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Abstract
Pore-forming toxins (PFTs) are key virulence determinants produced and secreted by a variety of human bacterial pathogens. 
They disrupt the plasma membrane (PM) by generating stable protein pores, which allow uncontrolled exchanges between 
the extracellular and intracellular milieus, dramatically disturbing cellular homeostasis. In recent years, many advances were 
made regarding the characterization of conserved repair mechanisms that allow eukaryotic cells to recover from mechani-
cal disruption of the PM membrane. However, the specificities of the cell recovery pathways that protect host cells against 
PFT-induced damage remain remarkably elusive. During bacterial infections, the coordinated action of such cell recovery 
processes defines the outcome of infected cells and is, thus, critical for our understanding of bacterial pathogenesis. Here, 
we review the cellular pathways reported to be involved in the response to bacterial PFTs and discuss their impact in single-
cell recovery and infection.
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ALG-2	� Apoptosis-linked gene 2
ALIX	� ALG-2-interacting protein X
ALO	� Anthrolysin
ASM	� Acid sphingomyelinase
ATF6	� Activating transcription factor 6
CDC	� Cholesterol-dependent cytolysin

ER	� Endoplasmic reticulum
ESCRT​	� Endosomal sorting complex required for 

transport
INY	� Inerolysin
IRE1	� Inositol requiring enzyme 1
LLO	� Listeriolysin O
MAPK	� Mitogen-activated protein kinase
MLKL	� Mixed lineage kinase-like
MT	� Microtubule
mtDNA	� Mitochondrial DNA
MVB	� Multivesicular body
NMIIA	� Non-muscle myosin IIA
NMII	� Non-muscle myosin II
PERK	� Protein kinase RNA (PKR)-like ER kinase
PFO	� Perfringolysin O
PFT	� Pore-forming toxin
PLY	� Pneumolysin
PM	� Plasma membrane
PVL	� Panton–Valentine leukocidin
SLAPs	� Spacious Listeria-containing phagosomes
SLO	� Streptolysin O
Slp4-a	� Synaptotagmin-like protein 4a
SNARES	� N-ethylmaleimide sensitive factor attachment 

protein receptors
SREBPs	� Sterol-responsive element-binding proteins
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T3SS	� Type-III secretion system
TLO	� Tetanolysin
UPR	� Unfolded protein response
VCC	� Vibrio cholerae cytolysin
VLY	� Vaginolysin

Introduction

The plasma membrane (PM) constitutes a selective barrier 
between the intracellular and extracellular environment, 
defining the limits of every living eukaryotic cell [1, 2]. 
Its emergence was a critical event during evolution, and its 
integrity is crucial to maintain cellular homeostasis and sup-
port life [3]. Transient PM lesions still occur in healthy con-
ditions, particularly, in tissues under high mechanical stress 
or biochemical stress such as muscle, skin, or gut epithelia 
[4, 5]. Conversely, persistent PM damage hallmarks several 
pathologies, such as heart failure, neurodegeneration, and 
infection [6–9].

Being the first protective cellular barrier, the PM is pref-
erentially targeted by pathogens to exploit host intracellu-
lar nutrients, disrupt signaling, cross-tissue barriers, and/
or kill immune cells [10–14]. In particular, bacteria secrete 
monomeric pore-forming toxins (PFTs), which oligomerize 
upon binding to the host PM and assemble into transmem-
brane stable pores that permeabilize cells to ions, metabo-
lites, and proteins [11, 15–21], triggering a variety of coor-
dinated host-cell responses. PFTs are both necessary and 
sufficient for the pathogenesis of several bacterial species 
[22–24]. Such proteins exist in virtually all the kingdoms 
of life, comprising different structural families, for which 
the mechanisms of oligomerization and pore formation have 
been extensively characterized (reviewed in [15]). In con-
trast, their effects at the cellular level and specific roles in 
disease development are by far less understood.

PM injury elicits multiple responses depending on the 
nature of the damage and the cell type involved. Despite 
certain specificities, these responses are based on con-
served events that include sensing the damage, activating 
repair mechanisms, restoring homeostasis, and activating 
innate immunity, thereby alerting neighboring tissues. In 
recent years, considerable advances were made regarding the 
identification and characterization of PM repair mechanisms 
and single-cell recovery processes. Such studies have high-
lighted the sequential nature that underlies the spatio-tem-
poral coordination of cell recovery, but have predominantly 
focused on localized mechanical- or laser-induced damage 
(reviewed recently in [5, 25]). Accordingly, although the 
mechanisms identified are still relevant in the context of 
PFT-mediated damage, the specific features of repairing 
stable protein pores and recovering cellular homeostasis 
following PM damage caused by bacterial PFTs remain 

poorly understood. Nevertheless, here, we review the large 
amount of work carried during the past years, concerning 
the multitude of cellular responses to various bacterial PFTs. 
We attempt to discuss such responses in light of our current 
understanding of general PM repair mechanisms and single-
cell recovery mechanisms to provide a more complete view 
of the processes deployed by host cells to specifically face 
PFT-mediated intoxication. When adequate, we also discuss 
their relevance during infection.

Sensing the damage

PM disruption allows the influx of calcium and efflux of 
potassium, altering the intracellular-ion composition, 
which has long been recognized as the primary trigger for 
cell responses to PM damage (Figs. 1, 2) [5, 25, 26]. The 
influx of extracellular calcium activates PM repair pathways 
(Fig. 1) and protective cytoskeletal remodeling (Fig. 3) 
[27–30]. However, overwhelming and long-lasting calcium 
elevations (approximately > 20 µM) are toxic [31, 32] and 
compromise host-cell signaling, which can desensitize 
immune cells [33], destabilize tissue barriers [34], or induce 
cell death [35–37]. Thus, controlling the rise of cytosolic 
calcium levels appears fundamental to determine cell fate 
following PM disruption, either promoting survival or trig-
gering cell death [32, 38, 39].

Potassium efflux promotes stress-activated and mitogen-
activated protein kinase (MAPK) pathways that can protect 
against PFT activity in vitro and in vivo [40–43], but the 
drop in cytosolic potassium levels also alters the cellular 
metabolic state, triggers innate immune signaling, and may 
cause pro-inflammatory cell death (Fig. 2) [35, 41, 44].

The magnitude of ion imbalance depends on the dimen-
sion of the PM wound which, in the case of toxin-induced 
pores, varies greatly according to the stoichiometry and size 
of the pore [15]. Cholesterol-dependent cytolysins (CDCs), 
such as listeriolysin O (LLO) and streptolysin O (SLO), 
secreted by the Gram-positive bacteria Listeria monocy-
togenes and Streptococcus pyogenes, respectively, assem-
ble into large (30–50 nm in diameter) heterogeneous pores, 
whereas smaller toxins, such as aerolysin from Aeromonas 
hydrophila or alpha-toxin from Staphylococcus aureus, 
originate pores of only ~ 2 nm in diameter [15].

The full recovery of PM integrity was shown in different 
cell types perforated by small or large PFTs [31, 41, 45], 
yet counter-intuitively, cells damaged by small toxin pores, 
appear to take longer to recover PM integrity (~ h), when 
compared to large CDC-induced damage (~ min). This has 
been largely attributed to the lower calcium permeability of 
small pores, and the consequent defect to efficiently trigger 
rapid calcium-dependent repair mechanisms. The recovery 
from damage caused by small toxin pores must rely mainly 
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Fig. 1   Proposed overview model depicting calcium-dependent PM 
repair mechanisms that protect host cells against PFTs. (1) Toxin 
oligomerization, pore formation, and calcium influx initiate the acti-
vation of calcium-dependent protective events. (2) Annexins are 
recruited to damaged areas according to their differential calcium 
sensitivity (gray scale) and assemble into 2D protein arrays to clog 
PM pores. (3) PM blebbing and shedding occur at damaged sites and 
involve recruitment of ESCRT subunits, which facilitate budding and 
ATP-dependent release of PM vesicles containing PFT pores, annex-
ins, and ESCRT components. (4) In parallel, calcium influx triggers 

PM docking and exocytosis of cortical lysosomes. Upon assembly of 
SNARE complexes, the calcium sensor Synaptotagmin VII (Syt-VII) 
enables fusion of lysosomes with the PM and release of lysosomal 
enzymes, in particular ASM. (5) ASM hydrolyses PM sphingomyelin, 
producing ceramide domains, which facilitate membrane invagination 
and endocytosis of PFTs’ pores and incomplete pore structures. Cera-
mide domains may also contribute to annexin recruitment. (6) PFTs 
traffic to MVBs through ESCRT-dependent sorting and are degraded 
via MVB–lysosomal fusion. Toxins may also be recycled back to the 
PM and further secreted

Fig. 2   Proposed model for potassium-dependent host-protective 
mechanisms against PFT intoxication. (1) Potassium efflux and 
release of ATP occur across PFT-assembled pores. Extracellular ATP 
activates the P2X7 receptor and cation channel, triggering further 
potassium efflux and calcium influx. These events activate several 
recovery processes that include: (2) PM translocation of lysosomal 
ASM, subsequent remodeling of PM lipid composition, and release 
of phosphatidylserine (PS)-enriched PM vesicles. This process may 

enable the secretion of cytokines and occurs downstream activation 
of p38. (3) Inflammasome activation, caspase-1 processing and acti-
vation of IL-1 beta secretion. Caspase-1 activation increases lipid 
metabolism and membrane biogenesis pathways. (4) Potassium efflux 
also activates MAPK signaling, in particular p38 and JNK, which fur-
ther control the UPR and protective transcriptional responses required 
for survival against PFTs
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in potassium-dependent cellular responses, which, indeed, 
protect cells upon attack by a variety of small PFTs such 
as alpha-toxin [46], Vibrio cholerae cytolysin (VCC) [47, 
48], and Cry5B [48]. In agreement with these observations, 
mutations that increase the channel width of the small PFT 
phobalysin from Photobacterium damselae, enhanced cal-
cium-dependent repair, whereas bulky amino acid residues 
within VCC channels were shown to delay the recovery [49].

Not only the size of the pore, but also its structure, may 
determine the specificity of repair pathways. Damage 
caused by Sticholysin II, a small actinoporin produced by a 
sea anemone, is repaired with equivalent kinetics of CDCs 
[50]. CDCs originate both stable protein-lined and hetero-
geneous pores, which, at low stoichiometry, form less stable 
arc-like structures composed by proteins and lipids siding 
each other [51–54]. Comparably to such less stable CDC 
structures, actinoporins form intercalated protein–lipid pores 
[55, 56], also less stable than protein-lined pores formed by 
other small toxins [15, 51, 52]. Thus, heterogeneous pore-
forming structures may be repaired more efficiently, as it 
occurs with electroporation-induced lipid wounds, indicating 
that the nature of the pore also determines its effective repair.

Alteration of the cytosolic ion composition upon 
PM damage relies on additional secondary events: cer-
tain PFTs can induce the opening of intracellular cal-
cium stores [33] and allow the release of ATP to the 

extracellular environment. Host cells recognize extracel-
lular ATP, which further enhances intracellular-ion imbal-
ance [57], but may also trigger protective responses in 
neighboring cells (Fig. 2) [58–60]. These processes rely 
on the expression of P2X7 receptor (P2X7R), which is a 
cation channel. However, given the broad range of ATP 
sensitivities displayed by purinergic receptors [61, 62], it 
is possible that alternative P2X receptors also respond to 
ATP released from PFT-damaged cells.

Finally, the endogenous pore-forming activity of host 
proteins such as mixed lineage kinase-like (MLKL) or gas-
dermin D may also contribute to further promote ATP and 
potassium efflux or the influx of extracellular calcium [63]. 
Gasdermin D and MLKL form pores in the inner PM leaflet, 
during pro-inflammatory cell death mechanisms (pyroptosis 
and necroptosis, respectively), which can be activated by 
PFTs’ intoxication [35, 64]. Specific roles for gasdermin D 
or MLKL during cellular recovery from PFT intoxication 
have not been established. Nevertheless, activation of crucial 
pyroptotic and necroptotic effectors during PFT intoxication 
enhances alarmin release and promotes host inflammation 
during pneumonia caused by Serratia marcescens infection 
[64].

Overall, host responses to PFT intoxication will vary 
depending on the differential cytosolic ion gradients 

Fig. 3   Proposed model illustrating the protective mechanisms of 
actomyosin remodeling in response to PFT intoxication. (1, 2) Pore 
formation and the subsequent calcium influx induce cortical actomyo-
sin remodeling by: disassembling actomyosin structures; activating 
the GTPases Rac1 and RhoA, and enhancing calpain activity which 
breaks cytoskeletal–PM contacts and disrupts interactions between 
actin and actin-binding proteins. Cortical lysosomal positioning is 
maintained by interactions between Rab3A and NMIIA. The rise in 
cytosolic calcium activates Rab3 and promotes actin remodeling con-
tributing to binding, docking, and fusion of cortical lysosomes with 

the PM. (3) Actomyosin remodeling and lysosome secretion lower 
PM tension and modify the PM lipid composition causing PM bleb-
bing, ruffling, and shedding or internalization of PFT pores. Actomy-
osin reorganization is regulated by RhoA and Rac1 and is stabilized 
by the formation of NMIIA cortical bundles. Concomitant ER expan-
sion and ER–cytoskeletal interactions also contribute to stabilize the 
cortical actomyosin network. (4) Following shedding or internaliza-
tion of PFT pores, cells re-establish cytoskeletal organization and 
recover normal cytosolic calcium levels
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produced by structurally different PFTs, their concentration, 
and the release of additional cellular metabolites.

Plasma membrane repair

Clogging the pore

The influx of extracellular calcium following PM dam-
age promotes the exocytosis of cortical vesicles (e.g., 
lysosomes) and the recruitment of protein arrays to PM 
wounds. These processes, through the formation of a patch 
of homotypically fused vesicles and a clog of fusogenic 
protein arrays, were proposed to limit the loss of cytosolic 
content and the rise of intracellular calcium to toxic levels 
during mechanical- or laser-induced PM damage [5]. Such 
calcium-mediated exocytosis also reduces membrane ten-
sion, which may contribute to the spontaneous resealing 
of lipid-based wounds [65]. However, stable protein pores, 
such those generated by PFTs, do not spontaneously reseal 
and must be actively removed.

Annexins, one of the major components of clogging 
protein complexes, are cytosolic calcium sensors with the 
capacity to aggregate, bind phospholipids, and promote 
membrane fusion in a calcium-regulated manner [66, 67]. 
They are promptly recruited to PM lesions in cells dam-
aged by different CDCs (SLO and pneumolysin, PLY) 
[31]. Upon pore formation, annexins sequentially and 
reversibly translocate to the PM surface according to their 
different calcium sensitivities (Fig. 1) [68]. Annexins with 
high calcium sensitivity (A2 and A6) are early recruited 
to the sites of PM damage, and were detected in PM blebs 
and vesicular or tubular structures released by SLO- or 
PLY-intoxicated cells [68, 69]. In turn, annexins with low 
calcium sensitivity (A1 and A5) appear later around PM 
wounds and their translocation to the PM surface corre-
lates with the inability of cells to recover from PM dam-
age [68], presumably because the intracellular calcium 
concentration has reached a toxic threshold (~ 20 µM). 
Annexins (A2, A6, A1, and A5) exhibit protective roles 
upon mechanical- or laser-induced PM damage and in PM 
damage-related disorders [67]. Yet, how annexins clog a 
protein pore and protect cells during PFT intoxication 
remains unclear. Nevertheless, A1 localizes to PFT-dam-
aged PM regions and is detected within large PM blebs 
that appear to compartmentalize cytoplasmic content. 
Moreover, similarly to what was observed upon mechani-
cally induced damage of HeLa cells [70], A1 depletion 
or targeting with blocking antibodies increases suscepti-
bility to CDCs, thus confirming a protective role against 
PFTs [71, 72]. Furthermore, cryo-electron tomography of 
vesicles released by PLY-damaged cells show high-density 
structures concentrated below toxin pores, resembling the 

A5 two-dimensional arrays that assemble at sites of laser-
induced PM wounds [69, 73–75]. Mass spectrometry anal-
ysis confirmed that such vesicles are enriched in annexins 
[69]. Altogether these observations led to speculate that 
annexins assemble into two-dimensional arrays that clog 
PFT pores, avoiding the detrimental diffusion of calcium 
to the entire cell (Fig. 1) [32, 68, 69]. Such clog may also 
isolate damage within PM blebs [72].

Quarantining PM damage: blebbing

Blebbing is a universal cellular response to PM injury 
described in different processes such as cytokinesis, cell 
migration, and apoptosis [76, 77]. PM blebs require calcium-
dependent actomyosin contraction and result from the dis-
ruption of PM–cytoskeleton interactions, which decreases 
PM tension and enables its expansion. Since vesicle exo-
cytosis also reduces PM tension, it is possible that this pro-
cess contributes to blebbing upon PM damage. Intriguingly, 
in the context of PFTs, blebbing may result from intrinsic 
properties of specific PM lipid domains that respond to toxin 
oligomerization and binding, before PM disruption [78, 79].

In PLY- or SLO-damaged cells, large PM blebs were pro-
posed to create a confined space where calcium concentra-
tion is higher than in the cell body [31, 72]. Large blebs 
possibly protect the cell from deleterious calcium elevations 
and loss of cytosolic content. The majority of large PM blebs 
retract, supporting their role as clogging structures or, alter-
natively, as secondary events of the PFT-induced cortical 
cytoskeletal disruption. Nonetheless, different cell types 
were shown to release large (µm size) blebs, villi, or bleb-
like structures containing cytoplasmic material in response 
to PM damage caused by protein pores (Fig. 4) [69, 80, 81]. 
Such release of large blebs may result from the inability of 
cells to repair overwhelming damaged areas and/or derive 
from the engagement of cell death pathways. Along with the 
shedding of smaller blebs, the release of large PM structures 
will likely allow the removal of PFT pores, the disposal of 
irreversibly damaged organelles, and also convey cytoplas-
mic inflammatory signals. Indeed, blebs produced by apop-
totic cells carry and release cytoplasmic danger signals [82], 
and large cell particles shed by cancer cells, in vivo, are 
delivered to myeloid cells, thereby altering their behavior 
[83]. Drosophila melanogaster gut epithelial cells targeted 
by S. marcescens expressing the PFT ShlA also release bleb-
like cytoplasmic extrusions containing damaged organelles 
[84]. This response maintains epithelial integrity and lim-
its host injury, as flies infected with ShlA-deficient strains 
undergo amplified injury. Similarly, cytoplasm-containing 
blebs from Mycobacterium-infected cells also deliver intra-
cellular bacteria to phagocytic cells (Fig. 5) [85]. On the 
other hand, bacteria can hijack PM blebs to promote dis-
semination. This is the case of Pseudomonas aeruginosa that 
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utilizes type III secretion system (T3SS) pore-forming trans-
locon proteins to induce PM blebbing and exploit blebs as 
niches for replication [86]; and of L. monocytogenes, which 
promotes LLO-dependent blebbing to support cell-to-cell 
spread within PM blebs (Fig. 5) [87]. 

Removing PM pores: shedding

PM blebbing enables the shedding of microvesicles, 
which is regarded as a major PM repair mechanism that 
protects from detergent-induced or mechanically induced 
wounds and against intoxication with small stable PFTs, 
such as alpha-toxin or Cry5B, and large CDCs [32, 69, 79, 
88–92]. Elimination of PFTs within PM vesicles occurs in 
various cell types and may constitute an intrinsic protec-
tion mechanism, which is further enhanced by toxin oli-
gomerization, pore formation, and calcium entry [79, 92]. 
This mechanism was recently proposed to benefit from 
the heterogeneous binding of certain PFTs to cholesterol-
rich PM domains [93], and allows the rapid shedding of 

fully formed pores and incomplete pore-forming structures 
within small PM microvesicles (~ 100 to 200 nm) [69, 92]. 
PM shedding occurs at wound sites, and involves passive 
PM blebbing, active vesicle budding, and release of vesic-
ular structures enriched in endosomal sorting complex 
required for transport (ESCRT) proteins, annexins, PFT 
pores, and other molecules (Fig. 1) [69, 78, 79, 90, 92]. 
ESCRT complexes have established roles in membrane 
deformation and scission processes [e.g., multivesicular 
body (MVB) biogenesis and viral budding], and ESCRT-
III-mediated PM shedding was fully characterized in laser-
wounded cells [88]. In this context, ESCRT-III adaptor 
proteins, the apoptosis linked gene (ALG)-2, and ALG-
2-interacting protein X (ALIX) enable the rapid (~ min) 
calcium-dependent recruitment of ESCRT subunits to PM 
wounds [94]. The adenosine triphosphatase Vps4, respon-
sible for ESCRT-III disassembly, is recruited subsequently 
and contributes to the budding and ATP-dependent pinch-
ing of PM microvesicles containing lesions, thereby pro-
tecting cells from small (< 100 nm) PM wounds [88, 94, 

Fig. 4   Schematic representation of shedding of large cytoplasm-
containing blebs or extrusions, and thinning of epithelia damaged by 
PFTs. (1) The ion imbalance generated by pore formation promotes 
apical actomyosin remodeling and vesicle secretion. (2) Both pro-
cesses lower PM tension contributing to PM blebbing, remodeling, 
and shedding. The cytosolic ion imbalance alters organelle dynam-
ics and causes organelle damage, including: lipid-droplet formation, 
mitochondria fission and enlargement, ER expansion and vacuolation, 

lysosomal secretion and rupture. (3) Damaged organelles are detected 
in the proximity of the PM and within cytoplasmic extrusions or large 
cell particles (e.g., blebs and villi) released by intoxicated cells. (4) 
Epithelial integrity and cellular homeostasis are maintained by tran-
sient (~ h) contraction and thinning of the epithelial actomyosin net-
work and removal of damaged organelles via autophagy. Toxin pores 
are eliminated by PM shedding, endocytosis, and autophagic target-
ing
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95]. In agreement, LLO-intoxicated cells show punctate 
distribution of the ESCRT-III component CHMP4B at 
the plasma membrane [88], and vesicles released by cells 
challenged with different CDCs are enriched in ESCRT 
assembly and disassembly subunits [69].

Interestingly, ALG-2 can interact with different annexins 
in vitro [96], and the recruitment of annexin A1 to the PM 
of mechanically or laser-damaged cancer cells is followed by 
PM shedding [97], suggesting an interplay between clogging 
and shedding PM injuries. The ESCRT-III complex also 
coordinates blebbing and shedding of PM vesicles promoted 

by MLKL activity during necroptosis [98], the major pro-
inflammatory programmed cell death pathway promoted by 
PFTs in vivo [35]. Hence, ESCRT proteins have emerged as 
important mediators of cell-autonomous defenses and innate 
immunity against bacterial pathogens. However, in contrast 
to the well-established role of ESCRT proteins in viral bud-
ding, few reports assessed ESCRT-mediated repair dur-
ing bacterial infections. Nonetheless, PM shedding occurs 
in vivo upon PFT intoxication, concomitantly with the other 
PM repair processes [48].

Fig. 5   Model illustrating how the main host-protective responses to 
PFT intoxication influence the outcome of bacterial infections. (1) 
Lysosome exocytosis and actomyosin remodeling promote the secre-
tion of lysosomal enzymes that alter PM lipid composition and enable 
activation of endocytic pathways which allow pathogen internaliza-
tion. (2) The release of hydrolytic enzymes contributes for pathogen 
killing. (3) Alterations in PM tension caused by PFT-induced damage 
promote the formation and release of PM protrusions and/or blebs 

that allow the dissemination of L. monocytogenes in enclosed vesi-
cles or allow the shedding of intracellular bacteria. Released bacteria-
containing vesicles can also be subsequently engulfed and killed by 
recruited phagocytes (efferocytosis). (4) Large PM blebs may sustain 
the replication of intracellular P. aeruginosa. (5) Autophagy targets 
PFT-producing bacteria in the host cytosol, upon vacuolar escape, 
and either promotes pathogen killing or the formation of SLAPs, a 
niche for L. monocytogenes replication
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Extracellular ATP, which can be released by PFT-dam-
aged cells, also triggers PM blebbing and shedding, via the 
activation of P2X7R channels, potentially protecting neigh-
boring cells prior PFTs’ attack [99–101]. In line with these 
observations, artificial liposomes can reduce toxin binding 
to host cells in vitro and protect against PFT-dependent 
infections in vivo [102, 103]. Thus, PM shedding not only 
represents a major cell-autonomous defense but may also 
prevent recurrent toxin attacks by trapping free toxin mol-
ecules within secreted vesicles [72].

Removing PM pores: lysosome exocytosis 
and endocytic degradation

As mentioned above, PM ruptures trigger calcium-dependent 
exocytosis of peripheral vesicles, predominantly lysosomes 
[90, 104]. These vesicles were proposed to patch PM wounds 
[65] and reduce PM tension, contributing to the spontane-
ous resealing of lipid-based injuries, such as laser-induced 
or mechanically induced PM wounds [105]. Lysosome 
exocytosis upon PM damage, is reminiscent to the secre-
tion of granules by cytotoxic lymphocytes or professional 
secretory cells and involves calcium-dependent interactions 
between the calcium sensor synaptotagmin VII, dysferlin, 
and lysosomal (e.g., VAMP-7) and PM (e.g., SNAP-23 and 
syntaxin-4) SNARES (N-ethylmaleimide-sensitive factor 
attachment protein receptors) (Fig. 1) [106–109]. In addi-
tion, small GTPases (Rab3, Rab10, and Arl8b), the Rab3 
effector synaptotagmin-like protein 4a (Slp4-a) and the actin 
motor protein non-muscle myosin IIA (NMIIA), also control 
cortical lysosome positioning required for PM repair (Fig. 3) 
[110, 111]. Secretion of lysosomes allows the release of lys-
osomal enzymes, such as acid sphingomyelinase (ASM), 
and cathepsin B and L, which alter local PM composition 
promoting PFT removal via endocytosis (Fig. 1) [112–114]. 
In particular, ASM was shown to hydrolyze sphingomyelin 
into phosphorylcholine and ceramide domains, triggering 
the endocytosis of PFT pores within small (50–100 nm) 
lipid-rich PM invaginations termed caveolae [115–117]. 
Caveolin- or ASM-deficient cells have impaired ability to 
repair PFT-induced injuries [104, 118, 119] and extracellular 
ASM is sufficient to promote SLO internalization [104, 115]. 
However, to date, internalization of active pores by caveolar-
dependent mechanisms has never been directly visualized 
and the role of endocytosis as a mechanism of PFT removal 
remains controversial. Indeed, blocking endocytosis does 
not compromise the removal of PFT pores from intoxicated 
cells [79]. In addition, endocytosed PFT pores would remain 
associated with the membrane of endosomes possibly lead-
ing to endosomal leakage and release of toxic enzymes to 
the cell cytosol. Nevertheless, it has been shown that toxin 
internalization occurs for various PFTs [112, 120, 121], 
which apparently are sorted to MVBs in a ubiquitination/

ESCRT-dependent manner. Accordingly, poly-ubiquitinated 
proteins are observed close to laser-induced PM wounds in 
parallel to PM shedding [88]. PFTs are possibly degraded 
upon MVB–lysosomal fusion [112, 120] or can be re-routed 
to the extracellular milieu within exosome-like compart-
ments (Fig. 1) [120]. Moreover, it has been increasingly 
clear that the endocytic machinery contributes to the sur-
vival of cells upon intoxication. Endocytic components such 
as caveolin-1 and GRAF1 were recently shown to play a role 
during PM repair of PFT pores by acting on the remodel and 
regeneration of the normal composition of the PM following 
repair [122]. Based on ultra-structural evidences, a recent 
report proposed a model where PFT-induced active pores are 
removed by the shedding of microvesicles, whereas endo-
cytosis restores PM homeostasis by removing inactive PFT 
monomers and vesicles that failed to shed, once repair is 
complete [92].

Lysosome exocytosis may be linked to PM shedding. 
In glial cells, secretion of ASM promotes PM shedding of 
phosphatidylserine (PS)-rich vesicles downstream P2X7R 
activation (Fig. 2) [123]. This process requires Src kinase-
dependent phosphorylation of the p38 MAPK [123] that is 
activated by all the tested PFTs and promotes the shedding 
of cell adhesion molecules in response to S. aureus PFTs 
[124]. Thus, it is possible that p38 activation per se explains 
the removal of small PFT pores, which do not trigger mas-
sive calcium-dependent repair. Yet, further work is required 
to address this hypothesis.

Off note, ASM-produced PM ceramide domains increase 
annexin A1 binding to the PM [125]. Thus, annexin clog-
ging, PM shedding, lysosomal exocytosis, and further endo-
cytosis of PFTs may likely benefit from the coordinated 
action of common molecular effectors which, altogether, 
protect upon intoxication by various PFTs. In agreement, 
increased endocytosis and PM shedding occur during 
Caenorhabditis elegans intoxication with different PFTs, 
through a process that depends on the small GTPases Rab5 
and Rab11 [48], master endo- and exocytic regulators, 
respectively.

Fusion of cortical lysosomes with the PM and the con-
sequent extracellular delivery of lysosomal enzymes is not 
only important for PM repair, but was also proposed as a 
conserved cell-autonomous defense against pathogens that 
damage the host-cell PM (Fig. 5) [106, 126]. In favor of 
such mechanism, Arl8 and NMIIA, which promote cal-
cium-dependent lysosome exocytosis, contribute to bacte-
rial clearance in vivo, or can reduce host-cell invasion by 
bacterial pathogens, respectively [110, 127]. Concurrently, 
Mycobacterium tuberculosis diminishes the expression of 
synaptotagmin VII to promote PM damage and necrotic-
based dissemination [128].

Endocytosis following PM perforation can also be 
exploited by different pathogens to induce internalization 
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[129, 130]. In fact, LLO is sufficient to promote calcium- 
and potassium-mediated bacterial internalization and endo-
cytosis of inert beads [129, 131]. In the other hand, avoiding 
PFT-mediated cytotoxicity can also favor the pathogenesis 
of intracellular bacteria. In this context, it was recently 
shown that a specific C-terminal PEST-like sequence pre-
sent in LLO mediates its removal from the inner face of the 
PM by endocytosis, preventing premature killing of infected 
cells, thereby favoring L. monocytogenes infection [132].

Altogether it is becoming evident that clogging of the 
pore, PM blebbing, shedding of PM vesicles, and lysosomal 
exocytosis and endocytosis are interconnected mechanisms 
that cooperate during PM repair upon PFTs attack, and 
determine the fate of intoxicated cells.

Intracellular responses

Cytoskeleton remodeling

Regardless the source of PM damage, cells undergo dra-
matic cytoskeletal alterations, which result from mechanical 
or biochemical cues that strongly affect the homeostatic ten-
sion properties of the cell [39, 133]. The remodeling of the 
actomyosin cytoskeleton reduces PM tension and facilitates 
vesicle recruitment and PM shedding, thus promoting PM 
repair [90, 134–137]. Accordingly, compounds that stabilize 
the actomyosin network, such as jasplakinolide and phal-
loidin, hinder the recovery of PM integrity upon mechani-
cal-, laser-, and PFT-induced damage [90, 134, 138, 139], 
whereas actin-depolymerizing agents (e.g., cytochalasin D, 
latrunculin, and DNAse I) lead to faster repair [90, 105, 134, 
135, 140, 141].

Although a direct interaction between PLY and actin 
has been reported [142], the targeting of the actomyosin 
cytoskeleton by PFTs occurs mainly through the sustained 
rise in cytosolic calcium levels caused by PFT-mediated 
damage. This process induces the activation of differ-
ent cytoskeleton-modulating enzymes, which is sufficient 
to trigger actin cytoskeleton remodeling, facilitating cell 
adaptation, and recovery responses to different types of PM 
damage (Fig. 3) [143]. In particular, the calcium-dependent 
cysteine proteases [144], calpains, favor repair of mechani-
cal and laser injuries [145–147], facilitate vesicle fusion 
with the PM [146], and can cleave actin-associated proteins 
ultimately leading to actin remodeling [144, 148]. In LLO-
damaged cells, calpain-2 is recruited to cortical actomyosin 
bundles, which assemble around sites of PM damage and 
blebbing [89]. Moreover, during Streptococcus pneumoniae 
infection, PLY-dependent calpain activation promotes the 
release of the pro-inflammatory cytokine IL-1 beta by the 
infected macrophages [149], a process that can occur via PM 

shedding [59]. Interestingly, an evolutionary and biochemi-
cal link between ESCRT proteins and calpains has been pro-
posed, which may have crucial roles during yeast adaption 
responses [150, 151].

The assembly and dynamics of actomyosin rings that pro-
vide purse-string forces to close laser-induced PM and epi-
thelial wounds, in Xenopus oocytes or Drosophila embryos, 
involve the coordinated activity of Rho GTPases and NMII 
[138, 141, 152]. Rho GTPases are also activated during PLY 
intoxication of neuronal cells and promote calcium-depend-
ent actin remodeling (Fig. 3) [153]. Pharmacological inhibi-
tion of actin polymerization delays the formation of an A6 
PM clog in laser-wounded muscle cells [154], indicating a 
role for actin remodeling during PM clogging. Whether this 
occurs upon intoxication with PFTs is still unclear.

Nevertheless, NMIIA rearrangements and the assembly 
of stable cortical actomyosin bundles at sites of PM blebbing 
and PFT-induced damage correlate with increased cell sur-
vival following LLO intoxication [89]. This process involves 
the translocation of endoplasmic reticulum (ER) proteins 
to the cell surface and depends on the ER chaperone Gp96 
[89]. Gp96 interacts with NMIIA and the actin adaptor Fil-
amin A [89], and regulates NMIIA activity and cytoskeletal 
remodeling in response to PM damage [89]. Remarkably, 
both Gp96 and NMIIA protect cells against PFTs and Gp96 
is critical for host survival during LLO-dependent L. mono-
cytogenes infection [89].

Filamin A and Gp96 appear to coordinate actin organiza-
tion through processes that may rely on ER–cytoskeleton 
interactions, ER dynamics, and polarized secretion [89, 
155–157]. Of note, polarized lysosome secretion is con-
trolled by NMIIA and is essential for PM repair of mechani-
cally, laser-, or PFT-induced wounds [111, 136, 158]. The 
relevance of generalized actomyosin reorganization during 
PFT intoxication is unclear. However, a similar response was 
proposed to underlie acute morphological adaptations to PM 
damage, cell stress, or migration [143]. This mechanism is 
regulated by calcium and the ER-associated formin, IFN2, 
and involves IFN2-mediated turnover of cortical actin fila-
ments and concurrent polymerization from the ER [143]. 
Altogether, these observations suggest a strong link between 
cytoskeleton remodeling, ER dynamics, and vesicle traffick-
ing, supporting the complexity of PM repair pathways.

Actomyosin remodeling may also be important for epi-
thelial integrity. During cytoplasmic extrusion, triggered by 
bacterial PFTs, gut epithelial cells contract, thinning the epi-
thelial layer while maintaining barrier function. This process 
involves massive actomyosin rearrangements and recovery 
of normal cytoskeletal morphology, via CyclinJ-dependent 
signaling [84]. Similarly, following PFT intoxication of 
HeLa cells in vitro, the actomyosin network recovers the 
normal organization with similar kinetics (~ 4 to 8 h), which 
correlates with the occasional release of large cytoplasmic 
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containing blebs [80, 89]. Whether both phenomena are 
functionally interrelated is unknown, yet it is tempting 
to speculate that the mechanisms underlying actomyosin 
remodeling observed in vitro following PFT intoxication, 
not only favor PM repair, but also impact general epithelial 
organization and integrity during tissue responses to bacte-
rial-mediated damage.

Microtubule (MT) dynamics also influences PM repair. 
Mechanically induced PM damage promotes calcium-
dependent disassembly of MTs around the wound sites [159, 
160] which facilitates PM repair [105, 135, 147, 161]. MT 
rearrangements assist continuous vesicle and lipid traffick-
ing to the wound sites from the Golgi, protecting against 
recurrent mechanically induced PM wounds [160]. In line 
with this, translocation of Golgi-derived vesicles to the PM 
is important to reduce M. tuberculosis-induced damage and 
diminish infection [128]. Contrarily, repair of SLO-intoxi-
cated cells depends on intact MTs as the addition of nocoda-
zole, an established MTs disruptor, was proposed to inhibit 
PM repair [45]. However, PLY was shown to induce MT 
stabilization in a process that depends on Src kinase and may 
be linked to cell damage during infection [162].

Cell survival pathways

Mitogen-activated protein kinases (MAPKs) are serine/
threonine kinases that largely respond to stress stimuli 
and coordinate a variety of processes such as cell survival, 
metabolism, and proliferation [163]. Conventional MAPKs 
include the extracellular signal-regulated kinases 1 and 2 
(ERK1/2), p38 isoforms (alpha, beta, gamma, and delta) and 
c-Jun amino (N)-terminal kinases 1, 2, and 3 (JNK1/2/3). 
Activation of MAPK pathways, in particular p38, is pro-
moted by potassium efflux [40] and constitutes a widely con-
served defense mechanism against PFT-mediated damage 
[4, 11, 164]. However, p38 activation is dispensable for the 
recovery of SLO-intoxicated keratinocytes [165]. p38 can 
be activated downstream the engagement of TLR4 receptor 
by different CDCs such as Anthrolysin (ALO) from Bacil-
lus anthracis, which induces iNOS expression and promotes 
pro-inflammatory cytokines release [166, 167]. In parallel, 
LPS-mediated TLR4 stimulation activates p38 via the pro-
duction of reactive oxygen species (ROS) and downstream 
the apoptosis signal-regulating kinase 1 (ASK1) activity 
[166, 167]. Whether such pathway is activated by PFTs is 
not known. However, during intoxication by alpha-toxin, 
ASK1 knockdown and ROS scavenging do not prevent 
p38 activation [165], suggesting that other factors may be 
involved.

During PFT intoxication, p38 activation is dependent 
on potassium efflux yet, how potassium depletion triggers 
MAPK signaling and which p38-regulated mechanisms 
promote cell recovery from PFT-induced damage remains 

unclear. Perturbations of potassium levels in different con-
texts such as low potassium diet [168] and skin wound 
healing [169] also trigger p38 activation. In addition, the 
decrease of cytosolic potassium levels activates the inflam-
masome NLRP3 [44] by a mechanism that involves the 
serine/threonine kinase Nek7, which regulates NLRP3 oli-
gomerization and activation downstream of potassium efflux 
[170]. Interestingly, NLRP3 is activated during intoxication 
with the Clostridium tetani PFT, tetanolysin (TLO), and by 
Streptococcus pyogenes infection in an SLO-dependent man-
ner, leading to caspase-1 activation and IL-1 beta release 
[171, 172]. However, the molecular details of a potential p38 
and NLRP3 interconnection remain elusive.

To date, the activation of p38 was reported in response 
to all PFT tested—including Clostridium perfringens beta-
toxin, aerolysin, alpha-toxin, VCC, HlyA, Cry toxins, and 
CDCs, such as PLY, SLO, LLO, ALO, Vaginolysin (VLY), 
and Inerolysin (INY) [40, 41, 50, 164, 165, 173–176]—in 
a variety of hosts including different mammalian cell lines, 
C. elegans, and various insect species [41–43, 177–180].

Activation of p38 and/or ERK1/2 induces the shedding of 
PM vesicles and receptors in microglia, platelets, and tumor 
cells [181–183]. Alpha-toxin- and ALO-induced p38 and 
ERK1/2 activation also promotes the shedding of cell adhe-
sion and intracellular-contact molecules [124, 184]. Accord-
ingly, MAPK-mediated PM shedding was thus proposed to 
contribute to tissue barrier disruption during PFT intoxica-
tion or PFT-mediated infection. Despite MAPK-mediated 
shedding of PFT pores was not yet identified, it is tempting 
to speculate that p38 activation could directly support PM 
repair by promoting the shedding of PFT pores. Indeed, p38 
activity promotes recovery of potassium homeostasis and 
increases cell survival in response to PFT intoxication [41]. 
In addition, activation and transcriptional up-regulation of 
both p38 and JNK protect C. elegans from intoxication with 
Cry5B and large CDCs such as SLO [43, 179]. Both p38 
and JNK regulate multiple downstream signals, which were 
shown to be protective upon PFT intoxication in vivo. Spe-
cifically, p38 up-regulates genes involved in the activation 
of the Unfolded Protein Response (UPR) and expression of 
putative cation efflux channels [42]. On the other hand, JNK 
was described as the master regulator of PFT-induced tran-
scriptional responses, capable of up-regulating p38 specific 
pathways and innate immune signaling via the AP-1 tran-
scription factor [179].

Reversely, MAPK activation during PFT intoxication 
may also have detrimental effects, as blocking p38 activ-
ity reduces PLY-mediated cytotoxicity in human SH-SY5Y 
neuroblastoma cells [185].
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ER stress and organelle damage

Perturbations on ER homeostasis lead to the accumulation 
of unfolded proteins, which are recognized by ER stress 
sensors that signal for the re-establishment of normal ER 
conditions. This response involves the: (1) reduction of 
general protein translation; (2) up-regulation of chaperone 
expression to enhance protein folding; (3) activation of ER 
degradation pathways [186]. This process is called Unfolded 
Protein Response (UPR) and comprises three main branches 
defined by the specific stress sensor engaged: inositol requir-
ing enzyme 1 (IRE1), protein kinase RNA (PKR)-like ER 
kinase (PERK), and activating transcription factor 6 (ATF6) 
[186]. Under irreversible ER stress, the UPR can ultimately 
induce apoptosis [187–191].

PFTs activate IRE1 downstream p38-MAPK signaling 
in vivo, and both IRE1 and ATF6 protect C. elegans against 
intoxication by Cry5B [42], yet, the mechanisms through 
which UPR activation protects against PFT intoxication 
remain unclear. During infection, UPR activation by PFTs, 
limits intracellular replication of L. monocytogenes [187], or 
diminishes the growth of extracellular Group A Streptococ-
cus through the production of specific metabolites [192]. In 
the other hand, UPR activation may also lead to cell death 
[193], particularly upon prolonged dysregulation of calcium 
signaling [37, 194]. During S. pneumoniae infection in vivo, 
circulating PLY targets cardiomyocytes, leading to uncon-
trolled activation of PKCα-troponin and UPR pathways, loss 
of the contractile properties, and acute cardiac injury [37].

Upon PFTs’ challenge, the perturbations of calcium 
homeostasis can be due to calcium influx from the extracel-
lular environment, subsequent release of calcium by intra-
cellular calcium stores, and, possibly, from direct damage 
of ER compartments, all contributing to ER stress [38, 195, 
196]. In this context, different PFTs such as LLO, Aerolysin, 
and ShlA were shown to induce ER expansion, fission, and 
vacuolation [84, 89, 197]. PFT-mediated ER vacuolation 
may result from ER damage or cell death [84, 89]. Never-
theless, ER vacuolation in LLO-damaged cells ranges from 
mild fission to disruption of the entire ER network with cells 
recovering normal ER morphology following toxin washout 
[89]. ER fission likely limits ion and protein diffusion, and 
thus, this process could help cells isolating intracellular cal-
cium pools, and preventing overwhelming and deleterious 
elevations. On the other hand, limiting protein diffusion may 
compromise host-cell signaling and affect the responses to 
intoxication and ultimately to infection.

The morphology of post-ER compartments and the 
Golgi apparatus is not affected by aerolysin even in cells 
with dramatic ER fission and vacuolation [197]. How-
ever, VCC-induced vacuoles recruit proteins from the 
trans-Golgi network (TGN46), and co-localize with late-
endocytic (Rab7 and LAMP1) [198] and autophagic (LC3) 

compartments [199, 200]. Accordingly, both vacuole 
turnover and recovery of ER morphology following PFT 
intoxication may rely in autophagic pathways. In addi-
tion, cells respond to PFT-induced potassium efflux by 
inducing the formation of lipid droplets [41] and promot-
ing caspase-1-dependent activation of sterol-responsive 
element-binding proteins (SREBPs) [201], central regula-
tors of lipid metabolism, and membrane biogenesis [202]. 
Both processes appear to promote cell survival against 
PFT intoxication. Intriguingly, however, the host pore-
forming protein gasdermin D, which is activated down-
stream caspase-1, up-regulates liver lipogenesis and con-
tributes to the excess inflammation in mouse models of 
fatty liver disease [203]. Accordingly, it is possible that, 
while caspase-1-promoted fatty acid metabolism may 
increase cell-autonomous survival during PFTs’ intoxica-
tion, such mechanism may also trigger unexpected inflam-
matory processes in vivo.

Different PFTs can also directly target mitochondria 
[204–208], either affecting mitochondrial permeability, 
morphology, or functioning [204, 205, 207–211]. The 
Helicobacter pylori PFT, VacA, promotes Drp1-mediated 
mitochondrial fission and causes release of cytochrome c, 
an event also promoted by HlyA and the staphylococcal 
toxin Panton–Valentine leukocidin (PVL) [204–206, 208]. 
Mitochondrial damage caused by PVL and PLY also induces 
the release of Smac [206] and the apoptosis-inducing factor 
(AIF) [207] and mtDNA [209], respectively. Ultimately, this 
may lead to the activation of pro-apoptotic caspase-3 and -9, 
and trigger cell death [204, 206, 208]. Accordingly, inhibi-
tion of Drp1 was shown to prevent mitochondrial permeabi-
lization and cell death upon VacA intoxication [212]. During 
infection, LLO-mediated transient mitochondrial fragmen-
tation does not lead to cell death but promotes L. mono-
cytogenes replication [213]. Contrarily, the PLY-mediated 
release of mtDNA within secreted microvesicles contributes 
to pro-inflammatory responses against S. pneumoniae [209].

PFT-induced lysosomal damage was also observed in 
epithelial cells during L. monocytogenes infection [214]. 
LLO and other CDCs induce lysosomal permeabilization 
and release of the lysosomal aspartyl-protease cathepsin D, 
which remains transiently active in the cytosol, but it is not 
involved in PFTs’ degradation [214]. LLO-dependent deg-
radation of the crucial SUMOylation conjugation enzyme, 
Ubc9, promotes L. monocytogenes infection and is partially 
blocked by an aspartyl-protease inhibitor [215]. Impaired 
SUMOylation and alteration of the cellular proteome are 
promoted by LLO and PFO by decreasing the abundance of 
a variety of ubiquitilome-related proteins [216]. This process 
involves only post-transcriptional mechanisms and may also 
be beneficial for L. monocytogenes infection.

Altogether, PFT-induced organelle damage is linked to 
alterations of ion imbalance, cellular metabolism, and cell 
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death. Nevertheless, in different model systems, cells have 
been shown to recover from such stress by coordinating dif-
ferent processes that may involve: rescuing pathways such 
as the UPR, putative calcium sequestration mechanisms, 
increased membrane synthesis and lipid metabolism, and 
purging or recycling of damage compartments by autophagy 
(Fig. 4).

Autophagy

Autophagy constitutes a central defense mechanism against 
both extracellular and invading bacterial pathogens [12, 121, 
217–219]. It is activated upon PFT-induced PM damage to 
sustain metabolic homeostasis as PM perforation causes 
nutrient and energy depletion. In particular, SLO, alpha-
toxin and VCC, promote autophagy activation downstream 
AMPK or elF2alpha-kinase 4, known as energy- and nutri-
ent-depletion sensors, respectively [220, 221]. Autophagy 
was also proposed to promote PM repair in C. elegans fed 
with Escherichia coli expressing Cry5B. The co-localization 
of Cry5B with autophagic markers suggests that autophagy 
participates in the degradation of PFTs [121]. In agreement, 
worms intoxicated with Cry5B, Cry21A, and SLO display 
decreased survival upon autophagy inhibition [121]. VacA 
stability is also promoted by the inhibition of autophagy 
[222]. VCC activates autophagy and induces the formation 
of large intracellular vacuoles, which are targeted by the 
autophagic machinery [199, 223]. In addition, inhibition 
of autophagy in VCC-intoxicated cells impairs cell sur-
vival [199]. Whether PFT-induced vacuoles are effectively 
removed by autophagy has never been confirmed. Never-
theless, autophagy plays a crucial role in ER remodeling 
[224], mitochondria degradation [225], and detection of 
damaged endosomes and lysosomes [226, 227]. Since PFTs 
promote ER vacuolation and can damage mitochondria and 
lysosomes, one can hypothesize that autophagy also protects 
intoxicated cells by removing damaged organelles (Fig. 4).

During infection, autophagy protects the host-cell cytosol 
against the activity of PFTs such as alpha-toxin and HlyA, 
which allow bacterial escape from intracellular vacuoles 
[12, 228], and limits VacA-induced cellular damage [222]. 
In contrast, the activation of autophagy during L. monocy-
togenes infection depends on LLO [229], but enables the for-
mation of replication vacuoles (SLAPs—spacious Listeria-
containing phagosomes), which may provide a niche for 
persistent infections [230, 231]. Thus, autophagy acts as an 
antimicrobial defense mechanism, but can also be exploited 
by PFT-expressing bacterial pathogens to promote their rep-
lication [232].

Although this review focuses on the mechanisms that 
protect host cells against PFTs, it is worth to mention that 
lytic concentrations or permanent exposure to PFTs cause 
irreversible PM permeability, culminating into uncontrolled 

necrotic cell death [11]. At sub-lytic doses, PFTs can induce 
different programmed cell death pathways, in particular 
pyroptosis and necroptosis, which significantly affect the 
outcome of infection in vivo [4, 11, 35, 64, 233, 234]. PFT-
producing pathogens activate different cell death pathways 
[64]; however, the mechanisms underlying the activation 
of a specific cell death pathway during PFT intoxication 
or infection vary considerably according to the cell type or 
model organism and PFT tested. Whether the different cell 
death responses are either beneficial for the host—protecting 
it—or for the pathogen promoting infection needs further 
investigation.

Open questions and future directions

PFTs were for long considered potent unsophisticated viru-
lence factors whose solely function was to form PM holes 
in host cells. However, in the recent years, several studies 
revealed PFTs as multifaceted factors inducing a plethora of 
cellular responses. At sub-lytic concentrations, PFTs allow 
bacteria to manipulate host-cellular functions, not necessar-
ily to kill the host cells but to promote overall pathogenesis 
[4, 235]. Studies performed in cultured cell lines in vitro 
generated an extensive amount of data but, paradoxically, 
failed to establish mechanisms through which sub-lytic 
concentrations of PFTs may promote systemic infections. 
Efforts should now be directed to further understand the 
complexity of PFTs activity and the host response during 
disease.

The cellular responses to sub-lytic concentrations of PFTs 
were assessed individually for specific PFTs, using several 
cultured cell lines and a range of different concentrations of 
purified toxins. Given that PFTs are widespread among bac-
terial pathogens and share essential functions and effects, in 
the future, PFTs should be studied together with an emphasis 
on common features. In particular, a combination between 
ultra-structural, super resolution, and live imaging micros-
copy analysis of wound sites is now important to character-
ize the architecture of PFT-mediated injuries and localized 
repair mechanisms. This approach could reveal broad anti-
microbial strategies to target PFTs and fight several bacterial 
infections.

As described in this review, a multitude of mechanisms 
were involved in PFTs’ defense at the cellular level. Whether 
these mechanisms are part of a coordinated response regu-
lated in time and space needs to be addressed. In addition, 
the interdependence of the different defense events and the 
molecular basis for their activation require further investiga-
tion. Importantly, findings in the context of PFTs response 
will be of interest in the other pathological contexts in which 
plasma membrane damage is occurring.
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PFTs’ defense at the organism level also deserves further 
exploration. Indeed, the exact mechanisms of action of cel-
lular defense pathways, where they act and how they are 
protective in a complex organism, remain mainly uniden-
tified. Host specificity needs to be considered and future 
efforts should focus on the development and use of valuable 
infection models, such as D. melanogaster, D. rerio, and C. 
elegans, which are extremely versatile and for which a large 
number of molecular tools are available. The understanding 
of PFT-induced host barrier dysfunction, inflammation, and 
immune response disruption is of critical importance in the 
perspective of systemic infection, and needs to be analyzed 
in vivo in the context of organized tissues composed by a 
variety of cell types. In addition, emerging three-dimen-
sional (3D) cell culture models may also represent valuable 
tools to study host responses to PFT activity in the context 
of tissue properties or organ complexity.

Altogether, these studies should help to find novel treat-
ments targeting PFTs from a broad range of slightly different 
toxins or enhancing host defense mechanisms.
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