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Abstract

Let F be a fixed graph. The rainbow Turán number of F is defined as the
maximum number of edges in a graph on n vertices that has a proper edge-coloring
with no rainbow copy of F (i.e., a copy of F all of whose edges have different
colours). The systematic study of such problems was initiated by Keevash, Mubayi,
Sudakov and Verstraëte.

In this paper, we show that the rainbow Turán number of a path with k + 1
edges is less than (9k/7 + 2)n, improving an earlier estimate of Johnston, Palmer
and Sarkar.

Mathematics Subject Classifications: 05C35, 05C69

1 Introduction

Given a graph F , the maximum number of edges in a graph on n vertices that contains
no copy of F is known as the Turán number of F , and is denoted by ex(n, F ). An edge-
colored graph is called rainbow if all its edges have different colors. Given a graph F , the
rainbow Turán number of F is defined as the maximum number of edges in a graph on n
vertices that has a proper edge-coloring with no rainbow copy of F , and it is denoted by
ex∗(n, F ).

The systematic study of rainbow Turán numbers was initiated in [6] by Keevash,
Mubayi, Sudakov and Verstraëte. Clearly, ex∗(n, F ) ≥ ex(n, F ). They determined
ex∗(n, F ) asymptotically for any non-bipartite graph F , by showing that ex∗(n, F ) =
(1 + o(1))ex(n, F ). For bipartite F with a maximum degree of s in one of the parts,
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they proved ex∗(n, F ) = O(n2−1/s). This matches the upper bound for the (usual) Turán
numbers of such graphs.

Keevash, Mubayi, Sudakov and Verstraëte also studied the rainbow Turán problem
for even cycles. More precisely, they showed that ex∗(n,C2k) = Ω(n1+1/k) using the
construction of large B∗k-sets of Bose and Chowla [2]– it is conjectured that the same
lower bound holds for ex∗(n,C2k) and is a well-known difficult open problem in extremal
graph theory. They also proved a matching upper bound in the case of the six-cycle C6, so
it known that ex∗(n,C6) = Θ(n4/3) = ex(n,C6). However, interestingly, they showed that
ex∗(n,C6) is asymptotically larger than ex(n,C6) by a multiplicative constant. Recently,

Das, Lee and Sudakov [3] showed that ex∗(n,C2k) = O(n1+
(1+εk) ln k

k ), where εk → 0 as
k →∞.

For an integer k, let Pk denote a path of length k, where the length of a path is
defined as the number of edges in it. Erdős and Gallai [4] proved that ex(n, Pk+1) ≤ k

2
n;

moreover, they showed that if k + 1 divides n, then the unique extremal graph is the
vertex-disjoint union of n

k+1
copies of Kk+1.

On the other hand, Keevash, Mubayi, Sudakov and Verstraëte [6] showed that in some
cases, the rainbow Turán number of Pk can be strictly larger than the usual Turán number
of Pk: Maamoun and Meyniel [7] gave an example of a proper coloring of K2k containing
no rainbow path with 2k − 1 edges. By taking a vertex-disjoint union of such K2k ’s,

Keevash et. al. showed that ex∗(n, P2k−1) ≥
Ä
2k

2

ä ö
n
2k

ù
= (1 + o(1))2

k−1
2k−2ex(n, P2k−1)–

so ex∗(n, P2k−1) is not asymptotically equal to ex(n, P2k−1). They also mentioned that
determining the asymptotic behavior of ex∗(n, Pk+1) is an interesting open problem, and
stated the natural conjecture that the optimal construction is a disjoint union of cliques
of size c(k), where c(k) is chosen as large as possible so that the cliques can be properly
colored with no rainbow Pk+1. For P4, this conjecture was disproved by Johnston, Palmer
and Sarkar [5]: Since any properly edge-colored K5 contains a rainbow P4, and K4 does
not contain a P4, the conjecture for P4 would be that ex∗(n, P4) ∼ 3n

2
. But they show that

in fact, ex∗(n, P4) ∼ 2n by showing a proper edge-coloring of K4,4 without no rainbow P4,
and then taking n

8
vertex-disjoint copies of K4,4. For general k, they proved the following:

Theorem 1 (Johnston, Palmer and Sarkar [5]). For any positive integer k, we have

k

2
n ≤ ex∗(n, Pk+1) ≤

¢
3k + 1

2

•
n.

We improve the above bound by showing the following:

Theorem 2. For any positive integer k, we have

ex∗(n, Pk+1) <

Ç
9k

7
+ 2

å
n.

Let us remark that using the ideas introduced in this paper, it is conceivable that the
upper bound can be further improved (at the cost of making the proof very involved).
However, it would be very interesting (and seems to be difficult) to prove an upper bound
less than kn or construct an example with kn edges.

We give a construction which shows that ex∗(n, P2k) > ex(n, P2k) for any k ≥ 2.
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Construction. Let us first show a proper edge-coloring of K2k,2k (a complete
bipartite graph with parts A and B, each of size 2k) with no rainbow P2k . The vertices
of A and B are both identified with the vectors Fk

2. Each edge uv with u ∈ A and v ∈ B
is assigned the color c(uv) := u − v. Clearly this gives a proper edge-coloring of K2k,2k .
Moreover, if it contains a rainbow path v0v1 . . . v2k then such a path must use all of the
colors from Fk

2. Therefore
∑2k−1

i=0 c(vivi+1) = 0. On the other hand,
∑2k−1

i=0 c(vivi+1) =∑2k−1
i=0 (vi − vi+1) = v0 − v2k . Thus, v0 − v2k = 0. But notice that since the length

of the path v0v1 . . . v2k is even, its terminal vertices v0 and v2k are either both in A
or they are both in B. So they could not have been identified with the same vector
in Fk

2, a contradiction. Taking a vertex-disjoint union of such K2k,2k ’s we obtain that

ex∗(n, P2k) ≥ (2k)2
ö
n/2k+1

ù
= (1 + o(1)) 2k

2k−1ex(n, P2k).

Remark. This construction provides a counterexample to the above mentioned con-
jecture of Keevash, Mubayi, Sudakov and Verstraëte [6] whenever the largest clique that
can be properly colored without a rainbow P2k has size 2k. This is the case for k = 2, as
noted before. The question of determining whether this is the case for any k ≥ 3 remains
an interesting open question (see [1] for results in this direction).

Overview of the proof and organization. Let G be a graph which has a proper
edge-coloring with no rainbow Pk+1. By induction on the length of the path, we assume
there is a rainbow path v0v1 . . . vk in G. Roughly speaking, we will show that the sum
of degrees of the terminal vertices of the path, v0 and vk is small. Our strategy is to
find a set of distinct vertices M := {a1, b1, a2, b2, . . . , am, bm} ⊆ {v0, v1, . . . , vk} (whose
size is as large as possible) such that for each 1 ≤ i ≤ m, there is a rainbow path P of
length k with ai and bi as terminal vertices and V (P ) = {v0, v1, . . . , vk}; then we show
that there are not many edges of G incident to the vertices of M , which will allow us
to delete the vertices of M from G and apply induction. To this end, we define the set
T ⊆ {v0, v1, . . . , vk} as the set of all vertices v ∈ {v0, v1, . . . , vk} where v is a terminal
vertex of some rainbow path P with V (P ) = {v0, v1, . . . , vk}; we call T the set of terminal
vertices. We will then find M as a subset of T ; moreover, it will turn out that if the size
of T is large, then the size of M is also large – therefore, the heart of the proof lies in
showing that T is large.

In Section 2.1, we introduce the notation and prove some basic claims. Using these
claims, in Section 2.2, we will show that T is large (i.e., that there are many terminal
vertices). Then in Section 2.3 we will find the desired subset M of T (which has few
edges incident to it).

2 Proof of Theorem 2

Let G be a graph on n vertices, and suppose it has a proper edge-coloring c : E(G)→ N
without a rainbow path of length k + 1. Consider a longest rainbow path P ∗ in G. We
may suppose it is of length k, otherwise we are done by induction on k. For the base case
k = 1, notice that any path of length 2, has to be a rainbow path. Thus G can contain
at most n

2
< (9

7
+ 2)n edges, so we are done.
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2.1 Basic claims and Notation

In the rest of the paper, the degree of a vertex v ∈ V (G) be denoted by d(v).

Definition 3. Let P ∗ = v0v1 . . . vk. Suppose the color of the edge vi−1vi is c(vi−1vi) = ci
for each 1 ≤ i ≤ k. Let L and R denote the sets of colors of edges incident to v0 and vk
respectively. (Notice that since the edges of G are colored properly, we have |L| = d(v0)
and |R| = d(vk).)

We define the following subsets of L, R and {c1, c2, . . . , ck} corresponding to P ∗.

• Let Lout (respectively Rout) be the set of colors of the edges incident to v0 (respec-
tively vk) and to a vertex outside P ∗.

Note that Lout ⊆ {c1, c2, . . . , ck} and Rout ⊆ {c1, c2, . . . , ck}, otherwise we can
extend P ∗ to a rainbow path longer than k in G.

• Let Lin = L \ Lout and Rin = R \Rout.

• Let Lold = L ∩ {c1, c2, . . . , ck} and Lnew = L \ {c1, c2, . . . , ck}. Similarly, let Rold =
R ∩ {c1, c2, . . . , ck}, Rnew = R \ {c1, c2, . . . , ck}.

• Let SL = {c(vj−1vj) = cj | v0vj ∈ E(G) and c(v0vj) ∈ Lnew and 2 ≤ j ≤ k} and
SR = {c(vjvj+1) = cj+1 | vkvj ∈ E(G) and c(vkvj) ∈ Rnew and 0 ≤ j ≤ k − 2}.
Notice that |SL| = |Lnew| and |SR| = |Rnew|.

• Let Lnice = L∩ SR and let Rnice = R∩ SL. (Note that since Lnice ⊆ {c1, c2, . . . , ck},
we have Lnice ∩ Lnew = ∅. Similarly Rnice ∩Rnew = ∅.)

• Let Lres = Lin \(Lnew∪Lnice) = Lold \(Lnice∪Lout), and Rres = Rin \(Rnew∪Rnice) =
Rold \ (Rnice ∪Rout).

Notation. For convenience, we let |L| = l and |R| = r. Moreover, let |Lout| = lout, |Lold| =
lold, |Lnice| = lnice, |Lnew| = lnew and |Rout| = rout, |Rold| = rold, |Rnice| = rnice, |Rnew| =
rnew.

Note that
d(v0) = lin + lout = lnew + lold = l

and
d(vk) = rin + rout = rnew + rold = r.

Now we prove some inequalities connecting the quantities defined in Definition 3 for
the path P ∗.

Claim 4. Lout ∩ SR = ∅ = Rout ∩ SL. This implies that Lout ∩ Lnice = ∅ = Rout ∩ Rnice

(since Lnice ⊂ SR and Rnice ⊂ SL).

Proof of Claim. Suppose for a contradiction that Lout ∩ SR 6= ∅. So there exists a vertex
w 6∈ {v0, v1, . . . , vk} such that c(vkvj) ∈ Rnew and c(wv0) = c(vjvj+1) for some 0 ≤ j ≤
k − 2. Consider the path vj+1vj+2 . . . vkvjvj−1 . . . v0w. The set of colors of the edges in
this path is {c1, c2, . . . , ck} \ {c(vjvj+1)} ∪ {c(wv0), c(vkvj)} = {c1, c2, . . . , ck} ∪ {c(vkvj)},
so it is a rainbow path of length k + 1 in G, a contradiction.

Similarly, by a symmetric argument, we have Rout ∩ SL = ∅.
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Claim 5. lout ≤ k − rnew and rout ≤ k − lnew.

Proof of Claim. By Claim 4, Lout ∩ SR = ∅. Since both Lout and SR are subsets of
{c1, c2, . . . , ck}, this implies, |Lout| = lout ≤ k − |SR| = k − rnew, as desired. Similarly,
rout ≤ k − lnew.

We will prove Theorem 2 by induction on the number of vertices n. For the base
cases, note that for all n ≤ k, the number of edges is trivially at most(

n

2

)
≤ kn

2
<

Ç
9k

7
+ 2

å
n,

so the statement of the theorem holds. If d(v) < 9k
7

+ 2 for some vertex v of G, then we
delete v from G to obtain a graph G′ on n − 1 vertices. By induction hypothesis, the
number of edges in G′ is less than (9k

7
+ 2)(n− 1). So the total number of edges in G is

less than (9k
7

+ 2)n, as desired.
Therefore, from now on, we assume that for all v ∈ V (G),

d(v) ≥ 9k

7
+ 2.

Since d(v0) = l = lold + lnew and lold ≤ k, we have that

lnew ≥
2k

7
+ 2. (1)

Similarly,

rnew ≥
2k

7
+ 2. (2)

Claim 6. We have

lnice + rnice ≥
4k

7
+ 4.

Proof of Claim. First notice that Lres ∩ SR = ∅. Indeed, by definition, Lres ∩ SR =
(Lres ∩L)∩SR = Lres ∩ (L∩SR) = Lres ∩Lnice = ∅. Moreover, by Claim 4, Lout ∩SR = ∅.
Therefore, we have (Lres ∪Lout)∩SR = ∅. Moreover, (Lres ∪Lout)∪SR ⊆ {c1, c2, . . . , ck}.
Therefore, lres + lout ≤ k− |SR| = k− rnew. On the other hand, by definition, lres + lout ≥
(lin − lnew − lnice) + lout = l − lnew − lnice. So we have,

l − lnew − lnice ≤ k − rnew.

By a symmetric argument, we get

r − rnew − rnice ≤ k − lnew.

Adding the above two inequalities and rearranging, we get l + r − lnice − rnice ≤ 2k, so

lnice + rnice ≥ l + r − 2k = d(v0) + d(vk)− 2k ≥ 4k

7
+ 4,

as required.
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2.2 Finding many terminal vertices

Definition 7 (Set of terminal vertices). Let T be the set of all vertices

v ∈ {v0, v1, v2, . . . , vk}

such that v is a terminal vertex of some rainbow path P with V (P ) = {v0, v1, v2, . . . , vk}.
For convenience, we will denote the size of T by t.

The next lemma yields a lower bound on the number of terminal vertices and is crucial
to the proof of Theorem 2.

Lemma 8. We have

|T | = t ≥ 3k

7
+ 2.

The rest of this subsection is devoted to the proof of Lemma 8.

Proof of Lemma 8

Recall that P ∗ = v0v1 . . . vk and c(vjvj+1) = cj. First we prove a simple claim.

Claim 9. We may assume c(v0v1) 6∈ Lnice and c(vkvk−1) 6∈ Rnice. Moreover, if v0vk is an
edge of G, we can assume c(v0vk) 6∈ Lnew ∪Rnew.

Proof of Claim. First consider the case when v0vk is an edge ofG. If c(v0vk) ∈ Lnew∪Rnew,
then every vertex vi ∈ T . Indeed, the path vivi−1vi−2 . . . v0vkvk−1 . . . vi+1 is a rainbow path
with vi as a terminal vertex. Thus |T | = k + 1 ≥ 3k

7
+ 2, and we are done. So we can

assume c(v0vk) 6∈ Lnew ∪ Rnew. This implies that c(v0v1) 6∈ Lnice and c(vkvk−1) 6∈ Rnice,
because c(v0v1) 6∈ SR and c(vkvk−1) 6∈ SL.

Now if v0vk is not an edge of G, then again c(v0v1) 6∈ SR and c(vkvk−1) 6∈ SL, so the
claim follows.

Claim 10. If v0vi is an edge such that c(v0vi) ∈ Lnew then vi−1 ∈ T .

Proof of Claim. Consider the path vi−1vi−2 . . . v0vivi+1 . . . vk. Clearly it is a rainbow path
of length k in which vi−1 is a terminal vertex.

Suppose v0vi is an edge such that c(v0vi) ∈ Lnice. Since c(v0vk) 6∈ Rnew, by the
definition of Lnice, there exists an integer j (with 1 ≤ j ≤ k− 2) such that c(vkvj) ∈ Rnew

and c(v0vi) = c(vjvj+1) = cj.

Claim 11. If c(v0vi) ∈ Lnice then vi−1 ∈ T or vi+1 ∈ T .
Moreover, let j be an integer (with 1 ≤ j ≤ k − 2) such that c(vkvj) ∈ Rnew and

c(v0vi) = c(vjvj+1) = cj.
If j ≥ i, then vi−1 ∈ T , and if j < i then vi+1 ∈ T .

Proof of Claim. Observe that since c(v0vi) ∈ Lnice ⊂ SR, we have that c(vkvj) ∈ Rnew

(by definition of SR).
First let j ≥ i. In this case consider the path vi−1vi−2 . . . v0vivi+1 . . . vjvkvk−1 . . . vj+1.

It is easy to see that the set of colors of the edges in this path is {c1, c2, . . . , ck} \ {ci} ∪
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{c(vjvk)}. As c(vjvk) ∈ Rnew, the path is rainbow with vi−1 as a terminal vertex. So
vi−1 ∈ T .

If j < i, then consider the path vj+1vj+2 . . . viv0v1 . . . vjvkvk−1 . . . vi+1. It is easy to see
that the set of colors of the edges in this path is {c1, c2, . . . , ck} \ {ci+1} ∪ {c(vjvk)}, so
the path is rainbow again, with vi+1 as a terminal vertex. So vi+1 ∈ T .

By symmetry, one can see that the same arguments used in the proofs of Claim 10
and Claim 11, imply the following two statements.

Observation 12. If vkvi is an edge such that c(vkvi) ∈ Rnew then vi+1 ∈ T .
If c(vkvi) ∈ Rnice then vi−1 ∈ T or vi+1 ∈ T .

Definition 13. Let b′ > b be the largest two integers such that c(v0vb) ∈ Lnew and
c(v0vb′) ∈ Lnew. Similarly, let a′ < a be the smallest two integers such that c(vkva′) ∈ Rnew

and c(vkva) ∈ Rnew.

Notation. For any integers, 0 ≤ x ≤ y ≤ k, let

T x,y = {vi ∈ T | x ≤ i ≤ y},

and |T x,y| = tx,y.
Notice that t = t0,k = 2 + t1,k−1, as v0 and vk are both terminal vertices.

Now we will show that if a > b, then Lemma 8 holds. Suppose a > b. Then by the
definition of a and b, we have

|{i | 2 ≤ i ≤ b and c(v0vi) ∈ Lnew}| = |Lnew| − 1 = lnew − 1.

By Claim 10, we know that whenever c(v0vi) ∈ Lnew, we have vi−1 ∈ T . This shows
that t1,b−1 ≥ lnew− 1. Similarly, by a symmetric argument (using Observation 12), we get
ta+1,k−1 ≥ rnew − 1. Therefore,

t = 2 + t1,k−1 = 2 + t1,b−1 + tb,a + ta+1,k−1 ≥ 2 + (lnew − 1) + (rnew − 1) = lnew + rnew.

Now using (1) and (2), we have

t = lnew + rnew ≥
2k

7
+ 2 +

2k

7
+ 2 =

4k

7
+ 4,

proving Lemma 8. Therefore, from now on, we always assume a ≤ b.

Claim 14. If c(v0vi) ∈ Lnew or c(vkvi) ∈ Rnew, and a ≤ i ≤ b, then vi−1 ∈ T and
vi+1 ∈ T .

Proof of Claim. First suppose c(v0vi) ∈ Lnew. Then by Claim 10, vi−1 ∈ T . We want to
show that vi+1 ∈ T .

Observe that if i = a, then by Claim 10 again, we have vi+1 ∈ T because vkvi ∈ Rnew.
So let us assume a < i and show that vi+1 ∈ T . Notice that there exists a∗ ∈ {a, a′} (see
Definition 13 for the definition of a and a′) such that c(v0vi) 6= c(va∗vk). Now consider
the path va∗+1va∗+2 . . . viv0v1 . . . va∗vkvk−1 . . . vi+1. The set of colors of the edges in this
path are {c1, c2, . . . , ck}\{ca∗+1, ci+1}∪{c(v0vi), c(va∗vk)}, and it is easy to check that all
the colors are different, so the path is rainbow with vi+1 as a terminal vertex.

Now suppose c(vkvi) ∈ Rnew. Then a similar argument (using Observation 12) shows
that vi−1 ∈ T and vi+1 ∈ T again, completing the proof of the claim.
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Now we introduce some helpful notation.

Notation. For any integers, 0 ≤ x ≤ y ≤ k, let

Lx,y
nice = {c(v0vi) ∈ Lnice | x ≤ i ≤ y},

Rx,y
nice = {c(vkvi) ∈ Rnice | x ≤ i ≤ y},

Lx,y
new = {c(v0vi) ∈ Lnew | x ≤ i ≤ y},

Rx,y
new = {c(vkvi) ∈ Rnew | x ≤ i ≤ y},

Moreover, let |Lx,y
nice| = lx,ynice, |R

x,y
nice| = rx,ynice, |Lx,y

new| = lx,ynew, |Rx,y
new| = rx,ynew.

Note that by definition of a and b, lnew = l0,a−1new + la,bnew + 1 and rnew = 1 + ra,bnew + rb+1,k
new .

Using Claim 9, for any integer z, we have the following:

L0,z
nice = L2,z

nice and Rz,k
nice = Rz,k−2

nice . (3)

Moreover, by definition of Lnew and Rnew, we have

L0,z
new = L2,z

new and Rz,k
new = Rz,k−2

new . (4)

Informally speaking, Claim 11 and Claim 14 assert that each edge e = v0vi such
that c(v0vi) ∈ Lnew ∪ Lnice “creates” a terminal vertex x = vi−1 ∈ T or x = vi+1 ∈ T
(or sometimes both). Similarly, (using Observation 12) each edge e = vkvi such that
c(vkvi) ∈ Rnew∪Rnice “creates” a terminal vertex x = vi−1 ∈ T or x = vi+1 ∈ T (or both).
In the next two claims, by double counting the total number of such pairs (e, x), we prove
lower bounds on the number of terminal vertices in different ranges (i.e., t0,a−1, tb+1,k and
ta,b), in terms of lnew, rnew, lnice and rnice.

Claim 15. We have,

t0,a−1 ≥ 1

2

(
l0,anice + l0,anew +

r0,anice

2

)
,

and

tb+1,k ≥ 1

2

(
rb,knice + rb,knew +

lb,knice

2

)
.

Proof of Claim. By Claim 11, and by the fact that there is only one j such that c(vkvj) ∈
R0,a−1

new , it is easy to see that for all but at most one i, we have the following: if c(v0vi) ∈
L0,a
nice = L2,a

nice (equality here follows from (3)), then vi−1 ∈ T 1,a−1. So there are at least
l2,anice − 1 pairs (v0vi, x) such that c(v0vi) ∈ L2,a

nice and x = vi−1 ∈ T 1,a−1.
If c(v0vi) ∈ L0,a

new = L2,a
new (equality here follows from (4)), then by Claim 10, vi−1 ∈

T 1,a−1. So there are l2,anew pairs (v0vi, x) such that c(v0vi) ∈ L2,a
new and x = vi−1 ∈ T 1,a−1.

Adding the previous two bounds, the total number of pairs (v0vi, x) such that c(v0vi) ∈
L0,a
nice ∪ L0,a

new = L2,a
nice ∪ L2,a

new and x = vi−1 ∈ T 1,a−1, is at least l2,anice − 1 + l2,anew. This implies
t1,a−1 ≥ l2,anice − 1 + l2,anew. Therefore, using that v0 is also a terminal vertex, we have

t0,a−1 ≥ l2,anice + l2,anew. (5)

If c(vkvi) ∈ R0,a−1
nice , then by Observation 12, there is a vertex x ∈ {vi−1, vi+1} such

that x ∈ T . So the number of pairs (vkvi, x) such that c(vkvi) ∈ R0,a−1
nice , x ∈ {vi−1, vi+1}
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and x ∈ T , is at least r0,a−1nice . By the pigeonhole principle, either the number of pairs
(vkvi, vi−1) with c(vkvi) ∈ R0,a−1

nice , vi−1 ∈ T , or the number of pairs (vkvi, vi+1) with
c(vkvi) ∈ R0,a−1

nice ,vi+1 ∈ T , is at least r0,a−1nice /2. In the first case, we get t0,a−2 ≥ r0,a−1nice /2
and in the second case, we get t1,a ≥ r0,a−1nice /2. As t0,a−1 ≥ t0,a−2 and t0,a−1 ≥ t1,a, in both
cases we have,

t0,a−1 ≥ r0,a−1nice

2
. (6)

Therefore, adding up (5) and (6), we get

2t0,a−1 ≥ l2,anice + l2,anew +
r0,a−1nice

2
= l0,anice + l0,anew +

r0,anice

2
.

Note that the equality follows from (3), (4) and the fact that r0,a−1nice = r0,anice because
c(vkva) ∈ Rnew. By a symmetric argument, we have

2tb+1,k ≥ rb,k−2nice + rb,k−2new +
lb+1,k
nice

2
= rb,knice + rb,knew +

lb,knice

2
.

This finishes the proof of the claim.

Now we prove a lower bound on ta,b.

Claim 16.

ta,b ≥ 1

4

Ä
la+1,b−1
nice + ra+1,b−1

nice + 2(la+1,b
new + ra,b−1new )

ä
.

Proof of Claim. Let us construct a set S of pairs (e, x) such that e ∈ Lin∪Rin and x ∈ T
with certain properties.

For every edge e such that c(e) ∈ La+1,b−1
nice ∪Ra+1,b−1

nice , Claim 11 (and Observation 12)
ensures that there is a vertex x ∈ {vi−1, vi+1} such that x ∈ T (in particular, x ∈ T a,b).
Add all such pairs (e, x) to S. Therefore, the number of pairs (e, x) added to S so far, is
la+1,b−1
nice + ra+1,b−1

nice .
For every edge e such that c(e) ∈ La+1,b

new ∪Ra,b−1
new , we have both vi−1, vi+1 ∈ T by Claim

14; we add both the pairs (e, vi−1) and (e, vi+1) to S. Therefore the number of pairs (e, x)
added to S in this step is 2(la+1,b

new + ra,b−1new ). Thus,

|S| = la+1,b−1
nice + ra+1,b−1

nice + 2(la+1,b
new + ra,b−1new ).

Note that all the pairs (e, x) in S are such that x ∈ T a,b. Moreover, for each x ∈ T a,b,
there are at most four pairs (e, x) in S. Therefore, we have

4ta,b ≥ |S| ≥ la+1,b−1
nice + ra+1,b−1

nice + 2(la+1,b
new + ra,b−1new ),

finishing the proof of the claim.

By Claim 15 and Claim 16, we have

2(2t0,a−1 + 2tb+1,k) + 4ta,b ≥ 2

(
l0,anice + l0,anew +

r0,anice

2
+ rb,knice + rb,knew +

lb,knice

2

)

+la+1,b−1
nice + ra+1,b−1

nice + 2(la+1,b
new + ra,b−1new ).
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This implies,
4t ≥ lnice + rnice + 2l0,bnew + 2ra,knew + l0,anice + rb,knice.

By the definition of a and b, l0,bnew = lnew − 1 and ra,knew = rnew − 1. So, we get

4t ≥ lnice + rnice + 2lnew + 2rnew + l0,anice + rb,knice − 4

≥ lnice + rnice + 2(lnew + rnew)− 4.

Now by Claim 6 and inequalities (1) and (2), we get that

4t ≥ 4k

7
+ 4 + 2

Ç
2k

7
+ 2 +

2k

7
+ 2

å
− 4 =

12k

7
+ 8.

Therefore,

t ≥ 3k

7
+ 2,

completing the proof of Lemma 8.

2.3 Finding a large subset of vertices with few incident edges

Now we define an auxiliary graph H with the vertex set V (H) = T and edge set E(H)
such that ab ∈ E(H) if and only if there is a rainbow path P in G with a and b as its
terminal vertices and V (P ) = V (P ∗) = {v0, v1, . . . , vk}.

Claim 17. The degree of every vertex u in H is at least 2k/7 + 2.

Proof of Claim. As u ∈ V (H) = T , u is a terminal vertex. So there is a rainbow path
P = u0u1 . . . uk in G such that u0 = u and {u0, u1, . . . , uk} = {v0, v1, . . . , vk}. We
define the sets L,R, Lnew, Rnew corresponding to P in the same way as we did for P ∗ (in
Definition 3). Moreover, since P ∗ was defined as an arbitrary rainbow path of length
k, (2) holds for P as well – i.e., |Rnew| = rnew ≥ 2k/7 + 2. We claim that if ukuj is
an edge in G such that c(ukuj) ∈ Rnew, then uuj+1 ∈ E(H). Indeed, consider the path
u0u1 . . . ujukuk−1 . . . uj+1. This is clearly a rainbow path with terminal vertices u = u0
and uj+1. So u and uj+1 are adjacent in H, as required. This shows that degree of u in
H is at least rnew ≥ 2k/7 + 2, as desired.

Size of a matching is defined as the number of edges in it. The following proposition
is folklore.

Proposition 18. Any graph G with minimum degree δ(G) has a matching of size

min

®
δ(G),

ú
V (G)

2

ü´
.

We know that δ(H) ≥ 2k
7

+ 2 by Claim 17. Moreover |V (H)| = |T | = t. So applying
Proposition 18 to the graph H and using Lemma 8, we obtain that the graph H contains
a matching M of size

m := min

®
2k

7
+ 2,

õ t
2

û´
≥ 3k

14
. (7)

Let the edges of M be a1b1, a2b2, . . . , ambm. Moreover, let

ni = |{xy | xy 6∈ E(G), x ∈ {ai, bi} and y ∈ {v0, v1, v2, . . . , vk} \ {ai, bi}}| .
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Claim 19. The number of edges in the subgraph of G induced by M is

|E(G[M ])| ≥
(

2m

2

)
−
(

m∑
i=1

ni

2
+m

)
= 2m2 − 2m−

m∑
i=1

ni

2
.

Proof of Claim. Note that the sum
∑

i ni counts each pair xy 6∈ E(G) with x, y ∈ V (M)
exactly twice unless xy = aibi for some i. Therefore, the number of pairs xy 6∈ E(G) in
the subgraph of G induced by M is at most

∑
i
ni
2

+ m. Thus the number of edges of G

in the subgraph induced by M is at least
Ä
2m
2

ä
− (

∑
i
ni
2

+ m), which implies the desired
claim.

Claim 20. The sum of degrees of ai and bi in G is at most 3k − ni
2

.

Proof of Claim. Since aibi is an edge in the auxiliary graph H, there is a rainbow path
P = u0u1 . . . uk in G such that u0 = ai, uk = bi and {u0, u1, . . . , uk} = {v0, v1, . . . , vk}. We
define the sets L,R, Lin, Rin, Lout, Rout, Lnew, Rnew and the numbers l, r, lin, rin, lout, rout,
lnew, rnew corresponding to P in the same way as we did for P ∗ (in Definition 3). Therefore,
degree of ai is l ≤ lnew + k. Similarly, degree of bi is at most rnew + k. So the sum of
degrees of ai and bi in G is at most

2k + lnew + rnew. (8)

On the other hand, the sum of degrees of ai and bi in G is l+ r = lin + lout + rin + rout.
By Claim 5, this is at most (lin + rin) + k− rnew + k− lnew = (lin + rin) + 2k− lnew− rnew.
Moreover, it is easy to see that lin + rin ≤ 2k − ni by the definition of ni. Therefore, the
sum of degrees of ai and bi in G is at most

2k − ni + 2k − lnew − rnew. (9)

Adding up (8) and (9) and dividing by 2, we get that the sum of degrees of ai and bi in
G is at most

(2k + 2k − ni + 2k)

2
=

(6k − ni)

2
= 3k − ni

2
,

as desired.

The sum
∑m

i=1(d(ai) + d(bi)) counts each edge in the subgraph of G induced by M
exactly twice (note that here d(v) denotes the degree of the vertex v in G). Therefore,
the number of edges of G incident to the vertices of M is at most

∑m
i=1(d(ai) + d(bi))−

|E(G[M ])|. Now using Claim 19 and Claim 20, the number of edges of G incident to the
vertices of M is at most

m∑
i=1

Å
3k − ni

2

ã
−
(

2m2 − 2m−
m∑
i=1

ni

2

)
= 3km− 2m2 + 2m = (3k + 2− 2m)m.

Now by (7), this is at most

(3k + 2− 2m)m ≤
Ç

3k + 2− 2

Ç
3k

14

åå
m =

Ç
9k

7
+ 1

å
2m <

Ç
9k

7
+ 2

å
2m.

We may delete the vertices of M from G to obtain a graph G′ on n − 2m vertices. By
induction hypothesis, G′ contains less than (9k

7
+2)(n−2m) edges. Therefore, G contains

less than Ç
9k

7
+ 2

å
2m+

Ç
9k

7
+ 2

å
(n− 2m) =

Ç
9k

7
+ 2

å
n

edges, as desired. This completes the proof of Theorem 2.
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