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Abstract— In this paper, we investigate the stability of an
islanded AC microgrid (ImG) composed of Distributed gen-
eration units (DGUs), dynamic power lines, and loads. Each
DGU is equipped with a local controller to ensure desired
voltage and frequency in the ImG. Different from the previous
works [1], we account for the dynamics of RL power lines
and consider generic interconnections of loads and DGUs. The
stability of the ImG hinges on the passivity of all components
with specific input-output pairs and the properties of the
electrical interconnections. For the DGUs, we provide necessary
and sufficient conditions for the existence of control gains
guaranteeing passivity. In addition, we show that controllers
decoupling the direct- and quadrature axis components of the
electric variables can never render the DGU passive. Theoretical
results are backed by simulation studies.

I. INTRODUCTION

Islanded microgrids are spatially-distributed electric sys-
tems composed of multiple small subsystems, for example,
flexible loads, distributed generation units (DGUs), and stor-
age units, interconnected to each other through an electrical
network. A central theme in islanded AC microgrids (ImGs)
is to ensure overall voltage and frequency stability through
decentralized control of each DGU [2]. Droop-based voltage
stabilization is a commonly used decentralized approach but
is plagued by load-dependent voltage deviation, propaga-
tion of voltage error along resistive transmission lines, and
presence of steady state voltage drifts [2], [3], [4], [5], [6].
Droop-free controllers have also been proposed. However,
the voltage and frequency stability is often shown using
simplifying assumptions on ImG topology, DGU models, and
line dynamics [7], [1], [8].

This work focuses on the droop-free control proposed in
[1], where a decentralized control architecture is described
Local controllers are synthesized by solving a convex op-
timization problem requiring solely the local parameters
of the corresponding DGU. However, the stability of the
ImG has been shown under the following assumptions: (i)
Quasi-Stationary-Line (QSL) approximation [9], where line
inductances are neglected (ii) loads are attached only to the
terminals of the DGUs, and (iii) loads are modeled as ideal
current generators.

In this paper, we show that the controllers proposed in
[1] can also stabilize an ImG with i) dynamical model of
RL lines with arbitrarily large inductances, and (ii) constant
impedance and constant current loads (commonly referred
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as ZI loads) appearing at generic positions within the ImG.
To this aim, we use passivity theory, which provides a
compositional framework for the analysis of large-scale
systems [10], [11], [12], [13]. In particular, we extend the
stability argument proposed in [14], [15] for DC microgrids
and show that the overall stability of the ImG hinges solely
on the passivity of its subsystems, that is, DGUs, loads,
and power lines. It must be noted that stability analysis
in the AC case is not a straight-forward extension of the
DC case as one must handle balanced three-phase signals
or, equivalently, their dq representation [16]. In addition,
these dq components are inherently coupled, making the
analysis more complex. Different from [14], [15], we provide
sufficient conditions for the passivity of the DGUs and show
that they can be passivated if and only if the storage functions
conform to a particular structure. Moreover, we show that
decoupled controllers handling the d and q components
separately cannot passivate a DGU. Finally, we show the
overall asymptotic stability of the ImG.

The model of ImG along with the structure of local voltage
and frequency controllers is presented in Section II. The
passivity of ImG components and ImG stability are addressed
in Section III. Simulations validating theoretical results are
provided in Section IV. Finally, conclusions are drawn in
Section V.

A. Preliminaries and notation
1) Sets, vectors, and functions: We let R (resp. R>0)

denote the set of real (resp. strictly positive real) numbers.
The notation A � 0 (resp. A � 0 ) represents a positive
definite (resp. positive semidefinite) matrix. Throughout, 0
is a matrix of all zeros of appropriate dimensions.

2) Passivity theory: Consider a control-affine nonlinear
system

ΣNL
i =

{
ẋi = q(xi, ui) = f(xi) + g(xi)ui

yi = hi(xi)
, (1)

where xi ∈ Rni , yi ∈ Rp, and ui ∈ Rp. The functions
qi : Rni ×Rp → Rni , f : Rni → Rni , g : Rni → Rni ×Rp,
and h : Rni → Rp are twice continuously differentiable,
verifying qi(0, 0) = 0, fi(0) = 0, and hi(0) = 0. Note that
inputs and outputs have the same dimension p. The nonlinear
system ΣNL

i is passive [17] if there exists a continuously
differentiable positive-semidefinte storage function Vi(xi) ≥
0, Vi(0) = 0, and a function Si(xi), such that

V̇i(xi) = uTi yi − Si(xi). (2)

If Si(xi) ≥ 0, then system ΣNL
i is said to be passive.

Moreover, the system ΣNL
i is strictly passive if xi 6= 0 ⇒

Si(xi) > 0.
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3) Skew-symmetric interconnections: Consider a set of
N subsystems with control-affine dynamics given by (1).
Suppose that the subsystems are coupled together through
the input

ui =
∑

j∈N+
i

wijyj −
∑

j∈N−
i

wjiyj i = 1, · · · , N, (3)

where wij are scalars. The interconnection between subsys-
tems defined by (3) is called skew symmetric [18], [14].

II. MICROGRID MODEL

In this section, we describe the electric model of the is-
landed AC mirogrid (ImG) comprising of multiple distributed
generation units (DGUs) connected to each other via power
lines. In particular, we extend the model in [1], [19], [7],
[8] by including line dynamics and allowing the loads to
be connected to arbitrary network nodes. We assume three-
phase electrical signals without zero-sequence components
and balanced network parameters.
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Fig. 1: A representative diagram of the ImG network. The
sets D, L, and P are represented in red, green, and blue
respectively.

ImG Model: The electric interconnections in an ImG are
modeled as a directed connected graph G = (V, E). V is
partitioned into two sets: M = {1, . . . , n + m} represents
the DGUs and loads, and P = {n+m+ 1, · · · ,m+n+ o}
is the set of power lines. The set M is further divided into
two sets: D = {1, . . . , n} represents the DGUs and L =
{n+ 1, · · · , n+m} the loads such that M = D ∪ L. Each
DGU and load is interfaced with the ImG through a point of
common coupling (PCC). We refer the reader to Figure 1 for
a representative ImG diagram. The orientation of each edge
represents the reference direction of positive currents which
is arbitrarily assigned. It is evident that a line cannot have
only in-neighbors or out-neighbors as the current entering
in a line must leave it. Indeed, each node in P is always
connected to two different nodes inM through two directed
edges. We define a matrix B ∈ RN×M , with DGUs and
loads along rows and lines along columns, as

Bil :


1 l ∈ N+

i

−1 l ∈ N−i
0 otherwise

, i ∈M, l ∈ N , (4)

where N+
i = {l ∈ V : (i, l) ∈ E} denotes the set of

out-neighbors, N−
i = {j ∈ V : (j, i) ∈ E} the set of in-

neighbors, and Ni = N+
i ∪N

−
i the set of neighbors.

Remark 1: In order to facilitate control design, electrical
signals in this work are represented in a dq reference frame
common to all DGUs rotating with speed ω0. This requires
the controller clocks to be synchronized with sufficient preci-
sion. Technologies, requiring infrequent communication, for

achieving this goal are available (see [8] or the review in
[1]).
Dynamic model of a DGU: The single-phase equivalent
scheme of DGU i is shown in the left dashed frame of Figure
2. The DGU comprises a DC voltage source (generally a
renewable source), a voltage source converter (VSC), and a
series RLC filter. The ith DGU at PCCi is connected to
other DGUs through power lines. Let ω0 be the reference
network frequency. On applying Kirchhoff’s current law
(KCL) and Kirchoff’s voltage law (KVL) on the DGU side
at PCCi, one obtains DGU model in dq reference frame as
(rotating with speed ω0) is

ΣDGU
[i] :


d

dt
V dq
i = −iω0V

dq
i +

Idqti
Cti
−

Idq∗i

Cti

d

dt
Idqti = −

(
Rti

Lti
+ iω0

)
Idqti −

V dq
i

Lti
+

V dq
ti

Lti

, i ∈ D,

(5)
where I∗i , a function of line currents, is the net-current
injected into the DCmG and is given by

Idq∗i =
∑

l∈N+
i

BilI
dq
l +

∑
l∈N−

i

BilI
dq
l =

∑
l∈Ni

BilI
dq
l . (6)

In (5), quantities V dq
i and Idqti represent the i-th PCC voltage

and filter current, respectively, V dq
ti is the command input

to the corresponding VSC, while the terms Rti ∈ R>0,
Lti ∈ R>0, and Cti ∈ R>0 are the internal resistance,
capacitance (lumped with the line capacitances), and induc-
tance of the DGU converter. We remark that dq quantities in
(5) are complex variables. One can deduce the state-space
representation of the DGU model by separating the real and
imaginary part as dynamics (5). Notably, we can write

ΣDGU
[i] :

{
ẋ[i](t) = Aiix[i](t) + BD

i uD
[i](t) + Biu[i](t)

y[i](t) = Cix[i](t)
, i ∈ D, (7)

where x[i] = [V d
i , V

q
i , I

d
ti, I

q
ti]

T is the state, y[i] = [V d
i , V

q
i ]T

is the output, uD[i] = [V d
ti , V

q
ti]

T is the internal control input to
the DGU and u[i] = [−Id∗i ,−Iq∗i ]T is the coupling input. We
highlight that u[i] accounts for the coupling with the rest of
the microgrid. The matrices in (7) have the following form:

Aii =


0 ω0

1
Cti

0

−ω0 0 0 1
Cti

− 1
Lti

0 −Rti
Lti

ω0

0 − 1
Lti

−ω0 −Rti
Lti

 , BD
i =

 0 0
1

Lti
0

0 1
Lti

 ,

VSC i Vti

Rti Lti Iti
Rij Il

Lij

Cti

Vi

ILi

PCCi

DGU i Power line l

∫ -
+
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dq

abc
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Fig. 2: Electrical scheme of DGU i, power line l, and local
PnP voltage and frequency controller.



Bi =


1

Cti
0

0 1
Cti

0 0

 , and Ci =
[
I2 0

]
.

Load model: The jth load along with connecting power lines
is shown in Figure 3. On applying KCL at PCCi, one obtains
the dynamic model of the load in dq frame as

ΣLoad
[j] :


d

dt
V dq
j = −iω0V

dq
j −

1

Ctj
(YLjV

dq
j + ĪdqLj)︸ ︷︷ ︸
ILj

−
Idq∗i

Ctj
, j ∈ L

(8)
where YLj , ĪdqLj , and ILj denote load impedance, constant
load current, and total load current respectively. One can
write (8) in state-space form as

ΣLoad
[j] :

{
ẋ[j](t) = Ajjx[j](t) + Mjd[j](t) + Bju[j](t)

y[j](t) = Cjx[j](t)
, j ∈ L, (9)

where x[j] = [V d
j , V

q
j ]T is the state, y[j] = [V d

j , V
q
j ]T is the

output, d[j] = [IdLj , I
q
Lj ]

T the exogenous input, and

u[j] = [−Id∗j ,−Iq∗j ]T (10)

is the coupling input. The matrices in (9) are as follows:

Ajj =

−YLj

Ctj
ω0

−ω0 −YLj

Ctj

 , Bj =

[ 1
Ctj

0

0 1
Ctj

]
,

Mj = I2, and Cj = I2.

(11)

Dynamic model of a power line: The power lines are rep-

Rij Il
Lij

Ctj

Vj

ILj

PCCj

Power line lLoad j

Fig. 3: Electrical scheme of ZI load. The current ILj incor-
porates the effect of load impedance YLj .

resented by the π-equivalent model of the transmission line
[20]. On the DGU side, it is assumed that the line capacitance
is lumped with the DGU filter capacitance (capacitor Cti
in Figure 2). Similarly, on the load side of the line, its
capacitance is embedded into the load capacitance as shown
in Figure 3. Therefore, as shown in Figure 2, the power line
l is modeled as an RL circuit with resistance Rl > 0 and
inductance Ll > 0. By applying KVL on the lth power line,
one obtains

ΣLine
[l] :

 d

dt
Idql = −

(
Rtl

Ltl
+ iω0

)
Idql +

1

Ll

∑
i∈Nl

BilV
dq
i , l ∈ P

(12)
where the variables Vi and Il represent the voltage at
PCCi and the current flowing through the lth power line
respectively. One can write (12) in state-space form as

ΣLine
[l] :

{
ẋ[l](t) = Allx[l](t) + Blu[l](t)

y[l](t) = Clx[l](t)
, l ∈ P, (13)

where x[l] = [Idl , I
q
l ]T is the state, y[l] = [Idl , I

q
l ]T is the

output, and

u[l] =
∑
k∈Nl

Bkl[V
d
k , V q

k ]T =
∑
k∈Nl

Bkly[k], k ∈M (14)

is the coupling input. The matrices in (13) are as follows:

All =

[
−Rtl

Ltl
ω0

−ω0 −Rtl
Ltl

]
, Bl =

[
1

Ltl
0

0 1
Ltl

]
, and Cl = I2. (15)

A. Structure of local controllers

As in [7], the main objective of a DGU is to track constant
references yref (t) = ȳref at its PCC. These references
are assumed to be provided by a higher-level controller or
through an entity regulating the grid. To this aim, the DGUs
model is augmented with integrators (see Figure 2, where
yref[i] = Vref,i). Hence, we first write the dynamics of the
integrators as

v̇[i](t) = e[i](t) = yref [i]
(t)− y[i](t)

= yref [i]
(t)− Cix[i](t)

, i ∈ D

and subsequently equip each DGU with a state-feedback
controller

C[i] : uD
[i](t) = Kix̂[i](t), (16)

where x̂[i] = [xT [i], v
T
[i]]

T ∈ R6 is the augmented state of the
ith DGU and Ki = R2×6 is the matrix collecting the control
gains. We now derive the augmented model of the DGU as

Σ̂DGU
[i] :


˙̂x[i](t) = (Âii + B̂D

i Ki)︸ ︷︷ ︸
Fi

x̂[i](t) + M̂id̂[i](t) + B̂iû[i]

ŷ[i](t) = Ĉix̂[i](t)

, i ∈ D

(17)
where ŷ[i] = y[i] is the output, d̂[i] = [V d

ref,i, V
q
ref,i]

T ∈ R2

represents the exogenous signals, and

û[i] = u[i] = [−Id∗i ,−Iq∗i ]T =
∑
l∈Ni

Bil[I
d
l ,−I

q
l ]T =

∑
l∈Ni

Bily[l].

(18)
Moreover, matrices in (17) have the form

Âii =

[
Aii 0
−Ci 0

]
=

 Â11,i
1

Cti
I2 02

− 1
Lti

I2 Â22,i 02

−I2 02 02

 ,

Â11,i = ω0

[
0 1
−1 0

]
, Â22,i =

[
−Rti

Lti
ω0

−ω0 −Rti
Lti

]
,

B̂D
i =

[
BD

i
0

]
, B̂i =

[
Bi

0

]
Ĉi =

[
Ci 0

]
, M̂i =

[
0
I2

]
.

(19)

By setting Ki =
[
K11,i K12,i K13,i

]
, K1j,i ∈ R2×2, j =

1, 2, 3, the matrix Fi in (17) is obtained as

Fi =

 Â11,i
1

Cti
I2 02

− 1
Lti

(I2 −K11,i) Â22,i + 1
Lti

(K12,i)
1

Lti
K13,i

−I2 02 02

 .

(20)
As shown in [7], the pair (Âii, B̂

D
i ) is always controllable

and therefore, (17) can be stabilized. In addition, the control
architecture induced by (16) is decentralized.

Remark 2 (Decoupled d-q control): The control-gain ma-
trix Ki maps the state x̂[i] to the internal control input uD[i] =

[V d
ti , V

q
ti]

T of of Σ̂DGU
[i] . If the sub-matrices K1j,i ∈ R2×2,

j = 1, 2, 3 of Ki are diagonal, V d
ti depends only upon the

d-components of x̂[i] and V q
ti only on the q-components. In

such a case, the controller C[i] is said to be decoupled.



III. APPLICATION OF PASSIVITY THEORY TO
MICROGRIDS

The ImG is a networked system defined by the mutual
interconnection of its various subsytems i.e., loads (9), power
lines (13), and DGUs (17). For the input-output pairs defined
in (9), (13), and (17), one can use Theorem 1 in [14],
relying on skew-symmetric interconnections defined in [18],
to characterize the asymptotic behavior of ImG states and
guarantee its stability. However, two necessary preconditions
must be satisfied:
C.1 the ImG subsystems must be connected in a skew-

symmetric fashion defined by (3), and
C.2 each and every subsystem must be passive.
Hereafter, we will discuss the validity of these preconditions
in the ImG. For the condition C.1, we have the following
result.

Lemma 1: The electrical interconnections in DCmG be-
tween DGUs, loads, and power lines given by (18), (10) and
(14) are skew-symmetric.

Proof: The input-output relations in the ImG defined by
(10), (14), and (18) are skew symmetric (see (3)) with wij =
−1, (i, j) ∈ E . The proof is similar to the one provided in
[14] and is omitted due to space constraints.
We will now discuss condition C.2, that is, the passivity of
the various ImG subsystems. Before proceeding, the reader
is reminded that the vectors d[i] and d[j] in equations (17)
and (9) respectively, vary for different choices of constant
exogenous inputs Vref,i and ĪdqLj . Since the equations (9),
(13), and (17) defining the overall ImG dynamics are linear,
the stability of equilibrium in the absence of d[i] and d[j] is
equivalent to the stability of all the equilibria generated for
different (yet constant) d[i] and d[j]. Therefore, in the ensuing
sections, where we study the passivity of the various ImG
subsystems, we set d[i] and d[j] to zero. The passivity of loads
and power lines are summarized in the following remarks.

Remark 3 (Passivity of power lines): As shown in [21],
RL power lines in (13) are always strictly passive with a
positive-definite storage function

V[l](x[l]) =
1

2
xT
[l]LlI2x[l] and S[l](x[l]) = xT

[l]RlI2x[l], l ∈ P, (21)

where I2 is an identity matrix.
Furthermore, the loads in (9) are strictly passive with a
positive-definite storage function

V[l](x[j]) =
1

2
xT
[j]CtjI2x[j] and S[j](x[j]) = xT

[j]YLjI2x[j], j ∈ L.
(22)

The loads can cease to be strictly passive when the load
admittance YLj = 0. In such a scenario, S[j](x[j]) = 0.

A. Passivity of the DGU
Given the passivity of lines and loads, the next step is

to show that the DGUs can by passivated by appropriately
choosing the control gains. To this aim, we propose the
candidate storage function

V[i](x̂[i]) =
1

2
x̂T
[i]Pix̂[i], i ∈ D (23)

where Pi = PT
i ∈ R6×6 is a positive definite matrix. The

following theorem reveals that Pi must satisfy additional

structural constraints in order to passivate Σ̂DGU
i . Moreover,

we show that decoupled control gains (see Remark 2) can
never render a DGU passive.

Theorem 1: Consider the closed-loop DGU model in (17)
with d[i] = 0. For the defined input-output pair, the following
statements hold:

I) The DGU is passive if and only if passivity can be
certified by the storage function (23) with Pi � 0
conforming to the following structure

Pi =

 CtiI2 0 0
02 Xi + XiZiXi −XiZi

02 −ZiXi Zi

 , (24)

where Zi,Xi ∈ R2×2 are positive definite matrices.
II) The DGU can never be strictly passive.

III) Decoupled d-q control can not render the DGU passive.
Proof: Let Pi � 0 be partitioned into 2 × 2 square

matrices as

Pi =

 P11,i P12,i P13,i

PT
12,i P22,i P23,i

PT
13,i PT

23,i P33,i

 . (25)

The DGU (17) is a linear time-invariant system. Therefore,
the following conditions, given by the KYP Lemma [21], are
necessary and sufficient for the passivity of the DGU:

(Âii + B̂iKi)
TPi + Pi(Âii + B̂iKi) = Qi (26a)

PiB̂i = ĈT
i (26b)

where the matrix
Qi � 0. (27)

Moreover, for a DGU to be strictly passive, one must have
Qi ≺ 0. By direct calculation, it can be verified that (26b)
holds when P12,i = P13,i = 0 and P11,i = CtiI2. Therefore,
Pi must be of the form

Pi =

[
CtiI2 0
0 P22,i

]
, P22,i ∈ R4×4. (28)

We highlight that Qi depends upon matrices Pi and Ki,
which must be chosen in an appropriate way in order to
comply with (27). Following the approach in [1], let us
parametrize the unknown quantities in (26a) as follows

Pi = Y −1
i , Ki = GiY

−1
i , (29)

where Gi =
[
G11,i G12,i G13,i

]
∈ R2×6, G11,i,G12,i,G13,i ∈

R2×2,

Yi =

 C−1
ti I2 02 02

02 Y22,i Y23,i
02 YT

23,i Y33,i

 =

[
C−1

ti I2 0

0 Y22,i

]
, (30)

and
G11,i = C−1

ti K11,i (31a)

G12,i = K12,iY22,i +K13,iYT
23,i (31b)

G13,i = K12,iY23,i +K13,iY33,i. (31c)

Using (29), (26a) can be equivalently written as

YiÂ
T
ii + GT

i B̂i + ÂiiYi + B̂iGi = Q̃i, (32)

where
Q̃i = YiQiYi. (33)

To ensure passivity of DGU (17), (27) must hold. Since Yi �
0, one has that Qi � 0 only if Q̃i has the same property. In



the remainder of the proof we will reason on the negative
semi-definiteness of Q̃i.

As shown in [1], Q̃i is negative semidefinite if the matrix
inequality

Â22,iY22,i + Y22,iÂT
22,i +

1

Lti
G12,i +

1

Lti
GT12,i � 0, (34a)

and the following equalities

Y23,i = I2, (35a)

G13,i = −LtiÂ22,i, (35b)

G11,i =
Lti

Cti
Y22,i +

1

Cti
I2, (35c)

hold simultaneously. Moreover, using Schur’s complement
[22], one has that the matrix Yi � 0 if and only if Y22,i � 0
and

Y33,i − YT
23,iY

−1
22,iY23,i = Y33,i − Y−1

22,i � 0. (36)

One can equivalently parametrize Y33,i as

Y33,i = Y−1
22,i + Yi. (37)

where Yi � 0 ∈ R2×2. We will now show that if (35) and
(37) hold, (34a) is always solvable. Using (31), (35), and
(37), the inequality (34a) can be simplified as

Â22,iY22,i + Y22,iÂT
22,i +

1

Lti
G12,i +

1

Lti
GT12,i

= −K13,i(YiY22,i)− (YiY22,i)TKT
13,i � 0

(38)

The last equation is always solvable: one particular solution
is K13,i = (YiY22,i)−1. Indeed, the matrices Yi and Y22,i
are positive definite, and by Sylvester’s law of inertia [22],
(YiY22,i) is always invertible. Using (35) and (36),

Yi =

 C−1
ti I2 02 02

02 Y22,i I

02 I Y−1
22,i + Yi

 . (39)

Note that Yi must conform to the above structure in order
to guarantee the negative semi-definiteness of Q̃i and subse-
quently of Qi. The Pi in (24) is nothing but the inverse of
Yi with Xi = Y−1

22,i and Zi = Yi. This concludes the proof
of statement I).

For proving Statement II), assume that Qi is partitioned in
a similar fashion as (25). On evaluating the left-hand side of
(26a) with Pi in (24), one obtains that Q11,i = 0. Since the
first minor of Qi is zero, it can never be negative definite.
Hence, the DGU can never be strictly passive.

We will focus on (31c) to prove Statement III). Using
(35a) and (35b), it can rewritten as

−K−1
13,i(LtiÂ22,i +K12,i) = Y33,i (40)

Under decoupled control, the matrices K12,i and K13,i are
diagonal. By using Â22,i defined in (19), it can be shown
that the left hand side of the above equation has unequal off-
diagonal elements and hence, fails to be symmetric . Since
Y33,i is symmetric, decoupled dq control cannot passivate
the DGUs.
For Pi in (24), one can verify that the derivative of V[i](x[i])

along the state trajectory of Σ̂DGU
i in (17) is obtained as

V̇[i](x̂[i]) = uT
[i]y[i] − x̂T

[i](−Qi)x̂[i]︸ ︷︷ ︸
S[i](x[i])

, (41)

where
Qi = (Âii + B̂iKi)

TPi + Pi(Âii + B̂iKi). (42)

Furthermore, passivity of the DGU corresponds to Qi �
0. As shown in Theorem 1, this condition can always
be fulfilled for suitable control gains Ki. The problem of
computing Ki for a given choice of Pi can be cast into
a linear matrix inequality and is solved using numerical
optimization. We refer the reader to [1] for further details.

B. Asymptotic stability of the microgrid

As shown in Lemma 1, the interconnections among the
various ImG subsystems are skew-symmetric. In addition,
the power lines are strictly passive, the loads are passive, and
the DGUs can be passivated using suitable gains Ki. Hence,
both the conditions C1 and C2 are satisfied. At this point,
one can prove the asymptotic stability of the ImG network.

Theorem 2: If Σ̂DGU
[i] in (17) is passive for all i ∈ D, then

the origin of ImG, defined by the interconnection of (9), (13),
and (17), is asymptotically stable.

Proof: Given the passivity of the DGUs, the conditions
C.1 and C.2 hold simultaneously. From [14, Theorem 1], one
can conclude that the ImG states asymptotically converge to
the largest invariant set contained in

E = { x̂[i], x[j], x[l] : S[i](x̂[i]) = 0,S[j](x[j]) = 0,

S[l](x[l]) = 0, i ∈ D, j ∈ L, l ∈ P } .
(43)

Since the DGUs are never strictly passive, the set E is never
empty. However, one can show that the largest invariant
set in E is the origin and hence, the origin of the ImG is
asymptotically stable. The derivation of the largest invariant
is similar to the one provided in [1] and is omitted due space
constraints.

Remark 4 (PnP nature of control): From (42), for com-
puting Ki such that Qi is negative semidefinite, one needs
the knowledge of matrix Âii. It should be noted that Âii

depends only on the filter parameters of the ith DGU.
Therefore, controller C[i] can be synthesized in a purely
decentralized fashion. We defer the reader to [1] for detailed
comments about the benefits of this PnP design procedure,
which facilitates plug-and-play operations, that is, addition
and removal of the DGUs on the fly by designing local
controllers at a computational cost independent of the size
of ImG.

IV. SIMULATION RESULTS

In this section, we aim to validate the proposed theoretical
arguments for analyzing the stability of an ImG through
simulation studies. We consider an ImG composed of 2 DGU
nodes with non identical parameters and 4 load nodes (see
Figure 4). The reader is referred to [7] for parameter values
used in the simulation.In particular, the frequency used for
dq transformation is ω0 = 50 Hz. In our experiments, voltage
references Vref,1, Vref,2 are assumed to be provided by a
higher level controller. In order to design our controllers,
we use a matrix Pi (see (24)) with Xi = Zi = I2. We
initially provide a voltage reference V d

1,ref = 1.05 pu,
V q
1,ref = 0.96 pu, and V q

5,ref = 1.07 pu, V 1
5,ref = 1.02 pu,

which is changed V d
1,ref = 1.01 pu, V q

1,ref = 1.05 pu, and



DGU 1

Load 2

Load 3

Load 4

DGU 5

Load 6

Fig. 4: Simplified representation ImG composed of 2 DGUs
and 4 load nodes. The connecting power lines are represented
by the edges.

V q
5,ref = 1.02 pu, V 1

5,ref = 0.96 pu at t = 10 s. As shown
in Figure 5, the voltages exhibit small deviations at t = 10
s but are promptly restored desired reference values by the
control actions. This shows the local controllers can stabilize
the entire network. Although not shown here, when the off-
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Fig. 5: Components d (red) and q (blue) of DGU voltages.

diagonal terms of sub-matrices K11,i, K12,i, and K12,i of Ki

are neglected, we noticed that the voltages do not converge,
the ImG stability is lost.

V. CONCLUSION

In this work, we dealt with the problem of voltage and
frequency stability in ImG. An ImG model with ZI loads
appearing at generic positions and dynamic RL lines was
considered. We showed that the stability of the ImG hinges
on the passivity of its various subsystems. For the DGUs,
we provide necessary and sufficient conditions for the exis-
tence of control gains guaranteeing passivity. Moreover, the
passivating control design is completely decentralized, and
is independent of the ImG size and topology.

Many interesting future research directions can be taken.
An immediate next step can be the inclusion of load models
more sophisticated than the ZI models considered in this
work. Designing the interface between local regulators and

higher-level control layers for efficient operation of the entire
ImG is an other promising direction.
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