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1 Introduction

It is believed that the critical point of the 3d ferromagnetic Ising model is conformally

invariant. One strong piece of evidence is the excellent agreement between the critical

exponents extracted from experiments and Monte Carlo simulations and from the confor-

mal bootstrap [1–6]. Conformal invariance has been also checked directly on the lattice,

by verifying functional constraints that it imposes on the shape of some correlation func-

tions [7, 8].1 In this paper we will provide another lattice test of this property, which is

qualitatively different and in a sense more robust.

1We would also like to point out a related lattice study of conformal invariance in 3d percolation [9].
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Any field theory coming from a local action, and in particular the 3d Ising model close

to or at the critical temperature, has a local stress tensor operator Tµν which is conserved:

∂µTµν = 0. The structural property of conformally invariant local theories is that this

local stress tensor operator is traceless:

Tµ
µ = 0 . (1.1)

Our new test will probe this structural property, unlike previous lattice studies which tested

its consequences.

The key question is: could the critical 3d Ising model be scale invariant (as befits

any critical theory, being a fixed point of a renormalization group flow), but not fully

conformally invariant? As was lucidly explained by Polchinski [10],2 a theory will be scale

invariant without being conformal if Tµν is not traceless but its trace is a total divergence:

Tµ
µ = ∂νWν , (1.2)

where Wµ is a vector operator, called the virial current, which is (a) not conserved and

(b) not itself a total derivative.3 Precisely this mechanism is responsible for scale without

conformal invariance of the theory of elasticity, perhaps the simplest physically relevant

example of this phenomenon [13].4

It’s then natural to inquire if eq. (1.2) can hold in the critical 3d Ising model, and we

will show that it cannot. Our argument is based on the following simple observation: any

operator Wµ which is a candidate to appear in the r.h.s. of (1.2) must have two additional

properties. First of all, it should, just as Tµν itself, be invariant under the internal symmetry

of the model, Z2 in the case of Ising. In addition, since Tµν has canonical scaling dimension

d, operator Wµ should have dimension d− 1 = 2.

For the subsequent discussion, let us define Vµ as the lowest Z2-even vector operator

Vµ, which is not a total derivative. If we manage to show that ∆V > 2, this will imply

that the model has no virial current candidates of appropriate dimension, and thus must

be conformal.

Extending the discussion from d = 3 to the whole family of Z2-invariant Wilson-Fisher

fixed points for 2 6 d 6 4, the dimension of V can be determined exactly in d = 2 and

d = 4 (see appendix A). Namely, we have:

∆V = 14 (2d Ising),

∆V = 11 (4d free massless scalar). (1.3)

It also follows from the ε-expansion that the dimension of V in 4 − ε dimensions will be

11±O(ε).5

2See also [11] for a review. Concerning the 3d Ising model, see especially section 4.2 of [12].
3If Wµ is a total derivative, the stress tensor can be “improved” to be traceless, so that eq. (1.1) is

satisfied for the improved Tµν .
4It should be noted that this mechanism may be realized with a quirk in gauge theories. Namely it may

happen that eq. (1.2) holds but that the virial current is not a gauge invariant operator (and so is not a

physical local operator). For example, this is how the 3d Maxwell theory avoids conformal invariance [14].
5The coefficient of the O(ε) correction term could be computed, but we don’t need it.
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Eqs. (1.3) correct some incorrect statements in the first version of this paper [15] and

in [16–18]. For example, ref. [15] stated that ∆V = 7 in 4d, having in mind the candidate

Vcand = φ∂µφ(∂νφ)2 . (1.4)

As pointed out in [17], this particular operator is actually total derivative, as we have

the relation

Vcand = ∂ν [φ2∂µφ∂νφ]− 1

2
∂µ[φ2(∂νφ)2] (1.5)

(modulo terms vanishing by the equations of motion). However, their own dimension 7

candidate for V is also incorrect, being a redundant operator (see note 13).

Based on eqs. (1.3), one can expect that the dimension of Vµ in critical 3d Ising model

should be significantly larger than 2. In this paper we will show, using lattice Monte Carlo

simulations, that this expectation is correct. Namely, our analysis will imply a numerical

lower bound on ∆V :

∆V > 5.0 (3d Ising) . (1.6)

In particular, this proves that ∆V > 2, and shows that the 3d Ising model has no candidates

for Wµ. This rules out the scale without conformal invariance scenario based on (1.2), and

thus provides a new test of conformal invariance.

The paper is structured as follows. In section 2, we set up the lattice Monte Carlo

simulation to measure a one-point function in a cubic lattice with peculiar boundary con-

ditions (motivated in appendices D and E). Section 3 contains our numerical results that

lead to (1.6). We conclude with a short discussion of the implications of our result. In

appendix A, we compute ∆V in the 2d Ising model and in the theory of a free massless

scalar in d = 4. In appendix C, we summarize the general procedure for matching lattice

operators with local operators of the critical field theory. This is well known among the

practitioners but we do not know any good pedagogical summary in the literature.

2 Lattice setup

We simulate the nearest-neighbor ferromagnetic 3d Ising model on the cubic lattice at the

critical temperature. The Hamiltonian is

H = −β
∑
〈xy〉

s(x)s(y) , s(x) = ±1. (2.1)

We use the known critical temperature β = βc ≈ 0.2216546 [19, 20].

2.1 Boundary conditions

Our lattice has spatial extent L × L × L sites. We set lattice spacing a = 1. Due to the

difficulties of measuring a rather high scaling dimension ∆V , we will only be able to go up

to volumes L = 16. We impose periodic boundary conditions in directions x1, x2, while

at x3 = 0 and x3 = L − 1 we impose a mixture of fixed and free boundary conditions.

– 3 –
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periodic

periodic

free

s = +1

s = +1

free

free

x1x2

x3 0 L� 1

Figure 1. The boundary conditions used in our simulation. The x3 = 0 and x3 = L− 1 faces have

a combination of free (white) and fixed s = +1 (gray) boundary conditions. On the other faces the

periodic boundary conditions are imposed. This drawing uses the Byzantine perspective only to

improve visibility; the actual geometry is an L × L × L cube with parallel sides. The red dashed

line is one possible location of the integrated observable (2.6).

Namely, for x3 = 0 we impose the fixed s = +1 boundary condition for points with

L/4 6 x1 < 3L/4, while at x3 = L− 1 we do the same for points with L/2 6 x1 < L. The

rest of the boundaries at x3 = 0 and x3 = L−1 has free boundary conditions (see figure 1).

The reasons for such a bizarre choice of boundary conditions will be explained shortly.

2.2 Lattice operator

We will work with the lattice operator

Olat
µ = s(x)∇µs(x)

3∑
ν=1

[∇νs(x)]2 , (2.2)

where x is a lattice point and

∇νs(x) = s(x+ êν)− s(x− êν) (2.3)

is the symmetric lattice derivative in the ν direction.

Actually the precise form of the operator is unimportant, the only important thing is

that Olat
µ is not a total lattice derivative. See appendix B for a discussion and the proof of

the latter fact.

2.3 Matching of the lattice operator with critical point operators

Close to the critical point, the lattice operator Olat
µ can be expanded into a basis of local

operators of the critical theory with well-defined scaling dimensions (see appendix C for

a review):

Olat
µ =

∑
i

ciOi,µ , (2.4)

– 4 –
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where Oi is the critical theory operator which has a scaling dimension ∆i, and ci are some

lattice-dependent constants. Barring accidental cancellations, any lattice measurement

related to Olat
µ will be dominated by operators of lowest scaling dimensions appearing in

the r.h.s. of (2.4). This is because the contribution of an operator of dimension ∆i will

be suppressed by 1/R∆i where R is a large distance scale (clearly we have to go to large

distances to explore the critical point).

Notice that operators in the r.h.s. will have to be vectors, but they don’t have to be

primaries. So, the total derivative terms involving derivatives of various Z2-even scalar

operators which exist in the 3d Ising model (see table 2 in [6]) are expected to appear in

the r.h.s. of (2.4). The lowest of these are ∂µε and ∂µε
′, where ε, ε′ are the lowest-dimension

Z2-even scalars, of dimension ∆ε ≈ 1.41, ∆ε′ ≈ 3.83. These derivative operators (especially

∂µε) have rather low dimension. Below we will introduce a trick which will allow us to

project them out and focus on more interesting terms.

Crucially for us, since Olat
µ is not a total derivative, the operator Vµ we are interested

in will appear in this expansion:

V lat
µ ⊃ CVµ + . . . . (2.5)

The constant C = O(1) is an unknown, non-universal, lattice quantity, and we will assume

C 6= 0 since there is no reason to expect otherwise. The . . . include various terms which

we are not interested in, and we should make sure that those terms do not mask the

contribution of Vµ. Some of these terms involve operators of higher scaling dimension than

V . The presence of those terms is harmless since their effect will be subleading in the large

volume limit. More annoying are the total derivative terms involving derivatives of various

Z2-even scalar operators which exist in the 3d Ising model (see table 2 in [6]). Some of

these have a rather low dimension and would mask Vµ unless special care is taken. For

example, we expect ∂µε to appear in the r.h.s. of (2.4), where ε is the lowest-dimension

Z2-even scalar, of dimension ∆ε ≈ 1.41.

Another class of total derivative operators which we expect to appear are ∂νT
′
µν , di-

vergences of non-conserved spin-2 Z2-even operators. Assuming conformal invariance, the

lowest such operator has dimension ∆T ′ ≈ 5.51 [6]. Divergences of higher spin operators are

also expected in principle but will not play a role because of their even higher dimension.

In our study we will be able to filter out the contributions of derivatives of scalars (like

∂µε) through the following trick, rendered possible by the periodic boundary conditions.

We consider the average value of the x1-component of V lat
µ integrated along a periodic

circle in this direction:

I(x2, x3) =
1

L

L−1∑
x1=0

V lat
1 (x1, x2, x3) (2.6)

Integration kills off the derivatives taken in the direction of integration. As a result this

integrated observable in the continuum limit does not couple to derivatives of scalars like

– 5 –
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∂µε. On the other hand divergences of spin-2 operators survive this projection, and their

integral will contribute to I along with the integral of Vµ.6

We will measure the one-point (1pt) function of I. In infinite volume vector operators

would have zero 1pt functions, but in finite volume with appropriate boundary conditions

they can be nonzero. In our case we will have

〈I(x2, x3)〉 ≡ Obs(x3) =
1

L∆I
f

(
x3

L− 1

)
+ . . . , (2.7)

with no dependence on x2 due to the translation invariance in that direction. The scaling

of this observable with L will be determined by the smaller of the two dimensions ∆V ,

∆∂T ′ = ∆T ′ + 1:

∆I = min(∆V ,∆T ′ + 1). (2.8)

In this work we will only measure ∆I , but we will not be able to determine which of the

two operators V or ∂T ′ dominates the scaling.

Another way to determine ∆I would be to impose periodic boundary conditions also

in the x3 direction and to study finite size scaling for the 2pt function of I at separation

L/2. This observable would scale as 1/L2∆I . We tried this strategy and found the signal

completely swamped by noise, due to large ∆I . Using the 1pt function improves the signal-

to-noise ratio by a factor L∆I and will allow us to perform the measurement.

The . . . terms in (2.7) decay with a higher power of L. They originate from the higher-

dimension operators contributing to V lat
µ as well as from corrections to scaling arising from

the fact that in finite volume the theory is not exactly at the critical point but is still

flowing to it in the renormalization group sense. Because of limited statistics, we will

unfortunately be forced to simply neglect both of these corrections in our analysis.

The function f(t), 0 < t < 1, parametrizes the observable (2.7) in the infinite-volume

limit. This function will be measured in our simulation. To have nonzero f(t), the boundary

conditions at x3 = 0, L− 1 should break the flip symmetry in the x1 direction:

x1 → L− x1 , (2.9)

under which I changes sign. This is the case for our boundary conditions in figure 1. On

the other hand, our boundary condition preserves the above x1 flip accompanied by the

x3 flip:

x3 → L− x3 , (2.10)

and a periodic shift of the x1 direction by L/4. As a consequence, our function f(t) will

be odd with respect to t = 1/2, and in particular f(1/2) = 0.

We have experimented with several other flip-breaking boundary conditions, and set-

tled for the one in figure 1 because it gives rise to a particularly sizable f(t), thus further

6To kill all possible total derivatives, one could consider periodic conditions in all directions and to

integrate over the whole volume. We do not currently have a concrete proposal implementing this idea.

The main difficulty is that the one-point function of a vector operator vanishes on the 3-dimensional torus

with periodic boundary conditions.
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improving signal-to-noise. See appendix D for a list of other possible boundary conditions,

and appendix E for a heuristic procedure to quickly evaluate which boundary condition is

expected to work best.

While it is not directly related to our computation, we would like to mention here

one other instance where boundary conditions were used in lattice field theory to make

a 1pt function of a tensor operator nonzero. Namely, in 4d lattice gauge theory, the

1pt function of the off-diagonal stress tensor component T0x was measured imposing the

“shifted” boundary conditions, when the fields are made periodic in the spatial directions,

and periodic up to a coordinate shift in the Euclidean time direction [21, 22]. This boundary

condition is a particular case of the gluing boundary condition discussed in appendix D.

2.4 Choice of Monte Carlo algorithm

We perform Monte Carlo simulations using the single-spin-flip Metropolis algorithm. The

choice of Monte Carlo algorithms plays a crucial role in the efficiency of the simulations. It

is well known that the Wolff algorithm [23] is more efficient than the Metropolis algorithm at

the critical temperature due to the scaling of the computational effort with the system size.

However, even though the smaller critical slowdown exponent favors the Wolff algorithm for

large systems, for small ones and for some statistical observables, the Metropolis algorithm

may be more efficient. This is what happened in our case.

To be more concrete, the standard measure of the simulation efficiency is based on the

product of the algorithm execution time (τCPU ) and the integrated autocorrelation time

(τc). One reason to prefer the Metropolis algorithm is that in our case it led to very small

integrated autocorrelation time of the vector operator sampling (this time scale depends

on the statistical observable we are trying to measure).

Another important factor for this choice was the role of the boundary conditions. The

use of fixed boundary conditions requires the imposition of an acceptance probability to

flip the clusters touching the boundary (see appendix D). On the other hand, if we replace

the fixed b.c. by the βbdry = ∞ conditions (see appendix E) each time a cluster touches

the boundary the full boundary will be flipped with a clear increase of τCPU and without

any gain in τc. These reasons led us to opt for the Metropolis algorithm. Our tests showed

that for a system size of L = 16, the Metropolis algorithm was able to produce results with

error bars comparable to the Wolff algorithm, being faster by a factor of 10.

3 Results

We performed Monte Carlo simulations in the setup described in the previous section, with

L = 8, 12, 16. The nature of our boundary conditions, with the shift by L/4, requires to

increase L in steps of 4.

Our simulations were organized as follows. To generate the next sufficiently decorre-

lated spin configuration we performed N = L3/4 steps of the Metropolis algorithm on spins

with randomly chosen positions. The measurement of the observable Obs(x3) in (2.7) was

then performed (averaging over x2). Since our lattice operator (2.2) has range 3, we only

did the measurement for 1 6 x3 6 L− 2.

– 7 –
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Obs(x3) in units of 10−6

x3 L = 8 L = 12 L = 16

1 41.9(7) 9.33(17) 3.11(9)

2 12.5(7) 3.12(19) 1.08(9)

3 1.7(7) 0.87(19) 0.49(10)

4 −3.5(7) 0.74(20) 0.27(10)

5 −10.7(7) −0.24(20) 0.12(10)

6 −41.7(7) 0.16(20) −0.03(10)

7 −0.39(20) 0.06(10)

8 −1.02(19) −0.13(10)

9 −3.18(19) −0.08(10)

10 −9.07(17) −0.07(10)

11 −0.25(10)

12 −0.51(10)

13 −1.07(10)

14 −3.13(10)

Table 1. Results of Monte Carlo measurements with statistical errors.

The total number of such decorrelated spin configurations that we generated was 2.4×
1012 (resp. 3.5×1013) for L = 12 (resp. L = 16). A much smaller number sufficed for L = 8.

For N = L3/4 spin flips between the two measurements, the integrated autocorrelation time

between the subsequent measurements of Obs(x3) was close to 1 for every x3.

Our simulations were parallelized on a cluster and took a total of about 300 CPU-years.

The numerical results of these measurements are given in table 1, and are shown in

plots below as a function of t = x3/(L− 1).7 In these plots we show the data multiplied by

(L/12)∆ for various values of ∆. According to (2.7), the curves for different L are supposed

to collapse if ∆ = ∆I . At least this is supposed to happen for sufficiently large L, when

contributions from the subleading terms . . . in (2.7) become unimportant.

In figure 2 we take ∆ = 2, the value needed for a virial current candidate. Clearly the

curves show no collapse, ruling out the existence of the virial current.

A side remark: as mentioned in the previous section, the function f(t) should be odd

with respect to t = 1/2 for our choice of the boundary conditions. This antisymmetry is

indeed satisfied within error bars, as can be seen in the figures.8

In figure 3 we show what the same plot looks like if we choose ∆ = 6. In fact this

value is our best estimate for ∆I . The curves show collapse within the error bars for

0.2 6 t 6 0.8. We consider that the t values closer to the x3 = 0, L − 1 boundaries are

dominated by boundary effects and exclude them from the analysis.

7The raw data in text form can be found inside the tex file of the arxiv submission.
8The way our measurement is organized, all points for the same L, and in particular the symmetric

data points, are correlated with an unknown correlation. Thus once the measurement is finished, we cannot

easily take advantage of this antisymmetry to reduce the errors by averaging over the symmetric datapoints.

However, that the measured function does come out antisymmetric is a check of our procedure.
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L=8
L=12
L=16

0.0 0.2 0.4 0.6 0.8 1.0

-0.00001

-5.×10-6

0

5.×10-6

0.00001

x3 /(L-1}

(L/12)Δ Obs(x3)

Figure 2. In this plot ∆ = 2, testing (and ruling out) the virial current existence hypothesis.

L=8
L=12
L=16

0.0 0.2 0.4 0.6 0.8 1.0

-0.00001

-5.×10-6

0

5.×10-6

0.00001

x3 /(L-1}

(L/12)Δ Obs(x3)

Figure 3. In this plot ∆ = 6, which is our central value for ∆V .

To assign an error to our determination of ∆I , we propose the following heuristic

procedure. We vary ∆ around 6 and see when the curves clearly deviate from the collapsing

behavior in the interval 0.2 6 t 6 0.8, judging by the eye. One way to quickly perform

this analysis is to use the Manipulate function of Mathematica. This way we arrive at our

confidence interval:

∆I = 6± 1. (3.1)

See figure 4 for what the collapse plots look like at the extreme ends of the confidence

interval.9 While the “judging by the eye” procedure may seem subjective and ad hoc,

we don’t believe a much better statistical procedure can be advocated given our limited

amount of data.

9If we omit the L = 8 datapoints from our analysis (e.g. if one is worried that these points are still

significantly affected by the subleading . . . corrections in (2.7)), then we get ∆I = 5.5± 1.5 using the same

procedure. We quote this number only for comparison, as we do not feel that completely discarding the

L = 8 points is justified.
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L=8
L=12
L=16

0.0 0.2 0.4 0.6 0.8 1.0
-0.00001

-5.×10-6

0

5.×10-6

0.00001

x3 /(L-1}

(L/12)Δ Obs(x3)

L=8
L=12
L=16

0.0 0.2 0.4 0.6 0.8 1.0
-0.00001

-5.×10-6

0

5.×10-6

0.00001

x3 /(L-1}

(L/12)Δ Obs(x3)

Figure 4. Determining a confidence interval for ∆I . Left: ∆ = 5. Right: ∆ = 7.

8 10 12 14 16
L1.×10-7

5.×10-7

1.×10-6

5.×10-6

1.×10-5

Obs

Figure 5. Observable for x3 = 2 (L = 8), x3 = 3 (L = 12) and x3 = 4 (L = 16) and for the three

mirror points (with a minus sign). The dashed line is the best fit c/L∆ which gives ∆ = 6.03 as

the central value.

We have cross-checked our determination of ∆I by focussing on the three points x3 = 2

(L = 8), x3 = 3 (L = 12) and x3 = 4 (L = 16), which correspond to three close values of

t = x3/(L − 1). Neglecting the difference in t, the values of the observable at these three

points should scale as const./L∆I . That this is indeed roughly the case can be seen in the

log-log plot in figure 5. Performing the fit using these three points and their mirror images

under t→ 1− t, we get the same answer ∆I = 6± 1.

4 Discussion and conclusions

One goal of this paper was to emphasize that there is a simple and robust way to check

the conformal invariance of any critical lattice model, which requires the measurement of

the lowest non-derivative vector operator V which is a singlet under all global symmetries.

This operator can play the role of the virial current, and potentially cause scale without

conformal invariance, but only if its dimension is exactly d− 1.

In this paper we considered this strategy in the critical 3d Ising model. Since the

dimension of V appears to be large, to carry out our measurement we had to introduce

several tricks increasing the efficiency of Monte Carlo simulations. In particular, we had

to consider an integrated lattice operator to decouple some uninteresting total derivative

terms, and to optimize boundary conditions to maximize the (integrated) 1pt function of

– 10 –
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V , which was our Monte Carlo target. Further boundary condition optimization is likely

possible (see appendix E) and might allow to reduce the error bars in future studies.

The main limitation of our approach to measuring ∆V is that while it decouples total

derivatives of scalars, it does not do so for divergences of spin-2 operators. As a result we

measure not ∆V but ∆I = min(∆V ,∆T ′+1), where T ′ is the lowest non-conserved Z2 even

spin-2. So, our result ∆I = 6 ± 1 only implies a lower bound ∆V > 5.0 on the dimension

of V . Still, the virial current value ∆V = 2 is soundly ruled out by this lower bound. This

confirms that the 3d Ising model is conformally invariant.

Now assuming conformal invariance, we know from the conformal bootstrap that ∆T ′ ≈
5.51 [6]. This suggests that our measurement of ∆I was dominated by ∆T ′ + 1, while V

itself may be much higher. This scenario appears likely also in light of extremely high

values of ∆V in d = 2, 4 reported in the Introduction.

In this paper we have not carried out any correction-to-scaling analysis. It would

be interesting to repeat the simulation in the Blume-Capel model which is in the same

universality class as the Ising model but has a free parameter allowing to drastically reduce

corrections to scaling [20].

It would be also interesting to determine or bound the dimension of V for the O(N)

and other models.

Finally, we would like to comment on the determination of ∆V using the conformal

bootstrap. The numerical conformal bootstrap has determined scaling dimensions of about

100 operators of the critical 3d Ising model [6]. The operators which have been determined

appear in the operator product expansions (OPEs) of σ× σ, ε× ε and σ× ε, where σ and

ε are the lowest dimension Z2-odd and Z2-even scalars. The OPEs σ × σ and ε× ε, being

OPEs of identical scalars, contain only operators of even spin. The OPE σ × ε contain

only Z2-odd operators. The operator V , being a Z2-even vector, does not appear in these

OPEs, and therefore it has not been so far probed by the conformal bootstrap. In the

future, the OPEs σ×σ′ and ε× ε′, where σ′ and ε′ are the subleading Z2-odd and Z2-even

scalars, will hopefully be included in the bootstrap analysis. These OPEs contain V and

can be used to determine its dimension.

Of course, determination of ∆V using the conformal bootstrap already presupposes

that the model is conformally invariant. This has to be distinguished from the lower

bound on V obtained in our paper, which is valid independently of conformal invariance,

and so allowed us to test this property.

Note added. In the first arXiv version of this paper [15] the reader will find an appendix

criticizing the argument in [16] for conformal invariance of the critical 3d Ising model.

We consider the objections raised there still valid, and the rebuttal [17] unsatisfactory.

However, we removed the appendix to keep the focus on the positive results obtained in

our own work.
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A Theoretical expectations for the dimension of V

In this appendix, we determine the lowest dimension of a vector primary operator at the

Wilson-Fisher fixed point in spacetime dimension d = 2 and d = 4. These exactly solvable

cases provide an indication for what to expect in d = 3.

A.1 Four dimensions

The Wilson-Fisher fixed point in d = 4 describes a free massless scalar field φ satisfying

the equation of motion ∂2φ = 0. The operator content of this free CFT can be encoded in

the partition function

Z(q, x, y) =
∑
O
q∆Ox2jOy2j̄O , (A.1)

where the sum runs over all local operators. The quantum numbers (∆, j, j̄) are the eigen-

values of the dilatation generator D and two commuting rotation generators J3 and J̄3.

The latter correspond to the decomposition SO(4) = SU(2)× SU(2) of the rotation group.

The partition function can be easily computed using the Fock space structure [26, 27]. We

start by introducing the partition function zφ of local operators with a single field φ and

arbitrary number of derivatives,

zφ(q, x, y) = χ1,0,0(q, x, y)− χ3,0,0(q, x, y) (A.2)

where

χ∆,`,¯̀(q, x, y) =
q∆

(1− qxy)(1− qy/x)(1− qx/y)(1− q/(xy))

∑̀
j=−`

x2j

¯̀∑
j̄=−¯̀

x2j̄ (A.3)

is the long character of a conformal multiplet with primary of dimension ∆ and spin (`, ¯̀).

The full partition function can then be written as

Z(q, x, y) = exp

[ ∞∑
k=1

1

k
zφ

(
qk, xk, yk

)]
. (A.4)

Moreover, the partition function restricted to Z2 even/odd operators is given by

Z±(q, x, y) =
1

2
exp

[ ∞∑
k=1

1

k
zφ

(
qk, xk, yk

)]
± 1

2
exp

[ ∞∑
k=1

(−1)k

k
zφ

(
qk, xk, yk

)]
. (A.5)

– 12 –



J
H
E
P
0
4
(
2
0
1
9
)
1
1
5

We are interested in the character decomposition of the Z2 even partition function. Ex-

panding the given expression and matching the powers of q and dependence on x, y order

by order, we arrive at the following expression:

Z+ = 1 +
4∑

n=1

χshort
2+2n,n,n + χ2,0,0 + χ4,0,0 + χ6,0,0 + χ6,1,1 + χ7, 3

2
, 3
2

(A.6)

+ 2χ8,0,0 + χ8,0,2 + 2χ8,1,1 + χ8,2,0 + 2χ8,2,2

+ χ9, 1
2
, 3
2

+ χ9, 1
2
, 5
2

+ χ9, 3
2
, 1
2

+ χ9, 3
2
, 3
2

+ χ9, 3
2
, 5
2

+ χ9, 5
2
, 1
2

+ χ9, 5
2
, 3
2

+ χ9, 5
2
, 5
2

+ 3χ10,0,0 + χ10,0,2 + 4χ10,1,1 + χ10,1,2 + 2χ10,1,3 + χ10,2,0 + χ10,2,1

+ 4χ10,2,2 + χ10,2,3 + 2χ10,3,1 + χ10,3,2 + 3χ10,3,3

+ χ11, 1
2
, 1
2

+ 2χ11, 1
2
, 3
2

+ 2χ11, 1
2
, 5
2

+ χ11, 1
2
, 7
2

+ 2χ11, 3
2
, 1
2

+ 4χ11, 3
2
, 3
2

+ 3χ11, 3
2
, 5
2

+ 2χ11, 3
2
, 7
2

+ 2χ11, 5
2
, 1
2

+ 3χ11, 5
2
, 3
2

+ 3χ11, 5
2
, 5
2

+ 2χ11, 5
2
, 7
2

+ χ11, 7
2
, 1
2

+ 2χ11, 7
2
, 3
2

+ 2χ11, 7
2
, 5
2

+ 2χ11, 7
2
, 7
2

+O(q12),

where

χshort
2+2n,n,n = χ2+2n,n,n − χ3+2n,n− 1

2
,n− 1

2
(A.7)

is the character associated with a conserved current of spin 2n. This shows that the vector

primary with lowest scaling dimension has ∆ = 11 (blue character).

As a consistency check, we have determined ∆V = 11 using an alternative method.

We performed the conformal block decomposition of the four-point function10

〈φ2(x1)φ4(x2)φ2(x3)φ4(x4)〉 =
1

x4
13x

8
24

+
6

x4
12x

4
34x

4
24

+
6

x4
14x

4
23x

4
24

(A.8)

+
8

x2
13x

2
12x

2
34x

6
24

+
8

x2
13x

2
14x

2
23x

6
24

+
24

x4
14x

2
12x

2
34x

4
23x

4
24

.

In the (12) channel, the conformal block decomposition reads11

6G2,0 + 32G4,0 + 15G6,0 +
96

5
G6,2 + 8G7,3 +

128

7
G8,2

+
384

35
G8,4 +

16

5
G9,3 +

64

11
G9,5 +

2

5
G10,0 +

12

7
G10,2 +

464

33
G10,4

+
15872

3003
G10,6 +

8

25
G11,1 +G11,3 +

384

91
G11,5 +

192

65
G11,7 + . . . (A.9)

where G∆,s stands for the conformal block of dimension ∆ and spin s (corresponding to

the SO(4) irreducible representation ( s2 ,
s
2)). Again we find the first vector primary at

dimension 11.

One can also see that the vector primary operator we identified is parity-even. This

follows immediately because parity odd vector primary operators cannot appear in the

OPE of two scalars (like φ2 and φ4) in a parity symmetric theory. In addition, it is easy

10We normalized the operators φ2 and φ4 to have unit two-point function.
11We use the standard conformal block as defined in [28, 29].
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to see that the vector operator contains 6 fields φ and 5 derivatives.12 We also studied the

conformal character decomposition of the free massless scalar in d = 3. The lightest vector

primary still contains 6 fields φ and 5 derivatives, which leads to ∆V = 8 in d = 3.

The conclusion that the lowest Z2 even vector primary has dimension 11 was reached

independently by Marco Meineri [30]. He used a different approach, which also provides

an explicit expression for this primary in terms of φ and its derivatives. In d = 4− ε, this

vector primary operator will get an O(ε) anomalous dimension, computable starting from

an explicit expression in [30]; this will not be done here.

One potential worry could be the recombination of this multiplet with a short multiplet

when ε > 0. However, it is well known (see e.g. [31] for a discussion) that the only multiplets

that recombine are the multiplet of φ with the one of φ3 and the multiplets χshort2+2n,n,n

(conserved currents of spin 2n) with χ3+2n,n− 1
2
,n− 1

2
for n = 2, 3, . . . . So the vector primary

of dimension 11 will survive as a vector primary of dimension 11+O(ε) in 4−ε dimensions.

Notice that in all the above discussion we set ∂2φ = 0 in 4d, eliminating operators

involving the letter “∂2φ” from consideration. When we go to (4 − ε) dimensions, we will

have the equation of motion ∂2φ ∝ φ3. So when classifying the local operators in (4 − ε)
dimensions, it would be double counting to consider operators involving ∂2φ. Operators

proportional to the equations of motion are known as “redundant operators” [32, 33]. While

such “operators” are useful in formal treatments of renormalized perturbation theory [34],

they have correlation functions which are zero except at coincident points, and their di-

mensions do not correspond to critical exponents measurable e.g. in lattice simulations. So

redundant operators do not count as local operators of the critical theory.13

A.1.1 Evanescent operators

Here we will discuss, and exclude, the possibility, that the lowest primary vector in 4 − ε
dimension is not the vector primary of dimension 11 + O(ε) discussed above, but a still

lower vector primary which is an evanescent operator. Recall that the evanescent operators

are those which do not exist in d = 4 but only in d = 4− ε, see [35] for a discussion. The

evanescent operators arise because of antisymmetrization of indices, which kills an operator

in d = 4. Thus, they have to involve a contraction with

δµ1[ν1δ|µ2|ν2 . . . δ|µ5|ν5] (A.11)

which in integer dimensions becomes

εµ1µ2...µ5εν1ν2...ν5 . (A.12)

12The φ content of each primary can be obtained by studying the partition function

Z(r, q, x, y) = exp

[
∞∑
k=1

rk

k
zφ
(
qk, xk, yk

)]
, (A.10)

where r is a fugacity for the number of φ’s in each local operator.
13As a side remark, we note that the “exact critical exponents” discussed in ref. [18] correspond in fact

to redundant operators, making the discussion of that paper of little relevance to the physics of the Ising

critical point.
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Any operator involving this contraction will vanish identically in d = 4, because the index

µ runs only over 4 values.

The lowest vector operator which vanishes in d = 4 but not in d = 4− ε is [35]

δµ1[ν1δ|µ2|ν2 . . . δ|µ5|ν5]∂µ1φ∂µ2∂ν2φ . . . ∂µ5∂ν5φ, (A.13)

of dimension 14 + O(ε). This operator is not a primary [35], so the lowest evanescent

vector primary is still somewhere higher. We conclude that the evanescent operators cannot

compete with the 11 + O(ε) primary that we found above.

A.2 Two dimensions

Here we discuss spectrum of the 2d Ising model in the Z2-even sector. The Ising model

contains 2 Z2-even Virasoro primaries, 1 with h = h̄ = 0 and ε with h = h̄ = 1
2 . Their

Virasoro characters are given by

χ1(q, q̄) = χ0(q)χ0(q̄), χε(q, q̄) = χ 1
2
(q)χ 1

2
(q̄) . (A.14)

The characters χ0 and χ 1
2

are given by [36]

χ0(q) = 1 + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 5q8 + 5q9

+ 7q10 + 8q11 + 11q12 + . . . (A.15)

χ 1
2
(q) = q

1
2 (1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + 4q7 + 5q8

+ 6q9 + 8q10 + 9q11 + 12q12 + . . .)

These Virasoro characteres can de decomposed into characters

Xh(q) =
qh

1− q , (A.16)

of the global conformal algebra. This gives

χ0 = 1 +X2 +X4 +X6 + 2X8 + . . . (A.17)

χ 1
2

= X 1
2

+X 9
2

+X 13
2

+X 15
2

+X 17
2

+ . . . (A.18)

The first vector quasiprimary is obtained by combining Xh with Xh̄ with h − h̄ = 1.

We see that the minimal choice is h = 15
2 , h̄ = 13

2 , corresponding to the scaling dimension

∆ = h+ h̄ = 14. It is also interesting to find a dimension of the first non-conserved spin-2

quasiprimary, for which we need h − h̄ = 2. This is possible for h = 4, h̄ = 2, which

gives ∆ = 6.

The vector quasiprimaries can also be found by studying the (global) conformal block

decomposition of a four-point function involving two different scalar operators. In 2d Ising,

the simplest choice is ε (with ∆ = 1) and T T̄ (with ∆ = 4). Such correlation functions can

be easily computed using the conformal Ward identities. In particular, we obtained

A(z, z̄) = lim
w→∞

|w|8〈ε(0, 0)T T̄ (z, z̄) ε(1, 1)T T̄ (w, w̄)〉 =
1

16

∣∣∣∣1 +
(1− 2z)2

z2(1− z)2

∣∣∣∣2 . (A.19)
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The conformal block expansion in the z, z̄ → 0 channel is given by

A =
1

16
G1,0 +G5,4 +

4

5
G7,6 +

32

429
G8,7 +

1

16
G9,0 +

16

35
G9,8 +

16

221
G10,9 +

1

20
G11,2

+
640

2907
G11,10 +

2

429
G12,3 +

512

11305
G12,11 +

1

400
G13,0 +

1

35
G13,4 (A.20)

+
3200

33649
G13,12 +

1

4290
G14,1 +

1

221
G14,5 +

512

22287
G14,13 + . . .

in terms of conformal blocks [28]

G∆,s(z, z̄) =
k∆+s(z)k∆−s(z̄) + k∆−s(z)k∆+s(z̄)

2s (1 + δs,0)
,

kβ(z) = (−z)
β−9
2 2F1

(
β + 3

2
,
β − 3

2
, β, z

)
(shifts in the familiar exponents w.r.t. β/2 due to unequal dimensions of external scalars).

This confirms that ∆V = 14 in the 2d Ising CFT.

B Why Olat
µ is not a total lattice derivative

By definition, a lattice operator A is a total lattice derivative (TLD) if it can be written

as the difference of a lattice operator and its translation by some fixed lattice distance, or

more generally a linear combination theoreof:

A(x) =
∑
i

[Bi(x)−Bi(x+ yi)] (B.1)

where Bi’s are some lattice operators, and yi are some lattice vectors. A multi-component

operator, like Olat
µ , is a TLD, if each of its components is a TLD (where Bi and yi will

depend on the component).

An obvious example of a TLD operator is ∇νs(x). A less obvious example is

s(x)∇νs(x), since it can be written as

s(x)∇νs(x) = s(x)s(x+ êν)− s(x− êν)s(x) = Bν(x)−Bν(x− êν), (B.2)

where Bν(x) = s(x)s(x+ êν).

Consider now our operator Olat
µ , focussing for definiteness on its component µ = 1.

Using the fact that s(x)2 = 1 for the Ising spins, it’s easy to see that

Olat
1 (x) = −2A(1)(x) +A(2)(x) (B.3)

where

A(1)(x) = s(x)[s(x+ ê1)− s(x− ê1)][s(x+ ê2)s(x− ê2) + s(x+ ê3)s(x− ê3)] (B.4)

and A(2)(x) = 8s(x)∇1s(x) is a TLD operator.
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We claim that A(1) is NOT a TLD operator. To prove this, consider the following

configuration of spins:

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 −1 1 1 1

1 1 1 −1 −1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

(B.5)

where we show only a slice of the 3D configuration in the (x1, x2) plane. It is assumed

that the spins are constant in x3 direction, and that the lattice is periodic in all directions

(we consider periodic lattice just for this proof, Monte Carlo simulations are done with

different boundary conditions). Computing A(1) operator in this configuration, we find:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 4 0 0

0 0 −4 4 0 4 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(B.6)

The crucial feature about this answer is that it does not sum to zero when summed over

all lattice points. On the other hand, for any TLD operator such a computation would

give something which sums up to zero. Hence, A(1) is not a TLD operator.

One may be puzzled that Olat
µ is not a TLD operator, while its “naive continuum limit”

operator given in (1.4) is a total derivative. In fact there is no contraction. If an operator

is TLD, its naive continuum limit will be a total derivative, but the inverse implication

does not have to hold. For a very simple example, consider lattice operator

s(x)s(x+ ê1)∇1s(x) (B.7)

Naive continuum limit φ2∂1φ = 1
3∂1φ

3 is a total derivative, but it’s easy to check that the

lattice operator is not TLD.

C Comments on operator matching

Here we collect some well known facts about operator matching between UV theory and

its IR fixed point. UV theory may be a lattice spin model, a field theory with cutoff, or a

continuum limit field theory.
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C.1 Matching in the lattice spin model

We consider first the lattice spin model case, and will explain the necessary modifications to

UV field theory case later on. For definiteness let us think about the d = 3 Ising model, on a

cubic lattice of spacing a (we could specialize to a = 1 without loss of generality). We tune

the lattice coupling (temperature for the Ising model) to the second-order phase transition.

The lattice theory with so finetuned couplings flows, in the RG sense, at large distances

to the IR fixed point (IRFP), which we also call “critical theory”. The critical theory

has full O(3) invariance, while the lattice theory itself has rotational invariance broken

to the cubic subgroup. The critical theory has local operators Oi(x) which have well-

defined scaling dimensions ∆i and transform in O(3) representations. The lattice theory

has lattice operators which form multiplets under the lattice symmetry group (cubic group).

The critical theory is sometimes called CFT, but here we will avoid using this terminology

since we don’t want to assume conformal symmetry from the start. The important point

is that critical theory correlators are defined at all distances 0 < r <∞, while correlators

of the lattice theory are defined at discrete distances r > a.

How to recover parameters of the critical theory in a lattice simulation? Two issues

complicate this extraction. The first issue is that operators of the lattice theory, naturally

given in terms of lattice variables, do not have well-defined scaling dimension, but should

be thought of as linear combinations of such operators. The second issue is that the lattice

theory, even with couplings finetuned to the second-order phase transition, does not sit

precisely at the fixed point, but only flows to it at large distances. Let us consider in turn

how these issues manifest themselves.

Consider the simplest lattice operator, spin Slat(x). We should expand it in critical

theory operators. The appearing terms will have to be, as Slat(x), Z2-odd cubic group

singlets. The expansion (sometimes referred to as matching) will have the form:

Slat(x) = A1σ(x) +A2∂
2σ(x) +A3σ

′(x) +A4∂µRµ

+ dµνλσ(A5∂µ∂ν∂λ∂σσ +A6Rµνλσ) + . . . (C.1)

There are infinitely many terms but we only wrote the first few representative ones. σ and σ′

are the first two Z2-odd scalars of the critical theory (of dimension ∆σ ≈ 0.518, ∆′σ ≈ 5.29).

Derivatives of these operators with indices contracted so that they are scalars can also

appear (∂2σ being shown as a representative case). In addition scalar derivatives of tensor

Z2 operators are also expected to appear, the representative case being the divergence of

some Z2 odd vector Rµ (dimension of the lowest such vector in the critical Ising theory

is unknown). All the above terms are O(3) scalars, hence cubic singlets. However, since

rotational invariance is broken by the lattice, some tensor operators may appear as long as

they are multiplied by tensors which are invariant under the cubic group but not the full

O(3). The first such tensor is the rank-4 tensor with nonzero components d1111 = d2222 =

d3333 = 1, and we show two terms involving this tensor, multiplied by A5,6.

On a lattice with spacing a, all coefficients Ai in this expansion will be given by

Ai = Ãia
∆i , with Ãi a dimensionless number and ∆i the dimension of the critical operator
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multiplied by the corresponding coefficient. On a lattice of unit spacing they will be simply

O(1) numbers.

With the expansion (C.1), correlators of Slat(x) in the lattice theory, can be matched

with sums of correlators of operators in the critical theory. For example, for the 2pt

function we have:

〈Slat(x)Slat(y)〉lattice = A2
1〈σ(x)σ(y)〉+A1A2 (∂2

x + ∂2
y)〈σ(x)σ(y)〉+A2

2 ∂
2
x∂

2
y〈σ(x)σ(y)〉

+A2
3 〈σ′(x)σ′(y)〉+A2

4 ∂
x
µ∂

y
ν 〈Rµ(x)Rν(y)〉+ . . . (C.2)

Here the correlator in the l.h.s. can be measured in a lattice simulation, and by this equa-

tion it should be equal to a sum of critical correlators in the r.h.s. Consider for example

correlators in infinite volume. The critical theory correlators are expressed in terms of

scaling dimensions of the fields. For scalars:

〈Oi(x)Oi(y)〉 =
1

|x− y|2∆i
, (C.3)

where 1 is just a normalization. For a vector operator we would have

〈Rµ(x)Rν(y)〉 =
δµν + α(x− y)µ(x− y)ν/|x− y|2

|x− y|2∆R
(C.4)

Here the constant α equals −2 in a CFT with Rµ a vector primary, but in a scale invariant

theory but non-conformal theory it could be different. Also in a non-conformal theory there

could be nonzero 2pt functions between operators of unequal scaling dimension which then

have to be added to the r.h.s. of (C.2). In any case, according to this discussion, and taking

into account the expected size of coefficients Ai, the r.h.s. of (C.2) contains a series of terms

decaying with the distance as const.(a/r)pi where the powers pi are simply related to scaling

dimensions of operators appearing in the r.h.s. of (C.1). We see that only dimensionless

ratios of distances enter into this expression. If we go to distances r � a, then the lowest

power p1 = 2∆σ will dominate and the first correction will be suppressed by two more

powers of the distance. The terms involving dµνλσ tensor will have nontrivial angular

dependence, a sign of rotational symmetry breaking. The leading such term will appear

from the crossterm 〈σ∂µ∂ν∂λ∂σσ〉 and will be tiny, suppressed by 4 powers of the distance.

To complete the just given discussion, we need to address the above-mentioned second

issue, taken into account by perturbing the action of the critical theory by irrelevant

operators. More precisely, we can describe the system by the action

IIRFP +

∫
ddx

[
g1ε
′(x) + g2ε

′′(x) + g3dµνλσLµνλσ(x) + . . .
]

(C.5)

where all Z2-even irrelevant operators, invariant under the cubic symmetry of the lattice,

are present generically. By dimensional analysis, the couplings are given by gj = g̃ja
∆j−d

where g̃j are dimensionless numbers. The expansion (C.2) is still true, but correlators in the

r.h.s. should be evaluated in the perturbed theory. Specializing again to the 2pt function,

the presence of perturbations will lead to the following effect. In addition to the powers pi
occurring in the scale-invariant case there will occur powers p′i = pi+ωj where ωj = ∆j−d
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are all possible correction-to-scaling exponents, with ∆j dimensions of irrelevant Z2-even

operators. The smallest such exponent is ω1 = ∆ε′ − 3 ≈ 0.83.14 Some of these power law

corrections will come with nontrivial angular dependence. This is to be expected, since

the lattice theory breaks rotation invariance. The smallest rotational invariance breaking

exponent ω3 ≈ 2.02 is related to the dimension of the lowest Z2-even cubic group singlet

that is not an O(3) scalar. In the case of 3d Ising, this is the lowest Z2-even spin-4 operator

Lµνλσ contracted with the dµνλσ tensor (while Rµνλσ in (C.1) was Z2-odd).

Matching can also be done for lattice operators transforming in nontrivial representa-

tions of the lattice symmetry group, vector being our main case of interest. The (d = 3)-

dimensional vector representation is irreducible both under O(3) and under the cubic group.

For a generic Z2-even lattice vector operator Olat
µ , some representative terms in its expan-

sion will be:15

Olat
µ = A1Vµ +A2∂µε+A3∂µT

′
µν +A4dµνλσRνλσ + . . . (C.6)

This indicates that the r.h.s. can contain vector critical operators (Vµ), derivatives of scalars

(∂µε) and divergences of tensors (∂µT
′
µν , excluding the stress tensor Tµν as it is conserved),

as well as rotation-invariance breaking terms involving higher-rank tensors contracted with

special tensors like dµνλσ, to get objects which transform correctly under the cubic group.

In the generic case we expect all Ai = O(a∆i) as for Slat(x). In the special case of

Olat
µ (x) being a total lattice derivative,16 we will have A1 = A4 = 0 and only the terms like

A2, A3 could contribute.

We emphasize that all we know of the coefficients Ai on general grounds is that they

are O(a∆i) numbers. There is no simple theoretical way to determine these numbers

apart from a lattice simulation. All operators which are allowed by lattice and internal

symmetries (and total lattice derivative constraints) will appear in the r.h.s. The problem

of determining these coefficients is a “long distance” problem: it has to do with how the

microscopic theory approaches the IR fixed point at long distances.

C.2 Matching in the lattice field theory

It is instructive to consider what changes when we replace the spin model by the latticized

φ4 field theory, defined by the lattice action

a3
∑
x

[
1

2

3∑
µ=1

(∇µφ(x))2 +m2φ(x)2 + λφ(x)4

]
. (C.7)

where ∇µφ(x) = [φ(x + aeµ) − φ(x − aeµ)]/(2a) is the lattice derivative. For each value

of the quartic coupling λ > 0 we can find a value of the mass parameter corresponding to

14The idea of improved lattice actions is to use models that allow to tune to zero the couplings of the

first few leading irrelevant operators in (C.5). For example, the Blume-Capel model used in [20] allows to

set g1 = 0 thus removing the leading corrections to scaling due to ε′.
15The coefficients Ai are of course not the same as for Slat(x).
16Total lattice derivatives are local operators that when summed over a region of the lattice, reduce to

operators at the boundary of that region. For example, ∇µφ(x) = [φ(x+aeµ)−φ(x−aeµ)]/(2a) is a lattice

derivative. See appendix B.
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IRFP

�a = 0 �a ⌧ 1 �a = O(1)

UVFP

Rotational invariant theories

Figure 6. Various RG flows on the critical surface of the latticized φ4 field theory. All flows with

λ > 0 end up in the IRFP because we tuned the mass to its critical value. However, flows that start

with λa� 1 will first be attracted to the UVFP and from there move to the IRFP. More precisely,

if the quartic coupling is parametrically small at the UV scale a, the RG flow will be controlled by

the UVFP until the scale `0 = 1/λ. At this scale, the flow transitions to the neighborhood of the

IRFP. The flow with λ = 0 corresponds to a quadratic theory which ends in the UVFP once the

rotation invariance breaking terms have decayed.

a second-order phase transition. For this value m2
∗(λ) the theory flows at large distances

to the critical theory, which does not depend on λ and is actually the same as for the

Ising spin model. The operators of the UV theory can be then expanded in critical theory

operators. For example, we can write an expansion for φ(x) of the same form (C.1) as for

the spin operator Slat(x). The symmetry reasoning which led to this expansion remains

the same, and the same operators will appear in the r.h.s. However, the discussion of the

size of coefficients Ai has to be slightly modified.

We say that the φ4 theory is strongly coupled at the lattice scale if the quartic coupling

λ is not small. The appropriate dimensionless condition in 3d is λa & 1.17 The effects of

such largish quartic coupling are strongly felt already at the lattice scale (and a fortiori at

all longer distance scales). Because of this, the RG flow will converge to the IR fixed point

at distances r not much higher than a. The matching coefficients in the strongly coupled

latticized φ4 theory will thus be of the same generic size as for the spin Ising model, i.e.

Ai = O(a∆i).

If on the other hand the quartic satisfies λa � 1, the starting point of RG flow finds

itself not far from the gaussian UV fixed point (UVFP). The RG trajectory can then be

divided into two parts (see figure 6). In this case we say that the UV lattice theory is

‘weakly coupled’. The first part of the RG flow happens in the neighbourhood of the

UVFP. It corresponds to distances `� `0, where `0 = 1/λ� a. The second part starts at

distances ` ∼ `0 where the flow transitions from the neighbourhood of free UVFP to the

strongly interacting IRFP.

In the first part of the flow we can approximate the action of the flowing theory

expanding around the UVFP action in perturbations parametrized by normalized operators

of the gaussian theory:

I = IUVFP +

∫
d3x

[
u1 : φ2(x) : +u2 : φ4(x) : +u3dµνρσ : φ∂µ∂ν∂ρ∂σφ(x) : + . . .

]
(C.8)

17Notice that the lattice field φ(x) has dimension 1/2 like a free scalar field in 3d. This implies that the

quartic coupling λ has mass dimension 1.
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where ui = ũia
∆UVFP
i −3 with ũi dimensionless. Generically, we expect all ũi = O(1).

However, for weakly coupled flows we have ũ2 ∼ λa ∼ a/`0 � 1. Furthermore, because

we tuned the mass term to its critical value we also have ũ1 � 1. The first term breaking

rotational invariance has u3 = ũ3a
2 with ũ3 = O(1).18

The second part of the flow starts at the scale `0 = 1/λ � a. Therefore, the scale

`0 plays the role of UV cutoff for the second part of the flow. It is then useful to write

ui = ūi`
∆UVFP
i −3

0 to define dimensionless couplings ūi with respect to the UV cutoff for the

second part of the flow. This gives ū2 = O(1) for the quartic coupling and ū3 ∼ (a/`0)2 � 1

for the leading irrelevant coupling that breaks rotational symmetry. The second part of the

flow can then be described using the action (C.5) with dimensionless couplings g̃i defined

by gi = g̃i`
∆IRFP
i −3

0 . We expect g̃1 ∼ g̃2 ∼ O(1) and g̃3 ∼ ū3 ∼ (a/`0)2 � 1.

We thus see that the second part of RG flow starts with some irrelevant operators in

the action having dimensionless couplings much smaller than the other ones. This effect

was absent in the spin lattice model case, where all irrelevant operators were expected to

be present at the cutoff scale with O(1) coefficients in lattice units. As a consequence,

rotation breaking in the IR, already small in the spin model case, will be even further

suppressed in the weakly coupled lattice field theory case.

Now let us discuss matching of operators, which also happens in two stages. First we

expand lattice field theory operators into operators of the UVFP. E.g. we will have

φlat = A1φ+A2 : φ3 : + . . . (C.9)

Coefficients of this expansion have a power series expansion in λ. For example we expect

A1 = 1 + O(λa), while A2 = O(λa2). Then we have to expand UVFP operators in IRFP

operators. This matching is done at the scale `0. E.g. we have:

(`0)∆φφ = B1(`0)∆σσ +B2(`0)∆σ′σ′ + . . . (C.10)

Since this matching is done at the scale where the flow is strongly coupled, the coefficients

Bi cannot be easily predicted and are expected to be O(1). Combining the two matchings,

we will get expressions for lattice field theory operators in terms of IRFP operators.

D Possible boundary conditions

One can imagine modifying our setup described in the main text, by changing the boundary

conditions at x3 = 0, L− 1. The purpose would be to find boundary conditions which lead

to an even larger f(t) and thus improve the signal-to-noise ratio. It makes sense to keep

translation invariance in the x2 direction, so that 〈I(x2, x3)〉 is x2 independent and can be

averaged in this direction.

As discussed in the main text, we have to break the x1 flip symmetry. One way to

do this is to choose different boundary conditions for different parts of the x3 = 0, L − 1

boundaries, depending on x1.

In addition to the free and fixed boundary conditions (b.c.) described in the main

text, there are two other imaginable types of b.c. worth discussing.

18The couplings of irrelevant operators that involve more than two powers of φ are also suppressed by

the small parameter λa because at λ = 0 the lattice path integral is exactly gaussian.
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D.1 Gluing b.c.

The gluing b.c. changes topology of our manifold, by gluing one part of the boundary to

another. For example, one can imagine gluing the gray parts of the x3 = 0, L−1 boundaries

in figure 1, instead of imposing the fixed b.c. there. In practice, gluing is achieved by

identifying points pairwise or, equivalently in the large L limit, by creating links joining

the points being glued. In the just mentioned example, we would be identifying points

(x1, x2, x3 = L− 1) with (x1 + L/4, x2, x3 = 0) (0 6 x1 < L/2, 0 6 x2 < L) (D.1)

Gluing does not have to preserve order, for example we could have instead chosen to glue

the gray parts of the boundaries while simultaneously flipping the x1 coordinate. Such a

reversed gluing would be a different boundary condition.

One can even glue parts of the same boundary, e.g. the lower and upper white parts

of the x3 = 0 boundary in figure 1 (again, in the direct or the reversed x1 order).

D.2 Changing the strength of boundary interactions

We may change the strength of interaction among spins belonging to some part of the

boundary to βbdry 6= βc. Two particularly interesting values of βbdry are as follows.

• βbdry = βsp ≈ 0.33302. This fixes βbdry to the value corresponding to the “special”

boundary phase transition. Recall that the special transition separates the “ordi-

nary” boundary behavior for which the boundary remains disordered at the critical

temperature, from the “extraordinary” one when the boundary is ordered at the crit-

ical temperature. The ordinary (extraordinary) behavior is realized at βbdry < βsp

(βbdry > βsp). The βsp for the 3d Ising model given above was determined in [37].

Since the boundary points have fewer neighbors than the bulk points, βbdry = βc
belongs to the “ordinary” phase, and this explains why βsp > βc.

• βbdry =∞. This enforces that all spins are equal along a part of the boundary, which

is the maximally efficient way to enforce the “extraordinary” boundary behavior.

Notice that unlike the fixed boundary condition, the spins can still fluctuate between

±1, but only all at once. This difference may seem minor, but it has the following

practical consequence. The fixed b.c. can be used if the simulations are performed

using the Metropolis algorithm, as in the main text. On the other hand, if the

simulations are performed using cluster algorithms, it leads to lowering the acceptance

rate since clusters which touch the boundary cannot be flipped. The βbdry = ∞
boundary condition does not have this difficulty.

There are many imaginable combinations of the four boundary condition types which break

symmetries of the lattice in a way which makes f(t) nonzero. It is tedious to simulate one

by one all possible combinations for the Ising model and see which one gives the largest

f(t). It would be nice to have a way to guess a good boundary condition. A heuristic

method is described in the next appendix.

– 23 –



J
H
E
P
0
4
(
2
0
1
9
)
1
1
5

E Heuristic optimization of boundary conditions

Consider the free massless scalar theory on the cubic lattice, described by the action:

H =
∑
〈xy〉

(φ(x)− φ(y))2 , φ(x) ∈ R . (E.1)

We consider in this theory a lattice operator V lat
µ given by the same equation (2.2) with

φ(x) instead of s(x). We make a heuristic hypothesis that one can get an idea about the

size of 〈I〉 in the critical Ising model by measuring the same quantity in the free scalar

theory on the same cubic lattice. One motivation for this hypothesis is that in d = 4 the

two theories are actually identical. We won’t attempt to justify this hypothesis any further.

It’s amusing that empirically it seems to work. Once the b.c. is so heuristically guessed,

the actual hard computation will be an honest Monte Carlo simulation in the 3d Ising.

To use the heuristic, we have to establish a correspondence between boundary condi-

tions for the two models. This correspondence is as follows:

1. The free b.c. in the Ising corresponds to the Dirichlet b.c. for the free scalar. Indeed,

the free b.c. in Ising leads to the “ordinary” boundary behavior, where the order

parameter is effectively zero on the boundary [38].

2. The gluing b.c. in Ising clearly corresponds to the same gluing for the free scalar.

3. βbdry =∞ for the Ising corresponds to imposing that φ(x) remains constant on this

part of the boundary for the scalar.

4. βbdry = βsp for the Ising corresponds to the Neumann (i.e. free) boundary condition

for the scalar [38].

5. The fixed 3d Ising boundary condition can be modeled by adding a constant magnetic

field (linear in φ(x) term) on the boundary, pushing the free scalar in the needed

direction.

We won’t give full details on how one actually performs the calculation for the free

scalar. This calculation is inexpensive since one is computing a gaussian path integral.

One constructs the lattice action, evaluates the Green’s function, and finally evaluates the

observable. The computation is done numerically and takes only a few seconds for a given

boundary condition. The most expensive step is the Green’s function evaluation which

requires to invert an L3 × L3 matrix.

After playing with the free scalar, we concluded that the boundary condition in figure 1

is particularly promising. Notice that since we have the same fixed b.c. on two parts of

the boundary, and since we measure a Z2-even observable, for the purpose of the heuristic

computation we could replace the fixed boundary condition with βbdry =∞.

Before we discovered the heuristic optimization trick, we tried other boundary condi-

tions in the 3d Ising, but they led to a smaller f(t).

We could have just postulated the boundary condition in figure 1, but we prefer to

play in the open. This is because we have not performed exhaustive optimization. Even

better b.c. likely exist, and our heuristic may be helpful to search for them.
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