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Abstract: We study the 2-dimensional Ising model at critical temperature on a simply
connected subset Ωδ of the square grid δZ2. The scaling limit of the critical Ising model
is conjectured to be described byConformal Field Theory; in particular, there is expected
to be a precise correspondence between local lattice fields of the Isingmodel and the local
fields of Conformal Field Theory. Towards the proof of this correspondence, we analyze
arbitrary spin pattern probabilities (probabilities of finite spin configurations occurring
at the origin), explicitly obtain their infinite-volume limits, and prove their conformal
covariance at the first (non-trivial) order. We formulate these probabilities in terms of
discrete fermionic observables, enabling the studyof their scaling limits. This generalizes
results of Hongler (Conformal invariance of Ising model correlations. Ph.D. thesis,
[Hon10]), Hongler and Smirnov (Acta Math 211(2):191–225, [HoSm13]), Chelkak,
Hongler, and Izyurov (Ann. Math. 181(3), 1087–1138, [CHI15]) to one-point functions
of any local spin correlations. We introduce a collection of tools which allow one to
exactly and explicitly translate any spin pattern probability (and hence any lattice local
field correlation) in terms of discrete complex analysis quantities. The proof requires
working with multipoint lattice spinors with monodromy (including construction of
explicit formulae in the full plane), and refined analysis near their source points to prove
convergence to the appropriate continuous conformally covariant functions.
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1. Introduction

The 2D Ising model is one of the most studied models of statistical mechanics. In its
simplest formulation it consists of a random assignment of ±1 spins σx to the faces of
(subgraphs of) the square grid Z

2 (Fig. 1); the spins tend to align with their neighbors;
the probability of a configuration is proportional to e−βH(σ ) where the energy H(σ ) =
−∑

i∼ j σiσ j sums over pairs of adjacent faces; alignment strength is controlled by the
parameter β > 0, usually identified with the inverse temperature.

The 2D Ising model has found applications in many areas of science, from descrip-
tion of magnets to ecology and image processing. Due to its simplicity and emergent
features, it is interesting both as a discrete probability and statistical field theory model.
Of particular physical interest is the phase transition at the critical point βc: for β < βc
the system is disordered at large scales while for β > βc a long-range ferromagnetic
order arises. Classically, the phase transition can be described in terms of the infinite-
volume limit: in the disordered phase β < βc there is a unique Gibbs measure, while
in the ordered phase β > βc infinite-volume measures are convex combinations of two
extremal measures. It has a continuous phase transition: only one Gibbs measure exists
at β = βc.

Critical lattice models at continuous phase transition points are widely expected to
have universal scaling limits (independent of the choice of lattice and other details). In
2D, such scaling limits are expected to exhibit conformal symmetry. This can be loosely
formulated as follows: for a conformal mapping ϕ : Ω → Ω̃ ,

ϕ (scaling limit on Ω) = scaling limit on Ω̃.

There are two main tools used to describe the scaling limits of planar lattice mod-
els: curves and fields. Schramm–Loewner Evolution (SLE) curves naturally arise in
conformally invariant setups: for the Ising model, they describe the scaling limit of
interfaces between opposite spins [CDHKS14,BeHo16]. The fields on a discrete level,
such as the ±1-valued spin field σi , can be described by Conformal Field Theory
(CFT): their correlations, in principle, are conjecturally described using representation-
theoretic methods. Such conjectures have been proved for a number of natural fields
[Hon10,HoSm13,CHI15]; the present paper is part of this program.

What makes it possible to mathematically analyze the 2D Ising model with great
precision is its exactly solvable structure, first revealed by Onsager [Ons44]. The exact
solvability can be formulated in many different ways; in recent years, the formulation
in terms of discrete complex analysis has emerged as one the most powerful ways to
understand the scaling limit of themodel rigorously. In particular, themodel’s conformal
symmetry becomes much more transparent in this context.

The results of [Hon10] and [CHI15] on (asymptotic) conformal invariance of spin
and energy fields can be formulated, in their simplest cases, as follows: consider the
critical Ising model with plus boundary conditions on the discretization Ωδ by a square
grid of mesh size δ > 0 of a simply-connected domain Ω around the origin. Take the
origin 0 ∈ Ω , identify it with the closest face of Ωδ and let δ be the face to the right of
0. Then, as δ → 0, we have the asymptotic expansions,
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Fig. 1. An Ising model configuration on the faces of a square subset of Z2 with all-plus boundary conditions,
along with its “low-temperature expansion”, indicating interfaces separating plus and minus spins
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whereCσ ,Cε > 0 are explicit (lattice-dependent) constants and ϕ is any conformal map
from the unit disk D to Ω fixing the origin. The first terms in the respective expansions
are the infinite-volume limits of the left-hand side quantities. These results illustrate the
following: for any local field one-point function, the correction to its infinite-volume
expectation is described by Conformal Field Theory (CFT) quantities.

The Ising Model is conjectured to be described by the unitary CFT minimal model
M3,4 (see e.g. [BPZ84], [DMS97]), also known as the IsingCFT. The IsingCFT consists
of three primary fields: those of respective scaling dimensions 0 (the identity field –
a constant field identically equal to one), 1

8 (the spin field) and 1 (the energy field).
Each of these primary fields generates an infinite-dimensional tower of fields called its
descendants.

We conjecture that the space of the Ising CFT fields describes the limits of Ising
lattice local fields:

Definition. Let F be a finite connected collection of faces of Z2 including 0. For any
F : {±1}F → C, a lattice local field ΦF

δ is a random field on the faces of Ωδ whose
values are given by ΦF

δ (x) = F(σ |x+δF ). We call a local field spin-antisymmetric if
F(−σ) = −F(σ ) and spin-symmetric if F(−σ) = F(σ ).

Conjecture. For any nonzero lattice field (i.e. whose correlations do not vanish gener-
ically; see [HKV17]) ΦF

δ , there exists D ∈ N ∪ (
N + 1

8

)
such that

δ−DΦF
δ → Φ

in the sense of correlations (meaning that the n point functions converge), where Φ is a
nonzero primary or descendant CFT field. If Φ is spin-antisymmetric then D ∈ N + 1

8 ;
if Φ is spin-symmetric then D ∈ N. Moreover every Ising CFT field can be obtained in
such a manner.
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Spin pattern probabilities Correlations of any lattice local field at a point x can be
rewritten in terms of probabilities of observing certain spin patterns centered at x ,
i.e. probabilities of spin configurations in a microscopic neighborhood of x . The main
objective of this paper is to obtain explicit representations for probabilities of spin pattern
events, which are the most general local quantities describing the model: we obtain
infinite-volume limits for arbitrary local pattern probabilities and give their first-order
corrections corresponding to what can be expected from the Ising-CFT correspondence
(see Theorems 1.1–1.2 and Corollary 1.3).

More precisely, Let F be a finite connected set of faces in Z2 and fix a configuration
ρ ∈ {±1}F . We look at two types of lattice local fields:

– spin-antisymmetric pattern fields Φ
Fρ

δ (x) where Fρ = 1{σ |F = ρ}, whose expec-
tation gives the probability of the spin-antisymmetric pattern ρ on F ,

– spin-symmetric pattern fields Φ
F±

ρ

δ (x) where F±
ρ = 1{σ |F ∈ {±ρ}}, whose expec-

tation gives the probability of the spin-symmetric pattern ±ρ on F .

Every Ising lattice local field can easily be seen to be a finite linear combination of such
fields. The main result of the paper is the following.

Theorem (seeCorollary 1.3). LetF andρ be as above and letPZ2 be the infinite-volume
measure of the critical Ising model. Consider the critical Ising model on Ωδ with plus
boundary conditions, and denote it by PΩδ . Then as δ → 0, we have

PΩδ [σ |δF = ρ] = PZ2 [σ |F = ρ] + δ
1
8 · geometric effect (ρ,Ω) + o

(
δ
1
8

)
,

PΩδ [σ |δF ∈ {±ρ}] = PZ2 [σ |F ∈ {±ρ}] + δ · geometric effect (±ρ,Ω) + o (δ) .

The infinite-volume probability and the geometric effects are given in terms of explicit
Pfaffian formulae.

The distinction between spin-symmetric and spin-antisymmetric pattern fields is both
natural and important in the CFT framework: the spin and energy fields are the most
elementary instances of spin-antisymmetric and spin-symmetric local fields respectively.
The space of lattice local fields is a vector space that can be decomposed into the direct
sum of fields that are symmetric and antisymmetric under spin flip.

The above theorem proves the aforementioned conjecture in the following specific
case: it allows one to study the scaling limit of the one-point function of δ−DΦF

δ for
D ≤ 1 in simply-connected domains. Following [Hon10,HoSm13,CHI15], we expect
the proof naturally extends to multi-field correlations, in order to prove—in full—the
conjecture for fields of scaling dimension D ∈ {0, 1/8, 1}. Beyond that, the method
we use provides a general toolbox to express multipoint correlations of any local lattice
field in terms of discrete fermionic observables in discrete domains, and hence to give
explicit infinite-volume limits and first order corrections, and reduce the calculation of all
subsequent CFT terms to questions in discrete complex analysis (seeApplications 1.3.1).

Moreover, the results allow one to study new interesting quantities: for instance, one
can estimate spin flip rates for critical Ising Glauber dynamics, including the geometric
effects on them up to first order in the mesh size (see Applications 1.3.2).

The results and approach of this paper, as well as the conjectured connection between
Ising lattice local fields and CFT, are expected to straightforwardly generalize in two
directions. First, the approach can be generalized to arbitrary combinations of +,− and
free boundary conditions (the three conformally invariant boundary conditions according
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to CFT [Car84]). Second, the results should extend to more general planar graphs,
including, in particular, isoradial graphs.

Let us also point out similar connections between pattern probabilities and conformal
invariance obtained by Boutillier in [Bo07] in the context of the dimer model.

The proof relies mainly on discrete complex analytic methods: we use lattice observ-
ables, modifying the objects introduced in [Hon10,CHI15], to connect pattern probabil-
ities with solutions of discrete boundary value problems. This requires precise treatment
of multipoint observables on a topological double cover of the lattice with microscop-
ically separated source points at their singularities. We then study the scaling limits
of such solutions using discrete complex analysis technique, where, in particular, the
neighborhood of the monodromy of the double cover needs to be analyzed delicately.
The new techniques introduced for this purpose are: refined analysis of convergence
of observables and constructions and characterizations of lattice spinor observables on
the slit plane (C\R>0)δ>0, both as limits of finite-volume ones and in terms of discrete
harmonic measures (explicitly computed with Fourier techniques).

1.1. Notation. We begin by defining the most important notation, that will be necessary
for the statements of the main theorems. We defer a more extensive discussion of the
notation used in the proofs to Sect. 1.5.

In this paper, we consider the Ising model with spins on the faces of the graph Ωδ , a
discretization of Ω of mesh size δ > 0. More precisely:

IdentifyZ2 with the square lattice with vertex set atZ+ iZ ⊂ C and nearest-neighbor
edges. Let

C1 := (1 + i)Z2 + 1 and Cδ = δC1

be the rescaled, rotated and shifted lattice, and its rescaling by a mesh size δ > 0,
respectively.

For a simply connected open domain Ω ⊂ C bounded by a smooth curve containing
0 (this is easily relaxed to arbitrary simply connected domains [CHI15, Remark 2.10]),
define Ωδ as the largest connected component of the graph Ω ∩Cδ . Denote by VΩδ the
set of vertices of Ωδ , and by EΩδ the set of edges in Ωδ . We denote the set of faces of
the graph by FΩδ . Whenever needed, we identify the edges in EΩδ with their midpoints,
and the faces in FΩδ with their centers, such that the origin is identified with a face.

1.1.1. Ising model An Ising configuration σ is an assignment of ±1 spins to the faces
in FΩδ . We consider the critical Ising model on FΩδ with plus boundary conditions,
given by,

PΩδ (σ ) = P
+
Ωδ

(σ ) ∝ e−βcH(σ ),

where βc = 1
2 ln(

√
2+1) is the critical inverse temperature and H (σ ) = −∑

x∼y σxσy

with boundary faces fixed to have +1 spin. Let EΩδ = E
+
Ωδ

be its corresponding expec-
tation.

Define the energy density field (ε(δe))e∈C1 as follows: for δe ∈ EΩδ separating faces
δ f1 ∼ δ f2,

ε (δe) = μ − σδ f1σδ f2 , where μ :=
√
2

2
= ECδ

[σδ f1σδ f2 ] = EC1 [σ f1σ f2 ].
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Define the spin-weighted energy density field (ε[0](δe))e∈C1 on EΩδ by

ε[0](δe) = μe − σδ f1σδ f2 , where μe := lim
Ω→C

EΩδ [σ0σδ f1σδ f2 ]
EΩδ [σ0]

= lim
Ω→C

EΩ1 [σ0σ f1σ f2 ]
EΩ1[σ0]

(1.1)

where the limit is trivially independent of δ and exists for every e ∈ C1 by Theorem 1.2
(see Fig. 8 for some exact values). Given a set of edges B ⊂ EC1 , we write

ε(δB) :=
∏

e∈B
ε(δe) and analogously ε[0](δB) :=

∏

e∈B
ε[0](δe).

1.2. Main results. In this section we present the main results. By translation, it suffices
to consider the statistics of fields centered at x = 0. For a collection B = {e1, . . . , en} ⊂
EC1 , consider the spin-symmetric field ε(δB) = ε(δe1) · · · ε(δen), i.e., the product of
energy densities on a collection of edges around x , and the spin-antisymmetric field
σ0ε[0](δB) = σ0ε[0](δe1) · · · ε[0](δen). If A, B are anti-symmetric square matrices of
the same dimensions, define the directional derivative of the Pfaffian Pf(B) (defined
in (4.6)) by

DAPf(B) = lim
t↓0

Pf(B + tA) − Pf(B)

t
.

For spin-symmetric and spin-antisymmetric fields, we obtain the following two con-
vergence results:

Theorem 1.1 (Spin-symmetric correlations). Let B = {e1, . . . , en} ⊂ EC1 . There exist
explicit, real-valued anti-symmetric 2n × 2n matrices FB and EB, such that as δ → 0,

EΩδ [ε(δB)] = (−2)n · Pf(FB) + (−2)n · δ · r−1
Ω (0) · DEBPf(FB) + o(δ),

where rΩ(z) is the conformal radius of Ω seen from z ∈ Ω (i.e. rΩ(z) = ∣
∣ϕ′(0)

∣
∣ where

ϕ : D → Ω is the conformal map such that ϕ(0) = z).

Theorem 1.2 (Spin-antisymmetric correlations). Let B = {e1, . . . , en} ⊂ EC1 . The lim-
itsμe defined in (1.1) exist for every e ∈ EC1 and are given explicitly. There exist explicit
anti-symmetric 2n × 2n matrices FB[0] and EB[0], the former being real-valued, such that
as δ → 0,

EΩδ

[
σ0ε[0](δB)

]

EΩδ [σ0]
= (−2)n · Pf(FB[0]) + (−2)n · δ

· Re
[

−1

4
∂z log rΩ (z)

∣
∣
∣
z=0

· DEB[0]
Pf

(
FB[0]

)]

+ o(δ),

where z = x + iy and ∂z = 1
2 (∂x − i∂y).

Remark. Theorems1.1 and1.2yield that the infinite-volume limits ofEΩδ

[
σ0ε[0](δB)

]
/

EΩδ [σ0] and EΩδ [ε(δB)] exist and are given explicitly by
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lim
Ω→C

EΩδ [ε(δB)] = (−2)n · Pf(FB), and

lim
Ω→C

EΩδ

[
σ0ε[0](δB)

]

EΩδ [σ0]
= (−2)n · Pf(FB[0]).

For spin pattern fields, our results translate to the following:

Corollary 1.3 (Conformal invariance of pattern probabilities). Let F be a finite con-
nected collection of faces of C1 including 0. For any ρ ∈ {±1}F we have:

δ−1 (
PΩδ [σ |δF ∈ {±ρ}] − PC1 [σ |F ∈ {±ρ}]) −−→

δ→0
〈〈F , {±ρ}〉〉Ω,

δ−1/8 (
PΩδ [σ |δF = ρ] − PC1 [σ |F = ρ]) −−→

δ→0
〈〈F , ρ〉〉′Ω,

where the functions 〈〈·〉〉Ω and 〈〈·〉〉′Ω depend only on Ω , and where:

– infinite-volume limits PC1 [σ |F ∈ {±ρ}] = lim
Ω→C

PΩ1 [σ |F ∈ {±ρ}] and PC1 [σ |F =
ρ] are explicit.

– 〈〈F , {±ρ}〉〉Ω and 〈〈F , ρ〉〉′Ω are explicit and are such that for the map ϕ : D → Ω

as in Theorem 1.1,

〈〈F , {±ρ}〉〉Ω = r−1
Ω (0)〈〈F , {±ρ}〉〉D, and 〈〈F , ρ〉〉′Ω = r

− 1
8

Ω (0)〈〈F , ρ〉〉′
D
.

As a result of Corollary 1.3, our results include explicit expressions for all the finite-
dimensional distributions ofPZ2 as finite linear combinations of a certain Fourier integral
given in Theorem 3.21.

1.3. Applications. In this subsection, we briefly detail three applications of our results:
the lattice local field conjecture of the introduction, relations between Markov chain
dynamics flip rates and the geometry of the domain where the dynamics live, and explicit
computations of pattern probabilities under the Gibbs measure.

1.3.1. Lattice local fields and CFT Returning to the conjectured Ising-CFT correspon-
dence in terms of lattice fields, we observe that any lattice local field ΦF

δ (x) is such
that F can be expressed as a linear combination of indicator functions of spin-pattern
events in a microscopic neighborhood of x ; a spin-symmetric lattice local field can in
particular be written in terms of indicators of spin-symmetric pattern events.

Then Theorems 1.1–1.2 give the infinite-volume limits, and first-order CFT correc-
tions of the one point function of any lattice local field ΦF

δ (x) in terms of those of
spin-symmetric and spin-antisymmetric pattern fields, whose one-point functions can
be obtained explicitly. We believe extending this to multi-field correlations of fields with
scaling dimension D ≤ 1 should carry over from [Hon10,CHI15].

In the other direction, though ourmain statements only go up to first-order corrections
(δ1/8 or δ), the methods of this paper can, in principle, be employed to reduce the
computation of higher order CFT corrections to correlations of any local lattice field to
questions of discrete complex analysis. Of course, then obtaining the necessary sharper
discrete complex analytic expansions is itself a major obstacle to the extension of such
results. All the same, using the present framework along with, hypothetically, improved
discrete complex analysis asymptotics, should yield that all Ising lattice local fields are,
as conjectured in the Introduction, either zero in correlations, or have scaling dimensions
Δ ∈ N ∪ (N + 1

8 ), as predicted from the Ising CFT.
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1.3.2. Local Markov chain dynamics There are a number of Markov chain dynamics
for which the Ising measure is the stationary measure; as a result, an efficient way to
sample the Ising model is to run such a Markov chain for long times.

Of particular importance are local dynamics, such as the Glauber dynamics, where
one picks a spin at random, and flips it with a probability given by the state of spins in
a microscopic neighborhood of it (the simplest one using only the four neighbors). At
critical temperature interesting dynamical behavior arises (see [LuSl12]). In particular,
as our results explain, the geometry of the domain Ω has a measurable (i.e. inverse
polynomial-sized) effect on the local dynamics of the Markov chain.

For such a dynamics, our results allow one to describe, once we are at equilibrium,
the relevant observables to compute the average flip rates of the system: those are indeed
given in terms of the occurence probabilities of various spin patterns (typically spin-
symmetric patterns).

In particular, Corollary 1.3 gives us the following: at criticality, for any Glauber
dynamics (see e.g., [LuSl12, Section 2.1]), we can derive exact information about spin-
symmetric pattern probabilities, how they behave at constant order, and how the first-
order correction depends on a geometric quantity.

Knowing the long-term history of a Glauber dynamics in a microscopic neighbor-
hood of a point enables the computation of various spin pattern probabilities and hence
lattice local field one-point functions. Higher order corrections of these terms in turn
give geometric information beyond the conformal radius of the domain. A particularly
interesting question, for which our results provide relevant tools, is the following one,
due to Benjamini (private communication to the second author): does the complete (i.e.,
unbounded in time) knowledge of the flip history of a single spin allow one to recover
the shape of the domain Ω , up to isometry?

1.3.3. Explicit computations Explicit calculation of infinite-volume limits and finite-
size corrections of pattern probabilities in the critical Ising model is of general interest,
and may be particularly useful for the program of Application 1.3.2. Such computation
requires the explicit matrices of Theorems 1.1–1.2, which are expressed in terms of the
full-plane fermion and spin-fermion observables: some values of the former are given in
e.g., [Ken00]; we characterize the latter as a Fourier integral (see Theorem 3.21) and give
some of its values in Fig. 4. In particular, the entries of the matrices in Theorems 1.1–1.2
are given as finite linear combinations of a slit-plane harmonic measure, whose values
are explicitly computable as a Fourier integral.

We present an example computation of the infinite-volume limit and first-order con-
formal correction of EΩδ [σ0σ2δ] in Corollary C.1 of Appendix C, where, since the spins
live on the rotated square lattice, this is a pair of diagonally “adjacent” spins. The first
and second order corrections to this term, and their representation in terms of discrete
complex analysis will be used in the Ising stress tensor on the lattice level (see [BeHo18]
and, for an alternative approach to the stress tensor, [CGS17]).

As a computation of spin-antisymmetric fields, Corollary C.2 gives the values of
the infinite-volume limit and conformal correction to the spin weighted “L”-shaped
correlation EΩδ [σ0σ(1+i)δσ2δ]/EΩδ [σ0].

1.4. Proof outline. In this subsectionweoutline the strategy for proving ourmain results:
Theorems 1.1–1.2. The proof combines ideas from [Hon10,CHI15], and we try to focus
the outline on the places where substantial new ingredients are needed. The steps in
proving the main theorems broadly consist of the following.
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Section 2 defines standard concepts in discrete complex analysis aswell as the discrete
Riemann boundary value problems solved by certain discrete observables. Section 3
begins by defining the two-point discrete fermion and spin-fermion (given by (α, ζ ) �→
Fα,ζ

Ωδ
and Fα,ζ

[Ωδ,0] respectively) via the low-temperature expansion of the Ising model and
disorder lines, as well as their full-plane analogues.
– In Sect. 3.1, we define the bounded domain observables onΩδ , as previously defined

in [HoSm13,CHI15].
– In Sect. 3.2, we introduce their full-plane analogues: the full plane fermion Hα

C1
(z) is

given explicitly by a formula due to Kenyon. For the special value of α0 = 1
2 , the full

plane spin-fermion Hα0
[C1,0](z)was given by [CHI15]. Here, we prove existence of the

infinite-volume limit of the spin-fermion Hα
[C1,0] for every α, and express it as a finite

linear combination of discrete harmonicmeasures onC1\R>0.Moreover, we give an
explicit representation formula using Fourier techniques for this discrete harmonic
measure (see Theorem 3.21), allowing computation of Hα

[C1,0](z) for arbitrary α.
Section 4 defines and analyzes n-point analogues of the two-point fermion and spin-
fermion. This section is notationally heavy, but many of its proofs are straightforward
adaptations of proofs in [Hon10].
– We first recall the multipoint fermion defined in [Hon10] and slightly, but crucially,

generalize its properties to the setting where its arguments are permitted to be adja-
cent edges.

– Motivated by this definition, we consider a multipoint version of the spin-fermion
observable in Definition 4.2 and prove that the same properties hold after minor
modifications.

– In Proposition 4.13 we relate specific values taken by the multipoint fermion and
spin-fermion to the n-point spin-symmetric and spin-antisymmetric correlations of
Theorems 1.1–1.2.

– These results allow us to arrive at the spin-antisymmetric analogues of the Pfaffian
formulae of [Hon10], connecting spin-antisymmetric n-point Ising correlations to
the Pfaffian of a matrix with entries consisting only of the two-point spin-fermion
(see Proposition 4.17).
Section 5 defines two-point continuous observables, and proves that they are the

renormalized scaling limits (as δ → 0) of the discrete two-point observables.
– In Sect. 5.2 we introduce the continuous analogues of the discrete Riemann bound-

ary value problem defined in Sect. 2 and give their full-plane solutions and
bounded domain solutions hα

Ω and hα[Ω,0]. Again this was already done for the
fermion in [Hon10,HoSm13] and for the spin-fermion in the particular case of

h
α= 1

2[Ω,0] [CHI15]; extra care is needed in constructing the continuous bounded domain
and full-plane spin-fermions for arbitrary source point α.

– The heart of Sect. 5, Sect. 5.4 proves convergence of a rescaled, renormalized discrete
spin-fermion to a conformally covariant quantity obtained by Taylor expanding
hα[Ω,0], for arbitrary α. In adapting the proof of convergence in [CHI15] to the case

where α �= 1
2 , we require refined analysis of the observables near their branch points

and singularities. Here we encounter some discrete complex analytic peculiarities
regarding discretizations of the function i

√
z which are independently interesting.

Section 6 combines the Pfaffian formulae of Sect. 4.4 expressing n-point correlations
in terms of two-point discrete observables, with the convergence results of Sect. 5, to
prove Theorems 1.1–1.2.
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In Appendix A, we prove the validity of our explicit construction of the discrete
harmonic measure onC1\R>0 and provide a recursive formula to obtain its value at any
lattice point as a finite linear combination of Fourier integrals. In Appendix B, Proposi-
tion B.1, we provide a combinatorial proof of the well-definedness of the discrete mul-
tipoint spin-fermion we introduce in Definition 4.2. As mentioned earlier, Appendix C
consists of explicit computations of the infinite-volume limit and first-order correction
of the correlations of two diagonally adjacent spins and three spins in an “L” shape.

1.5. Extra notation and glossary. We now introduce extended notation that will be used
globally throughout the paper. This notation mimics very closely that of [CHI15], and
we try to make note of places where our conventions differ.

1.5.1. Relevant constants The following constants will recur throughout the paper.

βc = 1
2 log(1 +

√
2) μ =

√
2
2 λ = eiπ/4

1.5.2. Graph notation We list below the additional graph notation that will be used
throughout the paper.

– For two adjacent vertices a, b ∈ VΩδ the edge e = {a, b} is identified with the line
segment inΩ connecting a and b; we define the set ofmedial vertices Vm

Ωδ
as the set

of edge midpoints; given an edge e ∈ EΩδ , we denote its midpoint by m(e) ∈ Vm
Ωδ

,
and conversely for m ∈ Vm

Ωδ
the corresponding edge e(m) ∈ EΩδ .

– We call corners the points that are at distance δ/2 from the vertices in one of the
four ±1,±i directions. Following [CHI15], we set

V1
Ωδ

:=VΩδ +
δ

2
, V i

Ωδ
:= VΩδ − δ

2
, Vλ

Ωδ
:= VΩδ − iδ

2
, and V λ̄

Ωδ
:= VΩδ +

iδ

2
.

The set of corners Vc
Ωδ

is the union V1
Ωδ

∪ V i
Ωδ

∪ Vλ
Ωδ

∪ V λ̄
Ωδ

.
– The domain of definitions for most discrete functions in the following sections is the

set of both corners and medial vertices, or Vcm
Ωδ

:= Vc
Ωδ

∪ Vm
Ωδ

. We declare a medial

vertex and a corner adjacent if they are δ
2 apart from each other.

– The boundary faces ∂FΩδ , boundary medial vertices ∂Vm
Ωδ

, boundary edges in ∂EΩδ

are those faces, medial vertices, and edges inCδ that are incident to but not contained
in FΩδ , Vm

Ωδ
, and EΩδ .

– Given a boundary edge z (resp., boundary medial vertex), we define the unit normal
outward vector νz as the unit vector in the direction of the vertex in C\Ω viewed
from the vertex inside Ω .

1.5.3. Graph lifts to the double cover For the discrete functions with monodromywhich
will be introduced in Sect. 3, we work with graphs lifted to the double cover [Ω, 0] of
Ω\{0}.
– We denote by [C, 0] the double cover of the plane C ramified at 0, i.e. the surface

on which the function z �→ √
z ∈ C\ {0} is naturally defined; above each point of

C\ {0} lie exactly two points of [C, 0]. We will sometimes use z ∈ [C, 0] to refer to
its projection on C in unambiguous cases.
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– If z1, z2 ∈ [C, 0] are two points above w1, w2 ∈ C\ {0} such that Re
(

w1
w2

)
> 0, we

say that they are on the same sheet if Re
(√

z1√
z2

)
> 0 and that they are on opposite

sheets if Re
(√

z1√
z2

)
< 0.

– If z ∈ [C, 0] lies above w ∈ C\ {0}, we define z + x ∈ [C, 0], for x ∈ C small
enough, as the point above w + x that is on the same sheet as z.

– We define complex conjugation on the double cover by conjugating the square root.
In other words, the complex conjugate z̄ of z ∈ [C, 0] is defined by the condition
that

√
z̄ = √

z.
– We call functions with monodromy−1 around 0 spinors; these are naturally defined

on [C, 0].
– We denote by [Ωδ, 0] the double cover of Ωδ ramified at 0; in other words, the

vertices, medial vertices, and corners get lifted from Ωδ to yield the lifted vertex,
edge and corner sets. We use similar notations for the lifted vertex, edge, and corner
sets as above by replacing Ωδ with [Ωδ, 0]. Moreover, [Ωδ, 0] can be naturally
viewed as a subgraph of [Cδ, 0] via the natural inclusion [Ω, 0] ⊂ [C, 0].

– Identify the branches of the double cover [C, 0] using the function
√
z as follows:

X := C\R<0 with X
+ = {z ∈ [C, 0] : Re(√z) > 0} and X− = {z ∈ [C, 0] : Re(√z) < 0}

Y := C\R>0 with Y
+ = {z ∈ [C, 0] : Im(

√
z) > 0} and Y− = {z ∈ [C, 0] : Im(

√
z) < 0}

On the discrete level, define the lift of V1
Ωδ

to X
± as X±

δ , and the lift of V i
Ωδ

to Y
±

as Y±
δ .

1.5.4. Orientations We define orientations and s-orientations for corners and medial
vertices.
– Given an edge e = {a, b} ∈ EΩδ , we denote the two orientations of e by the complex

numbers (a − b) / |a − b| and (b − a) / |b − a|. We can subdivide e into two half
edges {a,m(e)} and {m(e), b}; their union is identified with the whole edge e. An
orientation o = o(e) is compatible with a half edge {a,m(e)} if a − m(e) points to
the same direction: i.e., o = (a − m(e))/|a − m(e)|.

– We call an oriented medial vertex and denote bymo an edge midpointm (e) together
with anorientationof the edge e.Wedenote byVo

Ωδ
the set of orientedmedial vertices.

– For a corner c, we define its orientation o = o (c) as the complex number
(v − c) / |v − c|, where v is the nearest vertex to c.

– To an orientation o we further associate two s-orientations corresponding to the two
choices of square root for o; we often denote an s-orientation by (

√
o)2, indicating

this choice.

1.5.5. Glossary For the reader’s convenience, we compile some of the most important
terminology and quantities used across the paper (see also Fig. 2 for the graph notation).
We first recall the various graphs we work with: if Ω is a simply-connected smooth
domain containing the origin and Ω is its complex conjugate,

C1 = (1 + i)Z2 + 1 Cδ = δC1 Ωδ = Ω ∩ Cδ �δ = Ωδ ∩ (Ω)δ a0 = 1
2



782 R. Gheissari, C. Hongler, S. C. Park

Fig. 2. The graph notation on discretizations ofΩ where τ ∈ {1, i, λ, λ̄}; the notation on [Ωδ, 0] is analogously
defined

and the quantities [C1, 0], [Ωδ, 0], etc. are analogously defined on the ramified plane
[C, 0]. When proofs are independent of the choice, we let Dδ denote either of Ωδ or
[Ωδ, 0].

The domain-dependent quantities of interest match with [CHI15] and read as follows
for fixed z ∈ Ω .

Geometric quantities
ϕ(ω) conformal map ϕ : D → Ω with ϕ(0) = z
rΩ(z) rΩ(z) = |ϕ′(0)| conformal radius of z
AΩ AΩ = − 1

4 ∂z log rΩ(z)
∣
∣
z=0 Remark 5.13

In what follows, we present the notation for the fundamental observables we deal
with; in order to reduce multipoint observables to such two-point functions via Pfaffian
relations we need much heavier notation, that is restricted to Sect. 4. In the sequel, a, z
will be medial vertices or corners and α and ζ will be their s-oriented counterparts, e.g.,
α = a(

√
o)2 .

Fermion observables

Fα,ζ
Ωδ

discrete real fermion Definition 3.2

Hα
Ωδ

(z) discrete complexified fermion Definition 3.8

Fα,ζ
C1

discrete full-plane fermion Theorem 3.13

Hα
C1

(z) discrete full-plane complexified fermion Proposition 3.14

fΩ, hΩ, fC, hC continuous counterparts of the above Definitions 5.6, 5.8

F†
Ωδ

, H†
Ωδ

, f †Ω, h†Ω e.g., F†,α,ζ
Ωδ

= Fα,ζ
Ωδ

− Fα,ζ
Cδ
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The notation for the spin-fermions is analogous to the above, but on the respective double
covers.

Spinor observables

Fα,ζ
[Ωδ,0] discrete real spin-fermion Definition 3.3

Hα[Ωδ,0](z) discrete complexified spin-fermion Definition 3.9

Fα,ζ
[C1,0] discrete full-plane spin-fermion Theorem 3.15, item (E)

Hα[C1,0](z) discrete full-plane complexified spin-fermion Proposition 3.19

Sα[Ωδ,0](z), A
α[Ωδ,0](z) symmetrized and anti-symmetrized observables Definition 3.11

G[C1,0](z), G̃
±
[C1,0](z) auxiliary functions Definitions 3.25

Cα = Cao Cα = −Re
[
i
√
o(G̃+[C1,0] − G̃−

[C1,0])(a)
]

Corollary 5.19

The lower-case versions of the spin-fermions above again are their continuous counter-
parts, andwhen there is a † superscript, that denotes the difference of the bounded-domain
and full-plane spin-fermions.

2. Discrete Complex Analysis

In this section, we review basic notions of discrete complex analysis that will be useful
in this paper. We use discrete complex analysis for the following:

– To relate the Ising correlations to Pfaffians of fermion and spin-fermion observables.
– To obtain explicit formulae for the full-plane observables.
– To establish the convergence of the two-point observables and study their local

behavior.

2.1. S-holomorphicity.

Definition 2.1. Associate to each corner c ∈ Vτ
Ωδ

with τ ∈ {1, i, λ, λ̄}, the line l (c) :=
τR in the complex plane. A function Hδ defined on corners and medial vertices of a
discrete domain Ωδ is said to be s-holomorphic at a corner c ∈ Vτ

Ωδ
if for any adjacent

medial vertex a ∈ Vm
Ωδ

we have

Hδ (c) = Pl(c) [Hδ (a)] := 1

2

(
Hδ (a) + τ 2 H̄δ (a)

)
, (2.1)

where Pl(c) denotes orthogonal projection in the complex plane onto the line l (c). The
function Hδ is said to be s-holomorphic at a medial vertex a ∈ Vm

Ωδ
if Eq. (2.1) holds

for all corners c adjacent to a. A function is said to be s-holomorphic on Ωδ if it is
s-holomorphic at every c ∈ Vc

Ωδ
.

Remark 2.2. If a function Hδ is s-holomorphic on a discrete domain, then it is purely
real on the corners of type 1 and purely imaginary on the corners of type i . We call
respective restrictions to those corners the real part and the imaginary part of Hδ .
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Remark 2.3. S-holomorphicity implies usual discrete holomorphicity of the real and
imaginary parts, defined by a lattice version of Cauchy–Riemann equations [Smi10]. If
Hδ is s-holomorphic, then the following discrete derivative vanishes:

∂̄δHδ(x) := Hδ

(

x +
λδ√
2

)

− Hδ

(

x − λδ√
2

)

+ i

(

Hδ

(

x − λ̄δ√
2

)

− Hδ

(

x +
λ̄δ√
2

))

= 0

for x ∈ Vλ
Ωδ

∪ V λ̄
Ωδ

. One similarly defines ∂δ by taking a negative sign in front of i . We

extend the definition to x ∈ VΩδ ∪FΩδ by setting ∂δHδ(x) := ∂δHδ(x− iδ
2 )+∂δHδ(x+ iδ

2 ).
Note the differences in our definitions compared to their continuous counterparts, as the
discrete derivatives are taken in rotated directions (thus differing by a phase factor);
however, we will not take direct scaling limits of the operator and this poses no problem.

The information defined on corners of type 1, i is enough to recover an s-holomorphic
function on Vcm

Ωδ
: one can start from a discrete holomorphic function defined on corners

of type 1 and i , reconstruct values on medial vertices based on their projections onto
R and iR, then project to corners of type λ and λ̄ (discrete holomorphicity guarantees
well-definedness at those corners); see [CHI15, Remark 3.1].

Definition 2.4. We define the discrete Laplacian Δδ by

ΔδHδ (x) = Hδ (x + δ + iδ) + Hδ (x − δ + iδ) + Hδ (x − δ − iδ)

+Hδ (x + δ − iδ) − 4Hδ (x) .

This quantitymakes sense on anydiscrete domain of rotated square type, for exampleV1
Ωδ

or V i
Ωδ

. A function Hδ on such a lattice is said to be discrete harmonic if ΔδHδ (x) = 0
for all x at whichΔδHδ is defined. Analogously, it is discrete sub-harmonic ifΔδHδ ≥ 0,
and discrete super-harmonic if ΔδHδ ≤ 0.

Remark 2.5. The real and imaginary parts of an s-holomorphic function on a planar
domain are discrete harmonic on their respective lattices, V1

Ωδ
and V i

Ωδ
. This is a direct

consequence of Remark 2.3: discrete holomorphicity converts discrete outward deriva-
tives from the center point in the Laplacian into discrete derivatives in the angular
direction, and going in a closed loop around the center point gives zero.

Remark 2.6. The notions of discrete complex analysis thus far introduced have been
defined on the planar domain Ωδ , but they generalize to [Ωδ, 0] in a straightforward
manner since the double cover is locally isomorphic to a planar domain (cf. Sect. 1.5).
However, great care is needed in applying Remark 2.5 because, if the center point of the
Laplacian is one of the corners on the monodromy face labeled by 0, the loop around
the center point must enclose the monodromy; as a result its lift to [Ωδ, 0] is not closed,
and thus discrete holomorphicity does not imply harmonicity at the real and imaginary
corners on the face 0. We may still obtain harmonicity of a discrete holomorphic spinor
at one of those two types of corners if we assume in addition that it vanishes at the other,
since the sum of discrete derivatives will vanish as though the spinor does not branch
at 0.

2.2. Discrete singularities. Discrete singularities appear as violations of the
s-holomorphicity projection relations relations. To study these, we define front and back
values at a singularity in order to introduce the notion of discrete residue of a function
Hδ at an oriented medial vertex.
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Definition 2.7. Let Hδ be a function defined on an oriented medial vertex α = ao and
its adjacent four corners. Let c1, c2 be the two corners adjacent to a in the direction of

o (i.e., c1 = a +
√
2Re(o)δ

2 and c2 = a +
√
2Im(o)δ

2 ). We define the front value Hδ(α+) as
the unique value such that

Hδ (c1) = Pl(c1) [Hδ(α+)] , and Hδ(c2) = Pl(c2) [Hδ(α+)] .

Likewise, if c3, c4 are the two corners adjacent to a in the direction of −o (i.e., c3 =
a −

√
2Re(o)δ

2 and c4 = a −
√
2Im(o)δ

2 ), we set the back value Hδ(α−) as the unique value
such that

Hδ (c3) = Pl(c3)
[
Hδ(α−)

]
, and Hδ(c4) = Pl(c4)

[
Hδ(α−)

]
.

Definition 2.8. The discrete residue of Hδ at α is the difference Resα(Hδ) := Hδ (α+)−
Hδ (α−).

By definition Hδ has an s-holomorphic extension to a if and only if the discrete residue
is zero at α. It is an analog of the residue in the continuous setting in that doing a closed
contour sum around a along the edges of the lattice (i.e. summing Hδ(e)e where e is the
vector pointing from the start to the end of the edge e on the closed counterclockwise
path) will yield

√
2oiδ Resα(Hδ), for any choice of o.

2.3. Discrete Riemann boundary value problems. The key tool for our analysis is the
study of discrete Riemann boundary value problems. To prove the convergence of the
Ising model observables as the mesh size goes to zero, we will formulate them as the
unique solutions to such problems.

Recall that we denote by ∂Vm
Ωδ

the set of boundary medial vertices, by νz the outer
normal at any z ∈ ∂Vm

Ωδ
, i.e. the orientation at z which points outward from Ωδ , and ∂νz

the outer normal difference, i.e. the value on the outer adjacent vertex minus the value
on the inner adjacent vertex.

Definition 2.9. We say that a function Hδ : Vcm
Ωδ

→ C defined on corners and medial
vertices of a discrete domain Ωδ is the solution to the discrete Riemann boundary value
problem on Ωδ with boundary data f : ∂Vm

Ωδ
→ C if it is s-holomorphic and Hδ(z) −

fδ(z) ∈ ν
− 1

2
z R for any boundary medial vertex z ∈ ∂Vm

Ωδ
; note that the definition

is independent of the branch of the square root ν
− 1

2
z . This notion is straightforwardly

generalized to a function on the double cover H ′
δ : Vcm

[Ωδ,0]
→ C and the boundary data

q : ∂Vm
[Ωδ,0]

→ C by adding the assumption that both have monodromy −1 around the
origin.

Before proving a useful uniqueness result for the discrete Riemann boundary
value problems, we introduce the crucial notion of integration of the square of an
s-holomorphic function, defined on the vertices and faces (see also [Smi10,Hon10,
CHI15]). Although the square of an s-holomorphic function is not s-holomorphic, we
can “line-integrate” the square of its magnitude to obtain a single-valued function with-
outmonodromy. Its restrictions to the two rotated square lattices respectively of faces and
vertices are not harmonic, but they are respectively super-harmonic and sub-harmonic,
which will allow us to derive estimates crucial for proofs of the convergence.

Iδ (Hδ) is a discrete analogue of the line integral Re
∫
[Hδ]2 dz, defined as follows.
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Proposition 2.10 ([Smi10, Lemma 3.8]). Let Hδ be an s-holomorphic function on Ωδ .
There exists a function Iδ [Hδ] : FΩδ ∪VΩδ → R uniquely constructed (up to an additive
constant) with the rule

Iδ [Hδ] (w) − Iδ [Hδ] (v) = 2δ

∣
∣
∣
∣Hδ

(
1

2
(w + v)

)∣
∣
∣
∣

2

,

wherew is a face, v is a vertex incident to the face, so that 12 (w+v) is the corner between
them.

It has ΔδIδ [Hδ] = 2δ |∂δHδ|2 on FΩδ , ΔδIδ [Hδ] = −2δ |∂δHδ|2 on VΩδ .

The following uniqueness statement for both types of the discrete Riemann boundary
value problems then allows one to characterize s-holomorphic functions in terms of their
boundary values.

Lemma 2.11. If Hδ is a solution of the discrete Riemann boundary value problem onΩδ

with boundary data 0, it is identically zero. Similarly, if H ′
δ is a solution of the discrete

Riemann boundary value problem on [Ωδ, 0]with boundary data 0, it is identically zero.

Proof. The case of Hδ is treated in [Hon10, Proposition 28], but we summarize it
here. Given s-holomorphicity and P

ν
− 1
2

z

Hδ = 0, we can calculate ∂νz Iδ(Hδ)(z) =
√
2δ

∣
∣
∣
∣P

iν
− 1
2

z

Hδ(z)

∣
∣
∣
∣

2

. Then by using the discrete divergence formula ([Hon10, Lemma 6])

and the Laplacian, we can bound from above the orthogonal component of Hδ on the
boundary:

0 ≤
∑

z∈∂Vm
Ωδ

∂νz Iδ(Hδ)(z) =
∑

v∈VΩδ

ΔδIδ(Hδ)(v) ≤ 0,

which implies that Hδ ≡ 0 on ∂Vm
Ωδ

and that ΔδIδ [Hδ] = −2δ |∂δHδ|2 ≡ 0 in VΩδ , so
Hδ ≡ 0 in VΩδ .

For H ′
δ , note that (see [ChIz13, Proposition 4.1]) we can similarly define the single-

valued square integral Iδ(H ′
δ)with single valued increments Iδ

[
H ′

δ

]
(w)−Iδ

[
H ′

δ

]
(v) =

2δ
∣
∣H ′

δ

( 1
2 (w + v)

)∣
∣2. While its restriction to faces fails to be sub-harmonic at the mon-

odromy face in general, Iδ(H ′
δ) on vertices is nonetheless super-harmonic everywhere

with positive outer difference, and we can apply the same argument as in the Hδ case.
��

3. Discrete Two-Point Observables

In this section,we introducediscrete observables,which connect Isingmodel correlations
to discrete complex analysis. Bounded domain observables are defined by summing
Boltzmann weights over the set of contours made of the edges in the lattice, alluding to
a path integral formulation.

In this section, we define the two-point functions, in terms of which the correlations
will be formulated in Propositions 4.16 and 4.17. In Sect. 4, multipoint versions of these
observables are introduced to prove these statements.
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3.0.1. Low-temperature expansion In this paper,wewill use the low-temperature expan-
sion of the Ising model: we represent a spin configuration by the set of edges separating
faces of opposite spins. Through this representation, the probability of a set of edges ω

is proportional to e−2β|ω|. When considering + boundary conditions, the relevant set of
edges form a collection of loops (sets of distinct edges {e1, . . . , ek} such that ei is inci-
dent to ei+1 for every 1 ≤ i ≤ k with ek+1 = e1). In identifying an edge configuration ω

in which every vertex is incident to an even number of edges, with a collection of loops,
there is a possible ambiguity at vertices incident to four edges. For concreteness, we
fix the convention that at such ambiguous vertices, loops proceed by joining northwest
edges to northeast edges and southwest edges to southeast edges. We further prove that
all quantities we consider are independent of choice of convention at ambiguous vertices.
Denote by CΩδ the set of all such ω (subsets of edges of EΩδ with every vertex incident
an even number of edges), corresponding to collections of closed loops in Ωδ .

As a result, for the critical Ising model with + boundary conditions, the low-
temperature expansion of the partition function is thus obtained by summing over the
set CΩδ :

ZΩδ :=
∑

ω∈CΩδ

e−2βc|ω|.

We also note that in this representation, the value of a spin is determined by the parity
of the number of loops around it (independently of the choice of convention above), and
it is easy to see that

EΩδ [σ0] =
∑

ω∈CΩδ
e−2βc|ω|(−1)�(ω)

ZΩδ

,

where �(ω) counts the number of loops in ω that surround 0.

3.0.2. Disorder lines The main tool in the study of the 2D Ising model is its fermionic
formulation. In this paper, we use the low-temperature representation of the Ising
fermion. The relevant sets of contours are deformed versions of CΩδ above: in addition
to the collection of closed loops in Ωδ , there are paths linking a pair of marked points
of the lattice. In the language of Kadanoff and Ceva (see [KaCe71]), these correspond
to the results of the insertion of disorder operators next to the spin.

A medial vertex divides the corresponding edge into two half-edges. Awalk between
two medial vertices a, z is a sequence that consists of a half-edge of a, then continues on
successively adjacent, all distinct edges, before reaching a half-edge of z. If γ a,z is any
such a walk, Ca,z

Ωδ
:= {ω ⊕ γ a,z : ω ∈ CΩδ }, where ⊕ denotes the symmetric difference

operation (where the symmetric difference of a half-edge and its edge is defined in the
natural way), clearly does not depend on the choice of γ a,z . Each γ ∈ Ca,z

Ωδ
corresponds

to a walk from a and to z and possibly some collection of loops.
For an element γ ∈ Ca,z

Ωδ
, we say a walk π(γ ) ⊂ γ from a to z is an admissible choice

of walk if whenever it arrives at an ambiguous vertex, i.e. incident to four edges in γ , it
chooses to connect northeast with northwest edges and southeast with southwest edges
(in accordance with the aforementioned convention for loops). Again, we will prove
well-definedness of relevant quantities so that the choice of convention here is irrelevant.
When one or both of a, z are instead corners, the above is defined analogously, where
“half-edge” is understood to mean the segment joining the corner to its nearest vertex.
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Fig. 3. An configuration γ ∈ Cα,ζ
[Ωδ,0], with an admissible choice of walk π(γ ) in blue, from α to ζ . The

winding of the walk has W(π(γ )) = 2π . The loop number �(γ ) is 1 since there is precisely one loop with 0
in its interior and sα,ζ (π(γ )) = 1

Recall that any choice of orientation on a medial vertex is in the direction of exactly
one of its two incident half-edges (see Sect. 1.5). If α = ao and ζ = z p are oriented
medial vertices, set Cα,ζ

Ωδ
to be the subset of γ ∈ Ca,z

Ωδ
including the particular half-edges

given by the respective orientations at a and z.

3.1. Bounded domain observables. In this subsection, we define the fermion and the
spin-fermion observables. The former is a function defined on the discrete domain Ωδ ,
whereas the latter is defined on the double cover, [Ωδ, 0]. Using the above definitions of
loops, walks, Cα,ζ

Ωδ
, and admissible choices of walks, we define some quantities central

to the presentation of the (two-point) fermion and spin-fermion observables (see Fig. 3).

Definition 3.1. If α = ao and ζ = z p are s-oriented medial vertices or corners, define
the constants,

cυ :=
{
1 if υ ∈ Vm

Ωδ

cos π
8 if υ ∈ Vc

Ωδ

and λα,ζ :=
√
p√
o
cacz .

For a walk and loops γ ∈ Cα,ζ
Ωδ

, define its length |γ | as the number of full edges (where
the two half-edges at the ends together count as one) in γ and for an admissible choice
of walk π(γ ) in γ from a to z, denote its winding (more accurately, turning) angle by
W(π(γ )) as the total change in argument of the velocity vector of the walk π(γ ) from
a to z (see §5.2.1 of [Hon10]). The choice of counting two half-edges together as one
full-edge, is different from the counting in [CHI15]; this leads to an appearance of a
normalizing factor of (cos π

8 )2e−2βc = 1
2
√
2
, whenever considering observables with

both arguments in corners.
The following is a real-valued weight on γ ∈ Cα,ζ

Ωδ
:

φα,ζ (γ ) := iλα,ζ e−2βc|γ | e− i
2 W(π(γ )).



Ising Model: Local Spin Correlations and Conformal Invariance 789

We also recall for a collection of loops ω ∈ CΩδ the definition of �(ω) as the number
of loops of ω around 0 (whose parity is independent of our convention for loops). See
[Hon10, Proposition 67] for the well-definedness (i.e., independence of the choice of
convention for the admissible path π (γ )) of φα,ζ .

When α, ζ are s-oriented medial vertices or corners on [Ωδ, 0], we define the spin-
fermion weight as

φ�
α,ζ (γ ) := φα,ζ (γ ) (−1)�(γ \π(γ )) sα,ζ (π(γ )) ,

where π(γ ) is any admissible choice of walk, and sα,ζ is the sheet number defined by

sα,ζ (π(γ )) =
{
+1 if π(γ ) lifted to [Ωδ, 0] connects α to ζ

−1 if π(γ ) lifted to [Ωδ, 0] connects α to ζ ∗ ,

where ζ ∗ is the point on [Ωδ, 0] that is distinct from ζ but shares its projection with
ζ . Here, the real-valued weight φα,ζ (γ ) is still computed by identifying α, ζ with their
projections to Ωδ .

See Remark 2.2(ii) of [CHI15] for the well-definedness of the spin-fermion weight
φ�

α,ζ .

We are now in position to define the real fermion Fα,ζ
Ωδ

and the real spin-fermion

Fα,ζ
[Ωδ,0].

Definition 3.2. The (real) fermion observable FΩδ is a function of two variables
(α, ζ ) �→ Fα,ζ

Ωδ
, where α := ao and ζ := z p are s-oriented corners or medial ver-

tices of Ωδ given by

Fα,ζ
Ωδ

:= 1

ZΩδ

∑

γ∈Cα,ζ
Ωδ

φα,ζ (γ ) .

Definition 3.3. The (real) spin-fermion observable F[Ωδ,0] is a function of two variables
(α, ζ ) �→ Fα,ζ

[Ωδ,0]
, where α := ao and ζ := z p live on the double cover [Ωδ, 0] of

domain Ωδ ramified at 0. Define Fα,ζ
[Ωδ,0]

by

Fα,ζ
[Ωδ,0]

:= 1

ZΩδEΩδ [σ0]

∑

γ∈Cα,ζ
Ωδ

φ�
α,ζ (γ ) .

Again, when computing ZΩδ , and Cα,ζ
Ωδ

and φα,ζ , identify α, ζ with their projections to
Ωδ .

The well-definedness of Fα,ζ
Ωδ

and Fα,ζ
[Ωδ,0] are implied by well-definedness of φα,ζ

and φ�
α,ζ respectively.

Remark 3.4. Informally, one can think of F[Ωδ,0] as the natural modification to FΩδ when
one tries to reweight it by the value of the spin at 0. Since the spin and the disorders
are not mutually local (but quasi-local instead), this gives rise to a multivalued function
(with monodromy −1 around 0).
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3.1.1. Antisymmetry of the observables An important elementary feature of the observ-
ables FΩδ , F[Ωδ,0] is their antisymmetry properties, immediate from their definitions.
The fermion observable satisfies the following:

Lemma 3.5. If α := ao, ζ := z p are s-oriented corners or medial vertices of Ωδ and
α′ := ao

′
, ζ ′ := z p

′
where o′ := e2π i o and p′ := e2π i p, then we have the following

antisymmetry properties:

Fα,ζ
Ωδ

= −Fζ,α
Ωδ

= −Fα′,ζ
Ωδ

= −Fα,ζ ′
Ωδ

.

Similarly, the spin-fermion observable satisfies the following antisymmetry properties.

Lemma 3.6. If α := ao, ζ := z p are s-oriented corners or medial vertices of [Ωδ, 0],
and α′, ζ ′ are as in the previous lemma and α∗ := (a∗)o , ζ ∗ := (z∗)p where a, a∗ and
z, z∗ are respectively distinct lifts of the same points in Ω\{0}, we have

Fα,ζ
[Ωδ,0]

= −Fζ,α
[Ωδ,0]

= −Fα′,ζ
[Ωδ,0]

= −Fα,ζ ′
[Ωδ,0]

= −Fα∗,ζ
[Ωδ,0]

= −Fα,ζ ∗
[Ωδ,0]

.

Recall that we define complex conjugation on the double cover by letting the square root
be conjugated. We similarly conjugate the s-orientations, and define ᾱ := āō if α = ao.
The fact that the contour set of Ωδ and its mirror image Ωδ have a natural bijection
arising from the complex conjugation immediately yields the following.

Lemma 3.7. If α, ζ are s-oriented corners or medial vertices in [Ωδ, 0], we have

Fα,ζ
[Ωδ,0]

= −F ᾱ,ζ̄
[
Ωδ,0

].

3.1.2. Complexified observables As explained in the previous subsections, the observ-
ables introduced in the previous subsections are real quantities antisymmetric in their two
variables; exploiting those properties we can define the following complexified versions,
which can be analyzed with discrete complex analysis.

Definition 3.8. Let α be an s-oriented corner or medial vertex ofΩδ . For an (unoriented)
medial vertex z ∈ Vm

Ωδ
, we define the complex fermion-fermion observable Hα

Ωδ
by

Hα
Ωδ

(z) := 1

i
√
p1

Fα,ζ 1

Ωδ
+

1

i
√
p2

Fα,ζ 2

Ωδ
,

where ζ 1 := z p1 and ζ 2 := z p2 are arbitrary s-orientations of z with opposite orienta-
tions, i.e. p2 = e±π i p1. The resulting quantity is easily seen to bewell-defined regardless
of the choice of s-orientations. Similarly, for a corner c ∈ Vc

Ωδ
with s-orientation κ = cq ,

define

Hα
Ωδ

(c) := 1

i
√
q
Fα,κ

Ωδ
.

Define the complexified spin-fermion observable in the same way:

Definition 3.9. Let α be an s-oriented corner or medial vertex of [Ωδ, 0], let z be a
medial vertex of [Ωδ, 0], and let c be a corner of [Ωδ, 0]. Using the same notation as in
Definition 3.8, we define the complex spin-fermion observable H[Ωδ,0] by

Hα
[Ωδ,0] (z) := 1

i
√
p1

Fα,ζ 1

[Ωδ,0]
+

1

i
√
p2

Fα,ζ 2

[Ωδ,0]
,

Hα
[Ωδ,0] (c) := 1

i
√
q
Fα,κ
[Ωδ,0]

.
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Remark 3.10. Note that, given a complexified observable, the real observables can be

recovered by Fα,ζ
Ωδ

= i
√
pP 1

i
√
p R

[
Hα

Ωδ
(z)

]
= Re

[
i
√
pHα

Ωδ
(z)

]
for medial vertices

ζ = z p, and obviously at corners κ = cq , we have Fα,κ
Ωδ

= Re [i√qHα
Ωδ

(c)].
Definition 3.11. Let�δ = Ωδ ∩Ωδ . Then define the symmetrized and antisymmetrized
observables:

Sα[Ωδ,0] := 1

2

[
Hα
[Ωδ,0] + H ᾱ

[Ωδ,0]

]
, Aα[Ωδ,0] := 1

2

[
Hα
[Ωδ,0] − H ᾱ

[Ωδ,0]

]
.

The following lemma then follows immediately from Lemma 3.5 and the definition of
H[Ωδ,0].

Lemma 3.12. Let α be an s-oriented corner or medial vertex in [Ωδ, 0], and z be a
corner or medial vertex in [�δ, 0]. Then,

on V1
[Ωδ,0] ∩ R>0,V i

[Ωδ,0] ∩ R<0, we have Sα[Ωδ,0] = Hα
[Ωδ,0] and Aα[Ωδ,0] = 0 ;

on V i
[Ωδ,0] ∩ R>0,V1

[Ωδ,0] ∩ R<0, we have Aα[Ωδ,0] = Hα
[Ωδ,0] and Sα[Ωδ,0] = 0.

3.2. Full plane observables. In this section, we study the infinite-volume limits of the
fermion and spin-fermion observables. By scale invariance, it is enough to give a char-
acterization on the rotated unit grid C1 = (1 + i)Z2 + 1 placed on increasing domains.
On Cδ we can define HCδ

(aδ) := HC1(a) and H[Cδ,0](aδ) := H[C1,0](a). In the δ → 0
scaling limit, these converge to meromorphic functions with a singularity at zero.

We first give a unique characterization for the full-plane limits and establish their
existence, and then we give an explicit construction. Using those explicit formulae, we
define auxiliary s-holomorphic functions on the double cover which are discrete forms
of

√
z and i

√
z.

We take the limit Ω1 → C1 using an increasing sequence of bounded domains
Ω1

1 ⊂ Ω2
1 ⊂ · · · ⊂ Ωn

1 ⊂ · · · such that
⋃

n Ωn
1 = C1. The limiting functions will be

seen to be unique, so that they do not depend on the particular sequence.

3.2.1. Full plane fermion observable The following are straightforward modifications
to our setting, of the construction [Hon10] of the full-plane fermion.

Theorem 3.13. AsΩ1 → C1, the complexified fermionobservable HC1 := limΩ→C HΩ1

exists and is uniquely characterized by the following properties:

– if α = ao is an s-oriented medial vertex,
– Hα

C1
is s-holomorphic on C1\{a};

– At α we have the discrete residue Hα
C1

(α+) − Hα
C1

(α−) = 1√
o
;

– Hα
C1

(l) → 0 as |l| → ∞.
– For ζ = z p, the full-plane fermion

Fα,ζ

C1
:= i

√
p · P 1

i
√
p R

[
Hα

C1
(z)

]

satisfies the antisymmetry properties of Lemma 3.5.
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Proof. For a given s-orientedmedial vertexα, such an Hα
C1

must be uniquely determined:
if any two satisfy the above properties, their difference will have an s-holomorphic
extension to a, but any entire s-holomorphic function which decays to 0 at infinity must
be zero, since its real and imaginary parts will be discrete harmonic functions.

Touse the same reasoningwhenα is an s-oriented cornerwith adjacentmedial vertices
z, z′, it suffices to show that the s-holomorphic singularity at α, i.e. concretely the value

of nonzero Pl(α)

[
Hα

C1
(z′)

]
− Pl(α)

[
Hα

C1
(z)

]
, is fixed by the medial vertex case above.

But the antisymmetry relation of Lemma 3.5 gives Hα
C1

(z) = 1
i
√
p1
Fα,ζ 1

C1
+ 1

i
√
p2
Fα,ζ 2

C1

for ζ 1 = z p1 and ζ 2 = z p2 , where p1 and p2 are s-orientations of the two opposite

orientations of z. Since Fα,ζ 1

C1
= −Fζ 1,a

C1
and Fα,ζ 2

C1
= −Fζ 2,a

C1
, both terms are determined

by their values on medial vertices, and similarly for Hα
C1

(z′).
An explicit formula, Eq. (3.1), for this full-plane observable, and thus its existence,

is given by Proposition 3.14. Then the fact that the given explicit function is the infinite-
volume limit is immediate from Theorem 5.11. ��
Proposition 3.14. Let a, z ∈ Vm

C1
and for an s-orientation (

√
o)2 on a, write α = ao for

the s-oriented medial vertex. The function

Hα
C1

(z) = eπ i/8

√
o

cos
π

8

(

C0

(√
2a

o
+ 1,

√
2z

o

)

+ C0

(√
2a

o
− i,

√
2z

o

))

(3.1)

+
e−3π i/8

√
o

sin
π

8

(

C0

(√
2a

o
− 1,

√
2z

o

)

+ C0

(√
2a

o
+ i,

√
2z

o

))

for z �= a satisfies the properties of Theorem 3.13, where the translation invariant
function C0 is the dimer coupling function defined in [Ken00]:

C0(z1, z2) = 1

4π2

∫ 2π

0

∫ 2π

0

exp(i(xs − yt))

2i sin s + 2 sin t
dsdt, if z2 − z1 = x + iy.

Moreover, at α, the front and back values of the s-holomorphic singularity are given by
Hα

C1
(α±) = μ±1

2
√
o
.

Proof. These properties were verified in [Hon10, Proposition 22] for a version on the
non-rotated lattice, which wewill call HZ2 .We note that for any s-orientedmedial vertex
α = ao, we have

Hα
C1

(z) = e− π i
8 Hα′

Z2(z
′)

if α′ = (
a′)o′

is the rotated medial vertex a′ = a
1+i ∈ Vm

Z2 oriented to
√
o′ = e− π i

8
√
o,

and z′ = z
1+i . Given that the projection lines in the s-holomorphicity relation Eq. (2.1)

are also rotated by e− π i
8 from the definition in [Hon10], the results are easily seen to

carry over. The explicit front and back values Hα
C1

(α±) follow from straightforward
computation. ��
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3.2.2. Full plane spin-fermion observable First we recall some notation. Define the left
slit plane X = C\R<0 and the right slit plane Y = C\R>0. The double cover [C, 0]
contains two lifts X± of X and two lifts Y± of Y; define

√
z on the double cover such

that the superscripts ofX± denote the sign of the real part of
√
z and those ofY± denote

the sign of the imaginary part of
√
z. In other words, X+ ∩Y

+,X− ∩Y
− are lifts of the

upper half plane, and X
+ ∩ Y

−,X− ∩ Y
+ are lifts of the lower half plane. We use the

process outlined in Remark 2.3 to define an s-holomorphic extension from a discrete
holomorphic function defined on type 1 and i corners, so let us define the slit discrete
domains X1

1 := V1
C1

∩ X ∼= V1
[C1,0]

∩ X
± and Y

i
1 := V i

C1
∩ Y ∼= V i

[C1,0]
∩ Y

±.

Theorem 3.15. As Ω1 → C1, the complexified spin-fermion observable H[C1,0] :=
limΩ→C H[Ω1,0] exists and is uniquely characterized by the following properties: for
every α = ao ∈ Vcm

[C1,0],

A Hα
[C1,0]

has monodromy −1 around 0.
B Hα

[C1,0]
is s-holomorphic on [C1, 0] \{a, a∗}, where a∗ is the point in [C1, 0] distinct

from a which shares its projection onto C1 with the projection of a.
C if α = ao is an s-oriented medial vertex, we have discrete residue Hα

[C1,0]
(α+) −

Hα
[C1,0]

(α−) = 1√
o
.

D If α = ao is an s-oriented real or imaginary corner, Pl(a)Hα
[Ω1,0]

(a± i
2 ) = ∓ i

2
√
2

√
o.

E For ζ = z p, the full-plane spin-fermion,

Fα,ζ

[C1,0]
:= i

√
p · P 1

i
√
p R

[
Hα
[C1,0](z)

]

satisfies the antisymmetry properties laid out in Lemmas 3.6–3.7.
F Hα

[C1,0]
(l) → 0 as |l| → ∞.

We first present the following three lemmas, then conclude the proof using them.

Lemma 3.16. There exists a uniform constant M > 0 such that
∣
∣
∣Hα

[Ωn
1 ,0] (z)

∣
∣
∣ ≤ M for

all n ≥ 0 and any s-oriented corner α and any corner z.

Proof. The strategy will be to progressively extend the validity of the result to more and
more points of the domain. Below we will denote by a and z both corners and medial
vertices interchangeably:

1. When α := α0 is the imaginary corner on the monodromy face 0 (specifically, the
lift of 1

2 to Xδ) and z = a + 1, Hα

[Ωn
1 ,0] (z) has a probabilistic interpretation as a

ratio of magnetizations EΩn
1
[σ2] /EΩn

1
[σ0], which is bounded from above by the

finite-energy property of the model.

2. When α = α0 and z is on the boundary, we claim that
∑

z∈∂Vm
[Ωn

1 ,0]

∣
∣
∣Hα

[Ωn
1 ,0] (z)

∣
∣
∣
2 ≤

Cst · Hα

[Ωn
1 ,0] (a + 1) (the right hand side of which is bounded by step 1). This

inequality follows by considering the discrete analogue Q1 := Iδ(Hα

[Ωn
1 ,0]) of

Re
(∫

(Hn,α0)2
)
analyzed in Sect. 5.1. By Proposition 5.3, the restriction of Q1 to

the vertices is super-harmonic (except perhaps at a+1), the sum of the Laplacians is
hence bounded from above by Cst ·Hα

[Ωn
1 ,0] (a + 1). At the same time the sum of the

Laplacians equals the sum of the outer normal derivatives ∂νz Q1 on the boundary
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of
[
Ωn

1 , 0
]
, and these normal derivatives ∂νz Q1 equal

√
2
∣
∣
∣Hα

[Ωn
1 ,0] (z)

∣
∣
∣
2
. Hence we

deduce the inequality.
3. When α = α0 and z (corner or medial vertex) is in the interior, we extend the bound

of step 2 by the maximum principle.
4. Whenα is on the boundary and z is the imaginary corner adjacent to themonodromy

(z = 1
2 ), the bound follows from the antisymmetry of H and step 2.

5. Whenα and z are on the boundary,wehave that
∣
∣
∣Hα

[Ωn
1 ,0] (z)

∣
∣
∣ acquires a probabilistic

interpretation: the winding factors out from the sum in the definition of H , and we
sum over contours that represent the low-temperature expansion of an Ising model
with +/− boundary conditions switching ata and z. As a result, it is easy to show that∣
∣
∣Hα

[Ωn
1 ,0] (z)

∣
∣
∣ is the ratio E±

Ωn
1
[σ0] /E+

Ωn
1
[σ0], where ± and + indicate the boundary

conditions. By monotonocity of the Ising magnetization in boundary conditions,
this ratio is less than one, which gives us the desired bound.

6. When α is on the boundary and z in the interior, the result follows from steps 4 and
5 and the maximum principle.

7. When α is in the interior and z is next to the monodromy or on the boundary, the
result follows from steps 3 and 6 by antisymmetry.

8. When α and z are in the interior, the result follows from the maximum principle.

��
Lemma 3.17. Any bounded function H := H[C1,0] that satisfies the properties A–E
decays at infinity.

Proof. We exploit the antisymmetry properties E, as specified in Lemmas 3.6–3.7. The
idea is to symmetrize-antisymmetrize H as in Definition 3.11 by writing it as S + A,
where Sα = 1

2

(
Hα + H ᾱ

)
and Aα = 1

2

(
Hα − H ᾱ

)
. Let us now show that S and A both

decay at infinity.
We have that the restriction of S to real corners vanishes of the positive half-line.

We can make a branch cut where it vanishes and study the function on both slit-plane
sheets separated by the cut. Since it is uniformly bounded and harmonic except near 0
and a, ā, one can use planar random walk arguments (Beurling estimate) to show that
the function vanishes at infinity.

Similarly, the restriction to imaginary corners and analogous restrictions of A vanish
on either the positive or the negative half-line. By the same arguments as above, we can
conclude the proof. ��
Lemma 3.18. There is at most one function satisfying the properties A–F.

Proof. Toprove the uniqueness, it suffices that ifwe have two such functions, their differ-
ence is zero. Denote by Dα (z) this difference, which will be everywhere s-holomorphic
and decay at infinity. However, as noted in Remark 2.6, the absence of s-holomorphic
singularities does not guarantee harmonicity on the monodromy face, and some care is
needed there (note that below, we abuse notation to refer to points of [C, 0] by their
projections on C).

For α0 = ( 12 )
o, Dα0 extends s-holomorphically to a0 by zero by property D, and we

have that the real part of Dα0 is everywhere harmonic by Remark 2.6. As a result, by
the maximum principle and discrete holomorphicity, the real part of Dα0 vanishes and
Dα0 ≡ 0.
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For an arbitrary corner a, by antisymmetry and the previous step, we have Dα (a0) =
0. As a result the real part of Dα (z) is harmonic. Thus, as in the previous step, Dα (z)
vanishes everywhere. ��
Proof of Theorem 3.15. By Lemma 3.16, we have that for each s-oriented corner α of
[C1, 0], the sequence of harmonic functions Hα

[Ωn
1 ,0] is uniformly bounded and hence

by standard arguments, it admits convergent subsequences as n → ∞ on any finite
graph. Any limit along such subsequences satisfies properties A–E and as a result tends
to 0 at infinity by Lemma 3.17. By Lemma 3.18, it is uniquely determined. This shows
the convergence of the sequence itself to a limit which satisfies the conditions of the
theorem, which we call H[C1,0]. ��

3.2.3. Analytical expressions In this subsection, we give characterizations of H[C1,0] in
a few special cases, then outline an inductive process to construct it explicitly in general.

For the observables with monodromy, we have the following characterization near 0
from [CHI15]. Recall α0 = ao0 where a0 ∈ X

+ is the lift of 1
2 to X+ and o = (e2π i )2.

Proposition 3.19. For z ∈ V1
[C1,0]

∪ V i
[C1,0]

\{ 12 } we have the characterization

Hα0
[C1,0]

(z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

± 1
2
√
2
hm

X
1
1

3/2(z) if z ∈ V1
[C1,0]

∩ X
±

∓ i
2
√
2
hm

Y
i
1

1/2(z) if z ∈ V i
[C1,0]

∩ Y
±

0 otherwise

,

where hm Dδ
a (z), for a discrete domain Dδ and a ∈ Dδ ∪ ∂Dδ , denotes the harmonic

measure of a as seen from z, i.e., the probability that a simple symmetric random walk
on Dδ started at z will first hit a when or before exiting Dδ .

Proof. In [CHI15, Lemma 2.14] the function defined above (without the additional
normalization factor cos2 π

8 · e−2βc = 1
2
√
2
) is proved to be the only function on [C1, 0]

which decays at infinity and is s-holomorphic everywhere away from the singularity
at a0 = 1

2 given by Pl(a)Hα
[C1,0]

( 1±i
2 ) = ∓i . Thus we can identify it as the unique

infinite-volume limit introduced in Theorem 3.15 for α = α0. ��
Remark 3.20. The zeros in the definition reflect the fact that a slit plane harmonicmeasure

vanishes everywhere on the slit except at the tip, e.g. 12 in case of hm
Y
i
1

1/2(z). This function

is harmonic on all points of Yi
1, but harmonicity fails on the slit (positive real axis), the

boundary of the domain.

The following explicit characterization of the discrete harmonic measure of the slit plane
may be of independent interest. Using this, we provide the values of 2

√
2Hα0

[C1,0](z) near
the origin in Fig. 4.

Theorem 3.21. We have the following expression for the discrete harmonic measure:

H0(z) := hm
Y
i
1

1/2(z = s + ik + 1
2 ) = 1

2π

∫ π

−π

C |k|(θ)√
1 − e−2iθ

e−isθdθ,

where C(θ) := cos θ
1+|sin θ | .
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Fig. 4. Some explicit values for the full-plane spin-fermion observable 2
√
2Hα0[C1,0](z) for z ∈ V1,i

[C1,0] ∩X
+,

where a0 = 1
2 . The function has a monodromy about the origin, marked by the orange ×, and singularity at

α0 marked by the blue �

Proof. We defer the proof of this theorem to Appendix A, Proposition A.1. ��
Now we inductively characterize Hα

[C1,0] in the cases where α ∈ V1,i
[C1,0] ∩ R>0.

Proposition 3.22. For an s-oriented corner α = ao with a ∈ X
+ ∩ R≥0, we can recur-

sively compute Hα
[C1,0]

starting from the case α0 = 1
2
o0

, o0 = (e2π i )2, as a finite linear
combination of functions given explicitly in Theorem 3.21. Explicitly, for s-oriented cor-

ners α0 + 2n := (a0 + 2n)o0 , α0 + 2n + 1 := (a0 + 2n + 1)o
′
, o′ =

(
e

π i
2

)2
, we have on

any of the four half-planes X± ∩ Y
±,

Hα0+2n
[C1,0]

(z) = Hα0
[C1,0]

(z − 2n) −
n∑

m=1

H0(−2m + 2)

2m
Hα0
[C1,0]

(z − 2(n − m)), and

Hα0+2n+1
[C1,0]

(z) = i Hα0+2n
[C1,0]

(z − 1) − i

(

H0(2n + 2) +
H0(2n)

2(n + 1)

)

Hα0
[C1,0]

(z + 1).

In fact, for any a ∈ V1
[C1,0] ∪ V i

[C1,0] on the real or imaginary axes, we can compute
Hα

[C1,0] using rotational symmetry: if α = ao is any s-oriented corner on the real or

imaginary line, and α′ = (
a′)o′

is the rotated corner a′ = e− π i
2 a ∈ Vc

[C1,0]
oriented to

o′ = (e− π i
4
√
o)2, and z′ = e− π i

2 z, we have,

Hα
[C1,0](z) = e− π i

4 Hα′
[C1,0](z

′).
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Proof. Generalizing from the proof of Proposition 3.19, we construct a function on
[C1, 0]whichdecays at infinity and is s-holomorphic everywhere away from the specified
singularity ata, andwe argue that it is the unique functionwhich can satisfy the properties
specified in Theorem 3.15. For convenience, we will take source points α on the sheet
X
+ unless otherwise specified; i.e. the positive real line approached from above on Y+.
Assume a ∈ V i

[C1,0]
∩R>0 and consider the restriction Hα of Hα

[C1,0]
to the imaginary

corners on the slit planeV i
[C1,0]

∩Y
+. The function Hα can be characterized as the unique

discrete harmonic function on the slit plane V i
[C1,0]

∩ Y
+ which has the single-valued

boundary data Hα(a) := − i
2
√
2

√
o and zero elsewhere on the slit R>0, and decays

at infinity. The harmonic function with these properties can be obtained by translating
Hα−2 for α − 2 := (a − 2)o (which takes its only nonzero boundary value at a − 2) to
the right, and subtracting off a multiple of Hα0 in order to cancel the nonzero value at
a0 = 1

2 . Specifically, letting

Hα(z) = Hα−2(z − 2) − Hα−2(− 3
2 ) · hm Y

i
1

1/2(z) = Hα−2(z − 2)

−hm
Y
i
1

a−2(− 3
2 ) · Hα0(z),

then discrete holomorphicity relations imply that the real part is determined up to a an
additive constant; however since the real partmust vanish onR<0, the real part is uniquely
determined. In fact, it is easy to see that, in order to maintain discrete holomorphicity,
the above recursive relation should also hold for the entire Hα

[C1,0]
as long as we are in

the four real-translation invariant half-planes X± ∩Y
±. For the explicit identification of

the coefficients, we refer to Proposition A.2.
For a ∈ V1

[C1,0]
∩ R>0, we use a similar recursive process but now instead first

construct the restriction H ′α of Hα
[C1,0]

to the real corners on Y+, starting from the case

a = 3
2 . Unlike the imaginary case, we need to consider − 1

2 as well as V1
[C1,0]

∩ R>0 as

part of the slit boundary (where harmonicity fails): since Hα
[C1,0](

1
2 ) �= 0 in general, we

cannot assume that the real part is harmonic at − 1
2 (see Remark 2.6).

In otherwords, H ′α is the function harmonic on the slit planeV1
[C1,0]

∩Y+\{− 1
2 }which

takes nonzero boundary values only at a and− 1
2 = −a0. As above H ′α(a) = − i

2
√
2

√
o.

For the value at −a0 := eπ i a0 with oriented version −α0 := (−a0)o
′
, where o′ =

(e
π i
2 )2 we use antisymmetry in the two inputs to write Hα

[C1,0]
(−a0) = −i

√
oH−α0

[C1,0]
(a).

Since by rotation H−α0
[C1,0]

(a) = −i Hα0
[C1,0]

(e−π i a), we conclude Hα
[C1,0]

(−a0) =
−√

oHα0
[C1,0]

(e−π i a) = − i
2
√
2

√
o · hm Y

i
1

1/2(−a). We can match these boundary values
with recursion as above.

The general rotation identity can be verified independentlywith the same strategy, i.e.,
identifying the restriction of the left-hand side to a specific type of corner as the unique
harmonic function with suitable boundary values, which the right-hand side solves. ��
Remark 3.23. The coefficients in Proposition 3.22 of various translated and rotated ver-
sions of Hα0

[C1,0] (with the same scaling limit) become important when identifying the
scaling limit of the observables in Lemma 5.14. In particular, by Proposition A.2, the
coefficients in the recursive expansion sum to zero in the case of a ∈ V1

[C1,0]
∩ R>0,

which will yield that C̃α = 0 = Cα in Corollary 5.19.
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Fig. 5. The full plane spinor Hα[C1,0](z) is first defined at all blue corners � by its antisymmetry relations and
Proposition 3.22. By s-holomorphicity, we can then deduce its value at the brown medial vertex ◦, and then
project from there onto the two brown corners �. We continue this process, next moving to the red ◦, then the
red �, and then green etc

Corollary 3.24. For any a ∈ Vcm
[C1,0]

, we can recursively compute Hα
[C1,0]

as a finite
linear combination of functions given by Theorem 3.21.

Proof. ByProposition 3.22, Hα
[C1,0](z) is given for all z ∈ Vcm

[C1,0] wheneverα ∈ V1,i
[C1,0]∩

(R>0 ∪ iR>0). The antisymmetry relations it satisfies thus give Hα
[C1,0](z) for every α,

whenever z ∈ R>0∪iR>0 (as a finite linear combination of explicit harmonicmeasures).
Now observe that s-holomorphicity implies that the value, say, of Hα

[C1,0](
1+i
2 ) can be

recovered from its values at the 1
2 ,

i
2 . From there, one can project the values of Hα

[C1,0](z)
when z = 1 + i

2 and 1
2 + i (see Fig. 5). Continuing this process allows for a recursive

construction of Hα
[C1,0]

(z) for any z ∈ Vcm
[C1,0] as a finite linear combination of the explicit

functions of Theorem 3.21. ��

3.2.4. Auxiliary functions We introduce here full-plane auxiliary functions G and G̃±,
which are everywhere s-holomorphic functions on [C1, 0]which do not decay at infinity.
The real part of G was defined in [CHI15] as a discrete version of the holomorphic
function

√
z on the double cover; we extend the result in order to give full s-holomorphic

discrete representations of 1
2
√
2

√
z and i

2
√
2

√
z. Convergence results for these functions

will be proved in Sect. 5.4.
As in previous subsections, we define the functions on the unit grid [C1, 0], and then

scale them by G[Cδ,0](zδ) := δG[C1,0](z) and G̃±
[Cδ,0]

(zδ) := δG̃±
[C1,0]

(z). We define
them first on real and imaginary corners by “integrating” the harmonic measures, then
extend to other points by s-holomorphicity. The fact that there are two discrete versions
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of i
2
√
2

√
z is a peculiarity that will be important in the proof of the main convergence

result in Sect. 5.4.2 (see also [Dub15]).

Definition 3.25. Define for z ∈ V1
[C1,0]

∪ V i
[C1,0]

, the auxiliary functions

G[C1,0](z) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑∞
n=0 ± 1

2
√
2
hm

X
1
1

3/2(z − 2n) if z ∈ V1
[C1,0]

∩ X
±

∑∞
n=0 ± i

2
√
2
hm

Y
i
1−3/2(z + 2n) if z ∈ V i

[C1,0]
∩ Y

±

0 otherwise

,

and

G̃±
[C1,0]

(z) := iG[C1,0](z ± 1),

where translation by 1 is well-defined at any point other than ± 1
2 ; G[C1,0](± 1

2 ) = 0 on
both sheets so there is no ambiguity in defining G̃±

[C1,0]
(∓ 1

2 ).

Remark 3.26. In [CHI15, Lemma 2.17]well-definedness and harmonicity of the real part
of G[C1,0] were proven. From symmetry, we see the same holds for the imaginary part.
Discrete holomorphicity of G[C1,0], and thus of G̃

±
[C1,0]

, is proved in Appendix A using
the explicit formula of Theorem 3.21. Using that, we then extend these to s-holomorphic
functions on the corners and medial vertices, again using the process of Remark 2.3.

Remark 3.27. Since G[C1,0] (and thus G̃±
[C1,0]

) is defined using infinite sums, one can-
not a priori calculate them exactly. However, once its s-holomorphicity is exhibited
in Appendix A, we can use a propagation procedure similar to one shown in Fig. 5
and explained in Corollary 3.24 to recursively calculate its values from its values
on the real and imaginary axes. Indeed, G[C1,0] is explicitly computable on the real
line since the summands eventually become zero; then we use the rotation identity

eπ i/4G[C1,0](e
π i/2z) = 1

2

[
G̃+

[C1,0]
+ G̃−

[C1,0]

]
(z), proved in Proposition A.4, to find the

values on the imaginary axis.
Using this procedure, we provide some explicit values of G[C1,0](z) near the origin

in Fig. 6.

4. Discrete Multipoint Observables

In this section,weprovePfaffian formulae expressingn-point energy correlations,with or
without a spin weight, in terms of the real fermion and spin-fermion two-point functions.

For the n-point energy correlations, we formulate them in terms of s-holomorphic
multipoint fermion observables introduced in [Hon10] and follow the strategy there to
obtain their Pfaffian formulation with the two-point observables introduced in Sect. 3.
In [Hon10], the arguments of themultipoint observable were required to be distinct, non-
adjacent medial vertices; we slightly but crucially generalize this to allow for adjacent
medial vertices in Proposition 4.5 andLemma 4.6, using a combinatorial correspondence
between paths sourced at medial vertices and at corners.

When looking at n-point energy correlations weighted by a spin, the process is anal-
ogous, and we get fused multipoint spin-fermion observables, which then reduce to
Pfaffians of the two-point spin-fermion observables of Sect. 3.1.
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Fig. 6. Some explicit values for the auxiliary function 2
√
2G[C1,0](z) for z ∈ V1,i

[C1,0] ∩ X
+, as defined in

Definition 3.25. The function has monodromy about the origin, represented by the orange ×

The proofs of these relations connecting the two-point fermion and spin-fermion
observables to edge correlations (namely, Propositions 4.16–4.17) are quite notationally
heavy, but all the extra notation is contained completely to this section.After generalizing
the discrete complex analytic properties of the multipoint observables to adjacent medial
vertices in Proposition 4.5, the rest of the proof is just a natural extension of the steps
outlined in [Hon10] to prove the desired relations. For an alternative approach using
mostly combinatorial arguments, see [CCK17].

4.1. Multipoint observables. Recall that in Sect. 3 we denoted by ZΩδ the low-
temperature expansion of the partition function defined by summing e−2β|ω| over all
ω ∈ CΩδ , where CΩδ is the set of closed loops in Ωδ . Furthermore, for oriented corners
or medial vertices α, ζ , we defined the contour sets Cα,ζ

Ωδ
as well as admissible walks.

We also chose the convention that and at ambiguous vertices in the walk, we connect
northeast to northwest edges and southeast and southwest edges (see Sect. 3.1).

We now generalize the two-point observables defined in Sect. 3 (refer also to Fig. 7).
First, let us define the generalized contour set Cα1,...,α2n

Ωδ
for s-oriented corners or medial

vertices α j = a
o j
j for j = 1, 2, . . . , 2n. For now we assume that the underlying points

a1, . . . , a2n are distinct (we will later generalize to the case where they can take the same
value: see Remark 4.12). In [Hon10], these points were all medial vertices, and were
required to be non-adjacent (the edges corresponding to them were not allowed to be
adjacent). We do not impose this non-adjacency requirement, and this small extension
is important to the proofs. As before, the half-edge of a corner is the line segment
connecting it to its nearest vertex.

Each element γ ∈ Cα1,...,α2n
Ωδ

is a set containing
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Fig. 7. An example of a choice of two admissible walks between α1 and α3 and α2 and α4 and a loop. The
winding of γ α1,α3 is 2π while the winding of γ α2,α4 is −π

2 . The crossing parity has c(�(γ )) = 1

– 2n half-edges of a1, . . . , a2n selected by their respective orientations o1, . . . , o2n ,
and

– a (possibly empty) collection of edges distinct from the above-mentioned half-edges
of
{
a j
}2n
j=1,

such that any vertex of Ωδ is incident to an even number of the edges and half-edges.
Such a γ will be an edge-disjoint union of n walks connecting α1, . . . α2n pairwise as
well as a (possibly empty) collection of edge-disjoint loops. In particular, the definition
of the 2-point set Cα,ζ

Ωδ
coincides with the one given in Sect. 3.

Generalizing from the 2-point case in Sect. 3.0.2, given γ we can pick n admissible
walks which connect {αi } pairwise. We denote by �(γ ) ⊂ γ , a set of those n edge-
disjoint admissible walks {γ α j ,αk } chosen from the half-edges and edges constituting γ .
We label them so that j < k for each γ α j ,αk . Define the crossing parity c(�(γ )) as the
number of crossings,modulo 2when linking 1, . . . , 2n ∈ R pairwisewith generic simple
curves in the upper half plane (i.e. connect j, k if there is a walk in �(γ ) connecting
α j , αk). Moreover, recall the definitions of λαi ,α j and W(γ ) from Definition 3.1.

Definition 4.1. For a collection of s-oriented corners or medial vertices {α j }2nj=1 in Ωδ ,
define the multipoint fermion observable as

Fα1,...,α2n
Ωδ

:= 1

ZΩδ

∑

γ∈Cα1,...,α2n
Ωδ

φ{α j}(γ ),

φ{α j}(γ ) := e−2βc|γ |(−1)c(�(γ ))
∏

γ
α j ,αk∈�(γ )

iλαi ,α j e
− i

2 W(γ
α j ,αk ).

In analogywith the two point case, if ζ 1 = z p1 and ζ 2 = z p2 are s-orientations of the two
opposite orientations of z := a2n , so that p2 = e±π i p1, and κ = cq is an s-orientation of
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a corner c in Ωδ , we define the complexification of the multipoint fermion observable,

Hα1,...,α2n−1
Ωδ

(z) := 1

i
√
p1

Fα1,...,α2n−1,ζ
1

Ωδ
+

1

i
√
p2

Fα1,...,α2n−1,ζ
2

Ωδ
, (4.1)

Hα1,...,α2n−1
Ωδ

(c) := 1

i
√
q
Fα1,...,α2n−1,κ

Ωδ
.

Definition 4.2. For a collection of s-oriented corners or medial vertices {α j }2nj=1 in
[Ωδ, 0], define the multipoint spin-fermion observable,

Fα1,...,α2n
[Ωδ,0]

:= 1

ZΩδE
+
Ωδ

[σ0]

∑

γ∈Cα1,...,α2n
Ωδ

φ�{α j} (γ ) ,

φ�{α j} (γ ) := φ{α j} (γ ) (−1)�(γ \∪�(γ ))
∏

γ
α j ,αk∈�(γ )

sαj,αk
(
γ α j ,αk

)
,

where � and sαj,αk are defined as in Definition 3.1. As in the two-point spin fermion,
the contour collection Cα1,...,α2n

Ωδ
and the weight φ{α j } are computed with respect to

the projections of α j onto Ωδ , but the sheet choices come in the terms sα,ζ . Define
the complexified spin-fermion Hα1,...,α2n−1

[Ωδ,0] on medial vertices and corners of [Ωδ, 0]
analogously to Eq. (4.1).

Remark 4.3 [Hon10, Propositions 67, 68] proves well-definedness of φ{α j} (γ ). In

Proposition B.1 we prove the well-definedness of (−1)�(γ \∪�(γ ))
∏

sαj,αk (γ
α j ,αk ), and

thus of φ�{α j}, so that it is independent of our convention for admissible walks and the

choice of pairings of source points; in particular, it is independent of our choice of
admissible �(γ ).

In addition to increasing the number of inputs, we can also define observables summing
over a subset Cα1,...,α2n

Ωδ :{eskk } ⊂ Cα1,...,α2n
Ωδ

formed by specifying the inclusion or exclusion of

given edges. Given a collection of edges {ek}mk=1 in Ωδ (disjoint to the half-edges given
by {a j }2ni=1) and corresponding inclusion variables sk ∈ {•, ◦}, let

Cα1,...,α2n

Ωδ :{es11 ,...,esmm } = {
γ ∈ Cα1,...,α2n

Ωδ
: ek ∈ γ if sk = •, and ek /∈ γ if sk = ◦}.

Definition 4.4. We define the restricted fermion and spin-fermion observables, denoted
Fα1,...,α2n

Ωδ :{es11 ,...,esmm } and Fα1,...,α2n

[Ωδ,0]:{es11 ,...,esmm }, and their complexifications as in Definitions 4.1

–4.2, replacing the contour set Cα1,...,α2n
Ωδ

by the restricted contour set Cα1,...,α2n

Ωδ :{es11 ,...,esmm }.

The following propositions will characterize the complexified fermion and spin-
fermion observables in terms of discrete complex analysis, proving the connection to
the discrete Riemann boundary value problem defined in Sect. 2 for possibly adjacent
medial vertices a1, . . . , a2n .

We first modify the real weight φ{αk } defined on Cα1,...,α2n
Ωδ

for 2n s-oriented vertices
α1, . . . , α2n into a complex weight χ defined on

Cα1,...,α2n−1,a2n
Ωδ

:= Cα1,...,α2n−1,α
1
2n

Ωδ
� Cα1,...,α2n−1,α

2
2n

Ωδ
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for 2n − 1 s-oriented medial vertices or corners α1, . . . , α2n−1 and another medial
vertex a2n . Choose two s-orientations α1

2n = a p1
2n and α2

2n = a p2
2n of a2n such that the

orientations p1, p2 are the two opposite permissible orientations on a2n . Define for

γ ∈ Cα1,...,α
j
2n

Ωδ
⊂ Cα1,...,α2n−1,a2n

Ωδ
the complex weight (where dependence on the choice

of
√
p j eventually cancels out),

χ(γ ) := 1

i
√
p j

φ{a1,...,α2n−1,a
j
2n}(γ ),

noting that the complexified observables can be defined in terms of sums of this weight.
If α2n = ao2n is an s-oriented corner, there is only one corresponding orientation and
χ(γ ) := 1

i
√
o
φ{αk }(γ ).

Proposition 4.5. Hα1,...,α2n−1

Ωδ :{es11 ,...,esmm } and Hα1,...,α2n−1

[Ωδ,0]:{es11 ,...,esmm } are s-holomorphic wherever

defined.

Proof. This was proven for the complexified fermion in [Hon10, Lemma 74] in the
setting where the αi are non-adjacent medial vertices. We extend this to all possible αi
via the extension of the complexified fermion to corners in addition to medial vertices.
The idea is that there is a natural bijection between the set of paths to a medial vertex
e and those to an adjacent corner c. Namely, if e(c) is the shortest walk from a2n to c
consisting of twohalf-edges both incident to the commonvertex v, themapγ �→ γ ⊕e(c)
is a bijection. One needs to show that the projection in s-holomorphicity relations (2.1)

sends the winding weight e− i
2 W(γ ) to the winding weight of the image, times a factor

of cos(π/8).
Following this, the next lemma therefore proves s-holomorphicity in the case of

Hα1,...,α2n−1

Ωδ :{es11 ,...,esmm }. The summands in the definition of Hα1,...,α2n−1

[Ωδ,0]:{es11 ,...,esmm } only have addi-

tional real factors invariant under the · ⊕ e(c) bijection, so the lemma implies the s-
holomorphicity for Hα1,...,α2n−1

[Ωδ,0]:{es11 ,...,esmm } as well. ��

Lemma 4.6. Let
{
a j
}2n−1
j=1 , {ek}mk=1 be distinct medial vertices of Ωδ and denote the s-

oriented versions of
{
a j
}2n−1
j=1 by α j = a

o j
j , and inclusion variables s1, . . . , sm ∈ {•, ◦}.

Suppose c is an interior corner and a2n is an adjacent interior medial vertex distinct
from

{
a j
}2n−1
j=1 . Let e(c) be the shortest walk from a2n to c consisting of two half-edges

both incident to a common vertex v. Then the bijection,

γ �→ γ ⊕ e(c),

from Cα1,...,α2n−1,a2n

Ωδ :
{
e
sk
k

} to Cα1,...,α2n−1,c

Ωδ :
{
e
sk
k

} satisfies the projection relation,

Pl(c)χ(γ ) = χ(γ ⊕ e(c)).

Proof. Suppose γ f ∈ �(γ ) is the walk ending at a2n , starting at some αs . Suppose c is
a corner of type τ adjacent to a2n . Then �(γ ⊕ e(c)), chosen using paths in �(γ ) with
γ f replaced by γ f ⊕ e(c), is clearly an admissible choice of walks in γ ⊕ e(c). Note that
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if o2n is any s-orientation of a2n compatible with γ f , i
√
o2n√
os

e− i
2 W(γ f ) is a real quantity.

Thus it suffices to show that

Pl(c)
e−2βc|γ |

√
os

e− i
2 W(γ f ) = cos

π

8
· e

−2βc|γ⊕e(c)|
√
os

e− i
2 W(γ f ⊕e(c)).

Commuting real quantities with projections, we may rewrite the left hand side as

i
√
o2n√
os

e− i
2 W(γ f )e−2βc|γ |Pl(c)

1

i
√
o2n

.

There are two cases to consider: the cases when the half-edge 〈a2n, v〉 ∈ γ f and when
〈a2n, v〉 /∈ γ f .

– In the first case, |γ ⊕ e(c)| = |γ |. Subsequently τ 2o2n = −e± π
4 i , where the sign

depends on the winding change W(γ ⊕ e(c)) = W(γ ) ∓ π
4 . Now we have

Pl(c)
1

i
√
o2n

= 1 − τ 2o2n
2i

√
o2n

= e± π
8 i

i
√
o2n

cos
π

8
,

and the result follows.
– In the second case, |γ ⊕ e(c)| = |γ | + 1. Then τ 2o2n = e± π

4 i , where the sign
depends on the winding change W(γ ⊕ e(c)) = W(γ ) ± 3π

4 . Then

Pl(c)
1

i
√
o2n

= 1 − τ−2o2n
2i

√
o2n

= e∓ 3π
8 i

i
√
o2n

sin
π

8
.

Upon noting that tan π
8 = e−2βc , the result follows.

��
Lemma 4.7. The discrete residues at an s-oriented interior oriented medial vertex α j
are

Hα1,...,α2n−1

Ωδ :{es11 ,...,esmm }(α j+) − Hα1,...,α2n−1

Ωδ :{es11 ,...,esmm }(α j−) = (−1) j+1√
o j

F
α1,...,α j−1,α j+1,...,α2n−1

Ωδ :{es11 ,...,esmm } ,

Hα1,...,α2n−1

[Ωδ,0]:{es11 ,...,esmm }(α j+) − Hα1,...,α2n−1

[Ωδ,0]:{es11 ,...,esmm }(α j−) = (−1) j+1√
o j

F
α1,...,α j−1,α j+1,...,α2n−1

[Ωδ,0]:{es11 ,...,esmm } .

where in the two cases α1, . . . , α2n−1 are all taken respectively on Ωδ and [Ωδ, 0].

Proof. We prove this for the fermion and spin-fermion simultaneously, letting Dδ rep-
resent Ωδ or [Ωδ, 0]. It suffices to show that the front and back values of Hα1,...,α2n−1

Dδ :{es11 ,...,esmm }
at α j are given by

Hα1,...,α2n−1

Dδ :{es11 ,...,esmm }(α j+) = (−1) j+1√
o j

F
α1,...,α j−1,α j+1,...α2n−1

Dδ :
{
e
s1
1 ,...,esmm ,a◦

j

} ,

Hα1,...,α2n−1

Dδ :{es11 ,...,esmm }(α j−) = (−1) j√
o j

F
α1,...,α j−1,α j+1,...α2n−1

Dδ :
{
e
s1
1 ,...,esmm ,a•

j

} , (4.2)
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where in the case Dδ = [Ωδ, 0] the projection of a j onto Ωδ is considered in a◦,•
j .

Let c1 denote one of the two corners adjacent to the end vertex of a j in the direction
o j . We verify that Hα1,...,α2n−1

Dδ :{es11 ,...,esmm }(α j+) projects to Hα1,...,α2n−1

Dδ :{es11 ,...,esmm }(c1). Let c1 be a corner
of type τ .

We note that any γ ∈ Cα1,...,α2n−1,c1

Dδ :
{
e
s1
1 ,...,esmm

} contains the walk e(c1) :=
{〈
a j , a j + o j

δ√
2

〉
,

〈
a j + o j

δ√
2
, c1

〉}
, so we can start from γ f and complete �(γ ). In addition, γ ⊕ e(c1) ∈

Cα1,...,α j−1,α j+1,...,α2n−1

Dδ :
{
e
s1
1 ,...,esmm ,a◦

j

} and �(γ )\ {e(c1)} is naturally an admissible choice of walk for

2n − 2 points. Since the additional real factor in the case of Dδ = [Ωδ, 0] is easily seen
to be invariant under the bijection, it now suffices to show the projection relation

Pl(c1)
(−1) j+1√

o j
φ{α1,...,α j−1,α j+1,...,α2n−1}(γ ⊕ e(c1)) = χ(γ ).

This relation can be rewritten as Pl(c1)
1√
o j

= e−2βc cos π
8 · e− i

2 W(e(c1))√
o j

= cos 3π
8 ·

e− i
2 W(e(c1))√

o j
using explicit formulae and admissible choices�(γ ) and�(γ ⊕e(c1)) (where

(−1) j+1 is precisely the ratio between the crossing parity factor of �(γ ⊕ e(c1)) and
�(γ ); one sees this by drawing the pairing between j and 2n very close to [ j, 2n] ⊂ R,
so that it crosses exactly 2n − j − 1 other lines).

Note that o j eiW(e(c1)) = τ 2 and W(e(c1)) = ± 3π
4 . Commuting real values with

projection, we have,

Pl(c1)

[
1√
o j

]

= 1

2

[
1√
o j

+
√
o j

τ 2

]

= 1√
o j

1 + e−iW(e(c1))

2
= cos

3π

8
· e

− i
2 W(e(c1))

√
o j

.

��
Remark 4.8. The explicit front and back values (4.2) shown in the proof above give us
a simple correspondence between the full-plane observables and the full-plane (normal
and spin-weighted) nearest-pair correlations μ,μa′ for edges a = δa′ ∈ EΩδ defined
in (1.1).

Notice that, by low-temperature expansion, the correlation of the nearest spin pair

separated by an edge a can be written 1
ZΩδ

[∑
ω∈CΩδ :{a◦} e

−2|ω| − ∑
ω∈CΩδ :{a•} e

−2|ω|
]

=
FΩδ :{a◦} − FΩδ :{a•}. By the values given in (4.2), this is precisely

√
o
[
Hα

Ωδ
(α+)+

Hα
Ωδ

(α−)
]
, for any s-oriented version α of a. Now taking the infinite-volume limit

by sending Ω ↑ C (whose existence is known by Theorem 3.13), we have

μ = √
o
[
Hα

Cδ
(α+) + Hα

Cδ
(α−)

]
,

matching the values Hα
Cδ

(α±) = μ±1
2
√
o
given by Proposition 3.14.

By analogous reasoning, for every a = δa′ ∈ EΩδ we can calculate μa′ as defined
in (1.1) by

μa′ = √
o
[
Hα
[Cδ,0](α+) + Hα

[Cδ,0](α−)
]
,
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Fig. 8. Some explicit values of (μe)e∈EC1
. This represents themean of the physical quantity, the spin-weighted

energy field. The orange × marks the identified origin face, whose spin μe is weighted by; as |e| → ∞, we
have μe → μ

or equivalently for every a = δa′ ∈ EΩδ we have Hα
[Cδ,0]

(α±) = μa′±1
2
√
o
, where we

know the infinite-volume limit Ω ↑ C of
√
o[Hα[Ωδ,0](α+) + Hα[Ωδ,0](α−)] exists by

Theorem 3.15 (see Fig. 8 for some explicit values).

Recall the definition of νz as the outer normal at a boundary medial vertex z.

Lemma 4.9. If {αi }2n−1
i=1 are interior s-oriented medial vertices, {es11 , . . . esmm } are edges

with corresponding inclusion variables, and z = a2n is a boundary medial vertex, we
have that

Hα1,...,α2n−1

Ωδ :{es11 ,...,esmm } (z)
√

νz ∈ R ;
Hα1,...,α2n−1

[Ωδ,0]:{es11 ,...,esmm } (z)
√

νz ∈ R.

Proof. [Hon10, Proposition 79] proves the lemma for Hα1,...,α2n−1

Ωδ :{es11 ,...,esmm } with non-adjacent
αi . The idea is that if z is on the boundary, a path can only reach z via the half-edge
in the inner direction, which fixes the complex phase in the weight; this goes through
unchanged for possibly adjacentαi . For the spin-fermion observable, since the additional
factors in Hα1,...,α2n−1

[Ωδ,0]:{es11 ,...,esmm } are real, the result holds. ��

4.2. Fused observables and Ising correlations. In this subsection, we formulate the
Ising correlations in a bounded domain in terms of fusions of the observables introduced
above.We againwriteα1, . . . , α2n for distinct s-orientedmedial vertices inΩδ or [Ωδ, 0]
and e1, . . . , em distinct edges with inclusion variables s1, . . . , sm ∈ {•, ◦}.
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Definition 4.10. Suppose b1, . . . , bN are distinct medial vertices in Ωδ with bN = δb′
N .

Define the fused fermion and fused spin-fermion observables and their complexifications
inductively by

Fα1,...,α2n :[b1,...,bN ]
Ωδ :{es11 ,...,esmm } := F

α1,...,α2n :[b1,...,bN−1]
Ωδ :{es11 ,...,esmm ,b◦

N } − μ + 1

2
F

α1,...,α2n :[b1,...,bN−1]
Ωδ :{es11 ,...,esmm } , (4.3)

Fα1,...,α2n :[b1,...,bN ]
[Ωδ,0]:{es11 ,...,esmm } := F

α1,...,α2n :[b1,...,bN−1]
[Ωδ,0]:{es11 ,...,esmm ,b◦

N } − μb′
N
+ 1

2
F

α1,...,α2n :[b1,...,bN−1]
[Ωδ,0]:{es11 ,...,esmm } ,

and the usual complexification scheme on α2n (see e.g. (4.1)).

These fusions arise naturally from the process of removing singularities. Suppose α j is
an s-oriented interior medial vertex. Note that, by Lemma 4.7 and Theorems 3.13–3.15,
the functions

Hα1,...,α2n−1

Ωδ :{es11 ,...,esmm } + (−1) j F
α1,...,α j−1,α j+1,...,α2n−1

Ωδ :{es11 ,...,esmm } H
α j

Cδ
, (4.4)

Hα1,...,α2n−1

[Ωδ,0]:{es11 ,...,esmm } + (−1) j F
α1,...,α j−1,α j+1,...,α2n−1

[Ωδ,0]:{es11 ,...,esmm } H
α j

[Cδ,0]
, (4.5)

have discrete residue 0 at α j ; thus they extend to a j s-holomorphically. In fact, we have
the following extension result for them, which also applies to the corresponding fused
observables.

Lemma 4.11. The following fused versions of the functions defined in (4.4)–(4.5) have
s-holomorphic extensions to a j given by the values

[
Hα1,...,α2n−1:[e1,...,em ]

Ωδ
+ (−1) j F

α1,...,α j−1,α j+1,...,α2n−1:[e1,...,em ]
Ωδ

H
α j

Cδ

]
(a j )

:= (−1) j+1√
o j

F
α1,...,α j−1,α j+1,...α2n−1:[e1,...,em ,a j ]
Ωδ

,

[
Hα1,...,α2n−1:[e1,...,em ]
[Ωδ,0]

+ (−1) j F
α1,...,α j−1,α j+1,...,α2n−1:[e1,...,em ]
[Ωδ,0]

H
α j

[Cδ,0]

]
(a j )

:= (−1) j+1√
o j

F
α1,...,α j−1,α j+1,...α2n−1:[e1,...,em ,a j ]
[Ωδ,0]

,

where in the second case, a j in [Ωδ, 0] is identified with its projection on Ωδ in the
expression

[
e1, . . . , em, a j

]
.

Proof. ByR-linearity of s-holomorphicity and the definition of fused observables, it suf-
fices to show that the unfused observables given by (4.4)–(4.5) extend s-holomorphically
to a j with above right hand side values (without e1, . . . , em).

Since the function (4.4) has discrete residue 0 at a j , it has an s-holomorphic extension
to a j given by

[

Hα1,...,α2n−1

Ωδ :{es11 ,...,esmm } + (−1) j F
α1,...,α j−1,α j+1,...,α2n−1

Ωδ :{es11 ,...,esmm } H
α j

Cδ

]

(a j )

= Hα1,...,α2n−1

Ωδ :{es11 ,...,esmm }(α j+) + (−1) j F
α1,...,α j−1,α j+1,...,α2n−1

Ωδ :{es11 ,...,esmm } H
α j

Cδ
(α j+).
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In turn, by the explicit values in the proof of Lemma 4.7, this is given by

(−1) j+1√
o j

F
α1,...,α j−1,α j+1,...α2n−1

Ωδ :
{
e
s1
1 ,...,esmm ,a◦

j

} + (−1) j F
α1,...,α j−1,α j+1,...,α2n−1

Ωδ :{es11 ,...,esmm } H
α j

Cδ
(α j+)

= (−1) j+1√
o j

F
α1,...,α j−1,α j+1,...α2n−1:[a j ]
Ωδ :{es11 ,...,esmm } ,

using that H
α j

Cδ
(a j+) = μ+1

2
√
o j

(see Remark 4.8). Identical computation gives the [Ωδ, 0]

case, where now we use the fact that for every a j = δa′
j , we have H

α j

[Cδ,0](α j+) =
μa′

j
+1

2
√
o j

. ��
Remark 4.12. So far, we have assumed that the 2n inputs α1, . . . , α2n of the real observ-
able are s-orientations of distinct a1, . . . , a2n . An important observation to be made is
that the combinatorial definition of the real observable is robust enough for the pairwise-
fused case,where amedial vertex e appears twice among the 2n inputs (saya j = ak = e),
as long as their respective orientations o j , ok point to opposite directions.

In the complexified case, a medial vertex can appear twice, again oppositely oriented,
among the first 2n − 1 s-oriented medial vertices; if a j = ak on Ωδ with opposite
orientations o j and ok , one can verify that the residue at α j is given by

(−1) j+1√
o j

F
α1,...,α j−1,α j+1,...,α2n−1

Ωδ :{es11 ,...,esmm } − (−1)k+1√
ok

Fα1,...,αk−1,αk+1,...,α2n−1

Ωδ :{es11 ,...,esmm } .

This is precisely a directed superposition of the two residues derived in Lemma 4.7
for s-oriented medial vertices α j , αk ; similarly Lemma 4.11 and the resulting Proposi-
tions 4.14–4.15, introduced in the next subsection, easily generalize to the pairwise-fused
case.

We are now in position to connect the fused multipoint observables to multipoint Ising
correlations.

Proposition 4.13. Suppose {bk}Nk=1 is a set of N distinct interior edges in Ωδ . We have

EΩδ

⎡

⎣
∏

b∈{bk }
ε(b)

⎤

⎦ = (−1)N2N F [b1,...,bN ]
Ωδ

,

EΩδ

[
σ0

∏
b∈{bk } ε[0](b)

]

EΩδ [σ0]
= (−1)N2N F [b1,...,bN ]

[Ωδ,0]
.

Proof. The first identity was proved in [Hon10, Proposition 72] inductively, where our
above extensions of the projection relations to adjacent edges now allow for the bk to be

adjacent. Explicitly, denoting
{
e
s j
j

}
= {

es11 , . . . , esmm
}
for a set of edges (distinct from

bk) with inclusion variables s j ∈ {•, ◦} and recalling C
Ωδ :

{
e
s j
j

}, it is straightforward to

show by induction on N (the base case is trivial),

EΩδ

⎡

⎣1{
e
s j
j

}
∏

b∈{bk }
ε(b)

⎤

⎦ = (−1)N2N F [b1,...,bN ]
Ωδ :

{
e
s j
j

} ,
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(where for an edge e separating faces x, y with inclusion variable s ∈ {•, ◦}, the indicator
1{es } denotes an indicator on the event that σx = σy if s = ◦ and σx �= σy if s = •)
using the expansion

EΩδ

[

1{
e
s j
j

}ε(b1) · · · ε(bN+1)

]

= (μ − 1)EΩδ

[

1{
e
s j
j ,b◦

N+1

}ε(b1) · · · ε(bN )

]

+ (μ + 1)EΩδ

[

1{
e
s j
j ,b•

N+1

}ε(b1) · · · ε(bN )

]

,

and that by definition F [b1,...,bN ]
Ωδ :

{
e
s j
j

} = F [b1,...,bN ]
Ωδ :

{
e
s j
j ,b◦

N+1

} + F [b1,...,bN ]
Ωδ :

{
e
s j
j ,b•

N+1

}.

The second identity follows from an analogous process, where we note that for a
collection of loops and walks ω, we have σ0(ω) = (−1)�(ω) due to the plus boundary
condition. ��

4.3. Pfaffian formulae. Having related the Ising correlations to the fused observables,
in this subsection we will elucidate how the recursive relation (4.3) gives rise to the
Pfaffian relation in Sect. 4.4. The argument is identical to the one presented in Chapter
6 of [Hon10], albeit with the stronger lemmas introduced in Sect. 4.1 allowing the αi ’s
to be adjacent.

We first prove that a 2n-point observable is in fact a Pfaffian of a matrix of two-point
observables. Recall that for a 2n × 2n antisymmetric matrix A = (A jk) j,k=1,...,2n ,

Pf A := 1

2nn!
∑

σ∈S2n
sgn(σ )Aσ(1)σ (2)Aσ(3)σ (4) · · · Aσ(2n−1)σ (2n), (4.6)

and we have the recursive expansion formula,

Pf A =
2n−1∑

j=1

(−1) j A j,2nPf A ĵ;2n, (4.7)

where A
ĵ;2n is the matrix where the j and 2n-th rows and columns are removed.

Proposition 4.14. Suppose α j = a
o j
j , j = 1, . . . , 2n are distinct (possibly pairwise-

fused) s-oriented interior medial vertices of Dδ = Ωδ or [Ωδ, 0]. Define the 2n × 2n
antisymmetric matrix

F
{α j }
Dδ

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 Fα1,α2
Dδ

. . . Fα1,α2n−1
Dδ

Fα1,α2n
Dδ

0 . . . Fα2,α2n−1
Dδ

Fα2,α2n
Dδ

0
...

...

. . . Fα2n−1,α2n
Dδ

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then

Fα1,...,α2n
Dδ

= Pf F
{α j }
Dδ

.
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Proof. The 2 × 2 case is trivial. Given the recursive formula (4.7) for the Pfaffian,
inductively it suffices to show

Fα1,...,α2n
Dδ

=
2n−1∑

j=1

(−1) j F
α1,...,α j−1,α j+1...,α2n−1
Dδ

F
α j ,α2n
Dδ

.

The strategy is to use the boundary value problem uniqueness result (Lemma 2.11) to
show that the function Hα1,...,α2n−1

Dδ
(a2n)−∑2n−1

j=1 (−1) j F
α1,...,α j−1,α j+1...,α2n−1
Dδ

H
α j
Dδ

(a2n)
is identically zero. The boundary condition is obviously satisfied; the fact that all sin-
gularities at α1, . . . , α2n−1 are removable, i.e. have residue zero, is immediate from
Lemma 4.7. ��
We now extend the Pfaffian representation to the fused observables. For any edge e,
write e+ = eo

+
, e− = eo

−
for a pair of s-orientations o± of e, so that o+ = eπ i o−. Recall

the use of the † to denote

F†
Ωδ

= FΩδ − FCδ
and F†

[Ωδ,0] = F[Ωδ,0] − F[Cδ,0].

For edges e1, . . . , em define the 2m × 2m antisymmetric matrix with F
†e+i ,e−

i
Dδ

on the
anti-diagonal i + j = 2m + 1, i ≤ m, and more generally, entries,

F[{ek }]
Dδ

:=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 F
e+1 ,e+2
Dδ

. . . F
e+1 ,e+m
Dδ

F
e+1 ,e−

m
Dδ

. . . F
e+1 ,e−

2
Dδ

F
†e+1 ,e−

1
Dδ

0 . . . F
e+2 ,e+m
Dδ

F
e+2 ,e−

m
Dδ

. . . F
†e+2 ,e−

2
Dδ

F
e+2 ,e−

1
Dδ

0
... . .

. ...
...

. . . F
†e+m ,e−

m
Dδ

F
e+m ,e−

2
Dδ

F
e+m ,e−

1
Dδ

0 . . . F
e−
m ,e−

2
Dδ

F
e−
m ,e−

1
Dδ

. . .
...

...

0 F
e−
2 ,e−

1
Dδ

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Proposition 4.15. Suppose α j = a
o j
j for j = 1, . . . , 2n and ek for k = 1, . . . ,m

are distinct (possibly pairwise-fused) interior medial vertices of Dδ = Ωδ or [Ωδ, 0].

Define the block antisymmetric 2(m + n) × 2(m + n) matrix F
{a j }:[{ek }]
Dδ

by

F
{a j }:[{ek }]
Dδ

:=
⎛

⎝
F[{ek }]
Dδ

−
[
F

{a j }×[{ek }]
Dδ

]T

F
{a j }×[{ek }]
Dδ

F
{a j }
Dδ

⎞

⎠ , where

F
{a j }×[{ek }]
Dδ

:=

⎛

⎜
⎜
⎝

F
α1,e+1
Dδ

. . . F
α1,e+m
Dδ

F
α1,e−

m
Dδ

. . . F
α1,e

−
1

Dδ
...

...
...

...

F
α2n ,e+1
Dδ

. . . F
α2n ,e+m
Dδ

F
α2n ,e−

m
Dδ

. . . F
α2n ,e

−
1

Dδ

⎞

⎟
⎟
⎠ .
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Then

Fα1,...,α2n :[e1,...,em ]
Dδ

= Pf F
{a j }:[{ek }]
Dδ

.

In particular, since Fα1,...,α2n :[e1,...,em ]
Dδ

does not depend on the choice of s-orientations

o+j , o
−
j on ek , the Pfaffian does not.

Proof. Without loss of generality, we will assume Dδ = Ωδ; the case Dδ = [Ωδ, 0]
can be treated identically. We use induction on m. The case m = 0 is given by Propo-
sition 4.14. Now we assume the result holds for m, and consider the case m + 1. By
Lemma 4.11, if e+m+1 = eom+1 is an s-orientation of em+1, we can extend to the removed
singularity

[
H

α1,...,α2n ,e+m+1:[e1,...,em ]
Ωδ

− Fα1,...,α2n :[e1,...,em ]
Ωδ

H
e+m+1
Cδ

]
(em+1) := 1√

o
Fα1,...α2n :[e1,...,em+1]

Ωδ
.

Then by the projection relations given by s-holomorphicity, we can deduce

F
α1,...,α2n ,e+m+1,e

−
m+1:[e1,...,em ]

Ωδ
− Fα1,...,α2n :[e1,...,em ]

Ωδ
F
e+m+1,e

−
m+1

Cδ
:= Fα1,...α2n :[e1,...,em+1]

Ωδ
.

By the inductive hypothesis, we have the desired Pfaffian formulations of

F
α1,...,α2n ,e+m+1,e

−
m+1:[e1,...,em ]

Ωδ
and Fα1,...,α2n :[e1,...,em ]

Ωδ
. Expanding the Pfaffian along the last

column as in (4.7) the result easily follows. ��

4.4. Observables and Ising correlations. In this subsection we present the connection
between Ising model correlations and spin-weighted correlations and the two-point
observables defined in Sect. 3.1. These formulae follow immediately from the results
of Sects. 4.2 and 4.3.

4.4.1. Spin-symmetric correlations Recall that we have defined a spin-symmetric corre-
lation as the expectation of a product of energy densities which scale with the mesh size
δ. Our characterization of the correlation consists of a Pfaffian involving the real observ-
ables introduced in Sect. 3. For an edge e, we will denote by e+ := eo

+
, e− := eo

−
for

any pair of s-orientations o+, o− such that o+ = eπ i o−; the following characterization
shows in particular that the Pfaffian does not depend on such choice.

Proposition 4.16. For any collection of distinct (possibly adjacent) interior edges
e1, . . . , em in Ωδ ,

EΩδ

⎡

⎣
∏

e∈{ek }
ε(e)

⎤

⎦ = (−1)m 2mPf
(

F[{ek }]
Ωδ

)
,

where for any admissible s-orientations, o±
1 , . . . , o±

m, the antisymmetric matrix F[{ek }]
Ωδ

is
given by
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 F
e+1 ,e+2
Ωδ

. . . F
e+1 ,e+m
Ωδ

F
e+1 ,e−

m
Ωδ

. . . F
e+1 ,e−

2
Ωδ

F
†e+1 ,e−

1
Ωδ

0 . . . F
e+2 ,e+m
Ωδ

F
e+2 ,e−

m
Ωδ

. . . F
†e+2 ,e−

2
Ωδ

F
e+2 ,e−

1
Ωδ

0
... . .

. ...
...

. . . F
†e+m ,e−

m
Ωδ

F
e+m ,e−

2
Ωδ

F
e+m ,e−

1
Ωδ

0 . . . F
e−
m ,e−

2
Ωδ

F
e−
m ,e−

1
Ωδ

. . .
...

...

0 F
e−
2 ,e−

1
Ωδ

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where F†α,ζ
Ωδ

:= Fα,ζ
Ωδ

− Fα,ζ

Cδ
.

Proof. Starting from the characterization of Proposition 4.13, we can calculate the fused
observable via an application of Proposition 4.15. ��

4.4.2. Spin-antisymmetric correlations Recall that a spin-weighted correlation was
defined as the expectation of a product of the spin at 0 and energy densities on adjacent
sites.We characterize it as a Pfaffian analogously to the previous subsection, but withΩδ

replaced by its double cover and the two-point fermion replaced with the spin-fermion
observable. Accordingly, we again fix orientations e+, e− as well as a choice of lift in
[Ωδ, 0] for an edge e in Ωδ , on which the value of the Pfaffian does not depend.

Proposition 4.17. For any collection of distinct (possibly adjacent) interior edges
e1, . . . , em in Ωδ ,

1

EΩδ [σ0]
EΩδ

⎡

⎣σ0
∏

e∈{ek }
ε[0](e)

⎤

⎦ = (−1)m 2mPf
(

F[{ek }]
[Ωδ,0]

)
,

where for any admissible s-orientations o±
1 , . . . , o±

m, the antisymmetric matrix F[{ek }]
[Ωδ,0]

is given by
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 F
e+1 ,e+2
[Ωδ,0]

. . . F
e+1 ,e+m
[Ωδ,0]

F
e+1 ,e−

m
[Ωδ,0]

. . . F
e+1 ,e−

2
[Ωδ,0]

F
†e+1 ,e−

1
[Ωδ,0]

0 . . . F
e+2 ,e+m
[Ωδ,0]

F
e+2 ,e−

m
[Ωδ,0]

. . . F
†e+2 ,e−

2
[Ωδ,0]

F
e+2 ,e−

1
[Ωδ,0]

0
... . .

. ...
...

. . . F
†e+m ,e−

m
[Ωδ,0]

. . . F
e+m ,e−

2
[Ωδ,0]

F
e+m ,e−

1
[Ωδ,0]

0 . . . F
e−
m ,e−

2
[Ωδ,0]

F
e−
m ,e−

1
[Ωδ,0]

. . .
...

...

0 F
e−
2 ,e−

1
[Ωδ,0]

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where F†α,ζ
[Ωδ,0]

:= Fα,ζ
[Ωδ,0]

− Fα,ζ

[Cδ,0]
.

Proof. Again starting from the characterization of Proposition 4.13, we can calculate
the fused observable via Proposition 4.15, using now the equations corresponding to the
spin-fermion. ��

5. Scaling Limits of Observables

Wehave thus far defined the discrete observableswhich encode probabilistic information
in the form of n-point correlations. As a result of the Pfaffian formulae of Sect. 4.4, it
suffices to consider two-point discrete observables since all multipoint correlations can
now be written in terms of only two-point observables. In this section, we introduce the
continuous observables, which are precisely defined to have continuous analogues of the
properties satisfied by the discrete observables; see Sect. 2. With the appropriate scaling,
the discrete observables will be shown to converge to these continuous observables.

As the heart of convergence proofs is the extension of the convergence results
of [CHI15] for Hα[Ωδ,0] to the case where the singularity point α is no longer at α0,
familiarity with the proofs of convergence in [CHI15] for the case α = α0 is very
helpful to understanding the sequel.

5.1. Integration of the square. Write νz for the unit outward normal vector at z ∈ ∂Ω .
We have the following characterization of the complex fermion observable HΩδ in terms
of discrete complex analysis:

Proposition 5.1 (see [Hon10]). Let α = ao be an s-oriented medial vertex of Ωδ that is
not on the boundary. The function Hα

Ωδ
is the unique function such that:

– Hα
Ωδ

is s-holomorphic on Ωδ\ {a};
– Hα

Ωδ
has discrete residue 1 at α: Hα

Ωδ
(α+) − Hα

Ωδ
(α−) = 1√

o
;

– Hα
Ωδ

(z)
√

νz ∈ R for any boundary medial vertex z.

Similarly, we have the following characterization of the complex spin-fermion observ-
able H[Ωδ0].

Proposition 5.2 Let α = ao be an s-oriented medial vertex of [Ωδ, 0] that is not on the
boundary. The function Hα

[Ωδ,0]
is the unique function such that:

– Hα
[Ωδ,0]

has monodromy −1 around 0;
– Hα

[Ωδ,0]
is s-holomorphic on [Ωδ, 0] \ {a, a∗}, where a, a∗ are on opposite sheets of

[Ωδ, 0];
– Hα[Ωδ,0] has discrete residue 1 at α: H

α
[Ωδ,0]

(α+) − Hα
[Ωδ,0]

(α−) = 1√
o
;

– Hα
[Ωδ,0]

(z)
√

νz ∈ R for any boundary medial vertex z.

Proof of Propositions 5.1–5.2. Monodromy for the latter is clear from the sheet factor
sα,ζ . Proposition 4.5 and Lemmas 4.7 and 4.9 provide the remaining properties. Unique-
ness follows from Lemma 2.11. ��
We now consider the square integral Qα

δ of the observables. These are the same discrete
square integral analogues Iδ(Hδ) = Re

∫
(Hδ)

2 introduced in Sect. 2.3 in the casewhere
Hδ is one of Hα

Ωδ
, Hα

[Ωδ,0]
, but we need to analyze their properties near the singularity at
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α and the monodromy. These square integrals will be our primary means of estimating
both observables, but for conciseness, we will assume that we are working with Hα

[Ωδ,0]
.

Neither the construction nor the properties are changed in the Hα
Ωδ

case, except for the
fact that there are no longer complications arising from the branching at 0.

Proposition 5.3. Supposeα = ao is an s-oriented corner in [Ωδ, 0]. Consider the single-

valued integral of the square Qα
δ := Iδ

[
Hα
[Ωδ,0]

]
: FΩδ ∪ VΩδ → R constructed with

the usual rule

Qα
δ (w) − Qα

δ (v) = 2δ

∣
∣
∣
∣H

α
[Ωδ,0]

(
1

2
(w + v)

)∣
∣
∣
∣

2

,

wherew is a face, v is a vertex incident to the face, so that 12 (w+v) is the corner between

them (note that at the singularity a,
∣
∣
∣Hα

[Ωδ,0]
(a)

∣
∣
∣
2 = 1

8 ), and the Dirichlet boundary

condition

Qα
δ (w) = 0 for w ∈ ∂FΩδ .

It has

– ΔδQα
δ = 2δ

∣
∣
∣∂δHα

[Ωδ,0]

∣
∣
∣
2
on FΩδ\

{
0, a − o δ

2

}
, ΔδQα

δ = −2δ
∣
∣
∣∂δHα

[Ωδ,0]

∣
∣
∣
2
on

VΩδ\
{
a + o δ

2

}
;

– The outer normal derivative ∂out Qα
Ω = √

2
∣
∣
∣Hα

[Ωδ,0]

∣
∣
∣
2
on ∂Vm

Ωδ
.

Proof. The proof follows from direct computations in Chapter 2 of [Hon10] and Section
3.3 of [ChSm12]. Note that as in [CHI15, Proposition 3.6], the singularity at a (two
projections from neighboring medial vertices differing only by a sign) and branching at
0 does not affect well-definedness of Qα

δ , but does affect the Laplacian at 0, a± o δ
2 . ��

Remark 5.4. In keeping with the Dirichlet boundary condition, we can define Q̃α
δ which

simplymodifies the valueofQα
δ on ∂VΩδ to be zero.This affects theLaplacian andnormal

derivative, but one can define an alternate Laplacian Δ̃δ modified at the boundary which
gives Δ̃δ Q̃α

δ = ΔδQα
δ ; see [CHI15, Preposition 3.6].

Remark 5.5. Similarly, one can define the integral Q†α
δ := Iδ

[
Hα
[Ωδ,0]

− Hα
[Cδ,0]

]
; this

has the advantage of removing the singularity at α, so that we have sub- and super-
harmonicity at all points except for 0. [CHI15, Remark 3.8] notes that in the spe-
cial case a = δ

2 we in fact do have sub-harmonicity at a, owing to the fact that
[
Hα
[Ωδ,0]

− Hα
[Cδ,0]

]
(a) := 0.

5.2. Continuous observables. The continuous observables are the solutions of the
continuous Riemann boundary value problem corresponding to the discrete b.v.p. of
Lemma 2.11. We prove that they are in fact the scaling limits of their discrete counter-
parts in Sect. 5.3.
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5.2.1. Continuous full-plane observables We begin by defining the continuous full-
plane observables. In analogy with the discrete case, we define an s-orientation o of a
point a in a continuous domain Ω as a choice of any unit complex number o with a
specified square root.

Definition 5.6. Let α := ao and ζ := z p be two s-oriented points of C with a �= z. We
define the continuous fermion observable fC by

f α
C

(ζ ) := i
√
p · P 1

i
√
p R

[
hα

C
(z)

] = Re
[
i
√
p · hα

C
(z)

]
,

where the complex observable hC is defined by

hα
C

(z) := 1√
2π

√
o

z − a
.

Analogously to the previous definition, we proceed to define the continuous full-plane
spin-fermionobservable. Since the source point δα of the discrete two-point spin-fermion
tends to the monodromy point 0 as δ → 0, we fix it as α ∈ Vcm

[C1,0], and formally denote
the dependence of the continuous spin-fermion on α by dα (not to be confused with
δα ∈ Vcm

[Cδ,0], which is the scaling of α by δ > 0).

Definition 5.7. Let α := ao be an s-oriented corner or medial vertex of [C1, 0]. Let ζ :=
z p be an s-oriented point of [C, 0]. We define the continuous spin-fermion observable
f[C,0] by

f dα
[C,0] (ζ ) := Re [i√p · hdα

[C,0](z)],

where the complex observable hdα
[C,0] is defined by

hdα
[C,0] (z) := Cα√

z
,

and the scaling limit factor Cα ∈ R is given by

Cα = −Re
[
i
√
o
(
G̃+

[C1,0] − G̃−
[C1,0]

)
(a)

]
. (5.1)

Recall, here, that G̃± are the discrete analogs of i
2
√
2

√
z given by Definition 3.25. Note

that when α is an s-oriented corner, we do not need to take the real-part in the definition
above as i

√
oG̃±(a) are already real, due to s-holomorphicity. In particular, if α is an

s-oriented real or imaginary corner we have that

Cα =

⎧
⎪⎨

⎪⎩

± 1
2
√
2

√
o · hm X

i
1

1/2(a) if a ∈ V i
[C1,0]

∩ X
±

∓ i
2
√
2

√
o · hm Y

1
1−1/2(a) if a ∈ V1

[C1,0]
∩ Y

±
.
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5.2.2. Continuous bounded domain observables Let Ω ⊂ C be a bounded simply con-
nected domain containing 0. Recall that we denote by ϕ the conformal mapping from Ω

to the open unit disk D with ϕ (0) = z and ϕ′(0) > 0. Here we set z = 0. We transform
α = ao as ϕ(α) = ϕ(a)o

′
, o′ = (√

ϕ′(a)
√
o
)2

/
∣
∣ϕ′(a)

∣
∣ under ϕ (with a continuous

square root branch choice for ϕ′ such that
√

ϕ′(0) > 0).

Definition 5.8. Let α = ao, ζ = z p be two s-oriented points of Ω with a �= z. We
define the fermion observable fΩ by

f α
Ω (ζ ) := i

√
pP 1

i
√
p R

[
hα

Ω(z)
] = Re

[
i
√
p · hα

Ω(z)
]
,

where the complexified fermion observable hΩ is defined by

hα
Ω (z) := √|ϕ′(a)|√ϕ′(z)hϕ(α)

D
(ϕ(z)), where

hα
D
(z) := 1√

2π

(
1√
o

· 1

1 − āz
+

√
o

z − a

)

.

Definition 5.9. Let α = ao be an s-oriented corner or medial vertex on [C1, 0], and
ζ = z p be an s-oriented point of Ω with a �= z. We define the spin-fermion observable
f[Ω,0] by

f dα
[Ω,0] (ζ ) := i

√
pP 1

i
√
p R

[
hdα
[Ω,0](z)

]
= Re

[
i
√
p · hdα

[Ω,0](z)
]
,

where the complexified spin-fermion observable h[Ω,0] is defined by

hdα
[Ω,0] (z) := √

ϕ′(z)hdα
D

(ϕ(z)), where hdα
[D,0](z) = Cα√

z
.

Remark 5.10. As explained above, these definitions imply continuous versions of the
properties satisfied by the discrete observables; they share the singularities of the full-
plane observables, and satisfy the boundary condition hα

Ω(z), hdα[Ω,0](z) ∈ νz
−1/2

R, if
νz is the unit outward normal vector at z ∈ ∂Ω . These also uniquely characterize a
holomorphic function: see [Hon10, Proposition 48] and [CHI15, Lemma 2.9].

5.3. Observable convergence: statements. We now state the two observable conver-
gence results for the fermion and spin-fermion that are needed for the proof of the main
theorem in Sect. 6. The bulk of the remaining work is in the proof of the spin-fermion
observable convergence; that proof is deferred until the next subsection.

In what follows, we say an s-holomorphic function Hδ : Vcm
Dδ

→ C converges to a
continuous function h : D → C if for any sequence aδ ∈ Vm

Dδ
such that aδ → a ∈ D we

have Hδ(aδ) → h(a). Equivalently, the values of Hδ on type 1 and i corners respectively
converge to the real and imaginary parts of h.

For notational convenience and concreteness, whenwe take z ∈ D to be the argument
of an s-holomorphic function Hδ defined on Vcm

Dδ
, we will take a closest medial vertex

zδ ∈ Vm
Dδ

to z and evaluate it at zδ . Then the convergence is often uniform on a compact
set K ⊂ D, i.e. |Hδ(zδ) − h(z)| is small uniformly in z ∈ K .

By a slight abuse of notation, we will then use the notation α = ao and ζ = z p both
for the the s-orientations of a or z, and those of aδ and zδ .
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Theorem 5.11 ([Hon10, Theorem 91]). As δ → 0, we have

1

δ

(
Fα

Ωδ
− Fα

Cδ

)
(ζ ) → (

f α
Ω − f α

C

)
(ζ ) ,

uniformly for a, z away from ∂Ω .

Now let α := ao and ζ := z p be s-oriented corners on [C1, 0]. For δ > 0, denote
by δα := (δa)o and δζ := (δz)p their corresponding scaled versions on [Cδ, 0] and,
for sufficiently small δ, on [Ωδ, 0]. Recall that G, G̃± are the discrete analogues of
1

2
√
2

√
z, i

2
√
2

√
z, respectively, introduced in Definition 3.25.

Theorem 5.12 For α, ζ any s-oriented corners or medial vertices in [C1, 0], we have as
δ → 0,

1

δ

(
Fδα
[Ωδ,0] − Fδα

[Cδ,0]

)
(δζ )

→ 2 · 2√2Re AΩ · (CαRe
[
i
√
pG[C1,0](z)

] − CζRe
[
i
√
oG[C1,0](a)

])

+ 2 · 2√2Im AΩ ·
(
CαRe

[
i
√
pG̃−

[C1,0](z)
]

− CζRe
[
i
√
oG̃−

[C1,0](a)
])

,

where, for α0 = 1
2
o
as before, AΩ is the coefficient in the expansion

hdα0
Ω (z) = 1

2
√
2

(
1√
z
+ 2AΩ

√
z + O(|z|3/2)

)

.

Proof. This statement is the consequence of results proved in Sect. 5.4. Theorem 5.18
shows the following in the case where α, ζ are both s-oriented corners: 1

δ
[H δα[Ωδ,0](δz)−

H δα
[Cδ,0](δz)] converges to

2 · 2√2 ·
[
Re AΩ ·

(
CαG[C1,0](z) + i

√
o
[
G̃+

[C1,0] − G̃−
[C1,0]

]
(z)G[C1,0](a)

)

+Im AΩ ·
(
CαG̃

−
[C1,0](z) + i

√
o
[
G̃+

[C1,0] − G̃−
[C1,0]

]
(z)G̃−

[C1,0](a)
)]

,

where we used Corollary 5.19 in order to identify C̃α with Cα defined by (5.1). This
formula also applies in the case where z is a medial vertex by linearity. Reformulation in
the form of the theorem statement follows from the definition of the real observable; we
can then swap α, ζ from the antisymmetry of the real observable and proceed to prove
the result for the case where both are medial vertices. ��
Remark 5.13. It was shown in [CHI15, Lemma 2.21] that AΩ = A[Ω,0] =
− 1

4∂z log rΩ(z)
∣
∣
z=0 which is the logarithmic derivative of the conformal radius as viewed

from 0 ∈ Ω . This is used in Theorem 6.6 to identify the coefficient in the first-order
correction to spin weighted correlations with − 1

4∂z log rΩ(z)|z=0.

5.4. Observable convergence: proofs. We now prove the aforementioned observable
convergence theorems, in particular, the convergence of the full-plane observables and
Theorem 5.12.

A tricky point of this subsection is that the explicit coefficient Cα of Definition 5.7,
in the claimed limit hdα

[C,0](z) = Cα/
√
z of the full-plane spinor H δα

[Cδ,0]
, can only be

identified as such once all convergence results are proven; until then we introduce a
recursively defined stand-in C̃α and h̃dα

[C,0](z) := C̃α/
√
z. We then show the equality

C̃α = Cα at the end of this subsection in Corollary 5.19.
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5.4.1. Convergence of the full-plane observables Wefirst state direct extensions of some
results in [CHI15] regarding convergence of the full-plane observables and functions.
In [CHI15], the renormalization factor ϑ(δ) := hm Cδ\R<0

0 (2δ�(2δ)−1�) is used; we are
able to calculate the constant explicitly thanks to Proposition A.1. Specifically, writing
N := �(2δ)−1�, ϑ(δ) = 1

2 · 3
4 · · · 2N−1

2N = (2N )!
4N N !2 and Stirling’s approximation shows

ϑ(δ) ∼ 1√
πN

∼
√

2δ
π
.

Lemma 5.14. For α ∈ Vcm
[C1,0]

, we have
√

π
2δ H

δα
[Cδ,0]

(z)
δ↓0−−→ h̃dα

[C,0](z) := C̃α√
z uniformly

on compact subsets in C\{0} for some C̃α ∈ R, which can be computed recursively.

Proof. [CHI15, Lemma 2.14] provides the case where α = α0 = 1
2
o
, o = (e2·π i )2

(C̃α0 = 1
2
√
2
in our normalization). The other cases easily follow from the recursive

constructions given in Proposition 3.22 and Corollary 3.24. The fact that C̃α ∈ R is
inductively apparent from the fact that for any source point α, the function H δα

[Cδ,0]
(z)

vanishes if z is an imaginary corner of the positive real line, or a real corner of the
negative real line.

Lemma 5.15. We have that
√

π
2δG[Cδ,0](z)

δ↓0−−→ 1
2
√
2

√
z and

√
π
2δ G̃

±
[Cδ,0]

(z)
δ↓0−−→

i
2
√
2

√
z uniformly on compact subsets in C\{0}.

Proof. By [CHI15, Lemma 2.17], we have convergence of the real part of G[Cδ,0]. The
lemma follows by rotation and multiplication by i . ��

5.4.2. Convergence of the bounded domain observables We begin by proving the fol-
lowing convergence result, which is a simple generalization of [CHI15, Theorem 2.18].
It provides a local estimate near the monodromy point 0 which will be crucial to the
proof of the general global convergence.

As we have introduced h̃dα
[C,0] as the counterpart of h

dα
[C,0] where Cα was replaced by

C̃α in Lemma 5.14, we define h̃dα0
[Ω,0] using Definition 5.9 where Cα in hdα

[Ω,0] is replaced

by C̃α (i.e. h̃dα0
[Ω,0](z) = √

ϕ′(z) C̃α√
ϕ(z)

). Note Cα0 = C̃α0 = 1
2
√
2
. Recall also that we

defined AΩ as the coefficient in the expansion,

hdα0
[Ω,0](z) = h̃dα0

[Ω,0](z) = 1

2
√
2

(
1√
z
+ 2AΩ

√
z + O(|z|3/2)

)

.

Lemma 5.16. For α0 = 1
2
o
,
√
o = 1, and a corner or medial vertex a on [C1, 0],

H†δα0[Ωδ,0](δa) = H δα0[Ωδ,0](δa) − H δα0
[Cδ,0](δa)

=
(
2Re AΩ · G[Cδ,0] + 2Im AΩ · G̃−

[Cδ,0]
)

(δa) + o(δ).

Proof. We closely follow the strategy in Section 3.5 of [CHI15]. Note that

H†δα0[Ωδ,0] −
(
2Re AΩ · G[Cδ,0] + 2Im AΩ · G̃−

[Cδ,0]
)

is s-holomorphic, so it suffices to show that it is o(δ) on real and imaginary corners and
propagate.
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Recalling the symmetrized and antisymmetrized observables Sα[Ωδ,0] := 1
2

[
Hα
[Ωδ,0]

+

H ᾱ

[Ωδ,0]

]
, Aα[Ωδ,0] := 1

2

[
Hα
[Ωδ,0]

− H ᾱ

[Ωδ,0]

]
and �δ = Ωδ ∩ Ωδ from Definition 3.11,

define the following functions, s-holomorphic everywhere on [�δ, 0]:

Sδ := Sδα0[Ωδ,0] − Sδα0
[Cδ,0]

− 2ReAΩ · G[Cδ,0],

Aδ := Aδα0[Ωδ,0] − Aδα0
[Cδ,0]

− 2 ImAΩ · G̃−
[Cδ,0].

Given that Sδ + Aδ = H†δα0[Ωδ,0] −
(
2Re AΩ · G[Cδ,0] + 2Im AΩ · G̃[Cδ,0]

)
, it remains

to estimate the real and imaginary parts S1δ := Sδ|V1
[�δ,0]∩X+ , Siδ := Sδ|V i

[�δ,0]∩Y+ and

A1
δ := Aδ|V1

[�δ,0]∩Y+ , Ai
δ := Aδ|V i

[�δ,0]∩X+ . Without loss of generality we show the o(δ)

estimate for S1δ (δa), where S1δ is harmonic in the slit domain V1
[�δ,0]

∩X
+ and vanishes

on V1
[�δ,0]

∩ R<0.

Define the discrete circle w(r) := {z ∈ Dom(S1δ ) : r < |z| < r + 5δ} for small
r > 0. The same twist of the discrete Beurling estimate ([LaLi04, Theorem 1]) as in

[CHI15, Lemma 3.3] or our proof of Theorem 3.15 gives hm
X
+
δ{δa}(z) ≤ Cδ1/2|z|−1/2.

By reversibility of the simple random walk we have hm
X
+
δ

w(r)(δa) ≤ Cδ1/2r−1/2, which
gives an estimate of a harmonic function identically 1 on w(r) and vanishing on the slit.
Comparing this with S1δ on w(r) and applying the maximum principle in the interior
gives

∣
∣
∣S1δ (δa)

∣
∣
∣ ≤ Cδ

1
2 r− 1

2 sup
w(r)

∣
∣
∣S1δ

∣
∣
∣ .

Now by convergence of
√

π
2δ H

δα0[Ωδ,0] to hdα0[Ω,0], away from the singularity, as δ → 0

(see Theorem 2.16 of [CHI15]), we have
√

π

2δ
S1δ (z) →Re

[
1

2

(
h̃dα0
[Ω,0](z) + h̃dα0

[Ω,0](z̄)
)

− h̃dα0
[C,0](z) − 2AΩRe

√
z

]

= O(|z|3/2).

Here we used the fact that h̃dα0

[Ω,0]
(·) = h̃dα0

[Ω,0](·̄) since the right hand side is the unique

solution to the boundary value problem in Remark 5.10. Thus, we have
∣
∣S1δ (δa)

∣
∣ ≤ C ′δr

and since r is arbitrary we have S1δ (δa) = o(δ) as δ → 0.
The estimate follows analogously for Siδ, A

1
δ , A

i
δ , since they share the following prop-

erties which were the two properties needed to deduce that S1δ (δa) = o(δ) above:

1. they are harmonic functions on their respective slit domains and vanish on the
slits; we might extend the slit by a point, specifically the slit for Ai

δ includes δ
2 ∈

V i
[�δ,0]

∩X
+ given that Aδ(

δ
2 ) = Ai

δ(
δ
2 ) = 0 (which also implies that A1

δ is harmonic

at − δ
2 ).

2. they are O(|z|3/2) on the discrete circle w(r) defined above. ��
Now we prove global convergence for general source point α �= α0, away from 0.
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Proposition 5.17. If α = ao is an s-oriented corner or medial vertex on [C1, 0]; then as

δ → 0, we have
√

π
2δ H

δα
[Ωδ,0]

(z)
δ↓0−−→ h̃dα

[Ω,0](z) uniformly on compact subsets of Ω\{0}.

Proof. [CHI15, Theorem 2.16] proves the case where α = α0 = 1
2
o
,
√
o = 1; they

consider the square integrals Q̃δα0
δ and Q†δα0

δ as introduced in Sect. 5.1 (in their notation,

Hδ, H
†
δ ), and show that they converge to the continuous functions Re

∫ (
h̃δα0
[Ω,0]

)2
and

Re
∫ (

h̃δα0
[Ω,0] − h̃δα0

[C,0]

)2
, which implies convergence of the integrand (see Section 3.4

of [CHI15]). In our notation, they show uniform boundedness, and thus equicontinuity,
of Q̃δα0

δ , Q†δα0
δ in δ in each subdomain of Ωδ , away from the boundary and 0. Their

subsequential limits are then identified with the continuous square integrals above.
We argue that a similar strategy works for all α. In fact, the only difference here is that

the sub-harmonicity of Q†δα
δ at 0 fails, since in general H†δα

[Ωδ,0]
( δ
2 ) �= 0. Sub-harmonicity

of the square integral is used twice in the proof of [CHI15, Theorem 2.16]: it shows that
their Hδ (which corresponds to our Q

†δα
δ ) is uniformly bounded near 0, which is needed

to identify the limit, and it is needed to apply the maximum principle near 0 and obtain
[CHI15, Lemma 3.10]. We will thus reproduce these two bounds, except that we replace
Q†δα

δ in their argument by a modified version Q††δα
δ , which we now introduce.

By Lemma 5.16 and rescaling,

H†δα0
[Ωδ,0]

(δa) = δ
(
2Re AΩ · G[C1,0](a) + 2Im AΩ · G̃−

[C1,0](a) + o(1)
)

,

and by antisymmetry between the two arguments, it is easy to see that H†δα
[Ωδ,0](δa0) =

1
2
√
2
(Aα + o(1))iδ as δ → 0 for some constant Aα . Then the modified observable

H††δα
[Ωδ,0] := H†δα

[Ωδ,0] − 2
√
2
H†δα

[Ωδ,0](δa0)
δi

G̃+
[Cδ,0] = H†δα

[Ωδ,0] − (Aα + o(1))G̃+
[Cδ,0]

is everywhere s-holomorphic and satisfies H††δα
[Ωδ,0](δa0) = 0, so its integral Q††δα

δ :=
Iδ

[
H††δα

[Ωδ,0]
]
is sub-harmonic on faces and super-harmonic on vertices. It converges to

Re
∫ (

h̃dα
[Ω,0](z) − h̃dα

[C,0](z) − i

2
√
2
Aα

√
z

)2

dz

uniformly away from 0, so both the discrete observable and the continuous function
are single-valued and bounded near 0. This fact, alternatively to its analogue for Q†δα

δ ,
also implies [CHI15, (2.8)], which identifies the singularity at 0. The analog of [CHI15,
Lemma 3.10] also easily follows by replacing H†

δ in their proof by Q††δα
δ as defined

above. ��
We now analyze the observable near the singularity at 0, finally giving the proof of the
main convergence theorem. Balancing the two discrete analogues G̃±

[Cδ,0] of
i

2
√
2

√
z to

create a harmonic function which is amenable to the methods of analysis used thus far
is crucial to the proof.
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Theorem 5.18 (Convergence Content of Theorem 5.12). If z ∈ Vc
[C1,0]

and α = ao is
an s-oriented corner on [C1, 0], then as δ → 0,

H†δα
[Ωδ,0](δz) = 2

√
2C̃α

(
2Re AΩ · G[Cδ,0] + 2Im AΩ · G̃−

[Cδ,0]
)

(δz)

+ i2
√
2
√
o
(
2Re AΩ · G[C1,0] + 2Im AΩ · G̃−

[C1,0]
)

(a)
[
G̃+

[Cδ,0] − G̃−
[Cδ,0]

]
(δz) + o(δ).

Proof. We argue that the same strategy as in the proof of Lemma 5.16 works here.
Indeed, after defining

Sδ := Sδα[Ωδ,0] − Sδα
[Cδ,0] − 2 · 2√2C̃α ReAΩ · G[Cδ,0]

Aδ := Aδα[Ωδ,0] − Aδα
[Cδ,0] − 2 · 2√2C̃α ImAΩ · G̃−

[Cδ,0]
− i2

√
2
√
o
(
2Re AΩ · G[C1,0] + 2Im AΩ · G̃−

[C1,0]
)

(a)
[
G̃+

[Cδ,0] − G̃−
[Cδ,0]

]
,

one sees that the real and imaginary parts of these two functions satisfy properties (1)
and (2) at the end of the proof of Lemma 5.16, sufficient to conclude that S1δ , Siδ, A

1
δ , A

i
δ

evaluated at (δz) are o(δ). The additional term in Aδ above is needed because we require
Aδ(δa0) = 0;
[
Aδα[Ωδ,0] − Aδα

[Cδ,0]

]
(δa0) = H†δα

[Ωδ,0]
(δa0) = −√

oH†δα0
[Ωδ,0]

(δa)

= −δ
√
o
(
2Re AΩ · G[C1,0] + 2Im AΩ · G̃−

[C1,0]
)

(a) + o(δ),

so we insert G̃+ to cancel out this nonzero value, then adjust the coefficient in front of
G̃− to match the global limit. ��

We are now in position to explicitly characterize C̃α . The following is a consequence
of Theorem 5.18.

Corollary 5.19. For every α ∈ Vcm
[C1,0], the constant C̃α defined in Lemma 5.14 is given

explicitly by

C̃α = −Re
[
i
√
o
(
G̃+

[C1,0] − G̃−
[C1,0]

)
(a)

]
=: Cα,

and therefore h̃dα
[C,0] = hdα

[C,0].

Proof. First we suppose a is a real or imaginary corner; note that in this case the real part
operator in the definition of Cα or real observables is superfluous. In Theorem 5.18, let
z = 3

2 , say on X
+, and let ζ = z p with

√
p = i . Since F†δα,δζ

[Ωδ,0] = Re i
√
pH†δα

[Ωδ,0](δz) =
i
√
pH†δα

[Ωδ,0](δz),

(2
√
2δ)−1F†δα,δζ

[Ωδ,0] →C̃α

[
i
√
p
(
2Re AΩ · G[C1,0] + 2Im AΩ · G̃−

[C1,0]
)

(z)
]

− Cζ

[
i
√
o
(
2Re AΩ · G[C1,0] + 2Im AΩ · G̃−

[C1,0]
)

(a)
]
,

(2
√
2δ)−1F†δζ,δα

[Ωδ,0] →C̃ζ

[
i
√
o
(
2Re AΩ · G[C1,0] + 2Im AΩ · G̃−

[C1,0]
)

(a)
]
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− Cα

[
i
√
p
(
2Re AΩ · G[C1,0] + 2Im AΩ · G̃−

[C1,0]
)

(z)
]
.

Since the two limits should differ only by sign, the result follows by using that
G[C1,0](z) �= 0, G̃±

[C1,0](z) = Cζ = 0, and the fact that, by our recursive construc-

tion, C̃ζ = 0 (see Proposition 3.22, and in particular, Proposition A.2).
In the case where a is a medial vertex, note that by s-holomorphicity of H δα

[Cδ,0]

and antisymmetry of its real counterpart, in their arguments, we can express C̃α as
a linear combination of C̃β± , where β± are adjacent real and imaginary (s-oriented)
corners. Notice that this linear combination is exactly mirrored in the case of Cα , since
G̃+

[C1,0] − G̃−
[C1,0] is s-holomorphic; thus the desired equality holds. ��

6. Proofs of Theorems

In this section, we complete the proofs of Theorems 1.1–1.2 and Corollary 1.3.

6.1. Spin-symmetric fields. We first prove Theorem (1.1), establishing the conformal
invariance of spin-symmetric fields.

Definition 6.1. Suppose a �= z are medial vertices onC1. For s-orientations o, p on a, z
respectively, write α = ao, ζ = z p. Define

Fα,ζ

C1
= Re

[
i
√
pHα

C1
(z)

]
,

Eα,ζ

C1
= Re

[
i
√
p
√
o√

2π

]

,

where Hα
C1

(z) was explicitly defined in (3.1).
Now let {ek} = {e1, . . . , en} be a collection of distinct edges of C1. Set

(x1, . . . , xn, xn+1, . . . , x2n) := (
e+1 , . . . e

+
n , e

−
n , . . . , e−

1

)
,

where e+j := eo
+

j and e−
j := eo

−
j denote a choice of opposite s-orientations of e j such

that o+ = eπ i o−.
We write F{ek } to denote the 2n × 2n antisymmetric matrix with entries

(
F{ek })

jk :=
F
x j ,xk
C1

for j + k �= 2n + 1, and
(
F{ek })

jk := 0 on the anti-diagonal j + k = 2n + 1; we

also set E{ek } to be the matrix taking values
(
E{ek })

jk := E
x j ,xk
C1

. Now define

P{ek } := (−2)nPf
(

F{ek }
)

,

Q{ek } := (−2)nDE{ek }Pf(F
{ek }),

where DE{ek }Pf denotes the directional derivative of the Pfaffian function in the direction
of E{ek }.

Remark 6.2. The values P{ek } and Q{ek } only depend on the unordered collection {ek}
since they arise as limits of the Pfaffian fromProposition 4.16,which has an interpretation
as a physical quantity only depending on {ek}.
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Theorem 6.3 (Restatement of Theorem 1.1). Let {ek}nk=1 be a collection of n distinct
edges of C1. As δ → 0, we have

EΩδ

⎡

⎣
∏

e∈{ek }
ε(δe)

⎤

⎦ = P{ek } + δ · r−1
Ω (0) · Q{ek } + o (δ) ,

where rΩ (z) is the conformal radius of Ω at z ∈ Ω , defined rΩ(z) := ∣
∣ϕ′(0)

∣
∣ where

ϕ : D → Ω is a conformal map with ϕ(0) = z.

Proof of Theorem 6.3. By Proposition 4.16, we have that

EΩδ

⎡

⎣
∏

e∈{ek }
ε(δe)

⎤

⎦ = (−1)n 2nPf
(

F[{δek }]
Ωδ

)
.

Write F[{δek }]
Ωδ

= F[{δek }]
Cδ

+
[
F[{δek }]

Ωδ
− F[{δek }]

Cδ

]
. By scale invariance, F[{δek }]

Cδ
= F[{ek }]

C1
,

which, by definition, satisfies F[{ek }]
C1

= F{ek }.
By Theorem 5.11, for any α = ao, ζ = z p, if we set δα := (δa)o, δζ := (δz)p we

can calculate

lim
δ→0

1

δ

[
Fδα,δζ

Ωδ
− Fδα,δζ

Cδ

]
=
[
f 0

o

Ω − f 0
o

C

]
(0p) = Eα,ζ

C1
r−1
Ω (0) ,

and the result follows fromTaylor expansionofPf
(

F[{δek }]
Ωδ

)
= Pf

(
F{ek } + δE{ek }r−1

Ω (0)

+o(δ)). ��

6.2. Spin-antisymmetric fields. Wenowgeneralize the aboveproof to spin-antisymmetric
fields, proving Theorem 1.2.

For any s-oriented medial vertex or corner ζ = z p, we introduce the real quantity

G[C1,0](ζ ) = Re [i√pG[C1,0](z)],
anddefine the real quantities G̃±

[C1,0](ζ ) analogously;G[C1,0](z), G̃
±
[C1,0]

(z)were defined
in Sect. 3.2.

Definition 6.4. Suppose a �= z are medial vertices on [C1, 0]. For s-orientations o, p
respectively on a, z, write α = ao, ζ = z p for the s-oriented medial vertices. Set

Fα,ζ

[C1,0]
= Re

[
i
√
pHα

[C1,0](z)
]
,

Eα,ζ

[C1,0]
:= 2 · 2√2

(

[G[C1,0] − i G̃−
[C1,0]](α)[G̃+

[C1,0] − G̃−
[C1,0]](ζ )

− [G[C1,0] − i G̃−
[C1,0]](ζ )[G̃+

[C1,0] − G̃−
[C1,0]](α)

)

.

Let {ek} = {e1, . . . , en} be a collection of distinct edges of C1. Let ẽ1, . . . , ẽn be a
choice of lifts of e1, . . . , en to [C1, 0]. Set

(x1, . . . , x2n) := (
ẽ+1 , . . . , ẽ

+
n , ẽ

−
n , . . . , ẽ−

1

)
,
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where ẽ+j := ẽo
+

j and ẽ−
j := ẽo

−
j denote a choice of opposite s-orientations of ẽ j such

that o+ = eπ i o−.
Define F{ek }

[0] as the 2n × 2n antisymmetric matrix with entries
(

F{ek }
[0]

)

jk
:= F

x j xk
[Cδ,0]

for j + k �= 2n + 1, and
(

F{ek }
[0]

)

jk
:= 0 on the anti-diagonal, j + k = 2n + 1. Define also

E{ek }
[0] the 2n × 2n antisymmetric matrix given by

(
E{ek }
[0]

)

jk
:= E

x j xk
[Cδ,0]

. Let

P{ek }
[0] := (−2)nPf

(
F{ek }
[0]

)
,

Q{ek }
[0] := (−2)nD

E{ek }
[0]

Pf
(

F{ek }
[0]

)
.

Remark 6.5. By the same reasoning as in the spin-symmetric case, the values P{ek } and
Q{ek } only depend on the unordered collection {ek}.
Theorem 6.6 (Restatement of Theorem 1.2). Let {ek}nk=1 be a set of n edges of C1.
For every 1 ≤ k ≤ n, the quantity μek defined in (1.1) exists and, independently of
s-orientation ok on ek, is

μek = √
ok

[

H
e
ok
k

[C1,0](e
ok
k+) + H

e
ok
k

[C1,0](e
ok
k−)

]

, (6.1)

so that ε[0](δek) is a well-defined random variable for every k, and as δ → 0,

EΩδ

[
σ0

∏
e∈{ek } ε[0](δe)

]

EΩδ [σ0]
= P{ek }

[0] + δ · Re
[

−1

4
∂z log rΩ (z)

∣
∣
∣
z=0

· Q{ek }
[0]

]

+ o (δ) ,

where ∂z = 1
2 (∂x − i∂y) if z = x + iy. In particular, it follows from the results of [CHI15]

that

EΩδ

⎡

⎣σ0
∏

a∈{ek }
ε[0](δe)

⎤

⎦ = 0 + C · δ
1
8 · P{ek }

[0] · 2 1
4 · rΩ(0)−

1
8 + o

(
δ
1
8

)
,

where C is a constant given explicitly by Eq. (1.1) of [CHI15].

Proof of Theorem 6.6. The expression for μe for every e ∈ EC1 was given by
Remark 4.8. Now by Proposition 4.17, we have that

EΩδ

[
σ0

∏
e∈{ek } ε[0](δe)

]

EΩδ [σ0]
= (−1)n 2nPf

(
F{δek }
[Ωδ,0]

)
.

Write F{δek }
[Ωδ,0]

= F{δek }
[Cδ,0]

+
[
F{δek }
[Ωδ,0]

− F{δek }
[Cδ,0]

]
.

As before, by scale invariance, F{δek }
[Cδ,0]

= F{ek }
[C1,0]

, and by definition, F{ek }
[C1,0]

= F{ek }
[0] .

By Theorem 5.12, for any α = ao, ζ = z p, if we set δα := (δa)o, δζ := (δz)p we have

lim
δ→0

1

δ
F†δα,δζ
[Ωδ,0]

= −Re

[
1

4
∂z log rΩ (z)

∣
∣
∣
z=0

· Eα,ζ
[0]

]

,
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and hence we get

lim
δ→0

1

δ

[
F{δak }
[Ωδ,0]

− F{δak }
[Cδ,0]

]
= −Re

[
1

4
∂z log rΩ (z)

∣
∣
∣
z=0

· E{ak }
[0]

]

.

The first result then follows from Taylor expansion as in the proof of the previous
theorem, and the second follows by multiplying through by the conformally covariant

expansion of EΩδ [σ0] = C · 2 1
4 · rΩ(0)− 1

8 · δ
1
8 + o

(
δ
1
8

)
given by [CHI15]. ��

6.3. Spin pattern probabilities. Finally, we prove Corollary 1.3 as a consequence of the
above two proofs.

Proof of Corollary 1.3. We begin by proving the corollary for the spin-symmetric pat-
tern fields. For a subset F ⊂ FC1 , let B be the set of all edges separating two adjacent
faces in F . To any spin-symmetric pattern ±ρ on F , we can associate an edge subset
B ⊂ B via the usual low-temperature expansion (see Fig. 1 and Sect. 3.0.1). Denote the
collection of such edge subsets in B that are associated to a spin-symmetric pattern onF
by PF (B) ⊂ P(B). We will index the 2|F |−1-dimensional vector PF = (PB)B∈PF (B)

of the probabilities of all spin-symmetric patterns by corresponding edge subsets.
Given any such an edge subset B, we can calculate a spin-symmetric correlation EB =

EΩδ [ε(δB)] = EΩδ

[∏
e∈B ε(δe)

]
and also form another vector EF = (EB)B∈PF (B)

of dimension 2|F |−1.
Clearly, every correlation function EΩδ [ε(B)] can be expressed as a linear combina-

tion of probabilities of the 2|F |−1 spin-symmetric patterns on B.
Thus we have a 2|F |−1 × 2|F |−1 matrix (EPF )BB′ = ∏

e∈B(μ − (21{e∈B′} − 1)),
such that EF = (EPF )PF . One can check by hand that the matrix has inverse given
by:

(PEF )B′B = 1

2(2|F |−1)
(−1)

∑
e∈B 1{e∈B}⊕1{e∈B′}

∏

e∈B
(μ + (21{e∈B′} − 1)).

Applying the inverse to EF , consisting of conformally covariant spin-symmetric corre-
lations from Theorem 1.1, yields the desired result for spin-symmetric patterns.

For the spin-antisymmetric patterns, an analogous approach but conditioning on
σ0 = ±1 and replacing μ by μe, combined with the conformally covariant expansion

EΩδ [σ0] = C · 2 1
4 · rΩ(0)− 1

8 · δ
1
8 + o

(
δ1/8

)
from [CHI15], gives the desired result. ��
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A. The Harmonic Measure on C1\R>0

We start this section by giving an analytic formula for the harmonic measure of the tip
of the slit plane. This uses Fourier series techniques, which was inspired by [ChHo18].
Using the formula, we prove that the auxiliary functions G[C1,0], G̃

±
[C1,0]

are discrete
holomorphic.

Since the slit-plane harmonic measures appear as different translations of the same
function, we present the following prototype:

Proposition A.1. For s + ik ∈ (1 + i)Z2, the function H0 given by,

H0(z) := hm
(1+i)Z2\Z≥0
0 (z = s + ik) = 1

2π

∫ π

−π

C |k|(θ)√
1 − e−2iθ

e−isθdθ, (A.1)

where C(θ) := cos θ

1 + | sin θ | and the square root is evaluated on the principal branch,

is the unique discrete harmonic function on the diagonal slit plane (1 + i)Z2\Z≥0 with
boundary values 1 at the origin and 0 elsewhere on Z≥0 and as → ∞.

Proof. Wefirst state twoFourier expansions, thanks to the generalized binomial theorem:

1√
1 − e−2iθ

=
∞∑

n=0

(−1)n
(− 1

2
n

)

e−2niθ = 1 +
1

2
e−2iθ +

3

8
e−4iθ +

5

16
e−6iθ + · · · ,

(A.2)

|sin θ |√
1 − e−2iθ

=
√

sin2 θ

1 − e−2iθ = 1

2

√
1 − e2iθ = 1

2

∞∑

n=0

(−1)n
( 1

2
n

)

e2niθ .

The first identity immediately gives the boundary values on Z≥0. Discrete harmonicity
when k �= 0 follows directly from the structure of the integrand, and when k = 0 values
of the discrete Laplacian correspond to the Fourier coefficients in the second identity of
Eq. A.2, so vanishes on Z<0 since there are no negative Fourier modes.

For the decay at infinity, it suffices to show |H0(s+ik)| → 0 as |k| → ∞ uniformly
in s and as |s| → ∞ for fixed k. Note the latter is just the Riemann-Lebesgue Lemma.

For the former, we can use dominated convergence since
∣
∣C |k|(θ)

∣
∣√|1−e−2iθ | ↓ 0 pointwise a.e.

as |k| → ∞ and
∣
∣C |k|(θ)

∣
∣√|1−e−2iθ | ≤ 1√|1−e−2iθ | = 1√

2| sin θ | , which is integrable. ��

Now, the above characterization of the harmonic measure of the tip of the slit plane leads
to a recursive construction of harmonic measures of other points on the slit, as discussed

http://creativecommons.org/licenses/by/4.0/
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in Proposition 3.22. Suppose Hn := hm (1+i)Z2

2n denotes the harmonic measure of the
point 2n on the slit plane (1 + i)Z2\R≥0. We have the following recursion formula:

Hn(m) = Hn−1(m − 2) − Hn−1(−2)H0(m) (A.3)

=: H0(m − 2n) − X1H0(m − 2n + 2) − X2H0(m − 2n + 4) − · · · − XnH0(m).

The coefficients Xn := Hn−1(−2) can be used to calculate the recursive coefficients
in Proposition 3.22 and the scaling limit coefficientsCα in Sect. 5.2.1 explicitly. We now
give a simple formula for Xi .

Proposition A.2. For all i ≥ 1, we have that Xn = H0(−2n+2)
2n . Consequently,

1 − X1 − X2 − · · · − Xn = H0(−2n).

Proof. Define the generating functions

X (z) :=
∞∑

n=1

Xnz
n = 1

2
z +

1

8
z2 +

1

16
z3 + · · · ,

F(z) :=
∞∑

n=0

H0(−2i)zn = 1 +
1

2
z +

3

8
z2 + · · · = 1√

1 − z
.

Note that Eq. (A.3) implies a convolution identity by taking m = 0,

H0(−2m) =
m∑

n=0

XnH0(−2m + 2n),

and setting X0 = 0. Thus XF = F − 1, and X = 1− √
1 − z = ∑∞

n=1(−1)n+1
(1/2
n

)
zn .

Given that H0(−2n) = (−1)n
(−1/2

n

)
by Eq. (A.2), both results are straightforward. ��

Corollary A.3. The auxiliary functions, G[C1,0], G̃
±
[C1,0]

, defined in Definition 3.25 are
discrete holomorphic on [C1, 0].
Proof. Without loss of generality, we will show discrete holomorphicity of G[C1,0] at a
type-λ corner z = s + i

(
k + 1

2

) ∈ X
+ ∩ Y

+ (k ≥ 0). By the fact that

∞∑

n=−∞

[

hm
X
1
1

3/2(z +
1 + i

2
+ 2n) − hm

X
1
1

3/2(z − 1 + i

2
+ 2n)

]

= lim
θ→0

Ck(θ)
C(θ) − 1√
1 − e−2iθ

= 0,

and discrete holomorphicity of Hα0
[C1,0]

, we have

G[C1,0](z − 1 − i

2
) − G[C1,0](z +

1 − i

2
)

= i

2
√
2

∞∑

n=1

[

hm
Y
i
1

1/2(z − 1 − i

2
+ 2n) − hm

Y
i
1

1/2(z +
1 − i

2
+ 2n)

]

= − i

2
√
2

∞∑

n=1

[

hm
X
1
1

3/2(z +
1 + i

2
+ 2n) − hm

X
1
1

3/2(z − 1 + i

2
+ 2n)

]
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= i

2
√
2

∞∑

n=0

[

hm
X
1
1

3/2(z +
1 + i

2
− 2n) − hm

X
1
1

3/2(z − 1 + i

2
− 2n)

]

= i

[

G[C1,0](z +
1 + i

2
) − G[C1,0](z − 1 + i

2
)

]

,

as desired. ��
Now we show that G in fact has some rotation symmetry, which can be exploited

to recursively compute its values as outlined in Remark 3.27. The proof relies on the
same kind of analysis of discrete harmonic functions as in the proof of Lemma 5.16 and
therefore we omit some of the details.

Proposition A.4. On Cδ , the following holds: eπ i/4 · G[Cδ,0](e
π i/2z) =

1
2

[
G̃+

[Cδ,0]
+ G̃−

[Cδ,0]

]
(z).

Proof. We will write Lδ(z) for the left hand side, and Rδ(z) =
[
kG̃+

[Cδ,0]
+

(1 − k)G̃−
[Cδ,0]

]
(z) for an as yet undefined real number k. Both are s-holomorphic func-

tions, and by Lemma 5.15, both
√

π
2δ Lδ(z),

√
π
2δ Rδ(z) converge to i

2
√
2

√
z on compact

subsets away from 0 as δ → 0.
First, it is straightforward to check that G[Cδ,0] vanishes on λ̄-corners on the upper

half of the imaginary axis, and on λ-corners on the lower half by the symmetry between
its real and imaginary parts (in addition, G[Cδ,0](z̄) = G[Cδ,0](z)). So Lδ(z) has zero
real part on the positive real line, and zero imaginary part on the negative real line. This
is also true for Rδ(z). Now, Lδ

(± δ
2

)
is not necessarily zero, so we will choose (taking

δ
2 on X

+) k = −i Lδ

(
δ
2

)
. Then Lδ(z) − Rδ(z) is zero at δ

2 , so we have harmonicity at
− δ

2 by Remark 2.6.

Without loss of generality, consider the restriction of
√

π
2δ [Lδ − Rδ] toV i

[Cδ,0]
∩X+.

It vanishes on the boundary R<0 and δ
2 , and as δ → 0 the values on the boundary w(1)

of the discrete ball B1(0)∩V i
[Cδ,0]

decays as o(1). By the discrete Beurling estimate (see

proof of Lemma 5.16) we can bound
∣
∣
∣
√

π
2δ [Lδ − Rδ] (zδ)

∣
∣
∣ for any z ∈ V i

[C1,0]
∩X

+ from

above by Cδ1/2o(1). Since by definition
√

π
2δ [Lδ − Rδ] (zδ) =

√
πδ
2 [L1 − R1] (z),

[L1 − R1] (z) = 0, and thus Lδ = Rδ .
Then we conclude k = 1

2 since (1 − k)G̃−
[Cδ,0]

(
eπ i δ

2

) = Lδ

(
eπ i δ

2

) = i Lδ

(
δ
2

) =
ikG̃+

[Cδ,0]

(
δ
2

)
and−G̃−

[Cδ,0]

(
eπ i δ

2

) = G̃+
[Cδ,0]

(
δ
2

) = G[Cδ,0]
( 3δ
2

)
again by the symmetry

between real and imaginary parts of G[Cδ,0]. ��

B. Contour Weights

Here we prove the well-definedness of the spin-fermionic contour weights introduced
in full generality in Sect. 4.1.

Recall from Sects. 3.0.2 and 4.1 the definition of γ ∈ Cα1,...,α2n
Ωδ

and the admissible
choices of walks {�(γ )} associated to it. Moreover recall the definition of the multipoint
observable F[Ωδ,a] from Definition 4.2.
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Proposition B.1. For any collection of distinct oriented medial vertices α1, . . . , α2n and
any γ ∈ Cα1,...,α2n

Ωδ
, for every two admissible choices of walks, �(γ ), �′(γ ), we have

(−1)�(γ \∪�(γ ))
∏

γ
α j ,αk ∈�(γ )

sα j ,αk

(
γ α j ,αk

) = (−1)�(γ \∪�′(γ ))
∏

γ
α j ′ ,αk′ ∈�(γ )

sα j ′ ,αk′
(
γ

α j ′ ,αk′
)
.

As a result, the function F[Ωδ,a] is well-defined.
We will need the following two lemmas for the proof of the above proposition.

Lemma B.2. If A, B areunions of disjoint loops inΩδ , (−1)�(A⊕B) = (−1)�(A)(−1)�(B).

Proof. For each of A and B, fill in the faces of the lattice with spins, beginning with
the plus boundary conditions, such that there is an edge between two faces if and only
if they differ in sign. For each loop collection, we have the spin at zero σ A

0 = (−1)�(A)

and σ B
0 = (−1)�(B).
The result follows after noting that A ⊕ B is identified with the spin configuration

constructed by multiplying the spins of configurations A and B pointwise. ��
Lemma B.3. Suppose l walks w1, . . . , wl ∈ {

γ1, . . . , γn, γ
′
1, . . . , γ

′
n

}
and l distinct

oriented medial vertices α1, . . . , αl ∈ {α1, . . . , α2n} form a cycle, i.e. w1 connects
(projections of) α1 with α2,w2 connects α2 with α3, …,wl connects αl with αl+1 := α1.
Then we have,

(−1)�(w1⊕···⊕wl ) = sα1,α2(w1) · · · sαl ,α1(wl).

Proof. Fix a half-line� = eiθR≥0 such that it is not parallel to any edges and is disjoint
from all α1, . . . , αl . Note that Ω\� lifts to [Ω, 0] as two sheets. We now define two
quantities: given a piecewise C1 path in Ω\{0}, we can count the number of times N�

that the path crosses �; given two points a, z ∈ [Ω, 0] \�, we define Sα,ζ
� := 1 if they

belong to the same sheet in [Ω, 0] of Ω\� and Sα,ζ
� := −1 otherwise.

Concatenate the (possibly reversed) walks such that w := w1 ⊕ w2 ⊕ · · · ⊕ wl is a
continuous loop on Ω\{0} starting from α1. Then clearly �(w1 ⊕ · · · ⊕ wl) ≡ N�(w)

mod 2. Now it suffices to note that for any j , (−1)N�(w j )sα j ,α j+1(w j ) = Sα j ,α j+1

� so that

(−1)N�(w)
l∏

j=1

sα j ,α j+1(w j ) =
l∏

j=1

(−1)N�(w j )sα j ,α j+1(w j )

=
l∏

j=1

Sα j ,α j+1

� = Sα1,α1

� = 1,

from which the lemma follows. ��
Proof of Proposition B.1. First observe that γ1, . . . , γn, γ ′

1, . . . , γ
′
n and a1, . . . , a2n are

partitioned into disjoint cycles P1, . . . , Pl ′ in the sense of Lemma B.3 (suppose each Pj
is the resulting collection of loops of the formw1⊕· · ·⊕wl ). Note that P1⊕· · ·⊕ Pl ′ =
∪�(γ ) ⊕ ∪�′(γ ), and thus (γ \ ∪ �(γ )) ⊕ (

γ \ ∪ �′(γ )
) ⊕ P1 ⊕ · · · ⊕ Pl ′ = ∅. By

Lemma B.2,

(−1)�(γ \∪�(γ ))
∏

γ
α j ,αk∈�(γ )

sα j ,αk

(
γ α j ,αk

) · (−1)�(γ \∪�′(γ ))
∏

γ
α j ′ ,αk′ ∈�(γ )

sα j ′ ,αk′
(
γ

α j ′ ,αk′
)
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= (−1)�(γ \∪�(γ ))(−1)�(γ \∪�′(γ ))
l ′∏

j=1

(−1)�(Pj ) = (−1)�(∅) = 1,

concluding the proof. ��

C. Explicit Pattern Probabilities

In this sectionwegive an example usingTheorem1.1by computing explicitly the infinite-
volume limit of and first-order conformal correction to a diagonal spin-spin correlation.
On rotated lattices, Ωδ ⊂ Cδ with plus boundary, this corresponds to EΩδ [σ0σ2δ] and is
a quantity that appears in the study of the lattice level Ising stress tensor [BeHo18]. We
then explain how the similar computationwould be done for an “L” shaped spin-weighted
correlation EΩδ [σ0σ(1+i)δσ2δ]/EΩδ [σ0] and give the explicit values one gets from the
explicit recursion process outlined to get values of the infinite-volume spin-fermion.

Corollary C.1. Consider the Ising model on Ωδ with plus boundary conditions and
0 ∈ FΩδ ; then, as δ → 0,

EΩδ [σ0σ2δ] = 2

π
+ δ · 2

π
· r−1

Ω (0) + o(δ).

Proof. We first observe that EΩδ [σ0σ2δ] = EΩδ [σ0σ(1+i)δσ(1+i)δσ2δ] and

EΩδ [ε(a1)ε(a2)] =1

2
+ EΩδ [σ0σ(1+i)δσ(1+i)δσ2δ] −

√
2

2
(EΩδ [σ0σ(1+i)δ] + EΩδ [σ(1+i)δσ2δ]),

where a1 = 1+i
2 , a2 = 3+i

2 . By the first-order Taylor expansion of [HoSm13] (after

rescaling) for the energy density (EΩδ [ε(a1)] = −δ ·
√
2

π
· r−1

Ω (0) + o(δ)), this implies
that as δ → 0,

EΩδ [σ0σ2δ] =1

2
+ EΩδ [ε(a1)ε(a2)] + δ · 2

π
· r−1

Ω (0) + o(δ).

From this it suffices to compute thefirst-order asymptotics of limδ→0 EΩδ [ε(a1)ε(a2)].
In order to do so, we consider the antisymmetric matrix

F{ek } =

⎛

⎜
⎜
⎜
⎜
⎝

0 F
a+1 a

+
2

C1
F
a+1 a

−
2

C1
F
†a+1 a

−
1

C1

0 F
†a+2 a

−
2

C1
F
a+2 a

−
1

C1

0 F
a−
2 a

−
1

C1
0

⎞

⎟
⎟
⎟
⎟
⎠

=
⎛

⎜
⎝

0 a b c
0 d e
0 f
0

⎞

⎟
⎠

where we choose orientations o+1 = e7π i/4 and o+2 = e5π i/4 on C1. Plugging in the

explicit values from the observable defined in Eq. (3.1) and using the definition Fα,ζ

C1
=

Re[i√pHα,z
C1

], where we choose the principal branch of the square root, observe that

a = − 1

2π
+

√
2

2π
+
1

4
, b = −1

4
+

1

2π
,

c = 0, d = 0,
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e = −1

4
+

1

2π
, f = 1

2π
+

√
2

2π
− 1

4
.

Combined with Pf(F{ek }) = a f − be + cd and limδ→0 EΩδ [σ0σ2δ] = 1
2 + 4Pf(F{ek })

(where we applied Theorem 1.1 to EΩδ [ε(a1)ε(a2)]),

lim
δ→0

EΩδ [σ0σ2δ] = EC1[σ0σ2δ] = 2

π
.

In order to compute the constant in the conformal correction, note that the matrix E{ek }

is given by Eα,ζ

C1
= Re

[
i
√
p
√
o√

2π

]

so that, here,

E{ek } =

⎛

⎜
⎜
⎜
⎜
⎝

0 E
a+1 a

+
2

C1
E
a+1 a

−
2

C1
E
a+1 a

−
1

C1

0 E
a+2 a

−
2

C1
E
a+2 a

−
1

C1

0 E
a−
2 a

−
1

C1
0

⎞

⎟
⎟
⎟
⎟
⎠

= 1√
2π

⎛

⎜
⎜
⎜
⎝

0
√
2
2

√
2
2 1

0 1
√
2
2

0 −
√
2
2
0

⎞

⎟
⎟
⎟
⎠

.

Inverting F{ek } by hand, and using the Pfaffian expansion formula Pf(A + δB) =
Pf(A) + δPf(A)Tr(A−1B), along with the above expressions, we see that, in fact,
4DE{ek }Pf(F{ek }) = 4Pf(F{ek })Tr((F{ek })−1E{ek }) = 0 which, combined with Theo-
rem 1.1 implies the desired geometric correction. ��
Corollary C.2. Consider the Ising model on Ωδ with plus boundary conditions and
0 ∈ FΩδ ; then as δ → 0,

EΩδ [σ0σ(1+i)δσ2δ]
EΩδ [σ0]

= 2(
√
2 − 1) + δ · 5

√
2 − 7

2
· Re [

∂z log rΩ(z)|z=0
]
+ o(δ).

Proof. First observe that the edge e separating σ(1+i)δ from σ2δ has midpoint at δa where
a = 3

2 + i
2 .

EΩδ [σ0ε[0](δa)]
EΩδ [σ0]

= EΩδ [σ0σ(1+i)δσ2δ]
EΩδ [σ0]

− μa .

They by Eq. (6.1), picking an s-orientation o on a,

μa = √
o[Hao

[C1,0](a
o
+) + Hao

[C1,0](a
o−)].

To compute the front and back values of Hao
[C1,0](a±)we have implemented the recursion

procedure for H using Mathematica as outlined in Proposition 3.22 and Corollary 3.24
(see also Fig. 5). That yields that

μ3/2+i/2 = 2
√
2 − 2.

NowbyTheorem1.2, wewish to computePa[0] = (−2)Pf(Fa[0]) but sinceFa[0] is a 2n×2n
antisymmetric matrix that is zero on its anti-diagonal, Pa[0] = 0. On the other hand, that
implies that Qa[0] = Ea[0] whose entries are given by Definition 6.4 in terms of values of

G[C1,0] and G̃±
[C1,0] evaluated on oppositely oriented ao

±
. Via the explicit construction
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of the slit-plane harmonic measure recursion procedure outlined in Remark 3.27, one
can calculate

Eao
+
,ao

−
[C1,0]

= 5
√
2 − 7.

Putting these together and plugging in to the expansion given by Theorem 1.2 for the
spin-weighted correlation, we obtain the desired geometric correction.
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