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Sequence variation data of the human proteome can be used to
analyze 3D protein structures to derive functional insights. We used
genetic variant data from nearly 140,000 individuals to analyze 3D
positional conservation in 4,715 proteins and 3,951 homology models
using 860,292 missense and 465,886 synonymous variants. Sixty
percent of protein structures harbor at least one intolerant 3D site
as defined by significant depletion of observed over expected
missense variation. Structural intolerance data correlated with deep
mutational scanning functional readouts for PPARG, MAPK1/ERK2,
UBE2I, SUMO1, PTEN, CALM1, CALM2, and TPK1 and with shallow
mutagenesis data for 1,026 proteins. The 3D structural intolerance
analysis revealed different features for ligand binding pockets and
orthosteric and allosteric sites. Large-scale data on human
genetic variation support a definition of functional 3D sites
proteome-wide.

protein structure | genome constraint | exome | deep mutational scanning

Recent large-scale sequencing projects of the human genome
and exome detail the extent of genetic diversity in the human

population (1–3). To date, there are over 4.5 million amino acid-
changing (missense) variants reported in the human exome. Much
attention has been directed to the association of variants with
disease (3, 4). However, these data also represent an unprecedented
opportunity to characterize protein structure–function relationships
in vivo. In particular, the pattern of distribution of genetic variants
describes the functional limits to structural and functional modifi-
cations for a given protein. Inference of critical 3D sites could also
be informative for drug development and mechanisms of action,
including selectivity, lack of response, and toxicity.
Finding important sites within these structures has been done

through a variety of methods. Genetics-based scoring metrics can
measure the deleteriousness of genetic variants in a protein, a
property that strongly correlates with both molecular function-
ality and pathogenicity (5, 6). Scores may also consider interspecies
conservation (7) to discover “constrained elements” indicative of
putative functional elements. Previous approaches have emphasized
gene-level features (e.g., essentiality, burden of variation) and linear
analyses of variation in a gene rather than the distribution of vari-
ants in 3D space. However, additional methods have been created
in the field of cancer to assess the clustering of somatic variants in
protein structures. Ryslik et al. (8–11) described Identification of
Protein Amino acid Clustering (iPAC), Spatial Protein Amino acid
Clustering (SpacePAC), Graph Protein Amino acid Clustering
(GraphPAC), and Quaternary Protein Amino acid Clustering
(QuartPAC). Fujimoto et al. (12), Tokheim et al. (13), and Meyer
et al. (14) analyzed 3D position and clustering of mutations using
exome sequence data from The Cancer Genome Atlas (TCGA)
from up to 7,215 samples and 23 types of cancer and over 975,000
somatic mutations. A comparison of algorithms for the detection of
cancer drivers at subgene resolution was just published (15). It
should be noted that scoring methods in oncology emphasize mu-
tational clustering, as critically relevant in cancer biology, and not
intolerance to variation in the human proteome at large.
Recent sequencing efforts of human genomes and exomes

identify several hundreds of thousands of missense variants, which

can be used to derive human-specific intolerant sites when aggre-
gated in 3D space (3, 6, 16). Most studies that analyze the re-
lationship between point mutations and experimentally observed
3D protein structures published to date have been limited to indi-
vidual proteins. Bhattacharya et al. (17) manually analyzed one
single nucleotide variant in each of 374 human protein structures to
assess the effects of genetic variation on structure, function, stability,
and binding properties of the proteins. Arod�z and Płonka (18) an-
alyzed a limited set of pairs of proteins of the same length differing
by a single amino acid. Recently, Sivley et al. (19) presented a
comprehensive analysis of the spatial distribution of missense vari-
ants in the human proteome. They identified 215 proteins with
significant spatial constraints on the distribution of disease-causing
missense variants in protein structures. Glusman et al. (20) reported
on a workshop titled “Gene Variation to 3D (GVto3D).” The
overarching goal of the workshop was to provide the framework to
advance the integration of genetic variants and 3D protein structures.

Tolerance to Amino Acid Changes in the 3D Space of the
Human Proteome
A thorough analysis of the proteome requires a large study pop-
ulation to observe enough genetic variation to allow the detection
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of intolerance and tolerance to mutation of spatial neighborhoods.
To advance this field, we initiated a study that uses human genetic
variation from 138,632 human exomes and genomes and 31,116
X-ray protein structures (corresponding to 4,715 proteins) to
model tolerance to amino acid changes in the 3D space. To un-
derstand variation in the structural proteome, we first identified
structures that fulfilled our inclusion criteria: X-ray crystal struc-
tures with a defined resolution and a minimum chain length
greater than 10 amino acids. In addition, we mapped 139,535
Uniprot features [a combination of “structure-based” features,
composed of helices, strands, and turns, and “all” features, which
includes a list of features from the UniProt Knowledgebase
(UniprotKB) defined in Matarials and Methods] to the structures
and extracted a 3D context for each feature defined as the union
of the 5-Å-radius spheres around every atom of a feature, here-
after referred to as a 3D site. We identified 860,292 missense
variants for these proteins from the analysis of 138,632 individuals’
exomes. From these contextualized data, we constructed a model
that describes functional constraints in 3D protein structures
(Materials and Methods section and Fig. 1A). The strength of in-
tolerance to missense variation was summarized by the mean of a
posterior distribution that accounts for both observed missense
variation and expected missense variation at the level of 3D sites
(Materials and Methods section), termed the three-dimensional
tolerance score (3DTS). While we used a 5-Å-radius space to
generalize the analysis proteome-wide, the same approach can be
applied to scoring whole domains as well or to tailor to the protein
of interest. Below, we show the impact of varying the radius space
on functional prediction of selected proteins.
We describe the distribution of 3DTS values in Fig. 1B. In total,

3,097 (66%) proteins had at least one intolerant 3D site defined at
the 20th percentile proteome-wide (3DTS = 0.14). The most in-
tolerant 3D sites corresponded to DNA binding sites, zinc fingers,
and intramembrane domains, while the most tolerant 3D sites
included nonstandard residues (i.e., selenocysteines), glycosylation
sites, and transit peptides. Structural features (helix, turn, strand)
showed median 3DTS values close to the proteome-wide median
(Fig. 1C), which holds true for interspecies conservation (genomic
evolutionary rate profiling, GERP++) as well (SI Appendix, Fig.
S1). The rank correlation of the medians of the different feature
types between 3DTS and GERP++ is 0.45.
The precise interpretation of 3DTS values requires the as-

sessment of functional consequences of amino acid changes in
intolerant versus tolerant 3D sites. However, a challenge of
functional testing proteome-wide is the requirement of cellular
assays that are disease and gene relevant, robust, and scalable—a
serious limitation that explains that to date, the experimental
characterization of all possible missense variants in a mammalian
gene [deep mutational scanning (21, 22)] has been limited to a
handful of proteins: PPARG (23); MAPK1/ERK2 (24); p53 (25);
PTEN and TPMT (26); UBE2I, SUMO1, TPK1, CALM1,
CALM2, and CALM3 (27); and two single-protein domains of
BRCA1 (the RING domain) and YAP65 (the WW domain) (21,
28). We therefore sought to validate 3DTS against the available
functional data for the complete human proteins for which there
is comprehensive deep mutation scanning (nine proteins cover-
ing ∼2,300 amino acid positions and ∼40,000 mutants). In ad-
dition, we evaluated 1,026 proteins with shallow mutagenesis
(approximately 2,100 individual experimental mutational data
from Uniprot) to show that 3DTS identifies functional mutations
as intolerant preferentially.

Functional Readout of 3D Tolerance Scores
To introduce the approach, we first assessed the structure–func-
tion relationship for peroxisome proliferator-activated receptor
gamma (PPARG). PPARG is a drug target for thiazolidinediones
and newer partial PPARG modulators used in the treatment of
diabetes (22). PPARG exemplifies the challenge of classifying

newly identified variants even in a well-studied protein implicated
in disease. In the original work (23), functional interpretation of
PPARG variants required the construction of a cDNA library
consisting of all possible amino acid substitutions in the pro-
tein. The library was introduced into human macrophages ed-
ited to lack the endogenous PPARG and stimulated with
PPARG agonists to trigger the expression of CD36, a canonical
target of PPARG. Sorted CD36+ and CD36− cell populations
were sequenced to determine the distribution of each PPARG
variant in relation to CD36 activity. We showed good correla-
tion (r2 = 0.41, P = 2.6E-5) between the 3D sites defined by
3DTS on the structure [Protein Data Bank (PDB) ID code
3DZY] and the functional scores described in Majithia et al.
(23). Specifically, both the in vitro and in silico scores identified
the DNA-binding and ligand-binding sites as intolerant to
missense variation, while the hinge domain reflected increased
tolerance to missense variation (Fig. 2A). Additionally, Majithia
et al. (23) indicated that their transgene library may not have
detected all possible functional effects of coding variation, sug-
gesting that the concordance between in vitro and in silico read-
outs should be interpreted as conservative.
While we use PPARG as an example of the implementation of

3DTS, we also analyzed the other proteins with existing deep
mutational scanning data. Fig. 2B shows the distributions of Pearson
r2 values for all structures (ranging from 0 to 0.72 for CALM1, 0 to
0.54 for CALM2, 0.02 to 0.33 for ERK2, 0.17 to 0.41 for PPARG,
0.21 to 0.39 for PTEN, 0 to 0.83 for SUMO1, 0.13 to 0.22 for TPK1,
0.09 to 0.17 for TPMT, and 0 to 0.62 for UBE2I) that cover at least
70% of the canonical isoform under four different 3DTS condi-
tions: two different sets of 3D features and two different models of
rate variation. Precision–recall curves and average precision for the
comparison of deep mutational screen data of 3DTS and the vari-
ous in silico methods is shown in SI Appendix, Fig. S2. EVmutation
has the highest average precision (0.75). Importantly, different
structures for the same protein differ in the correlation value; the
median r2 and the distributions tend to be large both within and
between conditions and genes. These variations could occur for a
variety of reasons such as alternative protein interaction partners,
different structural coverages of the protein, varied crystallization
conditions, etc. We speculate that 3DTS might serve to identify
functionally relevant conformations for a given protein; that is, for a
protein with multiple available structures, the best correlations may
represent the most parsimonious and functionally plausible struc-
tures. Data regarding the optimal structures are available in
Dataset S1.
We compared the functional prediction of 3DTS with 23 pub-

lished scores: CADD (5), SIFT (29), PROVEAN (30), FATHMM
(31), MutationAssessor (32), fathmm-MKL (33), FitCons (34),
DANN (35), MetaSVM/MetaLR (36), GenoCanyon (37), Eigen-
PC (38), M-CAP (39), REVEL (40), PhyloP (41), PhastCons (42),
GERP++ (7), SiPhy (43), Polyphen-2 (44), and EVmutation (45).
Importantly, we bring these scores to the 3D environment, as the
purpose of this analysis is the definition of functional regions and
not the prediction of deleteriousness at single-amino acid level
resolution. These various scores trained under a range of assump-
tions, most commonly interspecies conservation, coevolution, and
pathogenicity. Overall, 3DTS performs comparably to these other
methods in the 3D space (Fig. 2C). In the future, use of ensemble
methods (modeling on multiple scores) is expected to perform
better than single scores (for a comparison of all structures and
methods, see SI Appendix, Fig. S3 and Dataset S2). The diversity
and complementarity of the various methods suggest that users
should analyze proteins under various assumptions and models.
Here, 3DTS adds a dimension that has not been included in pre-
vious predictors. The availability of multiple proteins with deep
mutational screening data also supported a more formal assessment
of the effect of varying the size of the 3D sites and confirming the
general validity of the use of the 5-Å radius (SI Appendix, Fig. S4).
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We then extended the evaluation to a large corpus of func-
tional readouts for 1,026 proteins for which shallow mutational
information was available. The median 3DTS score for 4,428 3D
functional sites (those that carry an experimentally tested “loss of
function” variant) is lower than the proteome background

(Kolmogorov–Smirnov two-sided test P value = 3.7E-42), which
may yet include undescribed functional sites. Importantly, at any
level of global gene essentiality, functional sites are systematically
more constrained than the rest of the protein (Fig. 2D). In sum-
mary, the in silico 3DTS values may provide functional prediction

Intolerant Tolerant

0 0.5 1

3D Tolerance Score 
(3DTS)

3D Sites

= missense variant

Gene

Intron
Exon

Protein

Genetic Variation, Structure, and 
Features

Features

A

B C

Fig. 1. Three-dimensional tolerance to variation in the proteome. (A) Missense variation data from genome and exome sequencing projects are mapped to 3D
protein structures. Features extracted from Uniprot are also mapped to the 3D structures. Using these features as reference points, a 3D context is constructed,
and the corresponding genetic data are extracted. A 3DTS is generated from this information. The 3DTS values are projected back onto the 3D structure. (B) The
distribution of tolerance values across the structural proteome for 139,535 3D sites for structures representing 4,715 proteins. The 3DTS value at the 20th per-
centile (3DTS < 0.14) is used to define intolerant sites. (C) Median 3DTS for a subset of feature types with the interquartile ranges (IQR). The number of each
feature type with a 3DTS value is shown above each column. The overall median across the structural proteome is represented by a horizontal dashed line. Feature
types are colored by subsections defined by Uniprot (https://www.uniprot.org/help/sequence_annotation).
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without engaging in extensive and time-consuming in vitro assays
and dedicated functional readouts; this is critical given the paucity
of human proteins that have been subjected to deep mutational
scanning and functional testing.

Three-Dimensional Tolerance to Amino Acid Change of Drug
Target Sites
One application of the present work could involve prioritization of
drug target sites. Protein structure-based methods are now routinely
used at all stages of drug development, from target identification to
optimization (46). Central to all structure-based discovery ap-
proaches is the knowledge of the 3D structure of the target protein or

complex because the structure and dynamics of the target determine
which ligands it binds (46). The characterization of human-specific
intolerant sites and tolerance to genetic variation can be used to
parse structural information to define active sites and also to define
functionally important topographically distinct sites that can support
allosteric interactions for small molecules to modulate protein
function (47). We analyzed the 3D intolerance characteristics for
97 proteins that included known drug targets with a bound ligand and
proteins with known allosteric sites (Dataset S3). The corresponding
proteins carried a median number of one unique nonoverlapping
intolerant 3D site (range 0–7). Overall, 17 proteins lacked an in-
tolerant site, while 26 had more than one unique intolerant site. In

A

B

3DTS

In vitro scores
(Majithia et. al.)

3D-sites in vitro scores 
(Majithia et. al.)

Low High

Mutation tolerance

D

C

Fig. 2. Validation of 3DTS. (A) Comparison of deep mutational screen data and in silico 3DTS data for the DNA-binding and ligand-binding domains of
PPARG. (Top) Projection of the functional scores described in Majithia et al. (23) for each amino acid and the scores averaged across the 3DTS-defined sites for
the crystal structure 3dzy (32). The color scheme is chosen to match the one described in Majithia et al. (Bottom) A projection of 3DTS onto PPARG is seen on
the Left, and the 3D site level correlation between 3DTS and the 3D site averaged in vitro functional scores is shown in the plot on the Right. (B) Comparison
of deep mutational screen data and 3DTS under different modeling assumptions for all available PDB structures covering 70% of the canonical protein length
for nine genes. “Structure” refers to 3D sites defined by secondary structure elements, and “Allfeatures” uses 3D sites defined by all Uniprot features as
detailed in the Materials and Methods. “Constant” and “heptamer” refer to the mutation rates as discussed in theMaterials and Methods. (C) Comparison of
the optimal 3DTS model to 23 other scoring methods at the 3D site level for nine genes. Pearson r2 values for comparisons of deep mutational screen data and
in silico data at the 3D site level for the nine genes are provided. “NaN” refers to methods with unavailable scores. (D) Shallow mutagenesis data proteome-
wide. Here, 3DTS identifies functional sites (loss of function) as more constrained (lower 3DTS values) at all levels of global gene essentiality compared with
the rest of the protein. pLI > 0.9 (essential gene) functional to background Kolmogorov–Smirnov two-sided test P value = 9.3E-31; 0.1 > pLI > 0.9 functional to
background Kolmogorov–Smirnov two-sided test P value = 2.3E-20; pLI < 0.1 functional to Kolmogorov–Smirnov two-sided test P value = 1.1E-18.
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the most intolerant bin, active sites were most constrained, followed
by allosteric, protein–protein interaction, and ligand-binding pockets
(Fig. 3A and Dataset S3). The higher scores of allosteric sites (more
tolerant) relative to their orthosteric counterparts are consistent with
the existing knowledge indicating that these sites tend to be under
lower evolutionary conservation pressure (47). We also observed an
unequal distribution of tolerant and intolerant binding sites across
therapeutic classes (Fig. 3B and Dataset S3). For example, antineo-
plastic and immunomodulating agents preferentially target intolerant
sites. The identification of multiple intolerant 3D sites and domains in
many drug targets could be exploited for rational drug design and for
analysis of drug screening results.
Recently, we and others evaluated genome constraint based on

depletion of human variation data in linearly defined regions in
coding (48, 49) and in noncoding regions (16). The current study
extends this approach to regions defined by tertiary structure. The
increasing detail of the limits of protein diversity that can be gath-
ered through large-scale sequencing of the human population and
3D proteins structures offers additional data on orthosteric, allo-
steric, and additional functional sites that could be harnessed for
drug development.

Materials and Methods
Detailed information is provided in SI Appendix.

Genomic and Variant Data. We included a set of 123,136 exomes and 15,496
whole human genomes from gnomAD (https://gnomad.broadinstitute.org/).
Feature annotations were taken from Uniprot text files that were cross-
referenced from Gencode. We used pairwise global sequence alignment to
align the Uniprot amino acid sequence to the Gencode transcript. X-ray structure
data from the Protein Data Bank were used if they were linked within the
Uniprot text files. The PyMol molecular visualization system was used to identify
any residue within 5 Å of a defined Uniprot feature (also referred to as a 3D site).

Creation of a 3D Tolerance Score. We group variants based on their spatial
proximity in 3D protein space and based on Uniprot feature annotation. We
term these groups 3D sites.We calculate the expectation on the probability that

the 3D site is intolerant tomissensemutation using amodel, which accounts for
the differences among loci in the rates of neutral missense variation due to the
genetic code, differential sample availability, and regional mutation rates.

Functional Data and Pathogenicity Scores. Deep mutational scanning data are
available for PPARG (23); MAPK1/ERK2 (24); p53 (25), PTEN and TPMT (26);
UBE2I, SUMO1, TPK1, CALM1, CALM2, and CALM3 (27); and two single-protein
domains of BRCA1 (the RING domain) and YAP65 (the WW domain) (21, 28).
For most scores, comparative method data were sourced from dbNSFPv3.5a
(36, 50) except for EVmutation (45) data. Scores resulting in missense variants
were averaged across a nucleotide (where applicable), then an amino acid
position, and, last, a 3D site.

Drug Ligand Data Set and Analyses. A set of structures defined as therapeutic
targets of FDA-approved drugs was used. Therapeutic targets were taken from
the supplementary information of Santos et al. (51). Ligand-binding sites were
defined as those residues within 5 Å of any of the bound therapeutic molecule
residues. Drug liganded molecules were assigned to their ATC codes using the
supplementary information of Santos et al. (51). We used the Allosteric Da-
tabase (release no. 3.06) (52). A nonredundant list of protein active sites was
included for those structures found in the Drug Ligand Data Set and the Al-
losteric Data Set. Additionally, protein–protein interfaces were included if
those structures were found in the Drug Ligand Data Set, Active Site Data Set,
and the Allosteric Data Set.

Statistics. Statistics were calculated using the NumPy (www.numpy.org) and
SciPy (https://www.scipy.org) libraries in Python and in-house statistical
software in Scala.

Public Resources. We provide final scores and intermediate results from the
genome to proteome mapping, including the UniProt–PDB pairwise align-
ments, at https://doi.org/10.5281/zenodo.1311198 (53). We provide the
source code at doi.org/10.5281/zenodo.2628193 (54). There is an interactive
browser at protc.labtelenti.org.
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