Microstructure and Mechanical Properties of a Multiphase FeCrCuMnNi High-Entropy Alloy

A FeCrCuMnNi high-entropy alloy was produced using vacuum induction melting, starting from high-purity raw materials. The microstructure and mechanical properties of the as-cast FeCrCuMnNi alloy were studied, considering x-ray diffraction (XRD), scanning electron microscopy, and hardness and tensile tests. XRD results revealed the existence of two FCC phases and one BCC phase. Microstructural evaluation illustrated that the as-cast alloy has a typical cast dendritic structure, where dendrite regions (BCC) were enriched in Cr and Fe. Interdendritic regions were saturated with Cu and Ni and revealed G/B(T) {110}< 111 > and Brass {110}< 112 > as the major texture components. The produced alloy revealed an excellent compromise in mechanical properties due to the mixture of solid solution phases with different structures: 300HV hardness, 950MPa ultimate tensile strength and 14% elongation. Microhardness test results also revealed that the BCC phase was the hardest phase. The fracture surface evidenced a typical ductile failure. Furthermore, heat treatment results revealed that phase composition remained stable after annealing up to 650 degrees C. Phase transformation occurred at higher temperatures in order to form more stable phases; therefore, FCC2 phase grew at the expense of the BCC phase.


Published in:
Journal Of Materials Engineering And Performance, 28, 4, 2388-2398
Presented at:
29th Conference and Exposition on Advanced Aerospace Materials and Processes (AeroMat), Orlando, FL, May 07-10, 2018
Year:
Apr 01 2019
Publisher:
New York, SPRINGER
ISSN:
1059-9495
1544-1024
Keywords:
Laboratories:




 Record created 2019-06-18, last modified 2019-06-25


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)