
due to its ability to penetrate the blood-brain barrier. However, the excitation of Methoxy-X04
(in the near-UV/blue) also generates a strong signal from tissue autofluorescence. Therefore,
quantitative image-based analysis of amyloidosis relying on voxel intensity thresholding, as
typically used in histopathology data, cannot be performed. Amyloid plaques are indeed
indistinguishable from tissue autofluorescence based on intensity, henceforth requiring a more
complex image analysis approach. In the work of Jährling et al. [12], plaques could be isolated in
ultramicroscopy images by applying intensity thresholding since small sub-volumes called cubes
were considered instead of the whole brain volume. Quantitative analysis was then run through
six of these cubes per sample. Statistical analyses are performed on the sub-volumes but they do
not reflect the brain-wide plaque distribution.
In this paper, we propose a supervised learning pipeline relying on random forest voxel

classifiers to segment and quantify amyloid plaques in whole 5xFAD mouse brains of different
ages acquired with OPT.
Learning-based automated classification for AD has gained a strong interest in recent years.

The disease is indeed currently diagnosed based on clinical examination, and classification of
AD samples, preferably at an early stage of the pathology, holds a strong potential for adding
validity to the diagnosis. Signal-based classification already allowed identifying markers to
aid in AD diagnostic from diffusion tensor imaging scans [18], EEG signals [19], intracellular
recordings [20], or multiple sources including various 3D imaging modalities [21].

Regarding tissue imaging data, BioVision [22] was proposed as a supervised training approach
for image-based identification of histopathological objects. This approach, relying on a pixel-
based Bayesian classifier, has been used for the quantification of amyloid plaques in histology
images [23]. A similar approach was followed by Vandenberghe et al. [24] on the same type
of data, showing that random forest classifiers exhibited better performance. The work of Li et
al. [25] also illustrates the good performance of pixel-based decision tree algorithms, this time
for the pixel-based classification of MRI image data. An essential aspect of these previous works
is that the classification algorithm operates on pixels in 2D slices. Another way to approach the
problem of identifying brain components from images is atlas-based segmentation [24,26]. In
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this setting, a labeled model (the atlas) of the 3D organ is deformed to fit the 3D image volume at
once. From the resulting boundaries of each labeled regions, statistics can be derived at the local
level.

As no atlas labels are available for mouse brain in OPT data, the approach we propose considers
3D voxels in image volumes without an underlying atlas. It is, to the best of our knowledge,
the first attempt to introduce a learning-based method for amyloid plaques detection in OPT
image data and, more generally, to quantify amyloid plaques relying on a pipeline incorporating
information from all three dimensions in an atlas-free setting.
Our manuscript is structured as follows. Firstly, we briefly describe the sample preparation

and imaging setup, which we introduced in our previous work [16]. Secondly, we present the
supervised learning pipeline for segmentation and quantification of amyloidosis. Supervised
learning provides an efficient way to learn, from a set of manually annotated examples, how
image features such as e.g., grayscale intensity and textures [27], should be combined to segment
objects of interest in images [28]. In particular, pixel- and voxel-based random forest classifiers
have proved their efficiency for bioimage segmentation tasks [29, 30]. We choose to rely on
that specific type of algorithms for two main reasons: first, random forests are well-suited for
classification tasks with few training data; and second, they can be used through the ilastik [31]
interface. ilastik is an open-source image analysis software, which provides a user-friendly
GUI for training and reusing trained classification workflows for prediction. In that way, we
aim at making our image analysis pipeline easily reusable with or without additional training.
Thirdly, we showcase the results of the segmentation and quantification in 5xFAD mouse brains
of different ages. Finally, we discuss the impact and limitations of our study and give some
recommendations based on our preliminary results.

2. Materials and methods

2.1. Sample preparation

Experiment animals, 5xFAD mice [4] on a B6SJL F1 background, were generated by crossing
5xFAD transgenic females on a C57BL/6J background (34848-JAX, MMRRC) with wild type
SJL/J males (000686, The Jackson Laboratory) in the local animal facility (housing conditions
are described below). The disease phenotype is observed to be more robust on this hybrid
background [32]. The 5xFAD mouse model is commercially-available and widely-used in AD
research. The mice develop a severe amyloid pathology starting around 1.5 months with high
levels of accumulation in the subiculum [4]. Animal procedures were carried out according to
Swiss regulations [33] (animal protection ordinance 455.1) under the approval of the veterinary
authority of the canton of Vaud (license: VD3058), and all efforts were made to minimize
suffering, following the principle of the 3Rs [34]. Experiment animals were housed in ventilated
cages (maximum 5 animals per cage) under a 12h light/dark cycle (lights on at 7 a.m.) and
controlled atmosphere (23 ◦C and 50% relative humidity) with ad libitum access to food and
water. Two 5xFAD transgenic females on a C57BL/6J background were housed with one wild
type SJL/J male in the breeding cages under the same conditions as experiment animals, but the
extreme aggression of SJL/J males [35] hampered the breeding capacity. Indeed, 5 out of 12
females in the 6 breeding cages (that we shared with other experimentalists) were found dead
with lethal lesions from fights with the males. To refine our breeding protocol, we decided to
move the males in individual cages when the females were pregnant. However, this measure was
not sufficient to prevent casualties in the breeding cages, and it reduced the number of experiment
animals that could be generated, more details can be found in the discussion section.

Brains were processed as described previously [16]. In summary, the mice were injected with
Methoxy-X04 (Tocris) [17], a fluorescent marker that targets amyloid plaques. Then, they were
deeply anesthetized using an overdose of pentobarbital and perfused with a 10% formalin solution.
The brains were extracted and post-fixed in formalin overnight. Each organ was mounted in
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a 1.5% agarose gel and cleared using BABB before imaging. An illustration of these steps is
shown in Fig. 1(a).
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Fig. 1. Sample preparation and experimental setup. (A) Photographs of a mouse brain
through the different steps of the preparation protocol. (B) Scheme of the optical projection
tomography setup. AL, aspheric lens; RL, relay lens; EX, excitation filter; DC, dichroic
mirror; M1/2, mirrors; OL, objective lens; EM, emission filter; DI, diaphragm; TL, tube
lens; ro, rotation.

Ten experiment animals could be retrieved from the breedings and were divided into three
age-groups after amyloidosis onset (Tg/0): a young one at 11 weeks old (n = 3), a middle-aged
one at 17 weeks old (n = 4), and an old one at 31 weeks old (n = 3). A fourth control group
(n = 2) was formed with B6SJL F1 mice (+/+) that did not have the transgenes. The control
group followed the same sample preparation as the experiment groups, including Methoxy-X04
injection. All samples and their corresponding group are recapitulated in Table 1. As indicated
in the third column, some samples are composed of only one hemisphere of the brain, as some
specimen had to be shared with other experimentalists.

2.2. Optical projection tomography

Whole brain imaging was performed with a custom OPT setup [16] shown in Fig. 1(b). The
instrument is similar to an epifluorescence microscope. It uses a 420-nm LED light source and a
300-mm achromat objective lens (OL) to produce fluorescence projections of the sample with
a 0.5X magnification. The fluorescent light is filtered using a custom filter set from Chroma
composed of a dichroic (DC) mirror (AT455dc), an excitation (EX) filter (AT420/40x), and
an emission (EM) filter (AT465lp). From numerical simulations, the intensity in the sample
plane has been estimated to be approximately of 0.25 mW/mm2. A diaphragm (DI) in the rear
focal plane of the OL enlarges the depth of field to guarantee a sharp focus through the front
half of the sample, as suggested by Sharpe et al. in their original work introducing OPT [14].
Projections are acquired over 360 degrees by steps of 0.3 or 0.9 degrees in approximately five
minutes. The three-dimensional reconstruction of the sample is achieved by applying a filtered
back-projection [36] to these projections. To do so, we perform the same procedure as described
previously in [16], and refer the reader to the latter work for more details. The reconstruction
procedure includes a convolution-based method to retrieve the center of rotation in the projections.
Such an approach is crucial to avoid reconstruction artefacts, as precise knowledge of the position
of the center of rotation in the projections is essential for an accurate filtered back-projection
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Table 1. List of samples processed. The ∗ indicates samples, which were partially annotated
for the training of the random forest classifiers. The † indicates samples, which were used to
generate Fig. 4. Tg/0, transgenic animals; +/+, wild type animals.

Id Age [weeks] Structure Genotype Image size [px3] Group

0† 11 Whole Tg/0 407x344x514

Young1∗ 11 Hemisphere Tg/0 283x288x517

2 11 Hemisphere Tg/0 268x321x569

3 17 Hemisphere Tg/0 300x274x590

Middle-aged
4 17 Hemisphere Tg/0 317x243x650

5† 17 Whole Tg/0 446x307x602

6 17 Whole Tg/0 442x320x577

7∗,† 31 Whole Tg/0 420x357x603

Old8 31 Whole Tg/0 411x389x597

9 31 Whole Tg/0 427x384x615

10 7 Whole +/+ 352x340x512
Control

11† 31 Whole +/+ 432x334x576

reconstruction [37]. In this configuration, the OPT setup has an isotropic pixel-limited resolution
of approximately 50 µm over the whole organ, due to the physical pixel size of the detector. The
current resolution does not allow to measure small plaques (10-50 µm). However, the intense
brightness of the plaques still makes them detectable for counting.

2.3. Image segmentation and quantification

The overall image-based segmentation and quantification process from reconstructed projections
is depicted in Fig. 2. Once 3D image volumes are reconstructed with a filtered back-projection
algorithm, images are normalized using Fiji [38] and its contrast enhancement tool before
segmentation to accommodate for differences in dynamic range stemming from variations in,
e.g., image acquisition time. During normalization, 0.1% of the total amount of voxels (stack
histogram) is allowed to be saturated in the image to account for outliers. This normalization step
is crucial for the quality of the subsequent segmentation of amyloid plaques. As voxel intensity
is part of the feature set considered by our proposed supervised learning approach, all image
volumes must be brought to a comparable dynamic range, both in the training and prediction
phases.

We segment plaques from background and brain image elements using a supervised learning
approach. To do so, we designed a 3D voxel classification workflow in the open-source image
analysis software ilastik [31]. The image analysis pipeline consists of two steps. First, training is
performed from manual annotations of a few voxels in a small selection of image data. Then, the
trained supervised learning algorithm predicts the type of the remaining unannotated voxels in
these image data, as well as the type of each voxel for the ones left aside during training. In our
case, random forests [39] are used as learning algorithm. The working principle of this approach
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Fig. 2. Processing pipeline. From OPT acquisition, the projections are used to reconstruct
a 3D image with a filtered back-projection algorithm. After a normalization step, a random
forest classifier identifies voxels corresponding to plaques in the image volume. Quantitative
measurements can be extracted from the segmentation mask, and statistical analyses can be
conducted.

is as follows. A set of numerical measurements, called features, is computed for each object to
be classified (in our case, the voxels). These measurements aim at describing the object in terms
of, e.g., color, shape, neighborhood and serve to distinguish objects belonging to different classes
(in our case, plaques versus everything else). The specific nature of the features we rely on is
described hereafter.
In the training phase, given (a) a collection of objects, (b) their feature values, and (c) their

known class labels, several decision trees are built by randomly picking features and searching for
proper decision boundaries to separate between classes. Starting from the root, each intermediate
node in a decision tree corresponds to a specific feature, while leaves correspond to class labels.
In the prediction phase, given an object and its collection of computed features, each tree is
explored to predict the class as follows: the value of the feature corresponding to the root node is
examined, and dictates which branch to follow. This process is repeated at each intermediate node
until a leaf is reached, which predicts the class of the object. The final class probability estimates
are obtained as the percentage of trees predicting the object to belong to each considered class.
The overall classification procedure with random forests is illustrated in Fig. 3.

The choice of a specific supervised learning algorithm among the vast variety of those available
is generally dictated by the constraints that are inherent to the considered problem. In our case,
following the principles of the 3Rs, we want our approach to be able to train based on a small
number of samples. Moreover, we aim at maximizing the reusability of our pipeline, which
implies limiting handcrafted steps and relying on well-established processing environments.
These considerations guided our choice for random forests to segment plaques. Random forests
indeed provide an excellent trade-off between generalization capability and ability to learn from
few training examples [40]. This last point specifically makes them preferred over the currently
popular convolutional neural networks (CNN), which require an extensive amount of labeled
data for training. The small amount of samples at our disposal and the unavailability of similar
datasets make deep networks inappropriate for this problem. To validate this claim, we included
CNN in our performance analysis in Section 3.2. In addition, random forests are available through
the ilastik GUI, which maximizes user-friendliness during the training phase and ease of use
when predicting on new data.

In the training phase, manual annotations were provided for each of the three classes, here
corresponding to background, brain, and plaques. Our underlying assumption motivating this
setting is that, although plaque signal cannot easily be separated from autofluorescence signal
from brain tissues using a simple intensity-based threshold, it does stand out when considering
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a combination of texture, intensity, and shape measurements. The random forest classifier,
therefore, acts as an adaptive way to learn a complex threshold combining these different features
to isolate plaques from the rest of the image volume content. The specific voxel features we rely
on were computed through the 3D volumes. They can be grouped into three categories and are as
follows:

• Intensity-based features: raw image and Gaussian smoothing;

• Edge-based features: Laplacian of Gaussian (LoG), Gaussian gradient magnitude, differ-
ence of Gaussian;

• Texture features: structure tensor eigenvalues, Hessian of Gaussian eigenvalues.

All features were computed at various image scales; that is, on the original image volume as well
as on the image volume processed by various levels of Gaussian smoothing, namely σ = 0.3, 0.7,
1, 1.6, 3.5, 5, and 10.

When relying on learning-based approaches, the selection of training elements, which are used
as ground truth, is of major importance as it influences the generalization capability and overall
performance of the algorithm. We selected samples 1 and 7 (see Table 1) for training. These two
image volumes, one corresponding to a young and one to an old specimen, were chosen to avoid
age-induced batch effects [41]. A few manually labeled voxels were distributed through the whole
volume along the X, Y and Z planes to minimize training bias and reduce the risk of overfitting.
Once trained, the pipeline was used to predict plaques in all remaining dataset. To assess the
false positive rate of the random forest classifier trained in this way, we also ran the pipeline on
brain image volumes of negative control specimen to report the amount of erroneously predicted
plaques. Results are provided in Table 4 and testify the specificity of the method.
We then reused the same background and brain voxel labels but removed the plaque class to

train a 2-class random forest voxel classifier and retrieve a whole brain segmentation mask. This
second step allows us to compute an estimate of total brain volume, which is used to extract the
ratio of plaque volume to the whole brain.
Due to data size (see Table 1 for details), all considered image volumes were first converted

from .tif stacks to .h5, processed with ilastik, and converted back from .h5 to .tif for visualization
purpose.

3. Results

3.1. Imaging of amyloid pathology progression

Selected three-dimensional brain images from the three groups of mice are shown in Fig. 4(a-c).
As reported previously [16], the emission signal of Methoxy-X04 is deeply mixed with tissue
autofluorescence. Therefore, both the amyloid plaques and brain anatomy can be visualized
in a single OPT acquisition. Amyloid plaques can be identified from the strong fluorescent
signal they emit as well as from their characteristic small spherical shape. As expected, strong
age-dependent amyloidosis is observed in the subiculum, indicated by the white arrows. These
images already give us a qualitative feeling for the progression of the amyloid pathology, which
worsens with age. However, as previously mentioned, thresholding based solely on voxel intensity
as often performed on histopathology data is inefficient for quantitative analysis. The cerebellum,
indicated by the blue arrows, indeed exhibits similar voxel intensity levels as plaques, possibly
caused by different autofluorescence contrast mechanisms. Likewise, the cortical barrel fields
(white arrowheads), which are dense anatomical features of the mouse brain, reach high levels
of autofluorescence intensity. Ultimately, perfusion artefacts, such as blood-containing vessels
(blue arrowheads), also corrupt the outcome of intensity threshold-based segmentation due to
the strong autofluoresence of hemoglobin. Therefore, correct isolation of amyloid plaques from
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Fig. 3. Classification procedure with random forests. For the sake of simplicity, 2D
pixels and a 2-class problem are depicted. (A) Training phase. A few voxels from each
classes (here A, the object, and B, the background) are manually labelled as ground truth.
A collection of measurements, referred to as features, are extracted to characterize these
voxels. Here, only two (intensity and texture-based features) are shown. A forest of decision
trees is then constructed. Each stage of a decision tree is built by randomly picking a feature
and choosing a boundary value that best separates each class according to this measurement.
Here, three trees are shown. (B) Classification, or prediction, phase. For each unlabeled
voxel, the same set of features as in training phase are extracted. These measurements are
then fed to the random forest trees, which provide class prediction. The final probability is
retrieved as the percentage of trees predicting each class.

the whole brain requires to rely on a combination of several visual aspects such as their texture,
shape, and intensity. A brain image from the control group is shown in Fig. 4(d). While there is
a strong signal from nervous tissues, there is an absence of amyloid plaques.

3.2. Quantification of the amyloid plaques

The outcome of the voxel classification workflow described above provides an efficient way
to segment amyloid plaques based on a mixture of their visual features. For each voxel in an
OPT image volume of a diseased brain, the 3-class random forest classifier returns a probability
value (0-1), yielding a 3D probability map image. The value of each voxel in the probability
map image corresponds to the likelihood that the corresponding voxel in the original image
belongs to an amyloid plaque. A segmentation mask isolating amyloid plaques is thus obtained
by thresholding the 3D probability map at 0.5. This threshold can be directly interpreted as
retaining only voxels with a higher-than-50-percent chance of belonging to a plaque. We found it
to be sufficiently sensitive for plaque detection against the strong background while maintaining
a certain level of specificity, which is discussed at the end of this section. The same procedure
can be carried out to segment brain anatomy relying on the probability map output of the 2-class
random forest classifier and a threshold of 0.7. The sensitivity to brain tissues is indeed observed
to be higher due to a consistency in the autofluorescence signal, allowing us to increase the
threshold value to gain more specificity. Segmentation results of the selected brain images from
the three age-groups are shown in Fig. 4(e-h). The transparency of the brain anatomy channel
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Fig. 4. Imaging of amyloid pathology progression. (A-C) Renderings of OPT images
from the three age-groups: young, middle-aged, and old, respectively. Blue arrows,
cerebellum; White arrows, amyloid plaques in the subiculum; Blue arrowheads, blood
vessels; White arrowheads, cortical barrel fields. (D) Rendering from the control group.
(E-H) Corresponding renderings after random forest classification and thresholding. The
amyloid plaques, in yellow (thresholded at 0.5), are overlaid with the brain anatomy, in grey
(thresholded at 0.7), whose transparency is reduced for visualization purposes.

was reduced to enhance the visibility of amyloid plaques. As all raw image volumes along with
random forests predictions of brain anatomy and plaques are freely available in Dataset 1 [42],
readers interested in exploring the details of brain anatomy are encouraged to retrieve the data and
create renderings that match their interests. As expected, we observe an increase in the number
of plaques with age. For comparison purpose, we illustrate in Fig. 5 the difference between the
best attainable plaque segmentation image obtained by a fine-tuned thresholding of the image
(Fig. 5(b)) and the random forests result (Fig. 5(c)). Direct intensity thresholding (DIT) does not
allow to isolate plaques from the autofluorescence signal of blood vessels (blue arrowheads) and
the cerebellum (tan arrowheads), as well as other kinds of artefacts (purple arrowheads) whose
size and shape cannot be attributed to amyloid plaques. The threshold was here fine-tuned so as
to minimize background signal, excluding a large amount of fainter plaques.

Moreover, the classifier seems to have captured the different features that make amyloid plaques
apparent in OPT images. For example, the cerebellum is properly excluded as it does not appear
to show amyloid deposition, which is in agreement with known results [4]. Despite its strong
fluorescence intensity, it does not meet the other visual criteria to be associated with the amyloid
plaque class. The same observations hold for the cortical barrel fields and perfusion artefacts.
After segmentation, we perform a quantitative analysis of the amyloid plaques in the brain

by computing the ratio of plaque volume to the total organ volume. This measure is referred
to as plaque load and is expressed in percentage. Additionally, the total plaque count provides
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(A) (C)(B)

Fig. 5. Visual comparison of standard thresholding with random forests. (A) Rendering
of an OPT image from an old mouse brain. (B) Corresponding rendering after thresholding
voxel intensities at 70 % of the bit depth. DIT fails to isolate plaque signal from other brain
structures, and results in several faint intensity plaques to be missed. Blue arrowheads,
blood vessels; Tan arrowheads, cerebellum; Purple arrowhead, undetermined artefact. (C)
Corresponding rendering of random forest predictions thresholded at 0.5.

another quantitative measure of amyloidosis. Regions of dense deposition, such as the subiculum,
exhibits the formation of clusters of amyloid plaques in OPT images due to the resolution of the
instrument and the normalization step. To refine our estimate of plaque count, we measured the
average size of a single plaque and divided the total area of all larger plaque clusters by this value
in each sample. Since small plaques have a size comparable to the instrument resolution, we
might overestimate the plaque load.

Additionally, as mentioned previously and reported in Table 1, some samples of our study are
single brain hemispheres. To allow for a fair comparison of the total number of plaques with
full brain samples, we reported twice their measured plaque count. This choice is motivated by
current observations of brain amyloidosis, which suggest a symmetry of the pathology between
brain hemispheres [43]. To further validate this hypothesis, two 3D images of whole 31-week-old
brains (samples 7 and 8 in Table 1) were digitally split and the number of plaques was counted in
each hemisphere. A total amount of 8418 (left hemisphere)/7467 (right hemisphere) plaques
for sample 7 and 10764 (left hemisphere)/9257 (right hemisphere) plaques for sample 8 were
obtained respectively, corresponding to total plaque proportions of 0.53 (left hemisphere)/0.47
(right hemisphere) for sample 7 and 0.54 (left hemisphere)/0.46 (right hemisphere) for sample 8.
We thus believe that assuming that the plaque count in a single hemisphere corresponds to half of
the total plaque count in the whole brain is a reasonable hypothesis. However, a comprehensive
statistical analysis of the regional deposition of amyloid plaques in the 5xFAD model should be
performed prior to drawing biological conclusions. As such a study would require a much larger
sample size than our resources allowed, we leave it to future work. The results of the quantitative
analysis of all samples are summarized in Table 4.
Providing results from alternative methods for a reasonable comparison to our approach

appears to be challenging. Existing solutions for the automated image-based assessment of
amyloid plaques are indeed designed for imaging modalities of entirely different nature (e.g.,
histopathology or MRI) and, most importantly, trained at a pixel (and not voxel) level. The
following works relate to ours and are relevant comparison points, although focusing on different
imaging modalities. Iordanescu et al. [44] proposed a machine learning approach to amyloid
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plaque segmentation in MR images based on support vector machines using handcrafted features.
As the features are derived from MR image intensity only, this approach is unadapted to our data,
as seen from the problems highlighted in Fig 5. In histopathology images, Teboul et al. [45]
presented an intensity thresholding-based method to detect amyloid plaques, but this approach
suffers from the same limitations as the previous one. Kuan et al. [46] and Whitesell et al. [47]
studied the distribution of amyloid plaques in whole mouse brain images at the mesoscopic scale
relying on ad-hoc thresholding based on intensity signal from different channels, followed by a
morphometric classifier. Our random forests approach combines these two steps, without the
need for any hyperparameter tuning and based on few manual annotations. The work of Jährling
et al. [12] already mentioned in Section 1 is the most sensible state-of-the-art reference for the
problem we focus on. Their method relies on DIT followed by manual corrections to remove
artefacts such as blood vessels. We follow the same idea but replaces the correction step by a few
manual annotations for training, making the approach more automated and less dependent on
parameter tuning. This, in particular, allows us to perform plaque quantification in the entire
brain, as opposed to small sub-volumes.
In order to evaluate the performance of our method and validate our design choices, we

obtained manual annotations for the brain and plaque elements, serving as gold standard. As our
resources did not allow for obtaining a labeling of amyloid plaques in a complete 3D OPT image
volume, we selected 18 slices (2D) from three different datasets to be manually annotated by
an expert (brain tissues and amyloid plaques). We enforced that our selection contained slices
from different image volumes so as to ensure the reliability of the evaluation and assess the
generalization capability of our approach.
We carried out a performance analysis of the random forest predictions for brain and plaque

segmentation. We provide a comparison with most commonly used methods to approach the
plaque identification problem in other modalities, namely DIT and LoG, and with CNN, which
is the state-of-the-art approach for segmentation tasks in general. As LoG is a blob-detection
approach, it is not suited for brain anatomy and is considered for plaques only. LoG filtering was
performed with a 3D Gaussian detector with a standard deviation tuned to the average plaque size.
Patch-based CNN were designed following the popular U-Net architecture [48]. The same images
and labels used to train random forests were split into patches that were augmented with rotations,
shifts, shear transforms and flip transformations. Following the same procedure as for random
forests, a network was first trained to identify amyloid plaques, and another one was trained to
identify brain anatomy. To ensure convergence in spite of the extreme sparsity of labels, we
used a pixel-weighted soft-max cross-entropy loss [49] to optimize class-balancing, and trained
for 10 epochs. Proper training of the networks was ensured by monitoring the evolution of the
validation loss over successive epochs. Plots and Pickle files containing each network training
history are provided as supplementary material in Dataset 1 [42] for the interested reader.

We provide a receiver operating characteristic (ROC) analysis of each method in Fig. 6. ROC
curves are built by reporting the true positive rate against the false positive rate for all possible
threshold values within an image dynamic range. Each point in the ROC curve thus corresponds
to what can be achieved with one specific threshold value, and the corresponding areas under
the ROC curves (AUC) is an estimate of the global accuracy of each method. AUC values are
provided in Table 2. In addition to ROC analysis, we reported the accuracy, sensitivity, specify,
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(A)

(B)

Fig. 6. Performance evaluation of the random forest classifier. Comparison of ROC
analysis for (A) brain voxels identification and (B) plaque voxels identification using the
random forest predictions (RF, dashed line), and competing approaches such as direct
intensity thresholding (DIT, solid line), Laplacian of Gaussian filtering (LoG, dash-dotted
line), and convolutional neural networks predictions (CNN, dotted line).

and Dice index for each considered approach. These quantities are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
,

Sensitivity =
TP

TP + FN
,

Specificity =
TP

TN + FP
,

Dice =
2TP

2TP + FP + FN
,

where TP stands for true positives, TN true negatives, FP false positives, and FN false negatives.
In contrast to the ROC curve, these metrics were obtained for specific thresholds chosen as
follows. For DIT, the optimal value for brain segmentation was obtained using Otsu’s method on
each considered dataset. For plaque segmentation, an optimal threshold value was identified by
visual assessment for each dataset. The optimal value for LoG was computed as µ + α ∗ σ for
each dataset, where µ and σ are the mean and standard deviation of the LoG filtered dataset,
respectively, and α is an integer manually set by visual assessment. For probabilities predicted
either by random forests or CNN, since the considered values directly reflected prediction
certainty, thresholds were fixed according to the difficulty of the task, namely 70% (0.7) for brain
anatomy and 50% (0.5) for amyloid plaques. Results are reported in Table 3.
Random forest classifier performance is on par with DIT when it comes to isolating brain
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Table 2. Performance evaluation of the random forest classifier. Comparison of the area
under the curve (AUC) corresponding to the ROC curves presented in Fig. 6 for brain and
plaque identification using the random forest predictions (RF), and competing approaches
such as direct intensity thresholding (DIT), Laplacian of Gaussian filtering (LoG), and
convolutional neural networks predictions (CNN).

DIT LoG CNN RF

Brain 0.99 N/A 0.96 0.99

Plaques 0.92 0.75 0.89 0.96

Table 3. Performance evaluation of the random forest classifier. Comparison of the
accuracy, sensitivity, specificity and dice metrics for brain and plaque identification using
the random forest predictions (RF), and competing approaches such as direct intensity
thresholding (DIT), Laplacian of Gaussian filtering (LoG), and convolutional neural networks
predictions (CNN).

Accuracy Sensitivity Specificity Dice

Brain

DIT 0.94 0.86 0.99 0.91

CNN 0.91 0.73 0.99 0.84

RF 0.94 0.87 0.98 0.91

Plaques

DIT 0.80 0.49 0.84 0.35

LoG 0.46 1.00 0.40 0.27

CNN 0.21 0.07 0.59 0.12

RF 0.96 0.88 0.97 0.83

anatomy from the background, which is expected from the strong contrast making this step a
relatively easy segmentation task. CNN also performs reasonably well, and would probably
reach equivalent performance with more training annotations. However, when considering the
segmentation of amyloid plaques, random forest predictions significantly outperforms all other
methods. DIT offers high specificity but has a high false negative rate, which translates into
a low sensitivity. The accuracy of DIT is boosted by its good capability in identifying true
negatives, but its actual performance in detecting plaques is quite poor as seen from the low
Dice index. LoG exhibits poor discrimination power for identifying plaques. Although it misses
none of them (yielding a false negative count of zero and a maximal sensitivity), it obtains low
specificity, low accuracy, and even worse Dice index, indicating that lots of false positives are
captured. CNN performs poorly most likely due to the sparsity of labels in the training set, and
would probably yield better results with more annotations, which would, however, come at a
cost in terms of manual labour. Moreover, setting up CNN requires a significant amount of
hyperparameter tuning, script writing, and data pre-processing. In contrast, the ilastik interface
allows training random forests models with zero coding expertise, no hyperparameter tuning, and
few annotations that can easily be created as brush strokes through the interactive GUI.
Arguably, a valid estimate of brain volume could be obtained by segmenting brain anatomy
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using DIT and combined to the amyloid plaque segmentation outcome provided by random forests 
to compute the plaque load. This would, however, require identifying an appropriate intensity 
threshold value to segment brain anatomy for each individual dataset (e.g., using Otsu’s method). 
As amyloid plaque segmentation is achieved by training a 3-class (background-brain-plaque) 
random forests classifier, the 2-class (brain-background) random forest classifier used for brain 
anatomy segmentation is simply obtained by removing the plaque class, without adding additional 
training labels. Random forests predictions for brain anatomy, therefore, come at no extra cost 
and provide equivalently good results. It however offers a way to segment brain anatomy that 
is better suited to batch processing: the threshold used to segment is then a common value to 
all datasets, that directly relates to an interpretable quantity, namely the minimum acceptable 
probability for a voxel to be considered as part of the brain. For all considered methods, the lower 
performance observed for plaque versus brain anatomy detection can be explained by the small 
nature of plaque elements: as they are composed of few voxels, minor disagreements between 
expert annotation and automated segmentation results are severely penalized.
All in all, random forests through ilastik pragmatically appear to be the solution offering the 

best compromise between simplicity and performance for the task of segmenting amyloid plaques 
in OPT images.
Since our method has been designed to be easily reusable, all results provided in this paper 

can be directly reproduced by importing the ilastik pipelines, which holds all the necessary 
information regarding algorithmic parameters, and running it on the raw data (image analysis 
pipeline, raw data and training labels are available in Dataset 1 [42], including manual ground 
truth). Annotations provided for training can be visualized and the algorithm re-trained from 
additional user-provided brush strokes on images through the ilastik’s GUI.

Ultimately, we performed a statistical analysis of our results, illustrated with boxplots in Fig. 7. 
For the plaque load, there is no statistically significant difference between groups as determined 
by one-way ANOVA (F(2, 7) = 4.733, p = .05). However, we still performed a post-hoc Tuckey 
comparison since p = α = .05, and we found a statistically significant difference between the 
young and old group (p < .05) (with a 5% chance of it being a false positive). Moreover, 
a statistically significant difference in total plaque number is observed by one-way ANOVA 
(F(2, 7) = 9.609, p = .01). Tuckey’s test showed that the old group differs significantly (p <  .05) 
from the middle-aged and the young group. Shapiro-Wilk normality tests have been performed 
on each group for the plaque load and total number of plaque. None of these tests rejected the 
null hypothesis that the data are normally distributed (p < .05), which justifies the statistical tests 
performed in our analysis.
As a quality control, we performed the quantitative analysis on negative controls (Table 1). 

Both the plaque load and plaque count show a reasonably low amount of false positives (Table 4), 
demonstrating the specificity of our analysis.

4. Discussion

The segmentation of amyloid plaques from whole images of 5xFAD mice brains acquired 
with OPT shows promising results, as seen in Fig. 4(e-h). However, limited statistically 
significant differences are drawn from the group analysis. We believe that this restricted statistical 
significance, observed in spite of the visually encouraging segmentation outcome obtained with 
our method, can be attributed to three different factors: the plaque load, number of plaques and 
number of samples. We now describe in more details how these three aspects affected results 
in our experimental setting, and propose solutions to minimize their adverse effect in further 
experimental designs.

Firstly, plaque load is a standard measure of amyloidosis in sections with high plaque density
from histopathology data. In our experimental design, sample calculation is based on the findings
of Bolmont et al. [7], who observed a difference of approximately 1.6 percent in the plaque
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Table 4. Quantitative measurements of amyloid plaque quantity in all samples. The
∗ indicates samples which were partially annotated for the training of the random forest
classifiers. The † indicates samples, which were used to generate Fig. 4. The mean and
standard deviation (SD) is included for each measure and group, which are compared in this
study. The control group serves as quality control.

Id Plaque load [%] Total number of plaques Group

0† 0.05
Mean: 0.11

SD: 0.07

4595
Mean: 6136

SD: 1637
Young1∗ 0.09 5958

2 0.19 7854

3 0.42

Mean: 0.25

SD: 0.14

12642

Mean: 8477

SD: 3438
Middle-aged

4 0.28 9784

5† 0.12 4898

6 0.16 6582

7∗,† 0.27
Mean: 0.42

SD: 0.15

13602
Mean: 17267

SD: 4241
Old8 0.56 21913

9 0.43 16287

10 0.001 Mean: 0.002

SD: 0.001

114 Mean: 143

SD: 41
Control

11† 0.003 172

load between 2 and 4 months of age, using a different mouse model. However, when calculated
for the whole brain of 5xFAD mice, plaque load hardly reached 0.5 percent, with differences
of 0.1 − 0.2 percent between groups. Therefore, our design is not appropriate to observe such
small differences: there is not enough plaque load difference between the age groups we consider
when observing the whole brain at once, as opposed to studying a small, specific local section of
it. Moreover, comparison of sections in OPT images is hard to achieve due to the difficulty of
reliably finding matching sections in the image volumes. Larger groups should thus be considered
to observe a statistically significant difference in amyloid plaque load.
Secondly, only limited information about the total number of plaques can be found in the

literature. Jährling et al. [12] observe a difference of several thousands of plaques between
young (10 weeks old) and old (28-34 weeks old) animals. Although these measurements come
from a different mouse model of amyloidosis and the total plaque count does not represent
a whole brain, they were the most sensible known results for our work and thus served as a
basis for our experimental design. Our results suggest that their plaque number estimate was a
reasonable starting hypothesis, but that the variability in total plaque count was underestimated.
The inter-specimen plaque number variance observed in small cubes is indeed drastically lower
than in the entire brain volume. The young (11 weeks old) and middle-aged (17 weeks old) groups
seem to be too close in terms of age to be able to observe a statistically significant difference.
Our quantification method might not be sensitive enough to capture changes in amyloidosis under
6 weeks of age difference, as there is not enough disease progression in this period to detect
a statistically significant difference in levels of amyloidosis. For that reason, we recommend
having at least 8 weeks (2 months) of age difference between groups.
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Fig. 7. Representation of the amyloidosis statistical analysis Boxplots of the quantitative
measures of amyloid progression for each group of mice. *, p < .05 (Tuckey’s test); n.s., not
statistically significant.

Thirdly, when using 5xFAD mice on a B6SJL F1 background, the extreme aggressivity of the
SJL/J males in the breeding cages must be considered in the experimental design as casualties are
more likely to happen, thus reducing the number of generated specimens. Having witnessed this,
we suggest using the congenic 5xFAD strain, on a C57BL/6J background instead. Animals should
then be generated by back-crossing females 5xFAD (34848-JAX, MMRRC) with C57BL/6J males
(000664, The Jackson Laboratory). We nevertheless believe that the results of our quantitative
analysis can be used as a preliminary study. Based on our findings, in order to observe a
statistically significant difference of 0.15 percent with a standard deviation of 0.15 percent in the
plaque load relying on a one-tailed t-test, 16 animals are required in each age-group (α = .05
and power = .85). Concerning the experiment duration, in our experience, 8-12 animals can be
sacrificed per day, and the remaining sample preparation takes 4 days (count 1 day to embed the
samples in agarose and 10 − 20 minutes per following day to change clearing solutions) plus 1
day of imaging.
In summary, it is noteworthy to take into consideration that quantifying the plaque load in

whole mouse brains is inherently subject to more variability compared to other techniques, which
focus on smaller regions of interest. Therefore, a more substantial amount of samples is necessary
and care must be taken in the experimental design to take into account the variability factors
mentioned above. Our technique, which considers the organ in its entirety, however offers a
wealth of information for AD research. When looking at individual images, our approach allows
to isolate amyloid plaques from the rest of the brain adequately. Although plaque load might be
overestimated due to the instrument resolution, causing smaller bright plaques to appear with a
size of approximately 50 µm, it is, to the best of our knowledge, the first time that the plaque load
and the total number of plaques are measured in the whole brain of 5xFAD mice.

Our results can be related to those of other studies using different imaging modalities. Oakley
et al. [4] quantify amyloid beta relying on ELISA and qualitatively assess amyloid deposition
on histopathology images, which both exhibit an increase in plaque quantity with age. The
quantitative results obtained with ELISA follow a similar trend as ours. From histopathology
images, plaques are observed to be largely located in the subiculum. Additional structural
labels could be incorporated in our approach so as to perform atlas-based segmentation and
quantify the spatial distributions of the plaques to validate these observations. A full study
of the distribution of plaque in the brain and its age-related evolution is a future research
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direction for experiments involving larger animal cohorts. Hernández et al. [50] measure amyloid
plaque density from two-photon microscope images relying on direct intensity thresholding and
ad-hoc post-processing. Quantification results are provided for a single time point (11-months
old animals) and extracted from image volumes corresponding to subparts of the cortex and
hippocampus. Their results, being absolute numbers estimated on subvolumes of unknown
location, are difficult to compare to ours. To perform a meaningful comparison, the area images
with two-photon microscopy should be matched to the corresponding OPT image subvolume.
This could be achieved in a single experiment, as animals used for two-photon in vivo imaging
could be sacrificed, and imaged using OPT. The approach we propose therefore holds a strong
potential to complement existing methods that investigate amyloid plaque deposition from a
quantitative perspective.

5. Conclusion

In this paper, we propose an image-based analysis pipeline for the quantification of amyloidosis.
The pipeline is applied to whole brain images of 5xFAD mice, a mouse model of AD. Image
volumes are acquired with an optical projection tomography instrument, and amyloid plaques are
segmented relying on a random forest voxel classifier. The plaque load and the total number of
plaques are then consistently measured in the whole organ. The pipeline has been tested on 3D
OPT images of brains of mice at different ages to illustrate the age-dependent disease progression.
This preliminary study shows a statistically significant increase in the number of plaques in old
animals (31 weeks old) compared to young and middle-aged ones (11 weeks old and 17 weeks old,
respectively). Although the other group differences are not statistically significant, we believe the
study should be repeated with more animals to draw more complete conclusions with regards to
the disease progression. While there isn’t a strict statistically significant difference in the plaque
load (p = α), a Tuckey post-hoc analysis revealed that the old group differs significantly from the
young one. Isolation of plaques from the strong background autofluorescence signal is observed
to be successful, and tests on negative controls show a negligible false positive rate. We provide
the image volumes and manual annotations used for training, as well as the pre-trained ilastik
workflows for download and further use by the community in Dataset 1 [42].

In the future, we would like to take advantage of the tissue autofluorescence to segment regions
of interest in the brain, such as the subiculum, which is the region where most of the deposition
occurs in 5xFAD mice and estimate a local plaque load. Additionally, the pipeline could be
reused for data acquired with other mesoscopic imaging modalities, such as ultramicroscopy,
and in different rodent models of amyloidosis. Ultimately, we would like to use light sheet
microscopy to establish a gold standard for amyloid plaques in the whole brain and compare it
with the performance of our OPT classification method.

Data availability

OPT reconstructed data sets and ilastik pipelines are available in Dataset 1 [42], along with a
README document on how to use them.
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