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Traditionally, human vision research has focused on specific paradigms and proposed
models to explain very specific properties of visual perception. However, the
complexity and scope of modern psychophysical paradigms undermine the success
of this approach. For example, perception of an element strongly deteriorates when
neighboring elements are presented in addition (visual crowding). As it was shown
recently, the magnitude of deterioration depends not only on the directly neighboring
elements but on almost all elements and their specific configuration. Hence, to fully
explain human visual perception, one needs to take large parts of the visual field into
account and combine all the aspects of vision that become relevant at such scale. These
efforts require sophisticated and collaborative modeling. The Neurorobotics Platform
(NRP) of the Human Brain Project offers a unique opportunity to connect models of
all sorts of visual functions, even those developed by different research groups, into a
coherently functioning system. Here, we describe how we used the NRP to connect
and simulate a segmentation model, a retina model, and a saliency model to explain
complex results about visual perception. The combination of models highlights the
versatility of the NRP and provides novel explanations for inward-outward anisotropy
in visual crowding.
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INTRODUCTION

Within the classic framework, vision starts with the analysis of basic features such as oriented
edges. These basic features are then pooled along a feed-forward visual hierarchy to form more
complex feature detectors until neurons respond to objects. A strength of modeling visual
perception as a feed-forward process is that it breaks down the complexity of vision into
mathematically treatable sub-problems. Whereas this approach has proven capable of explaining
simple paradigms, it often fails when put in broader contexts (Oberfeld and Stahn, 2012; Clarke
et al., 2014; Herzog et al., 2016; Overvliet and Sayim, 2016; Saarela et al., 2010). To fully understand
vision, one needs to build complex models that process large parts of the visual field. At
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such scale, many aspects of vision potentially become relevant.
For example, it is well known that spatial resolution is highest
in the fovea and strongly declines toward the periphery of the
visual field (Daniel and Whitteridge, 1961; Cowey and Rolls,
1974). In addition, analysis of the visual field occurs by successive
eye movements, which often brings the most salient aspects of
the visual image into the center of fixation (Koch and Ullman,
1985; Itti et al., 1998). Moreover, the brain is also able to covertly
attend to salient parts of the visual field and detect peripheral
objects, without requiring eye movements (Eriksen and Hoffman,
1972; Posner, 1980; Wright and Ward, 2008). Hence, a full model
of vision needs many functions that each requires sophisticated
modeling, but these many functions are not easy to achieve within
one research lab. To utilize different aspects of vision in one
coherent system, we need a platform where many experts in the
various subfields of vision can combine their models and test
them in experimental conditions.

Efforts to simulate many models for different functions of
perception as a single system can encounter many challenges,
including the following.

Frameworks
Different models often come with very different computational
frameworks. For example, one of the models might be a spiking
neural network and another might be an algorithm involving a set
of spatial convolutions. The models need a common simulation
ground to talk to each other efficiently.

Emulation
Even if models coming from different research groups are simple,
producing computer code to efficiently and reliably emulate
models can be a daunting task. Few labs have the expertise needed
to produce (or reproduce) models that address rather different
parts of the visual system.

Analysis of the System
It is necessary, but often complicated, to determine the
contribution of each model to the general output of the system.
Moreover, competing models and hypotheses might be tested on
the same data. To address these challenges, models should be
treated as modules that can be easily removed from or added to
the system. In the same vein, it is important to have a common
visualization interface for the output of all simulated models.

Synchronization
It might be difficult to synchronize all the models in a common
simulation. For example, one model might be a simple feed-
forward input-output transformation, and another model might
be a recurrent neural network that evolves through time even
for a constant stimulus. It is important to make sure that
interactions between those models are consistent with their states
at every time-step.

Scalability
For many models, it is not straightforward to simulate the system
efficiently and adapt the resource management to the workload
of the simulation.

Reproducibility
It is important for scientists to be able to reproduce and extend
simulation results. This means not only access to model code but
also the ability to reproduce stimuli. Contextual elements such as
lighting, distance to the stimulus, stimulus eccentricity or even
the display screen, might matter in a complex model system. The
simulated environment should ensure a common set of stimuli
for all scientists.

The NRP, developed within the Human Brain Project, aims
to address these challenges. The NRP provides an interface to
study the interactions between an agent (a virtual robot) and
a virtual environment through the simulation of a brain model
(Falotico et al., 2017). The platform provides tools to enable
the simulation of a full experiment, from sensory processing
to motor execution. The simulated brain can comprise many
functions, as long as the interactions between the various
functions are defined in a specified python format (Figure 1).
The main brain simulator of the platform is NEST (Gewaltig
and Diesmann, 2007) but the platform also supports various
mathematical libraries, such as TensorFlow (Abadi et al.,
2016), to implement rate based neural networks. The virtual
environment, the robot, and its sensors are simulated using
Gazebo (Koenig and Howard, 2004). During the simulation, the
platform provides an interactive visualization of the environment
and of the output of all models that constitute the brain.
Importantly, the user does not have to worry about the multiple
synchronizations occurring during the simulation. The platform
implements a closed loop that takes care of data exchanges and
synchronizations between the virtual environment, the robot,
and the brain models.

Here, we show that the NRP can easily combine different
visual modules, even those programmed by different research
groups. We show that these combined components can explain
complex observations about visual perception, taking visual
crowding as an example. We made the code publicly available at
https://bitbucket.org/albornet/crowding_asymmetry_nrp. In the
next section, we define visual crowding and the challenges that is

FIGURE 1 | A schematic outline of the NRP components. The platform can
simulate a virtual environment (right) and a NEST brain model (left).
Interactions between the brain and the virtual environment are set in python
functions (center). These functions also take care of models that are not
simulated in NEST, importing the required libraries as python packages.
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addresses to vision research. Then, we describe the models that
are combined in our visual system and their interactions. Next,
we present the results of the simulation of the visual system that
we built on the NRP. Finally, we discuss the results, followed
by a conclusion.

THE CASE OF VISUAL CROWDING

In crowding, perception of a target strongly deteriorates when
it is presented together with surrounding elements (called
flankers) that share similar features with the target (Figure 2A,
Bouma, 1973). As for many other phenomena, crowding
was traditionally explained by local mechanisms within the
framework of object recognition (Wilson, 1997; Parkes et al.,
2001; Pelli, 2008; Nandy and Tjan, 2012). In this view,
crowding occurs when flanking elements are pooled with
target information along the processing hierarchy. Pooling can
explain crowding when a few flankers are present but fails
to match human behavior when more flankers are presented.
For example, pooling models predict that flankers beyond the
pooling region should not influence performance on the target,
and that adding flankers can only increase crowding. Both
predictions have been shown to be wrong. Adding flankers
up to a very large distance from the target can improve
performance and even fully undo crowding (Figures 2B–C;
Manassi et al., 2012, 2013). Another feature of crowding that
remains unexplained by pooling models is inward-outward
anisotropy, which is the tendency for flankers that lie between

the fixation point and the target to produce less crowding
than remote flankers (Figure 3; Bouma, 1973; Petrov et al.,
2007; Farzin et al., 2009; Petrov and Meleshkevich, 2011;
Manassi et al., 2012).

Local models cannot explain these aspects of vision (Herzog
and Manassi, 2015; Herzog et al., 2015; Manassi et al., 2015;
Doerig et al., 2019). To fully explain crowding, one needs to
take the spatial configuration of large parts of the visual field
into account. Francis et al. (2017) recently explained crowding
and uncrowding with a complex dynamical model that segments
an input image into several distinct perceptual groups and
computes illusory contours from the edges in the image. In the
model, a group is defined by a set of edges that are linked
by actual or illusory contours. Interference only occurs within
each group, and the target is released from crowding if the
flankers make a group on their own, as described in more detail
below (Figure 4). However, the model does not generate inward-
outward anisotropy, because it does not contain any source
of asymmetry. To determine whether the grouping explanation
can account for inward-outward anisotropy, we propose to
incorporate the model in a more complex and realistic visual
system, described in the next section.

MATERIALS AND METHODS

In this section, we describe the models that we connected, using
the NRP, to explain inward-outward anisotropy in crowding.
Then, we describe how the models interact with each other.

FIGURE 2 | Crowding and uncrowding. Figure reproduced from Doerig et al. (2019). (A) Example of crowding. The task is to determine the direction of the offset of
the Vernier target (tilted vertical bars), while looking at the red fixation dot. When the target is flanked by a surrounding square (left), the task is harder than when it is
presented alone (right). (B) Uncrowding (experiment 1 of Manassi et al., 2013). Observers performed the Vernier discrimination task as presented in (A), the stimuli
being always displayed in the right visual field, at 9◦ of eccentricity. The y-axis shows the target-offset threshold, for which observers correctly discriminate the
Vernier offset in 75% of trials (performance is good when the threshold is low). Performance for the target-only condition is shown as the dashed horizontal line. The
single-square condition highlights the classic crowding effect. Importantly, adding more flanking squares improves performance gradually (Manassi et al., 2013). We
call this effect uncrowding. (C) Performance is not determined by local interactions only. In this display, fine-grained Vernier acuity of about 200” depends on
elements as far away as 8.5◦ from the Vernier target – a difference of two orders of magnitude, extending far beyond the hypothesized pooling region [here defined
as Bouma’s window; Bouma (1970)].
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FIGURE 3 | Inward-outward anisotropy in visual crowding. (A) Inward-outward anisotropy in a Vernier discrimination task (experiment 1b of Manassi et al., 2012).
Observers performed the Vernier discrimination task as presented in Figure 2A. The stimuli were always presented in the right visual field. The y-axis shows the
target-offset threshold elevation, which is defined as the threshold of the condition divided by the threshold of the unflanked condition. Stronger crowding is
observed for an outer flanker than for an inner flanker. (B) Stimuli used in the crowding paradigm of experiment 5 of Farzin et al. (2009), measuring inward-outward
anisotropy with Mooney faces. The red dot is the fixation point. In this paradigm, the target Mooney face is shown either in the left or the right visual hemi-field,
together with either an inner flanker, an outer flanker, or with no flanker and at different eccentricities of 3◦, 6◦, and 10◦ (one block per eccentricity and per flanker
configuration). Observers were asked to discriminate an upright from an inverted target Mooney face (2-AFC discrimination task). (C) Data from experiment 5 of
Farzin et al. (2009). Note that the y-axis is the proportion of correct discrimination, and that a high value means a good discrimination performance. The stars
indicate significant differences between conditions. The amount of inward-outward anisotropy (how much the inner-flanker condition produces better performance
than the outer-flanker condition) interacts with the stimulus eccentricity.

FIGURE 4 | Laminart model. (A) Activity in the segmentation model. The intensity of each pixel corresponds to the activity of an orientation-selective neuron
encoding the stimulus as a local feature detector. The color of the pixel represents the orientation of the most active neuron at that location (red: vertical, green:
horizontal). Visual elements linked together by illusory contours form a potential group. The blue circles mark example locations at which the segmentation dynamics
are initiated after stimulus onset. From these locations, thanks to recurrent processing, segmentation propagates along connected (illusory or real) contours, until the
stimulus is represented by several distinct neural populations, called segmentation layers (two here: SL0 and SL1). Each segmentation layer represents a perceptual
group. Crowding is high if other elements are grouped in the same population as the Vernier target, and low if the target is alone. On the left, the flanker is hard to
segment because of its proximity to the target. Across the trials, the selection signals often overlap with the whole stimulus, considered as a single group. Therefore,
the flanker interferes with the target in most trials, and crowding is high. On the right, the flankers are linked by illusory contours and form a group that spans a large
surface. In this case, the selection signal can easily hit the flankers group without hitting the target. The Vernier target thus ends up alone in its layer in most trials and
crowding is low. (B) Threshold measurement from the segmentation model’s output for all conditions of Figure 2B. The model threshold is measured by matching
the output of the model to a target template over 20 segmentation trials, and then plotting the mean of the template match on a reversed axis [see Francis et al.
(2017) for more details]. The segmentation model generates uncrowding and fits the behavioral data well.

The visual system is composed of the segmentation model of
Francis et al. (2017), a retina model inspired by Ambrosano et al.
(2016), and a saliency model, which is a simplified version of the
model introduced by Kroner et al. (2019). These specific parts
of human vision were chosen because the segmentation model
already explains many features of visual crowding (Figure 4)
and because retinal processing, as well as saliency computation,
are potential sources of anisotropy for the segmentation output.

Indeed, the retina model is equipped with retinal magnification
and the saliency model produces a central bias. In our simulated
visual system, the visual environment is first processed by the
retina model and its output is sent to the segmentation model.
In parallel, saliency is computed as a 2-dimensional array which
corresponds to the probabilities of making an eye movement
to locations in the visual field. The current simulations do not
contain any eye movement, but rather use the output of the
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saliency model as a proxy for covert attention to determine the
location where segmentation is initiated in the segmentation
model. Finally, we measure crowding from the output of the
segmentation model. We explain the model interactions and the
crowding measurement process in more details further below.

Cortical Model for Segmentation
The Laminart model by Cao and Grossberg (2005) is a neural
network that explains a wide variety of visual properties.
A critical property is the creation of illusory contours between
collinear lines. Francis et al. (2017) augmented the model with a
segmentation mechanism, in which elements linked by contours
(illusory or real) are grouped together by dedicated neural
populations. The goal was to provide a two-stage model of
crowding, with a strong grouping component: stimuli are first
segmented into different groups and, subsequently, elements
within a group interfere. After dynamical processing, different
groups are represented by distinct neural populations. Crowding
is determined by matching the model’s output to a target
template. Importantly, crowding is weak when the target is alone
in its group (i.e., when the population representing the target does
not also represent other elements) and strong otherwise.

The segmentation process is triggered by local selection
signals that spread along connected contours (Figure 4). The
location of the selection signals determines the output of the
segmentation process. Uncrowding occurs when a selection
signal touches a group of flankers without touching the target.
In the original version of the model, the location of each
selection signal followed a spatial distribution tuned to maximize
successful segmentation of the target from the flanker in the
crowding paradigm. This assumption follows the idea that, in
psychophysical paradigms, an observer does the best job possible
to succeed in the task. Here, we try a different approach by
using the output of the saliency model to bias the location of the
selection signal toward interesting regions of the visual field, as
described further below.

Retina Model
Previous work has integrated a retina model as part of a
neurorobotic experiment in the NRP (Ambrosano et al., 2016) by
using the COREM (Computational Retina Modeling framework;
Martínez-Cañada et al., 2015, 2016). COREM is a set of building
blocks that are often used to describe the behavior of the retina
at different levels of detail. The system includes a variety of retina
microcircuits, such as spatial integration filters, temporal linear
filters, and static non-linearities. The retina model that is adopted
for this work is an adaptation of a model of the X cells in the
cat retina as described by Wohrer and Kornprobst (2009). We
also use the COREM framework to simulate the retina model in
the NRP. The model uses feedback loops between retinal layers
to control contrast gain (Shapley and Victor, 1978). The X cells
are chosen in this work because of their tonic and fine-grained
response, as our paradigm involves highly detailed stimuli.

In addition, we include space variant Gaussian filters provided
by COREM that mimic retinal magnification. Along the retinal
layers, visual information is pooled with less spatial precision
in the periphery than in foveal locations because the Gaussian

integration filters are broader with eccentricity. Finally, the
output of the retina, i.e., the activity array of the ON- and OFF-
centered ganglion cells, is distorted by a log-polar transform to
mimic the magnification that results from the mapping of the
retina neurons to the visual cortex. An example of the model’s
output is shown in Figure 5.

FIGURE 5 | Retina model. Left: input example. Right: associated output of the
retina model (OFF-centered ganglion cells on top and ON-centered ganglion
cells below). We generated these input and output images by simulating the
retina model on the NRP. The ON- and OFF-centered ganglion cells react to
bright and dark regions of the image, respectively, and are more active around
regions of high contrast. The output images look distorted, because fewer
retinal ganglion cells, whose output is represented by one pixel for each cell,
encode the same portion of the visual field as the eccentricity grows. For
example, the left side of the TV screen looks smaller than its right side, closer
to the fovea. Note that the image on the left has been rendered by the NRP
and that the real input of the retina model is not rendered. For example, the
shadows are not fed to the retina model, which does not impact our
experimental setup because no shadows are involved in the crowding
paradigms we reproduce.

Saliency Model
Computational models of saliency aim to identify image regions
that attract human eye movements when viewing complex
natural scenes. The contribution of stimulus features to the
allocation of overt attention can then best be captured in a task-
free experimental scenario. As a model of saliency computation,
we used a deep convolutional neural network, simulated in
TensorFlow (Abadi et al., 2016), that automatically learns
useful image representations to accurately predict empirical
fixation density maps. Compared to early approaches based on
biologically motivated feature channels, such as color, intensity,
and orientation (Itti et al., 1998), the architecture extracts
information at increasingly complex levels along its hierarchy.

The model is an encoder-decoder network that learned a non-
linear mapping from raw images to topographic fixation maps.
It constitutes a simplified version of the model introduced by
Kroner et al. (2019), pruning the contextual layers to achieve
computationally more efficient image processing. The VGG16
architecture (Simonyan and Zisserman, 2014), pre-trained on a
visual classification task, serves as the model backbone to detect
high-level features in the input space. Activation maps from the
final convolutional encoding layer are then forwarded to the
decoder, which restores the input resolution by applying bilinear
up-sampling followed by a 3 × 3 convolution repeatedly. The
task of saliency prediction is defined in a probabilistic framework
and therefore aims to minimize the statistical distance between
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the estimated distribution and the ground truth. The model
we used in this work was trained on the large-scale SALICON
data set (Jiang et al., 2015), used as a proxy for eye tracking
data. After training, the model produces a saliency map for
any input image, such as in Figure 6. In our visual system,
the saliency model output determines where the segmentation
model selects objects of interest. The local selection signals that
trigger segmentation in the model follow the saliency output
as a probability density distribution. Although the saliency

FIGURE 6 | Saliency model. Left: input example that the saliency model can
process. Right: corresponding saliency probability distribution that the model
produces after training. Here, the most salient regions are the faces and
the sign.

network models the empirical distribution of overt attention
across images, we use it as a proxy of covert attention to select
interesting objects from the background.

Virtual Experiment and Model Interactions
The virtual environment reproduces the conditions of two
experiments that measure inward-outward anisotropy in visual
crowding (see Figure 3): experiment 1b of Manassi et al. (2012)
and experiment 5 of Farzin et al. (2009). A screen displays the
visual stimulus (flankers and target) to the eyes of an iCub robot
at a specific distance and a specific eccentricity, depending on
the conditions of the simulated experiment. In all simulated
conditions, the task of the robot is to give a measure of crowding
associated to the stimulus, by trying to segment the flanker from
the target over many trials. For each trial, the stimulus appears
in the periphery of the right visual field of the robot, while the
integrated camera of the right eye of the robot constantly records
its visual environment and sends its output to the visual system.
To process the visual stimulus, the models of the visual system are
connected to each other according to the scheme in Figure 7A.

Figure 7B shows the result of an example trial simulated
with the NRP and highlights the output of all models of the
visual system. When the visual stimulus (the target with either

FIGURE 7 | (A) Model interactions in the visual system (blue box) of the robot. The camera of the right eye of the robot processes the visual environment (gray box)
and sends a gray-scale input image to both the retina and the saliency models. The retina model sends its output, i.e., the contrast-related activity of ON- and
OFF-centered ganglion cells, to the input layer of the segmentation model. The saliency model delivers its output to the segmentation model as a 2-dimensional
probability density distribution that determines where each selection signal (such as the blue circle in Figure 4) starts the segmentation dynamics, whenever the
visual stimulus appears to the robot’s eyes. Finally, a threshold measurement (yellow box) is computed from the segmentation model’s output. Since neither the robot
nor the robot’s eyes move, there is no arrow going from the visual system to the environment. (B) Example of the result of the simulation of the visual system for one
segmentation trial. In this example, the environment of the robot reproduces one of the conditions of the paradigm that measures inward-outward anisotropy in
visual crowding in Manassi et al. (2012; see Figure 3A). All displayed windows are interactive visualizations of the output of the models that constitute the visual
system (see A). They can be displayed while the simulation is running. (1) Output of the camera of the right eye of the robot, which is fed to the retina and the
saliency models. (2) Output of the retina model (ON- and OFF-centered ganglion cells, respectively on the right and on the left). (3) Output of the saliency model. The
visual stimulus is very salient (white spot). (4) Output of the segmentation model. Each slot of the segmentation model’s output corresponds to a different
segmentation layer (as in Figure 4A, except SL0 and SL1 are above and below here). The intensity of each pixel corresponds to the activity of an
orientation-selective neuron encoding the stimulus as a local feature detector. The color of the pixel represents the orientation of the most active neuron at that
location (red: vertical, green: horizontal, blue: diagonal, and turquoise or purple: intermediate orientations). The output associated to the stimulus is not a straight
vertical line, as in Figure 4A, because the input of the segmentation model is distorted by the retina model. Here, the segmentation has not been successful,
because the target and the flankers end up in the same segmentation layer. This means that at stimulus onset, the segmentation signal drawn from the saliency
distribution overlapped with both the target and the flanker, spreading the segmentation to the whole stimulus.

Frontiers in Neurorobotics | www.frontiersin.org 6 May 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/neurorobotics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neurorobotics#articles


fnbot-13-00033 May 29, 2019 Time: 9:2 # 7

Bornet et al. Crowding on the Neurorobotics Platform

FIGURE 8 | Threshold computation, taking as an example the output
generated by the segmentation model for all stimuli of experiment 1b of
Manassi et al. (2012; see Figure 3A). The output of the segmentation model
for these stimuli do not look like straight lines, because the input is distorted
by the retina model. For all these conditions, the target corresponds to the
shape in the template array. The template was built by presenting the target
alone to the visual system and taking the mean of the segmentation model’s
output over several time-steps. The circled minus sign represents the
following computation. After taking the mean of the arrays over all
orientations, any pixel from the response array is multiplied by the value of the
same pixel of the template array to obtain the value of the same pixel in the
signal array, and by 1 min the value of the same pixel of the template array to
obtain the value of the same pixel in the noise array. In other words, the pixels
that match the template are assigned to the signal, and the ones that do not
correspond to it are assigned to noise. Then, the threshold is computed as a
measure of interference between the signal and the noise arrays,
according to equation (1).

an inner flanker, an outer flanker, or unflanked) appears on the
screen, the camera of the robot sends its output to the retina
model whose output is delivered to the segmentation model.

Because of the magnification applied by the retina model, the
segmentation model represents elements in the visual field with
less precision if they appear in the periphery than if they appear
near the fovea. At the same time, the saliency model is also fed
with the output of the camera. The saliency model is not fed
with the output of the retina model because it has been trained
on undistorted images. In the simulation, the output of the
saliency model corresponds to a probability density distribution
of the selection signals that are sent to the segmentation model
(see blue circle in Figure 4). After stimulus onset, a selection
signal, whose location is sampled from the saliency map intensity,
starts the segmentation dynamics of the segmentation model.
The selection signal is sent to locations near the visual stimulus,
because it is very salient. After some processing time, the
segmentation stabilizes (groups are formed in the segmentation
layers). The location of the selection signal drives the output
of the segmentation. If it overlaps with both the target and the
flanker, the segmentation is unsuccessful because the flanker and
the target interact. If not, the segmentation is successful because
the target ends up alone in its segmentation layer. When the
target disappears, the activity of the segmentation model is reset
by an overall inhibition signal, and the loop starts over.

For each condition of experiment 1b of Manassi et al. (2012)
and experiment 5 of Farzin et al. (2009; Figure 3), we simulate
the visual system of the robot for 20 trials. For each trial, we
record a threshold measurement, based on the output of the
segmentation model. First, we compare the output array to a
target template to separate it into a signal and a noise array
(Figure 8). The target template is the mean of the segmentation
model’s output over several time-steps that is generated when the
target is presented alone.

Those signal and noise arrays are then used to measure the
match M between the output of the segmentation model and the

FIGURE 9 | Output of all models, for both flanked conditions of experiment 1b of Manassi et al. (2012; see Figure 3A). The arrows represent the interactions that
are described in Figure 7A. In the visual input and the saliency windows, the position of the fixation point corresponds to the center of the leftmost column. The
retina window shows the output of the ON- and OFF-centered ganglion cells at the top and the bottom, respectively. The red rectangle highlights the portion of the
ganglion cells output that is fed to the segmentation model, to gain computation time. The segmentation window shows the initial state of the model output in the
first row, with an example of a selection signal occurrence, drawn from the saliency distribution (blue circle), and the resulting output of the model in the second row,
after the segmentation dynamics have stabilized. Each column of the segmentation window corresponds to one segmentation layer, as in Figure 4. Here, the inner
flanker condition led to a successful segmentation trial, and the outer flanker condition led to a failed segmentation trial.
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FIGURE 10 | Model results, reproducing the conditions of inward-outward anisotropy in experiment 1b of Manassi et al. (2012; see Figure 3A). In each bar graph,
the red dashed line shows the threshold for the unflanked condition (Vernier target alone). To compare the model with the data, we measured threshold elevation
defined as the threshold of a condition divided by the threshold of the unflanked condition (see Methods section). (A) Behavioral data from experiment 1b in Manassi
et al. (2012). (B) Simulation results obtained with the full visual system (retina, saliency, and segmentation). Contrary to the human data, we cannot compute error
bars across observers because only a single set of model parameters is used in the simulations. The model fits the human data well, producing a similar anisotropy.
(C) Comparison of the simulation results with and without the activation of the different modules of the visual system. Error bars were computed by simulating the
system over 10 sessions (20 trials per session for each condition). When the retina model is inactive, the camera of the robot sends its signal directly to the
segmentation model. When the saliency model is inactive, the selection signals are sent as they were in the original version of the segmentation model, i.e., sampling
their location according a two-dimensional Gaussian distribution centered on the location that maximizes segmentation success. The best fit comes from the full
visual system, and a bigger threshold elevation for the outer flanker condition, compared to the inner flanker condition, is generated only when the retina model
is active.

FIGURE 11 | Characteristic examples of segmentation processes for both
conditions of experiment 1b of Manassi et al. (2012). Every row corresponds
to the segmentation model’s output at a certain time after stimulus onset,
indicated by the arrowed axis. Each pair of columns corresponds to the
output of a simulation, and the content of each segmentation layer is
indicated by SL0 and SL1 (as in Figure 4A). (A) Two examples of successful
segmentation trials for the inner flanker condition. (B) Example of a failed
segmentation trial for the outer flanker condition. The probability of
successfully segmenting the flanker from the target is higher in the outer
flanker condition than in the inner flanker condition. The inner flanker is better
represented by the retina output than the outer one, because it is presented
closer to the fovea. The inner flanker appears bigger and further from the
target. The resulting threshold elevation for the inner flanker condition is thus
lower than for the outer flanker, corroborating the inward-outward anisotropy
measured in experiment 1b of Manassi et al. (2012). Both conditions often
lead to unsuccessful segmentation because the flankers are quite close to the
target, given the eccentricity of the stimulus, and because the saliency
model’s output computes the whole stimulus as only one object (see
Figure 9). Thresholds for both flanked conditions are hence substantially
larger than for the unflanked condition.

target template, according to equation (1).

M =
∑

i,j

(sij −
∑
k,l

nkl · I0 · e−
√

(i−k)2
+(j−l)2

σ ) (1)

The intensity of pixel (i, j) of the signal array is denoted by sij and
the intensity of pixel (k, l) of the noise array by nkl. The weight
of interference between those two pixels decreases exponentially
with the distance between them. I0 is the strength of interaction
and sigma is the rate of exponential decrease. I0 is set to 10−3,
a value that was determined to generate sufficient interaction
between the target and the flanker, without killing the signal
completely. Sigma is set to 30 pixels, a value that was determined
to follow approximately the pooling range defined by Bouma’s
window (Bouma, 1970). Given this fixed value, the pooling range
increases with eccentricity in the image space. The more flanker
elements, in addition to the target, that are in the segmentation
layer, the smaller the match. Note that even for a fully successful
segmentation trial, when the target ends up completely alone in
one of the segmentation layers, the match is not perfect, because
the representation of the target has intrinsic noise and dynamics
and thus does not perfectly match the template (Figure 8, first
row). Also note that a small target generates less signal, and
thus a weaker match, than a larger version of the same target.
Difficulty of judging Vernier direction is usually measured by
identifying the threshold separation needed for an observer to
be 75% correct. In the model, we suppose that the threshold is a
negative linear function of the match value (the higher the match,
the lower the threshold), exactly as in Francis et al. (2017).

Finally, for each condition, we take the mean of the thresholds
(Ti) across the trials and divide this value by the mean thresholds
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FIGURE 12 | Output of all models and for all conditions of experiment 5 of Farzin et al. (2009; see Figures 3B–C). The description of the windows for each condition
is the same as in Figure 9. Each row of conditions displays the output of the visual system for a specific eccentricity. Note that the visual stimulus appears smaller in
the retina model’s output (and hence in the segmentation model’s output) as the eccentricity grows. To highlight how different it is to segment the flanker from the
target for various eccentricities, the output of the retina model as well as the segmentation model have the same scale across the conditions (e.g., the selection
signal always has the same size).

of the unflanked condition, where only the target is presented to
the robot. We define this final number as the model measurement
of the threshold elevation of the flanking configuration [see
equation (2)].

Ei=
1
N

∑N
n=1 Ti(n)

1
N

∑N
n=1 Tu(n)

(2)

Where Ei is the threshold elevation of condition i, N is the
number of trials, Ti(n) is the threshold measurement associated
to the segmented output of trial n for condition i, and Tu(n) is

the threshold measurement associated to the segmented output
of trial n for the unflanked condition.

RESULTS

Vernier Discrimination Task
First, we reproduced the crowding paradigm of experiment 1b of
Manassi et al. (2012; see Figure 3A). This experiment measured
inward-outward anisotropy in a Vernier discrimination task. In
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FIGURE 13 | (a) Data from experiment 5 of Farzin et al. (2009), that measures
inward-outward anisotropy in visual crowding with Mooney faces. The figure
has been re-drawn from Figure 3C as bars that report the proportion of
incorrect trials, to compare to the model results. Here, a value closer to the
top corresponds to a bad performance, like in a threshold measure. The
amount of inward-outward anisotropy (how much the inner flanker condition
differs from the outer flanker condition) varies with eccentricity. The stars
indicate significant differences between conditions. (B) Threshold elevation
measurement obtained with the simulation of the full visual system (retina,
saliency, and segmentation), reproducing all conditions of the original
experiment on the NRP. To compute the threshold elevation for each
condition, we divided each threshold by the threshold of the unflanked
condition at 3◦ of eccentricity (the lowest threshold value). The model
threshold measurements highlight the same interaction as in the data,
between the eccentricity and the amount of inward-outward anisotropy.
Ranking the model threshold elevation measurements from the lowest to the
highest value almost perfectly matches the data, ranking from the highest to
the lowest performance. The only difference is that the threshold elevations
that the model produces for the unflanked and the inner flanker condition are
swapped at 10◦ of eccentricity (the model predicts that the unflanked
condition is always better than both flanked conditions at the same
eccentricity). In terms of quantitative differences, the model produces more
inward-outward anisotropy for 6◦ than for 10◦ of eccentricity, which does not
fit the data (the data shows a significant difference between the inner and the
outer flanker condition for 10◦ but not for 6◦ of eccentricity).

the simulation, we showed a Vernier target at a fixed eccentricity
of 3.89◦ from the fovea in the right visual field of the robot.
The target was either flanked by a short bar on the left side,
on the right side, or not flanked at all. Representative outputs
of the retina model, the saliency model, and the segmentation
model for both flanked conditions are presented in Figure 9.
The threshold measurements for all conditions, coming from

the NRP simulation as well as from the behavioral data, are
shown in Figures 10A–B. To investigate the role of each model
in the general output of the system, we de-activated the different
modules of the visual system and measured the corresponding
model output thresholds (Figure 10C). Crucially, the simulation
of the full visual system (retina, saliency and segmentation
models) produces the best fit of the data (i.e., a larger threshold
when the target was flanked by an outer bar than when flanked
by an inner bar). De-activating only the saliency model in the
visual system also generated the same kind of asymmetry as in the
data, but to a smaller extent, suggesting that the retina is the main
source of asymmetry in this paradigm. Indeed, an inner flanker
is better represented by the retina model than an outer flanker,
because it appears at a smaller eccentricity. When the flanker
is presented on the foveal side, its representation is bigger and
appears further from the target, and the segmentation model is
more prone to segregate it from the target. This small but crucial
difference between both flankers is illustrated in Figure 11.

Mooney Face Discrimination Task
Next, we reproduced the crowding paradigm of experiment
5 of Farzin et al. (2009; see Figures 3B–C). This experiment
measured inward-outward anisotropy using Mooney faces. In
this paradigm, the target Mooney face is shown either in
the left or the right visual hemi-field, together with either
an inner flanker, an outer flanker, or with no flanker and
at different eccentricities of 3◦, 6◦, and 10◦ (one block per
eccentricity and per flanker configuration). Observers were asked
to discriminate an upright from an inverted target Mooney face
(2-AFC discrimination task). We performed the same model
measurements as in the previous simulations. We ran the visual
system and collected threshold elevation results for all different
eccentricities of the original experiment; presenting the Mooney
face target together with either an inner or an outer flanker.
The outputs of the retina model, of the saliency model, and
of the segmentation model in response to all conditions are
presented in Figure 12. The threshold measurements, coming
from the NRP simulation as well as from the behavioral
data, are shown in Figure 13. The simulation generates the
same interaction between the eccentricity and the amount of
inward-outward anisotropy that is found in the empirical data.
A substantial difference of threshold elevation between the inner
flanker and the outer flanker conditions is measured only for
big eccentricities (6◦ and 10◦). The reason is that for a small
eccentricity (3◦), the representation of the target generated by
the retina model is so big that the segmentation is successful
in almost every trial. For an inner flanker, the region to select
only one of the objects is very large, and the selection signals
thus have a very low probability of hitting both the target and
the flanker at the same time. For an outer flanker, even if
the flanker region gets substantially smaller, the target region
is still very big, and most of the selection signals fall on the
target, also leading to a very high segmentation success rate.
In other words, the task is too easy to highlight any difference
between the inner and the outer flanker conditions. For larger
eccentricities, the size of the retina output associated with the
stimulus becomes smaller, which makes the task more difficult.
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FIGURE 14 | Characteristic examples of segmentation processes for all conditions of experiment 5 of Farzin et al. (2009; see Figures 3B–C). The output of the
segmentation model has the same scale across the conditions (e.g., the selection signals always have the same size). For both conditions at 3◦ of eccentricity, the
retina model represents the stimulus with such details, that the task is easy even for an outer flanker, resulting in a high rate of segmentation success across the
trials, and no substantial difference of threshold between those conditions. For larger eccentricities, the whole stimulus representation has a lower resolution. The
target appears smaller, and the flankers appear closer to the target. Many trials thus lead to unsuccessful segmentation, because the selection signals have only a
very small region to select only one of the objects. At the same time, the inner flanker is always better represented than the outer flanker. The model thus generates
differences of thresholds between the inner-flanker and the outer-flanker conditions.

Over the trials, many selection signals can be unsuccessful (fall on
both the target and the flanker) for both inner and outer flanker
conditions, highlighting substantial differences in their threshold
measurements. Those critical differences between the conditions
are illustrated in Figure 14.

DISCUSSION

Using the NRP, we simulated a complex visual system composed
of several models coming from different research labs. The
platform provides satisfactory answers to many of the challenges
described in the Introduction. Here, we summarize these issues
and briefly explain how the NRP addresses them.

Frameworks
Even if the models that we use have different computational
frameworks, the platform allows us to easily integrate them
into a common visual system, define their interactions, and
simulate them with a minimal amount of code. For example, the
segmentation and the saliency models use NEST and TensorFlow,
respectively, which the platform supports.

Emulation
The collaborative aspect of the platform made it possible to
quickly integrate the retina model to the simulation. The retina-
modeling framework was already incorporated to the platform
by other users (Ambrosano et al., 2016), together with some
documentation and examples.

Analysis of the System
The NRP allows researchers to de-activate models, simply by
commenting out a single line in the setup file of the virtual
experiment. This is a powerful tool to investigate how each model
contributes to the general output of the system (see Figure 11C),
or to test competing hypotheses (e.g., compare how two
competing models for the same function of vision fit some data).

Synchronization
The platform takes care of the synchronization between the
simulated models. In our visual system, the segmentation model
is a recurrent network and the saliency model is a feed-forward
input-output transform and the NRP ensures that their respective
inputs are always consistent. The models are first run in parallel
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FIGURE 15 | Formation of illusory contours in the full visual system for the
5-square-flankers condition of Figure 4A. The image on the top is the visual
input to the visual system, both images in the middle are the output of the
ON-centered (left) and OFF-centered (right) ganglion cells of the retina model
(only the right visual field), and the image on the bottom is the output of the
segmentation model. Illusory contours are formed between almost all squares,
but they sometimes come from the alignment of the very top of one square
with the inner part of the top of the other square.

for a short amount of time. Then the platform collects data from
the simulation and computes the relevant inputs for the next
simulation step.

Scalability
However, some challenges were handled with less success.
Simulating the whole visual system with the required input
resolution required very long computational times (2 weeks
to simulate all conditions). The platform is currently used
online with servers that have rather limited resources. The
platform is in development and will soon support high-
performance computing.

Reproducibility
Because of the computational limitations, we could not reach the
resolution that was required to identify the high-level features
of some stimuli (e.g., “face-ness” of the Mooney faces). It would
be interesting to check if the “face-ness” of the Mooney faces
drastically changes the output of the saliency model and if the
model threshold results substantially change.

Ultimately, simulating the visual system on the NRP allowed
us to enhance understanding about visual crowding. We could
show that the segmentation model that explains crowding and
uncrowding (Manassi et al., 2012, 2013; Francis et al., 2017)
is able to explain inward-outward anisotropy as well, if it

is connected to a retina model. Traditional explanations of
crowding (e.g., pooling models) combined with retinal and
cortical magnification would predict that an outer flanker
produces less crowding than an inner flanker. The representation
of an outer flanker in the visual cortex would appear smaller than
the one of an inner flanker, thus causing less interaction with
the target through pooling, whose range is expressed in cortical
distance. Here, on the contrary, simulating the segmentation
model of Francis et al. (2017) in a complex visual system, the
prediction is exactly the opposite, thereby matching the data.
Indeed, it becomes harder for the visual system to segment the
flanker from the target, if the representation of the flanker is
small. In other words, the visual system is more likely to treat the
flanker and the target as a single object (or group). The grouping
hypothesis of Francis et al. (2017) can thus explain uncrowding
as well as inward-outward anisotropy. This gives more evidence
to the idea that grouping is a central function of human vision
(Manassi et al., 2012; Chaney et al., 2014; Harrison and Bex, 2016;
Doerig et al., 2019).

The full model simulated with the NRP makes the prediction
that inward-outward anisotropy can be observed only for a fixed
range of eccentricities. If the eccentricity is too small (e.g., 3◦
for the paradigm of Farzin et al. (2009); see Figures 13, 14), no
difference can be observed between the inner flanker and outer
flanker conditions because the segmentation is almost always
successful in both cases. Indeed, the retinal output related to the
visual stimulus is substantially larger than the selection signals,
and the probability that the signal covers both the target and
the flanker is very low. If the eccentricity is too large (i.e., even
bigger eccentricities than in Figures 13, 14, e.g., 13◦, 16◦, or
20◦), an inner or an outer flanker becomes indistinguishable from
the target, because the stimulus is represented as a tiny spot
by the retina. The selection signal of the segmentation model
would always cover the whole stimulus, segmenting the target
and the flanker as a single group, thereby making no difference
between an inner and an outer flanker. In Figure 13, the model
produces a stronger inward-outward anisotropy for 6◦ than for
10◦ of eccentricity, which does not fit the human data. We
attribute this discrepancy to a sub-optimal choice of the size of
the selection signals in the segmentation model (the radius of
the blue circles, e.g., in Figure 14). As said above, the radius of
the selection signals directly affects the range of eccentricity at
which inward-outward anisotropy is observed. If the signals were
smaller, the eccentricity at which inward-outward anisotropy is
maximal would be larger and vice versa. In general, this tells us
that a more sophisticated mechanism should be used to trigger
segmentation events. For example, at stimulus onset, the saliency
output could instantiate a soft neural competition to determine
the location and the size of the selection signal. A threshold,
put on the time derivative of all pixel intensities of the saliency
output, could even be used to determine when and where to
trigger such a competition.

Furthermore, it would be interesting to test how inward-
outward anisotropy interacts with uncrowding. A new interesting
paradigm would be to continue the experiment 1b of Manassi
et al. (2012) with different numbers of short flanking bars.
Previously, it has been shown that crowding weakens when
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adding more bars on both sides of the target, if they are
aligned with each other (experiment 1a of Manassi et al. (2012)).
To simulate such paradigms, we need to investigate whether
our model of the visual system allows the creation of illusory
contours between aligned flankers, such as between the squares of
Figure 4A, to produce uncrowding. We expect that the distortion
due to the retina model impairs the formation of illusory contours
between aligned edges, because the segmentation model assumes
that spatial pixels correspond to retinal pixels (see Francis et al.
(2017) for the exact mechanism). We reproduced the 5-square-
flankers condition of Figure 4A in the NRP and we simulated
the model visual system (Figure 15). The segmentation model
still generates illusory contours but to a lesser extent. We suspect
that the mechanisms need not be changed but the way an aligned
neighbor is encoded in the model should be redefined. This
simulation highlights how challenging it is to merge different
models. The NRP forces us to recognize a challenge in integrating
the retina and the segmentation model. Future work is thus
needed in order to simulate this kind of paradigm properly.

CONCLUSION

Breaking down the complexity of vision into simple mechanisms
fails when the simple mechanisms are put in broader contexts.
To fully understand human vision, one needs to build complex
systems that process large parts of the visual field and combine
many aspects of vision that all require sophisticated modeling.
Using the NRP, we could start to simulate such a system by
connecting a segmentation model, a saliency model, and a retina
model, thereby providing explanations for complex results in
visual crowding, such as inward-outward anisotropy. Crucially,

the explanation is in line with the grouping hypothesis of Francis
et al. (2017) and predicts how much inward-outward anisotropy
would be measured at bigger eccentricities. This early use of the
NRP suggests that it provides a solution to some of the challenges
that come with simulating big connected systems. We believe the
system will prove useful beyond the specific models utilized here;
and that it will provide a common platform for general purpose
modeling of perception, cognition, and neuroscience.
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