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Purpose: In vivo myelin quantification can provide valuable noninvasive informa-
tion on neuronal maturation and development, as well as insights into neurological 
disorders. Multiexponential analysis of multiecho T2 relaxation is a powerful and 
widely applied method for the quantification of the myelin water fraction (MWF). In 
recent literature, the MWF is most commonly estimated using a regularized non-
negative least squares algorithm.
Methods: The orthogonal matching pursuit algorithm is proposed as an alternative 
method for the estimation of the MWF. The orthogonal matching pursuit is a greedy 
sparse reconstruction algorithm with a low computation complexity. For validation, 
both methods are compared to a ground truth using numerical simulations and a 
phantom model using comparable computation times. The numerical simulations 
were used to measure the theoretical errors, as well as the effects of varying the SNR, 
strength of the regularization, and resolution of the basis set. Additionally, a phantom 
model was used to estimate the performance of the 2 methods while including errors 
occurring due to the MR measurement. Lastly, 4 healthy subjects were scanned to 
evaluate the in vivo performance.
Results: The results in simulations and phantoms demonstrate that the MWFs deter-
mined with the orthogonal matching pursuit are 1.7 times more accurate as compared 
to the nonnegative least squares, with a comparable precision. The remaining bias of 
the MWF is shown to be related to the regularization of the nonnegative least squares 
algorithm and the Rician noise present in magnitude MR images.
Conclusion: The orthogonal matching pursuit algorithm provides a more accurate 
alternative for T2 relaxometry myelin water quantification.
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1  |   INTRODUCTION

MRI is a helpful technique to detect abnormalities in the 
cerebral white matter (WM). For instance, T2‐weighted im-
aging techniques grant excellent contrast to identify WM ab-
normalities, and DWI provides information on the integrity 
of the WM tracts.1 Although these methods are invaluable in 
the ongoing research and clinical diagnosis of WM disorders, 
they fail to provide more specific information on one of the 
most characteristic components of the WM, the myelin.

Myelin is a layered, fatty substance wrapped around the 
axons that is comprised of lipids and proteins. The myelin 
acts as an electrical insulator, accelerating the transport of 
electrical signals along the axons. In addition to the dry mass, 
the myelin volume is roughly made up of 40% water, which 
is trapped between the lipid bilayers of the myelin sheath.2 
Myelin is vital to healthy neuronal development and can 
therefore provide valuable information regarding neuronal 
maturation and development as well as insights into disinte-
gration as part of several neurological disorders.3 Therefore, 
MRI techniques that yield specific information on the myelin 
content can provide information on WM that complements 
structural T2‐weighted and DWI techniques.

White matter is relatively bright on T1‐weighted images, 
which is related to myelin‐bound cholesterol, whereas the 
T2‐weighted contrast of WM is low due to motion‐restricted 
protons in the myelin water. Previously, both the T1‐ and T2‐
weighted images were combined to enhance myelin contrast 
by calculating the ratio of T1‐ and T2‐weighted image inten-
sities.4 Despite the enhanced myelin contrast, the T1‐to‐T2 
ratio fails to provide information that is specific to the my-
elin. Besides conventional imaging methods, DWI is often 
used to study the WM. However, whereas DWI measures can 
provide information on changes in myelin, they are not suit-
able for absolute quantification of myelin content.5 Another 
technique that is used to detect abnormalities in myelin con-
tent is magnetization transfer imaging via the magnetization 
transfer ratio.6 Whereas the magnetization transfer ratio is 
sensitive to the interaction of water molecules with the mac-
romolecules in the myelin sheath, it is not specific enough to 
distinguish between myelin abnormities and, for example, in-
flammatory processes.7 Contrary to these indirect measures 
of myelin, UTE imaging can be used to image the myelin 
sheath directly.8 Although the MR signal of the myelin sheath 
dephases too quickly (10 µs < T2 < 1 ms) to be visible on 
conventional T2‐weighted images, it can be visualized using 
UTE sequences. Although UTE measurements are promising 
in the field of myelin quantification, they remain challenging 
on clinical MR systems due to hardware limitations.9

Because water is a significant part of the myelin volume, 
many studies have focused on the quantification of myelin 
water as an indirect measure of myelin content. Myelin water 

can be quantified using either the multicomponent driven 
equilibrium single pulse observation of T1 and T2

10 or the 
analysis of T2 relaxometry. In the current study, T2 relax-
ometry is used to quantify the myelin water. The rationale 
for using T2 relaxometry to quantify myelin content is that 
trapped and motion‐restricted water particles between the 
lipid layers of the myelin sheath have a faster T2‐weighted 
signal decay (10 ms < T2 < 40 ms) compared to more freely 
moving water in the intra‐ and extracellular spaces (80 ms < 
T2 < 100 ms) and CSF (T2 > 2 s).11 Due to these differences 
in T2 relaxation time, MR imaging can provide surrogate 
markers of myelin content via the myelin water, whereas the 
T2 relaxation profile of a single voxel is a superposition of 
myelin water, intra‐ and extracellular water, and CSF compo-
nents. The signal attributed to each of these components can 
then be determined by separating the measured signal into 
its constituting relaxation components. From the resulting 
relaxation components, the fraction of myelin water signal 
to the total water signal, the myelin water fraction (MWF), 
can be determined. Biexponential fitting methods are typi-
cally unsuitable for the extraction of the constituting com-
ponents because they are unstable; furthermore, they assume 
that only 2 components are present, which is not guaranteed. 
Alternatively, the constituting components can be extracted 
using multiexponential analysis.

In literature, the multiexponential analysis is most com-
monly performed with the nonnegative least squares (NNLS) 
algorithm.12-16 Opposed to biexponential fitting methods, the 
NNLS algorithm makes no assumptions on the number of 
underlying components and does not require an estimation of 
the solution to start the optimization algorithm. Instead, the 
NNLS reconstructs the signal from a predefined overcom-
plete basis set of T2 relaxation decay curves, the so‐called 
dictionary.

In the current study, we propose the orthogonal matching 
pursuit (OMP) algorithm17 as an alternative to estimate the 
MWF using T2 relaxation MRI. Common applications of the 
OMP are wavelet decomposition, denoising of images, and 
reconstruction of images or signals (e.g., NMR spectroscopy 
spectra).18-21 Similar to the NNLS, the OMP uses an over-
complete dictionary to estimate the corresponding weights of 
each element from the dictionary. However, in contrast to the 
NNLS, the OMP is a greedy algorithm that aims to model as 
much of the current residuals in each step rather than working 
toward the global optimum.22

In the following, we compare the performance of the 
OMP and NNLS algorithms on estimating the MWF using 
T2 relaxometry. To investigate the theoretical errors for vary-
ing SNR of both methods, numerical simulations are used. 
A phantom model is employed to assess errors related to the 
MR acquisition, and lastly, the 2 methods are compared in 
healthy volunteers.
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2  |   THEORY

2.1  |  Nonnegative least squares
Introduced by Lawson and Hanson,23 and extensively in-
vestigated and applied to T2 relaxation data by Whittall and 
MacKay16 for the first time, the NNLS uses a predefined 
basis set A with M elements of discrete T2j relaxation decay 
curves to characterize the measured signal yi as

where sj is the amplitude corresponding to the T2j relaxation 
time, ti is the measurement time of data point i, and N rep-
resents the total number of data points. Now, the NNLS prob-
lem can be written as

where �2
min

 represents the misfit that is minimized by the 
NNLS algorithm. Typically, in T2 relaxation analysis the 
number of data points is smaller compared to the elements in 
the basis set (N < M), making the NNLS an ill‐posed prob-
lem. To provide a more stable solution, a regularized version 
of the NNLS is used, adding a smoothing constraint,

where � is the regularization parameter and �2
reg

 is the regu-
larized misfit. Because the regularization term represents a 
numerical derivative, a larger � results in a smoother ampli-
tude distribution (s) at the cost of a larger misfit (�2

reg
). The 

LS is a convex algorithm with a unique solution. However, 
the regularized NNLS has a high computational complexity, 
limiting the number of elements in the basis set. Typically, 
120 logarithmically spaced elements ranging from 15 to 2000 
ms are used.24-27

2.2  |  Orthogonal Matching Pursuit
The OMP algorithm, introduced by Davis et al.,17 builds 
a sparse representation to estimate the measured signal 
y by iteratively selecting that element from a predefined 
basis set A, which correlates most with the current residual 
(i.e., greedy optimization).20 To initialize the algorithm, 
the measured signal serves as the first (artificial) residual. 
To ensure positive weights, Bruckstein et al. proposed a 
nonnegative implementation of the OMP by solving an 

unconstrained nonnegative least squares problem for a sub-
set of A with the current selection of K elements, ÂK, in 
each iteration,28

Note that the weights of previously selected elements can 
become 0, which means that not all the selected elements are 
necessarily represented in the final signal representation. From 
this point on, we will refer to the aforementioned nonnegative 
implementation of the OMP simply as OMP. The OMP iterates 
until 1 of 2 stopping criteria is met: 1) either a user defined 
number of elements (n) is selected from A, or 2) there is no 
new element from the dictionary that positively correlates with 
the last residual. Thus, the OMP algorithm combines the low 
computational complexity of a greedy algorithm with the sta-
bility of a least‐squares solver. The OMP algorithm is shown 
in pseudocode (algorithm 1).29 Greedy algorithms such as the 
OMP have a low computational complexity, thus allowing a 
higher resolution (e.g., 1000 or more basis set elements).

2.3  |  Myelin water fraction
For both methods, the MWF is subsequently defined as the 
amplitude fraction of the T2j relaxation elements associated 
with myelin water to all T2j relaxation water elements, for 
which the myelin water component is expected to have a T2 
relaxation time in the range of 15 to 40 ms at 3.0 tesla.14

3  |   METHODS

3.1  |  Numerical simulations
To estimate the numerical errors of the NNLS and OMP al-
gorithms, multiexponential relaxation curves were compu-
tationally synthesized. To also include effects of stimulated 
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Algorithm 1: Nonnegative Orthogonal Matching Pursuit

Input: signal y, Dictionary A, sparsity n, x = 0

Output: signal weights x

1: initialize r0 = y, s = ∅, i = 0

2: while i < n & max(Atri) > 0 do

3: k = argmax(Atri)

4: s = s U k

5: xs = argminθ>0 ||y ‐ Asθ||2
6: ri+1 = y ‐ Asxs

7: i = i + 1

8: End while

9: x(s) = xs
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echoes caused by B1 inhomogeneities, the extended phase 
graph (EPG) algorithm30 was used to synthesize relaxation 
data with an imperfect refocusing FA of 150°31,32 and 32 TEs 
with an echo spacing of 12 ms (range 12–384 ms). The relax-
ation rates used for the water components in the simulations 
were T1 = 1000 ms, T2long = 100 ms, and T2myelin = 30 ms, 
corresponding to healthy WM tissue. Furthermore, additional 
data was synthesized simulating a WM lesion using T1 = 600 
ms, T2lesion = 200 ms, and T2myelin = 30 ms.33,34 However, the 
shape of the underlying in vivo T2 distribution is unknown 
and might behave more like a continuous distribution instead 
of a discrete distribution. Therefore, to study the potential 
effects of the underlying distribution on the MWF estimation 
of both algorithms, a continuous Gaussian distribution con-
sisting of 2 pools (T2long: mean 100 ms and SD 10 ms, T2lesion: 
mean 200 ms and SD 20 ms, T2myelin: mean 30 ms and SD 3 
ms) also was reconstructed.35,36

To estimate the effects of myelin water content and SNR 
on the analysis, 1000 Rician noise realizations were calcu-
lated for varying MWF (range 0%–30%, with 1% increment) 
and SNR (100, 200, and 350). Additionally, the effects of a 
smaller echo spacing of 8 ms (range 8–256 ms) and a lower 
T2myelin peak time of 15 ms were also assessed for an SNR 
of 200. Rician noise was simulated as the magnitude of the 
signal with additive complex‐valued Gaussian noise, and 
SNR was defined as the signal at the first echo (TE = 12 ms) 
divided by the SD of the added complex‐valued Gaussian 
noise. Rician‐distributed noise is nearly Gaussian for high 
SNR values (> 3); however, we still need to take the Rician‐
distributed noise into account because the SNR decreases ex-
ponentially for increasing TE.

3.2  |  Phantom model
To estimate errors in MWF estimation due to the signal 
acquisition, 2 vials with manganese (II) chloride solutions 
were prepared with concentrations of 0.07 mM and 0.25 
mM, resulting in monoexponential T2 relaxation curves 
with T2long ≈ 110 ms and T2myelin ≈ 30 ms, and T1 relaxation 
values of T1long ≈ 1300 and T1myelin ≈ 500, respectively. 
Ideally, the T1myelin should be closer to 1000 ms; however, 
it is still sufficiently long (T1 >> T2) to have no substan-
tial effect in subsequent EPG analyses.37 Multiexponential 
decays were synthesized by summing 2 randomly chosen 
voxels from each vial and weighing them such that a vary-
ing MWF (range 0%–30%, with 1% increment) is obtained. 
This process was repeated 1000 times. SNR of the phan-
tom model was estimated as the mean signal of a region 
of interest (ROI) located in the vials at the first echo (TE 
= 12 ms) divided by the SD measured in 4 ROIs in the 
air placed in each corner of the image. As the measured 

noise is Rician‐distributed, a correction is applied such that 
�Rice√
2−�∕2

=�Gauss is used.38

3.3  |  In vivo data
Four healthy adult volunteers (age, range 26–30 years, 3 
males) were scanned, and a single transverse slice MWF map 
was determined for each individual using both quantification 
methods. Additionally, a fifth healthy adult volunteer (age 
29, female) was scanned using a 3D GRASE sequence. The 
SNR of the in vivo data was determined as the mean signal 
in the genu and splenium of the corpus callosum divided by 
the SD measured in 4 ROIs in the air placed in each corner 
of the image. All volunteers gave written permission, and the 
study was conducted with the approval of the institutional 
review board.

3.4  |  MRI acquisition
The vials and healthy volunteers were scanned on a 3.0 tesla 
unit (Philips Achieva, Best, the Netherlands) with an 32‐ele-
ment head coil using a single transverse slice multispin‐echo 
(MSE) sequence (TR = 3000 ms, 32 echoes with the short-
est possible echo spacing for this sequence of 12 ms, range 
12–384 ms, FOV 240 × 198 × 4 mm, reconstruction matrix 
size 160 × 160, voxel size 1.5 × 1.5 × 4 mm, and 2 signal 
averages).39 In vivo, the slice is positioned through the genu 
and splenium of the corpus callosum and angulated paral-
lel to the inferior edges of the corpus callosum. A single 
healthy volunteer was scanned using a 3D GRASE sequence  
(TR = 611 ms, 32 echoes with echo spacing of 13 ms, range 
13–416 ms, FOV 240 × 198 × 128 mm, reconstruction ma-
trix size 160 × 160 × 32, voxel size 1.5 × 1.5 × 4 mm, EPI 
factor = 3, turbo factor = 32, SENSE = 2). For anatomical 
reference, T1‐weighted 3D turbo field echo images were ac-
quired for all healthy volunteers (TR = 8.2 ms, TE = 3.7 ms, 
TI = 1010 ms, FA = 8°, 1‐mm thick slices).

3.5  |  Analysis

3.5.1  |  Modifications to the Orthogonal 
Matching Pursuit algorithm
The OMP algorithm was slightly modified to better suit the 
current problem of MWF estimation from MR relaxation data. 
Because the relaxation signal and dictionary are strictly posi-
tive, the highest correlation of the signal with the dictionary 
is always found for the longest T2 relaxation time present in 
the dictionary (assuming all dictionary elements have unit 
amplitude). Therefore, the first iteration depends on the dic-
tionary defined by the user and does not necessarily converge 
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to a meaningful answer. To improve the result of the OMP 
algorithm, 2 random elements are selected from the diction-
ary for initialization of the iteration process. One initialization 
element corresponds to a myelin water associated relaxation 
time (T2 < 40 ms), and the other element is one of the slower 
components (T2 ≥ 40 ms). Note that this initialization makes 
no assumption on the final number of components. The OMP 
tries to explain as much of the current residual as possible in 
each iteration, and therefore does not necessarily converge to 
the global optimum. Furthermore, due to the random initiali-
zation, the output of the algorithm can vary for identical in-
puts. Therefore, the stability of the algorithm can be enhanced 
by running with multiple random initializations per voxel. 
Because OMP is approximately 20 times faster than NNLS, 
we ran the OMP algorithm 20 times for each voxel. For the 
averaging of these results, an exponentially decaying quadratic 
weighting is applied such that those MWFs with a larger fitting 
residual have a lower weighing because they are likely the re-
sult of less optimal fitting due to the greedy nature of the OMP 
algorithm (Figure 1). Furthermore, the effect of the number of 
random initializations is investigated using the synthetic data 
by also running the OMP algorithm 1, 5, 10, and 50 times.

The modified algorithm stops when the residual of the 
current iteration is larger than the residual of the previous 
iteration, in other words, when the next selected element does 
not provide a better fit.

These aforementioned modifications were added to the 
MatLab (MathWorks, Natick, MA, version 8.4, R 2014b) im-
plementation of the OMP algorithm by Yaghoobi,29 which 
is available on GitHub (https://github.com/GSDrenthen/
Non-Negative-OMP).

3.5.2  |  Data preprocessing
A singular value decomposition filter was used to reduce 
noise in the measured multiecho data.40 Furthermore, the 
EPG algorithm was used to correct for B1‐inhomogeneities.30 
To this end, for each voxel the corresponding refocusing FA 
is calculated by solving the multiexponential problem for a 
range of FAs and subsequently selecting the FA that corre-
sponds to the lowest residual. A refocusing FA range of 100 
to 180° was used. For the construction of the T2 basis func-
tions using the EPG, the T1 relaxation was assumed to be 
1000 ms in all cases.

For the multiexponential analysis, dictionaries of 120 
and 1000 logarithmically spaced relaxation basis func-
tions with a range of T2 relaxation times of 15 to 3500 
ms were used for the NNLS and OMP methods, respec-
tively. An upper bound of 3500 ms was chosen such that 
contribution from free water content (T2 > 2 s) could also 
be fitted. Previously, it was shown that reliable fits could 
also be obtained using a 40‐element basis set.32 However, 
because we use a high‐resolution (1000 elements) basis 
set for the OMP algorithm, we compare it to a relatively 
high‐resolution (120 elements) NNLS. Furthermore, to 
investigate if the increased number of elements in the 
basis set effects the MWF estimation, the OMP was also 
run with the same basis set of 120 functions as the NNLS. 
The curvature of the NNLS amplitude spectrum was min-
imized using a standard regularization, allowing a misfit 
of 1.020≤�reg∕�min ≤1.025.11 Previously, regularization of 
the NNLS was associated with an underestimated MWF.41 
Therefore, to investigate the effect of the regulariza-
tion strength, an additional numerical simulation with 2 
extra smoothing constraints (1.005≤�reg∕�min ≤1.010 and 
1.040≤�reg∕�min ≤1.045) was performed.

3.5.3  |  Validation
For the numerical simulations and phantom model, the accu-
racy of the MWF estimation by the OMP and NNLS methods 
was evaluated using the absolute bias, defined as the mean 
absolute deviation from the ground truth MWF,

where � is the mean estimated MWF, MWFin is the ground 
truth MWF (range 0%–30%, with 1% increments), and N is 
the number of MWF values (N =31 in this case).

The precision of both methods is evaluated by the relative 
standard deviation (RSD),

Absolute bias=

∑N

1
���−MWFin

��
N

,

RSD (%)=100% ⋅

�

�
,

F I G U R E  1   Example of a typical T2 distribution reconstructed 
using 20 iterations of the OMP. High residual fits (solid black lines) 
will contribute less to the final result in comparison to lower residual 
fits (gray lines). The 2 dashed black lines represent the original T2 
distribution  OMP, orthogonal matching pursuit.

https://github.com/GSDrenthen/Non-Negative-OMP
https://github.com/GSDrenthen/Non-Negative-OMP
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where � is the SD and � is the calculated mean. The  
RSD is determined for a MWFin of 15% (RSD15%) because 
an MWF of 15% is a commonly reported MWF in normal 
WM. 12,14,42

Because the in vivo data cannot be validated with a ground 
truth measurement, we compare the 2 methods with respect 
to each other. To this end, the WM was segmented from the 
T1‐weighted images and coregistered to the MSE space using 
the SPM12 MatLab package (https://www.fil.ion.ucl.ac.uk/
spm/software/spm12/). Thereafter, 2 major WM structures, 
the genu and splenium of the corpus callosum, were manu-
ally delineated; and 2 subcortical structures, the thalamus and 
the caudate, were segmented using the FreeSurfer software 
(version 5.3, https://surfer.nmr.mgh.harvard.edu).43 These 
ROIs are important structures and have often been studied in 
previous MWF research.32,44

4  |   RESULTS

4.1  |  Numerical simulations
The mean estimated MWF of the NNLS and OMP methods 
for the simulated data with an SNR of 200 at the first echo 
(TE = 12 ms) is shown with respect to the supplied MWF in 
Figure 2. Additionally, the absolute bias of the MWF estima-
tion is depicted in the same figure. Both methods systemati-
cally underestimate the ground truth MWF. However, over 
the whole MWF range, the MWF values estimated with the 
OMP are closer to the ground truth MWF compared to those 

estimated with the NNLS. This results in a 1.8 times smaller 
average absolute bias of the OMP method compared to the 
NNLS (NNLS: 4.4% vs. OMP: 2.5%). The 2 methods have a 
comparable RSD15% (NNLS: 29% vs. OMP: 32%).

The effect of SNR on the absolute bias and RSD15% of the 
MWF estimation for both methods is shown in Table 1 for 
healthy WM tissue and for WM lesions. The absolute bias 
and RSD15% increased for the simulations with lower SNR. 
For nearly all SNR levels, the OMP has a smaller absolute 
bias and similar RSD15% compared to the NNLS.

The effect of echo spacing and T2myelin is shown in Table 
2. A decreased T2myelin of 15 ms greatly improves the MWF 
estimation for both methods. The large improvement is most 
likely due to the 2 T2 peaks being further apart and thus more 
easily distinguished. Reducing the echo spacing to 8 ms al-
lows for a better characterization of the fast myelin decay; 
however, it also decreases the total T2 range (up to 256 ms), 
possibly hampering the correct characterization of slower de-
caying signals.

Using a continuous T2 distribution instead of 2 distinct 
discrete peaks did not have a strong or meaningful effect on 
the results. The changes in absolute bias were <0.1% for both 
methods, whereas the RSD15% did not deviate more than 1%. 
Reducing the basis set of the OMP algorithm to 120 elements 
showed similar changes in absolute bias (<0.1%) and RSD15% 
(<1%). Furthermore, in Figure 3 the effect of computational 
time on the estimation of the MWF is shown for the OMP 
method, where the absolute bias decreases with running more 
instances of the algorithm.

Lastly, the effect of the NNLS smoothing constraint is 
shown in Figure 4. It is observed that a stronger regulariza-
tion (i.e., higher smoothing constraint) shifts the peaks of the 
T2 distribution slightly to the lower T2 values. Additionally, 
the estimated MWF is lower for stronger smoothing (e.g., the 
total myelin‐related amplitude decreases).

4.2  |  Phantom model
The SNR of the phantom measurement at the first TE (TE 
= 12 ms) was 340 ± 34 (mean ± SD). The mean estimated 
MWF of the NNLS and OMP methods for the phantom 
measurements is shown in Figure 5 with respect to the de-
fined MWF. Additionally, the absolute bias of the MWF 
estimation is shown for both methods in the same figure. 
From this we observe that, over almost the whole MWF 
range, both methods systematically underestimate the 
ground truth MWF, and that the MWF values estimated 
with the OMP are closer to the ground truth MWF. The 
absolute bias of the OMP method is on average 1.7 times 
smaller compared to the NNLS (NNLS: 3.4% vs. OMP: 
2.0%), whereas the 2 methods have a comparable RSD15% 
(NNLS: 25% vs. OMP: 18%).

F I G U R E  2   The estimated MWF from the numerical simulations 
using the NNLS (solid line) and the OMP (dotted line) is plotted 
against the supplied MWF. The dashed black line depicts the ground 
truth MWF, whereas the top of the figure shows the absolute bias of 
the estimated MWF MWF, myelin water fraction; NNLS, nonnegative 
least squares. 
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4.3  |  In vivo
The SNR of the in vivo measurements at the first TE (TE = 
12 ms) was 363 ± 193 (mean ± SD) measured in the genu 
and splenium of the corpus callosum. In Figure 6A, the MWF 

maps of a single representative healthy subject calculated 
with both the NNLS and OMP method are shown. In Figure 
6B, the T1‐weighted image with the ROIs is shown, and in 
Figure 6C a scatter plot of voxel‐wise MWF values in the 
ROIs as well as all the WM voxels is shown. Mean MWF 
values obtained in the ROIs and WM with the OMP algo-
rithm were on average slightly higher by approximately 2% 
(actual MWF units) in comparison to the NNLS (Table 3). In 
addition, previously reported MWF values in the genu, sple-
nium, thalamus, and caudate using the MSE acquisition and 
NNLS with EPG correction, as in the current study, are also 
given in the table.

Using the 3D GRASE sequence, whole brain MWF maps 
are calculated with the NNLS and OMP. Figure 7A shows 

T A B L E  1   Absolute bias and RSD15% of the MWF estimation of healthy WM tissue and a WM lesion using the NNLS and OMP algorithms 
with varying SNR

Healthy WM WM lesion

NNLS OMP NNLS/OMP NNLS OMP NNLS/OMP

SNR

Absolute bias 100 6.4 3.9 1.6 2.9 2.1 1.4

200 4.4 2.5 1.8 1.7 1.3 1.3

350 3.0 1.6 1.9 1.0 0.7 1.4

RSD15% 100 57% 49% 1.2 34% 31% 1.1

200 29% 32% 0.9 17% 20% 0.9

350 19% 22% 0.9 10% 14% 0.7

Abbreviations: MWF, myelin water fraction; NNLS, nonnegative least squares; OMP, orthogonal matching pursuit; RSD, relative standard deviation; WM, white 
matter.

T A B L E  2   Absolute bias and RSD15% of the MWF estimation for 
varying ESP and T2myelin peak using the NNLS and OMP algorithms 
with an SNR of 200

NNLS OMP NNLS/OMP

ESP/T2myelin

Absolute bias 8/30 ms 5.9 3.0 2.0

8/15 ms 0.8 0.3 2.7

12/15 ms 1.1 0.5 2.0

RSD15% 8/30 ms 27% 33% 0.8

8/15 ms 8% 8% 1.0

12/15 ms 12% 11% 1.1

Abbreviation: ESP, echo spacing.

F I G U R E  3   The effect that the number of random initializations 
has on the MWF estimation of the OMP method. Dashed line 
represents RSD15% , and the solid line depicts the absolute bias RSD, 
relative standard deviation

F I G U R E  4   The effect of NNLS regularization using a 
smoothing constraint. The colored lines depict the reconstructed T2 
distribution for different regularization strengths, whereas the black 
lines represent the original T2 distribution
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the MWF map estimated using the OMP algorithm. In Figure 
7B, a scatter plot of voxel‐wise MWF values in the ROIs as 
well as all the WM voxels is shown. On average, the MWF 
values obtained with the OMP algorithm were slightly higher 
by approximately 1% to 2% (actual MWF units) in compari-
son to NNLS.

5  |   DISCUSSION

5.1  |  Current findings
In the current study, the OMP algorithm is introduced as an 
alternative method for the determination of the MWF from 
multiexponential T2 relaxation data and is compared with the 
most commonly applied method in literature, NNLS. The es-
timation of the MWF using both methods is validated using a 
ground truth from numerical simulations and an in vitro phan-
tom model. It is shown that the OMP yields a more accurate 

MWF estimation compared to the NNLS, whereas a compara-
ble precision (in terms of RSD15%) is obtained. Furthermore, 
the in vivo results are in line with the numerical simulations 
and the phantom model, showing on average that the MWF 
calculated with the OMP is higher compared to the NNLS.

5.2  |  Effect of SNR
For each of the 3 SNR levels studied, the OMP outperforms 
the NNLS algorithm in terms of a smaller absolute bias. As 
to be expected, a lower SNR is found to be associated with 
a larger overall absolute bias as well as a less precise meas-
urement (i.e., higher RSD15%) of the MWF. The multiecho 
sequence used in this study has an approximate SNR of 350. 
Therefore, we would expect that the simulations with an SNR 
of 350 would best represent the phantom and in vivo results. 
Indeed, the phantom model shows an accuracy and precision 
comparable to the simulations with SNR 350. The absolute 
bias is, however, higher in the phantom model. Most likely 
this is caused by the B1 inhomogeneities and subsequent 
error correction using the EPG algorithm, which induces ad-
ditional errors difficult to model in the simulations.

5.3  |  Underestimation of MWF
The MWF is systematically underestimated by an absolute 
bias of approximately 1% to 5% in the simulations as well as 
the phantom model. One possible explanation for this phe-
nomenon might be the effect of Rician noise present in mag-
nitude images. Although the Rician noise can be considered 
near‐Gaussian for higher SNRs, it tends toward the Rayleigh 
distribution for images with low SNR. Because the SNR in 
multiecho measurements decreases exponentially for longer 
TEs, the Rician noise in the low SNR measurements could be 
misinterpreted for a slow decaying component. This artificial 
slow‐decaying component adds to the total water amplitude 
and therefore reduces the MWF.15

Previously, the regularization of the NNLS algorithm was 
also found to cause MWF underestimation.41 In this study, 

T A B L E  3   The MWF estimated with the NNLS and OMP algorithms in the 2 ROIs (genu and splenium of the corpus callosum) as well as all 
WM. For reference, previously reported MWF values are added. Means and SDs are given

Average MWF (%) Literature Values

NNLS OMP Prasloski32 Prasloski12 Mädler44

Splenium 18.8 ± 5.6 21.1 ± 5.6 15.2 ± 2.2a 14.5 ± 2.0a 10.8 ± 5.6

Genu 11.4 ± 5.2 13.2 ± 5.3 10.5 ± 2.4a 10.6 ± 3.6a 9.0 ± 4.0

Thalamus 14.3 ± 3.8 17.0 ± 3.9 – 3.4 ± 2.1a 3.1 ± 0.7

Caudate 5.6 ± 1.7 7.1 ± 1.8 – 1.8 ± 1.2a 2.4 ± 0.1

All WM 11.3 ± 6.2 13.0 ± 6.7 – – 9.9 ± 3.6

Abbreviation: ROI, region of interest.
aData obtained by digitizing plots. 

F I G U R E  5   The estimated MWF from the phantom model using 
the NNLS (solid line) and the OMP (dotted line) is plotted against the 
defined MWF. The dashed black line depicts the ground truth MWF, 
whereas the top of the figure shows the absolute bias of the estimated 
MWF
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it is observed that the peak of the underlying T2 distribution 
shifts to a shorter T2. Because the regularization introduces a 
smoothing constraint, more elements from the basis set will 
be used to obtain an optimal result. To provide a result with 
the lowest misfit, elements that are close to the original peak 
will be preferred. Because the basis set is logarithmically 
spaced, the shorter T2 times are closer to the original peak, 
shifting the peak to the left in the spectrum. To compensate 
for this shift, the amplitude of the peak is reduced. This effect 
is stronger for the myelin peak because in this region the basis 
functions are more densely distributed, thus underestimating 
the MWF. Using NNLS with weaker regularization, or even 
unregularized, would suffer less from this underestimation41; 
however, it would decrease the stability of the algorithm be-
cause it is well established that the ill‐posed NNLS requires 
strong regularization.

The OMP is not regularized with a smoothing constraint; 
instead, the OMP algorithm is repeated 20 times to provide 
more stable results. Therefore, the OMP does not suffer from 
an underestimated MWF due to a smoothing constraint. 
Because the OMP has a (roughly 20 times) lower computa-
tional complexity, it results in a computational time compa-
rable to the NNLS with 120 basis functions. However, the 

NNLS is commonly used with fewer basis functions, result-
ing in a lower computational time (e.g., the 40 basis functions 
case is roughly 1.5 times faster). Therefore, the comparison 
of computational times presented here should be interpreted 
with caution.

5.4  |  In vivo applicability
The in vivo results are in line with the numerical simula-
tions and phantom measurements because we found that the 
in vivo MWF estimated with the OMP yielded somewhat 
higher values compared to the NNLS. More specifically, 
because the in vivo data have an SNR of approximately 
350, we would expect a similar increase of the OMP as 
measured in the simulations with SNR 350. Indeed, we 
found that the mean MWF values determined with the OMP 
in the genu and splenium of the corpus callosum, thalamus, 
caudate, and all the WM show a similar increase of MWF 
compared to those estimated with the NNLS. Furthermore, 
the MWF values reported in the genu and splenium of 
the corpus callosum using the NNLS method are within 
normal limits compared to previous studies,32,44 whereas 
the MWF values reported in the thalamus and caudate are 

F I G U R E  6   The results of the MSE sequence of a single representative subject (male, 28 year). The MWF map estimated with the NNLS 
and OMP methods (A), the T1‐weighted image with the delineated ROIs (B), and a scatter plot of the MWF values in the ROIs and all WM (C) are 
shown ROI, region of interest; WM, white matter
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much higher. However, whereas the values are not spe-
cifically reported, some other studies have also observed 
a relatively high MWF in these structures.41,45 Therefore, 
these discrepancies between the MWF values reported in 
our study and the values of previous literature might be 
explained by differences in age of the healthy volunteers 
and different scanning parameters.

5.5  |  Study considerations
In this study, we used healthy volunteers without WM ab-
normalities. However, our simulations have indicated that 
the OMP algorithm outperforms the NNLS in healthy tis-
sue as well as in WM lesions. This implies that the OMP 
algorithm can be a useful tool in future patient studies. 
The single‐slice MSE sequence that was used in this study 
limits the comparison of the MWF estimation methods to 
specific brain regions. Furthermore, the MSE sequence 
is a relatively slow sequence (~13 min for a single slice) 
and therefore not optimal for patient studies. However, the 
MSE is considered as the reference method for MWF esti-
mation,11 and is therefore suitable for comparative studies 
as the current study. The performance of the OMP algo-
rithm to determine the MWF should be further evaluated 

on accelerated multiecho sequences. Recently, several 
studies have already focused on fast acquisition of multi-
echo data for the purpose of MWF mapping. For instance, 
Prasloski et al. showed that whole brain MWF mapping 
was possible under 15 min using a gradient‐spin echo 
sequence with 32 TEs,12 whereas Nguyen et al. showed 
that even faster whole brain MWF mapping was pos-
sible acquiring 6 TEs in 4 min using a modified T2prep 
sequence.46 In this study, we already showed the applica-
bility of the OMP algorithm for multiecho data acquired 
using a 3D GRASE sequences. Furthermore, the OMP al-
gorithm could also prove valuable in other MR modalities 
that require multiexponential analysis, such as intravoxel 
incoherent motion.47,48

6  |   CONCLUSION

We have applied the OMP for the multiexponential T2 relaxa-
tion component analysis to estimate the MWF and compared 
it to the most commonly applied algorithm in literature, the 
NNLS. Using numerical simulations and an in vitro phantom 
model, it was demonstrated that the OMP is a more accu-
rate method for the estimated MWF. The bias of the MWF 

F I G U R E  7   The results of the 3D GRASE sequence of a single subject (female, 29 year). A coronal, sagittal, and transverse slice of the 
MWF map estimated with the OMP method (A) and a scatter plot of the MWF values in the ROIs and all WM (B) are shown 
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estimation using the OMP was roughly reduced by a factor 
of 2, whereas the precision was comparable to the NNLS. 
In vivo results show similar findings as the simulations and 
phantom model, proving that OMP can be a preferred alter-
native to conventional methods for its accuracy and low com-
putational complexity.
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