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Approximation of Non-Decaying Signals From
Shift-Invariant Subspaces

Ha Q. Nguyen and Michael Unser

Abstract

In our recent work, the sampling and reconstruction of non-decaying signals, modeled as members of weighted-
Lp spaces, were shown to be stable with an appropriate choice of the generating kernel for the shift-invariant
reconstruction space. In this paper, we extend the Strang-Fix theory to show that, for d-dimensional signals whose
derivatives up to order L are all in some weighted-Lp space, the weighted norm of the approximation error can be
made to go down as O(hL) when the sampling step h tends to 0. The sufficient condition for this decay rate is that
the generating kernel belongs to a particular hybrid-norm space and satisfies the Strang-Fix conditions of order L.
We show that the O(hL) behavior of the error is attainable for both approximation schemes using projection (when
the signal is prefiltered with the dual kernel) and interpolation (when a prefilter is unavailable). The requirement on
the signal for the interpolation method, however, is slightly more stringent than that of the projection because we
need to increase the smoothness of the signal by a margin of d/p + ε, for arbitrary ε > 0. This extra amount of
derivatives is used to make sure that the direct sampling is stable.

Index Terms

Approximation theory, Strang-Fix conditions, shift-invariant spaces, spline interpolation, weighted Lp spaces,
weighted Sobolev spaces, hybrid-norm spaces

I. INTRODUCTION

Sampling and reconstruction are important in signal processing because they provide an insightful connection
between analog signals and their discrete representations. In the sampling procedure, oftentimes, a continuous-
domain signal f : Rd 7→ C is uniformly sampled (with or without a prefilter) at multi-integer multiples of some
sampling step h to produce a discrete-domain signal c : Zd 7→ C. The reconstruction, on the other hand, is commonly
done by interpolating the samples {c[k]}k∈Zd with scaled and shifted copies of some kernel (generating function)
ϕ positioned on the grid hZd. Precisely, the reconstructed signal takes the (integer) shift-invariant form

f̃(x) =
∑
k∈Zd

c[k]ϕ
(x
h
− k

)
. (1)

This interpolation model has been extensively used in the theory of splines [1]–[4]. It is general enough to include
the celebrated reconstruction formula in Shannon’s sampling theorem [5] in which the kernel ϕ is replaced with the
sinc function. Although the sinc-based interpolation guarantees exact recovery of bandlimited signals (or signals
prefiltered with an ideal lowpass filter) whenever 1/h exceeds Nyquist’s rate, the slow decay of sinc(x) unfortunately
prevents the application of this method in practice [6]. For other choices of ϕ with better localization properties,
such as splines, exact reconstruction is no longer achievable but the quality of the approximation of a signal f by
such f̃ given in (1) can be characterized as a power of the sampling step h via the Strang-Fix theory. Specifically,
in early 1970’s, Strang and Fix [7] extended Schoenberg’s work [1] and introduced the concept of controlled
approximation in which the `2-norm of the sampled coefficients is bounded by the L2-norm of the original signal.
They showed that, for compactly supported ϕ, the error of the controlled approximation is bound as

∀f ∈ HL
2 (Rd), min

c

∥∥∥f − f̃∥∥∥
L2(Rd)

≤ Cϕ,L · hL ·
∥∥∥f (L)∥∥∥

L2(Rd)
, as h→ 0, (2)
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if and only if ϕ satisfies the Strang-Fix conditions of order L so that the representation (1) is able to reproduce
all polynomials of degree less than L; this notion will be clarified later in Section II-D. Here, f (L) is the Lth
derivative1 of f and HL

2 (Rd) is the Sobolev space of L2 functions whose first L derivatives are all in L2(Rd). The
order L in (2) is referred to in the literature as the order (power) of approximation.

The original result of Strang and Fix has been extended in various directions, including controlled Lp-approximation
with globally supported (multi-) kernel [8]–[11], uncontrolled L2-approximation [12], and finer estimations of the
L2-approximation error [13]–[17]; interested readers are also referred to the surveys [18]–[20]. More recently, the
Strang-Fix theory was linked to the sampling of signals with finite rate of innovation [21]. Despite a rich literature
on the Strang-Fix conditions, none of the existing results allows us to deal with the approximation of non-decaying
(non-Lp) signals, such as sample paths of a Brownian motion, which can even grow at infinity. This is an important
part that seems to be missing, and which, for instance, is relevant to the theory of sparse stochastic processes
recently developed by Unser et al. [22]–[24].

In this paper, a follow-up of our recent works on the sampling theory for non-decaying signals [25]–[27], we
provide an approximation theory for such objects. Recall that we showed in [25] that both the sampling and
reconstruction of weighted-Lp signals, at a fixed sampling step, are stable, provided the generating kernel ϕ lies
in an appropriate hybrid-norm space, a concept closely related to the Wiener amalgams that are frequently used in
time-frequency analysis [28]–[30]. Note that, in the direct sampling scheme, where a prefilter is absent, not only
the signal is required to live in a weighted-Lp space, but also its first d/p+ ε derivatives, for some ε > 0. In the
spirit of [25], we model non-decaying signals in this paper as members of the weighted space Lp,−α(Rd) associated
with the Sobolev weight (1 + ‖ · ‖2)−α/2, where α ≥ 0 specifies the order of growth of the signals. In particular,
f ∈ Lp,−α(Rd) if (1 + ‖ · ‖2)−α/2f ∈ Lp(Rd). We then extend the classical Strang-Fix theory to the approximation
of such signals for the two common types of shift-invariant reconstructions: projection versus (direct) interpolation.

In the projection scheme, which provides the optimal L2-approximation, the original signal is prefiltered with the
dual kernel h−dϕd

(
− ·h
)

[14] and the coefficients {c[k]}k∈Zd in (1) are obtained by sampling the resulting signal
with step size h. It means that the reconstructed signal is given by

f̃proj(x) =
1

hd

∑
k∈Zd

〈
f, ϕd

( ·
h
− k

)〉
ϕ
(x
h
− k

)
.

For this type of reconstruction, we show, in the first half of the paper, that if ϕ belongs to an appropriate hybrid-
norm space and at the same time satisfies the Strang-Fix conditions of order L, then the weighted-Lp norm of the
projection error is bounded as

∀f ∈ HL
p,−α(Rd),

∥∥∥f − f̃proj∥∥∥
Lp,−α(Rd)

≤ Cϕ,L,α · hL ·
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
, as h→ 0, (3)

where the weighted Sobolev space HL
p,−α(Rd) is a collection of functions whose derivatives up to order L are all

in Lp,−α(Rd). We want to remark that this result is the weighted version of [11, Theorem 2.2].
In the interpolation scheme, the coefficients are sampled directly from the original signal; hence the reconstructed

signal takes the form

f̃int(x) =
∑
k∈Zd

f(hk)ϕint

(x
h
− k

)
,

where ϕint is the interpolant generated from the kernel ϕ [6]. Similar to the projection case, we establish, in the
second half of the paper, that if ϕ is an element of a particular hybrid-norm space that satisfies the Strang-Fix
condition of order L, then, given r > d/p,

∀f : Drf ∈ HL
p,−α(Rd),

∥∥∥f − f̃int∥∥∥
Lp,−α(Rd)

≤ Cϕ,L,α · hL ·
∥∥∥(Drf)(L)

∥∥∥
Lp,−α(Rd)

, as h→ 0. (4)

Here, Drf is a combination of all fractional derivatives up to order r of f defined in the frequency domain as Drf :=
F−1

{
(1 + ‖ · ‖2)r/2Ff

}
with F being the Fourier transform operator. Informally speaking, the interpolation error

can also be made to decay like O(hL), when h tends to 0, for functions whose derivatives up to order L+ d/p+ ε
live in some weighted-Lp space, for arbitrary ε > 0. This is not surprising because we need d/p+ ε derivatives to

1To be precise, when f is multivariate, f (L) is the summation of (the moduli of) all partial derivatives of order L of f .
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take care of the sampling, as indicated in [25], and L derivatives more to reach the target approximation order. To
the best of our knowledge, the bound (4) is new even in the unweighted Lp case (when all instances of the subscript
α disappear), although similar results exist for the direct interpolation in L2 [14] and L∞ [9]. The (unweighted)
Lp result presented in [10, Theorem 4.1], although similar to (4), does not fall into the realm of direct interpolation
because the samples are taken from a smoothed version of the original signal. It is important to remark that the
decay rate in (4) is integer while the order of smoothness of f is fractional. An extension of such bound for
fractional decay rates, in a similar vein to the unweighted approximations in [31]–[35], might be considered for
future research.

One of the challenges for the approximation in weighted spaces is that the beautiful Fourier-based methods
commonly used in the Strang-Fix theory [7], [12]–[17] are no longer applicable, even in the weighted-L2 case,
due to the lack of a Parseval-type relation. In proving the bounds (3) and (4), we adapt the Lp-approximation
techniques in [10], [11], which are carried entirely in the space domain, but our analysis is much more involved
because of the handling of the weights. We also heavily rely on the preliminary results in [25]. Other works that are
closely related to the present paper are [36], [37] in which similar bounds were derived in the weighted-Lp spaces
associated with the so-called Muckenhoupt weights [38]. These weights, however, are strikingly different from the
Sobolev weights used in this paper. They are characterized by the boundedness of the Hardy-Littlewood maximal
operator [39]–[41] with respect to the weighted norm. Typical examples of the Muckenhoupt weights are ‖ · ‖α, for
α being restricted in the interval (−d/p, d− d/p) (cf. [42]). By contrast, the Sobolev weights (1 + ‖ · ‖2)α/2 can
take arbitrary order α ∈ R and therefore give us more freedom in quantifying the growth or decay of the signals.
Moreover, the Muckenhoupt weights are not well-suited to time-frequency analysis because they are generally not
submultiplicative, an important property that is satisfied by the Sobolev weights (cf. [43, Section 9]).

The remainder of the paper is organized as follows: preliminary notions are introduced in Section II; approximation
error bounds for the projection and interpolation paradigms are derived in Sections III and IV, respectively; proofs
of several auxiliary results are given in Section V.

II. PRELIMINARIES

A. Notation

All functions in this paper are mappings from Rd to C for a fixed dimension d ≥ 1. Vectors in Rd are denoted
by bold letters and their Euclidean norms are denoted by ‖ · ‖. The constants throughout the paper are denoted
by C with subscripts indicating the dependence of the constants on some parameters; we use the same notation
for different constants that depend on the same set of parameters. The restriction of a function f on the multi-
integer grid Zd is denoted by f [·]. N is the set of natural numbers and Z+ is the set of nonnegative integers, i.e.,
Z+ = N ∪ {0}. For brevity, we denote by 〈·〉 the Sobolev weighting function (1 + ‖ · ‖2)1/2. For 1 ≤ p ≤ ∞, we
use p′ to denote the Hölder conjugate of p that satisfies 1

p + 1
p′ = 1 .

C∞c (Rd) is the space of smooth and compactly supported functions, S(Rd) is Schwartz’ class of smooth and
rapidly decaying functions, and S ′(Rd) is the space of tempered distributions, which are continuous linear functionals
on S(Rd). As usual, the notation 〈·, ·〉 is used interchangeably for the scalar product and for the action of a
distribution on a test function. The (distributional) Fourier transform f̂ = Ff of a tempered distribution f ∈ S ′(Rd)
is also a tempered distribution defined as

〈Ff, ϕ〉 :=
〈
f̂ , ϕ

〉
:= 〈f, ϕ̂〉 , for ϕ ∈ S(Rd),

where

ϕ̂(ω) :=

∫
Rd
ϕ(x)e−j〈ω,x〉dx.

We denote the inverse Fourier-transform operator by F−1. For a multi-index ` ∈ Zd+, |`| :=
∑d

i=1 `i and ∂` is
a shorthand for (∂/∂x1)

`1 · · · (∂/∂xd)`d . The (distributional) partial derivative with respect to ` of a tempered
distribution f ∈ S ′(Rd) is also a tempered distribution defined as〈

∂`f, ϕ
〉

:= (−1)|`|
〈
f, ∂`ϕ

〉
, for ϕ ∈ S(Rd).
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We also use the notation

f (n) :=
∑

`∈Zd+:|`|=n

|∂`f |.

∇ := (∂/∂x1, . . . , ∂/∂xd) is the gradient operator and Du := 〈∇,u〉 is the directional derivative operator with
respect to u ∈ Rd. The shift and difference operators are defined as Suf := f(· − u) and ∆uf := f − Suf ,
respectively. For h > 0, σh denotes the scaling operator given by σhf := f(·/h).

B. Weighted Normed Spaces

The spaces Lp(Rd) and `p(Zd) and their corresponding norms ‖·‖Lp(Rd) and ‖·‖`p(Zd) are defined as usual. We
also need the hybrid-norm space Wp(Rd) which comprises all functions f whose hybrid (mixed) norm

‖f‖Wp(Rd) :=


(∫

[0,1]d

(∑
k∈Zd |f(x + k)|

)p
dx
)1/p

, 1 ≤ p <∞
ess supx∈[0,1]d

∑
k∈Zd |f(x + k)|, p =∞

is finite. For any weighting function w, the weighted spaces Lp,w(Rd), `p,w(Zd) and Wp,w(Rd) are defined with
respect to the following weighted norms:

‖f‖Lp,w(Rd) := ‖f · w‖Lp(Rd) ,
‖c‖`p,w(Zd) := ‖c · w[·]‖`p(Zd) ,
‖f‖Wp,w(Rd) := ‖f · w‖Wp(Rd) .

When w = 〈·〉α, for some α ∈ R, we write Lp,α(Rd) for Lp,w(Rd), `p,α(Zd) for `p,w(Zd), and Wp,α(Rd) for
Wp,w(Rd). Note that, for α ≥ 0, the weight w = 〈·〉α is (weakly) submultiplicative, i.e.,

〈x + y〉α ≤ Cα 〈x〉α 〈y〉α , ∀x,y ∈ Rd,

which is equivalent to

〈x + y〉−α ≤ Cα 〈x〉α 〈y〉−α , ∀x,y ∈ Rd.

Furthermore, the weight w = 〈·〉α satisfies the Gelfand-Raikov-Shilov condition [44] that

lim
n→∞

w(nx)1/n = 1, ∀x ∈ Rd.

These two properties of 〈·〉α, with α ≥ 0, will be crucial for us to manipulate weights.
Finally, let us define the weighted Sobolev spaces of integer and fractional orders. Given 1 ≤ p ≤ ∞ and α ∈ R,

the space Hk
p,α(Rd) with k ∈ Z+ consists of all f ∈ S ′(Rd) such that

‖f‖Hk
p,α(Rd) :=

∑
`∈Zd+:|`|≤k

∥∥∥∂`f∥∥∥
Lp,α(Rd)

<∞.

It is straightforward that if f ∈ Hk
p,α(Rd) then f (n) ∈ Lp,α(Rd), for all n ≤ k. Meanwhile, the space Lsp,α with

s ∈ R consists of all f ∈ S ′(Rd) such that

‖f‖Lsp,α(Rd) :=
∥∥∥F−1 {〈·〉s f̂}∥∥∥

Lp,α(Rd)
<∞.

From here on, the term F−1
{
〈·〉s f̂

}
will be abbreviated as Dsf . When s > 0, D−s is the Bessel potential of

order s [45]. We also need the hybrid weighted Sobolev space Hk,s
p,α which encompasses all f ∈ S ′(Rd) such that

Dsf ∈ Hk
p,α. Note that, in the unweighted case (α = 0), it is not difficult to show that Hk,s

p (Rd) = Lk+sp (Rd), for
1 < p < ∞, using the Mikhlin-Hörmander theorem on Fourier multipliers (cf. [46, Chapter 5] and [45, Chapter
6]). For α 6= 0, however, Hk,s

p,α(Rd) is not necessarily the same as Lk+sp,α (Rd). This is due to the lack of a theory
on weighted Fourier multipliers for the Sobolev weights; most of the existing literature are concerned with the
Muckenhoupt weights, instead [42], [47], [48].
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C. Shift-Invariant Spaces of Non-Decaying Functions

We are interested in the approximation of a non-decaying function living in the ambient space Lp,−α(Rd), for
some α ≥ 0, by an element in the (weighted) shift-invariant space Vp,−α,h(ϕ) generated by some kernel ϕ defined
as

Vp,−α,h(ϕ) :=

{
f =

∑
k∈Zd

c[k]ϕ
( ·
h
− k

)
: c ∈ `p,−α(Zd)

}
,

where h > 0 is a varying scale (sampling step). We write Vp,−α(ϕ) for Vp,−α,1(ϕ), write Vp,h(ϕ) for Vp,0,h(ϕ),
and write Vp(ϕ) for Vp,0,1(ϕ). In addition to including many types of signal reconstruction models covered in
the literature [6], this general formulation allows us to deal with (polynomially) growing signals. Similar to the
unweighted case, we want to make sure that the (unscaled) space Vp,−α(ϕ) is a closed subspace of Lp,−α(Rd) and
each of its member f ∈ Vp,−α(ϕ) has an unambiguous representation in terms of the coefficients c[k]. It turns out
that, as shown in [25, Theorem 2], this wish list will be fulfilled if the generating kernel ϕ satisfies the following
admissibility conditions:
(i) {ϕ(·−k)}k∈Zd is a Riesz basis for V2(ϕ) or, equivalently, the Fourier tranform of the autocorrelation sequence,

âϕ(ω) :=
∑

k∈Zd |ϕ̂(ω + 2πk)|2, is bounded from below and above for all ω ∈ Rd;
(ii) ϕ belongs to the weighted hybrid-norm space Wq,α(Rd) with q := max(p, p′).
We want to emphasize that the above conditions, though mathematically cumbersome, are by no means restrictive
since they are easily satisfied by all interpolation kernels used in practice, and in particular B-splines [6].

D. Strang-Fix Conditions

There are multiple forms of the Strang-Fix conditions; the equivalence between them was initially shown for
compactly supported functions [7] but then extended to kernels with global supports [9], [10]. The most common
form of the Strang-Fix conditions is characterized in the frequency domain: a kernel ϕ is said to satisfy the
Strang-Fix conditions of order L if
(i) ϕ̂(0) 6= 0;

(ii) ∂`ϕ̂(2πk) = 0, ∀|`| ≤ L− 1,∀k ∈ Zd \ {0}.
To translate the Strang-Fix conditions into the space domain, we also need the Poisson summation formula (PSF)
to hold. One of the most common conditions for the PSF [46] is that

∃C, ε > 0 : |ϕ(x)|+ |ϕ̂(x)| ≤ C(1 + ‖x‖)−d−ε, ∀x ∈ Rd. (5)

Although (5) is not satisfied by the rectangle kernel, it can be relaxed [10, Theorem 2.1] to cover that case.
Assuming the PSF, the Strang-Fix conditions above are equivalent to the existence of a quasi-interpolant ϕQI of
order L [49]–[51] in the shift-invariant subspace V2(ϕ). This quasi-interpolant exactly interpolates all polynomials
of degree (strictly) less than L, i.e.∑

k∈Zd
k`ϕQI(x− k) = x`, ∀|`| ≤ L− 1, ∀x ∈ Rd, (6)

where x` stands for x`11 · · ·x
`d
d . Therefore, the Strang-Fix conditions of order L can also be described as the ability

of the space V2(ϕ) to reproduce polynomials of degree less than L. It is important to note that, for a particular ϕ,
there are multiple choices for the quasi-interpolant within the subspace V2(ϕ), one of which is the interpolant ϕint

that satisfies not only (6) but also the interpolating property

ϕint(k) = δ[k], ∀k ∈ Zd, (7)

where δ[·] denote the discrete unit impulse; the construction of this interpolant will be discussed in Section IV.
Most importantly, the Strang-Fix conditions of order L are necessary and sufficient for the controlled L2-

approximation of order L that for any f ∈ HL
2 (Rd), there exists f̃ =

∑
k∈Zd c[k]ϕ (·/h− k) in V2(ϕ) such

that
(i) ‖c‖`2(Zd) ≤ C · ‖f‖L2(Rd) and

(ii)
∥∥∥f − f̃∥∥∥

L2(Rd)
≤ C · hL ·

∥∥f (L)∥∥
L2(Rd)

, as h→ 0,
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where the constants C are independent of f . Note that the controllability of the approximation is dictated by the
first bound, whereas the order of the approximation is described by the second bound. This beautiful connection
between the approximation of order L and the ability of the representation space to reproduce polynomials of
degree less than L lies at the core of the Strang-Fix theory and its various extensions [10], [12], [15]. Finally, it is
handy to keep in mind that the B-spline of order L [52], [53] satisfies the Strang-Fix conditions of order L.

III. PROJECTION ERROR BOUND

In this section, we derive the error bound for the approximation of a non-decaying function in the weighted
Sobolev space HL

p,−α(Rd) by its projection onto the shift-invariant space Vp,−α,h(ϕ). Assume throughout this
section that the kernel ϕ is such that {ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ). This condition guarantees [6] that
the dual kernel ϕd exists and is given in the Fourier domain by

ϕ̂d(ω) =
ϕ̂(ω)∑

k∈Zd |ϕ̂(ω + 2πk)|2
.

Let us define the operator

Pϕ,h : f 7→ f̃proj =
∑
k∈Zd

c[k]ϕ
( ·
h
− k

)
,

where, for each k ∈ Zd, the coefficient c[k] is given by

c[k] =
1

hd

∫
Rd
f(y)ϕd

(y
h
− k

)
dy.

In the language of signal processing, c[k] is the result of prefiltering the signal f with the filter h−dϕd

(
− ·h
)

followed
by a sampling at location hk. We write Pϕ for Pϕ,1. It is well known in the (unweighted) L2 case that Pϕ,h is an
orthogonal projector from L2(Rd) onto the subspace V2,h(ϕ) and therefore provides the best L2-approximation. In
the weighted-Lp setup, orthogonality no longer exists but the operator Pϕ,h still behaves properly. In particular, the
following result shows that Pϕ,h is a bounded projector from Lp,−α(Rd) onto Vp,−α,h(ϕ) whose norm is bounded
as the scale h tends to 0. The essential condition for that to hold true is that the generating kernel ϕ is a member
of an appropriate weighted hybrid-norm space.

Theorem 1. Let 1 ≤ p ≤ ∞ and α ≥ 0. If ϕ ∈ Wq,α(Rd) with q := max(p, p′) and {ϕ(· − k)}k∈Zd is a Riesz
basis for V2(ϕ), then, for all h > 0, Vp,−α,h(ϕ) is a closed subspace of Lp,−α(Rd) and Pϕ,h is a projector from
Lp,−α(Rd) onto Vp,−α,h(ϕ). Furthermore, there exists a constant Cϕ,α such that

‖Pϕ,hf‖Lp,−α(Rd) ≤ Cϕ,α ‖f‖Lp,−α(Rd) , ∀f ∈ Lp,−α(Rd),∀h ∈ (0, 1). (8)

Proof. Since ϕ ∈ Wq,α(Rd) and {ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ), it is known from [25, Theorems 1 &
2] that Vp,−α(ϕ) is a closed subspace of Lp,−α(Rd) and Pϕ is a bounded projector from Lp,−α(Rd) onto Vp,−α(ϕ).
We now divide the rest of the proof into several steps.

First, we show that Vp,−α,h(ϕ) is a subspace of Lp,−α(Rd), for all h > 0. Given f ∈ Vp,−α,h(ϕ), it is clear that
σ1/hf ∈ Vp,−α(ϕ) ⊂ Lp,−α(Rd). On the other hand,

‖f‖pLp,−α(Rd) = hd
∫
Rd
〈hx〉−αp

∣∣(σ1/hf)(x)
∣∣p dx

≤ hd ·max(1, h−αp)

∫
Rd
〈x〉−αp

∣∣(σ1/hf)(x)
∣∣p dx

= hd ·max(1, h−αp) ·
∥∥σ1/hf∥∥pLp,−α(Rd) . (9)

This implies that f also belongs to Lp,−α(Rd), or Vp,−α,h(ϕ) is a subspace of Lp,−α(Rd), for all h > 0.
Second, we show that Vp,−α,h(ϕ) is closed under the norm of Lp,−α(Rd), for all h > 0. Let {fn} be a sequence

in Vp,−α,h(ϕ) such that fn → f in Lp,−α(Rd) as n→∞. Similar to (9), we have that∥∥σ1/hfn − σ1/hf∥∥Lp,−α(Rd) ≤ h−d/p ·max(1, hα) · ‖fn − f‖Lp,−α(Rd) ,
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which implies that σ1/hfn → σ1/hf in Lp,−α(Rd) as n → ∞. As
{
σ1/hfn

}
is a sequence in Vp,−α(ϕ), it

follows from the closedness of Vp,−α(ϕ) that σ1/hf ∈ Vp,−α(ϕ), or f ∈ Vp,−α,h(ϕ). This shows the closedness of
Vp,−α,h(ϕ).

Third, we show that Pϕ,h is a projector that maps Lp,−α(Rd) to Vp,−α,h(ϕ), for all h > 0. Observe that Pϕ,h =
σhPϕσ1/h. From (9), σ1/h maps Lp,−α(Rd) to itself. It is also known that Pϕ maps Lp,−α(Rd) to Vp,−α(ϕ) and
σh maps Vp,−α(ϕ) to Vp,−α,h(ϕ). Therefore, Pϕ,h maps Lp,−α(Rd) to Vp,−α,h(ϕ). The idempotence of Pϕ,h can
be easily verified as

P 2
ϕ,h = σhPϕσ1/hσhPϕσ1/h = σhP

2
ϕσ1/h = σhPϕσ1/h = Pϕ,h,

where we have relied on the idempotence of the projector Pϕ.
Finally, we show the bound (8). Let us consider the weighting function wh(x) := 〈hx〉α. It is easy to see that

wh satisfies

wh(x + y) ≤ Cαwh(x)wh(y), ∀x,y ∈ Rd,∀h > 0. (10)

By a change of variable and from the last bound in the proof of [25, Theorem 1], we have that, for all h > 0,

‖Pϕ,hf‖Lp,−α(Rd) =
∥∥σhPϕσ1/hf∥∥Lp,−α(Rd)

= hd/p ·
∥∥Pϕ(σ1/hf)

∥∥
Lp,1/wh (Rd)

≤ hd/p · C2
α · ‖ϕ‖Wp,wh

(Rd) ‖ϕd‖Wp′,wh (R
d)

∥∥σ1/hf∥∥Lp,1/wh (Rd)
= C2

α · ‖ϕ‖Wp,wh
(Rd) ‖ϕd‖Wp′,wh (R

d) ‖f‖Lp,−α(Rd) , (11)

where Cα is precisely the constant in (10) that does not depend on h. On the other hand, according to [25,
Proposition 6], both ϕ and ϕd are elements of Wq,α(Rd). Since q = max(p, p′), it must be that ϕ ∈Wp,α(Rd) and
ϕd ∈Wp′,α(Rd). Moreover, the assumption that h ∈ (0, 1) gives

‖ϕ‖Wp,wh
(Rd) ≤ ‖ϕ‖Wp,α(Rd) <∞, (12)

and

‖ϕd‖Wp′,wh (R
d) ≤ ‖ϕd‖Wp′,α(Rd) <∞. (13)

Putting together (11), (12), and (13) yields the desired bound (8).

The main result of this section is as follows:

Theorem 2. Let 1 ≤ p ≤ ∞, L ∈ N, and α ≥ 0. Assume that ϕ ∈ Wq,L+α(Rd) with q := max(p, p′) and that
{ϕ(· − k)}k∈Zd is a Riesz basis for V2(ϕ). Assume also that ϕ satisfies the Strang-Fix conditions of order L. Then,
there exists a constant Cϕ,L,α such that, for all f ∈ HL

p,−α(Rd),

‖f − Pϕ,hf‖Lp,−α(Rd) ≤ Cϕ,L,α · h
L ·
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
, (14)

when h→ 0.

In what follows, we break the proof of Theorem 2 into several small results. Let us begin by defining the
smoothing operator Jh as

Jh : f 7→
∫
Rd

(
f −∆L

huf
)

(·)χ (u) du, (15)

with some underlying function χ ∈ C∞c (Rd) such that supp(χ) ⊂ [−1, 1]d and
∫
Rd χ(u)du = 1. This smoothing

operator was also exploited in [10], [11].
Expanding ∆L

huf as

∆L
huf =

L∑
n=0

(−1)n
(
L

n

)
f(· − nhu),
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we obtain

f −∆L
huf =

L∑
n=1

(−1)n−1
(
L

n

)
f(· − nhu).

Therefore, Jh can also be expressed as

Jhf =

L∑
n=1

(−1)n−1
(
L

n

)∫
Rd
f(· − nhu)χ (u) du.

This means that Jh is a convolution operator: Jhf = f ∗ ψh, where

ψh :=

L∑
n=1

(−1)n−1
(
L

n

)
1

(nh)d
σnhχ. (16)

The following result shows that the weighted norm of the error between a function f ∈ HL
p,−α(Rd) and its

smoothed version Jhf is O(hL) as h tends to 0.

Proposition 1. For 1 ≤ p ≤ ∞, L ∈ N, α ≥ 0, and Jh being the smoothing operator defined in (15), there exists
a constant CL,α such that, for all f ∈ HL

p,−α(Rd) and for all h ∈ (0, 1),

‖f − Jhf‖Lp,−α(Rd) ≤ CL,α · h
L ·
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
. (17)

Proof. We first need the following two lemmas whose proofs can be found in Section V.

Lemma 1. Let L ∈ N and let βL−1 be the (1-D) B-spline of order (L− 1) given by the L-fold convolution

βL−1 := β0 ∗ β0 ∗ · · · ∗ β0︸ ︷︷ ︸
L times

,

where

β0(x) :=

{
1, 0 < x < 1

0, otherwise
.

Then, for all f ∈ S ′(Rd), one has

∆L
uf =

∫
R
DL

uf(· − tu)βL−1(t)dt. (18)

Lemma 2. Let L ∈ N and u ∈ Rd. If f ∈ S ′(Rd) such that its partial derivatives up to order L are locally
integrable functions, then ∣∣DL

uf(x)
∣∣ ≤ ‖u‖L∞ · f (L)(x), ∀x ∈ Rd, (19)

where ‖u‖∞ := max{|u1|, . . . , |ud|}.

We remark that Lemma 1 is an extension of Peano’s theorem [54, page 70] for smooth functions. It is needed
to avoid the density argument in the proof of [10, Theorem 3.3] that is unavailable in the weighted case. Let us
continue with the proof of Proposition 1. Observe that

(f − Jhf)(x) = f(x)

∫
Rd
χ (u) du−

∫
Rd

(
f −∆L

huf
)

(x)χ (u) du

=

∫
Rd

∆L
hu(x)χ (u) du.

From Lemma 1 and by taking into account the fact that supp(χ) ⊂ [−1, 1]d and supp(βL−1) = [0, L], we write

(f − Jhf)(x) =

∫
[−1,1]d

∫ L

0
DL
huf(x− thu)βL−1(t)χ (u) dudt.
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It then follows from Minkowski’s inequality and Lemma 2 that

‖f − Jhf‖Lp,−α(Rd) ≤
∫
[−1,1]d

∫
R

∥∥DL
huf(· − thu)

∥∥
Lp,−α(Rd)

βL−1(t)χ (u) du dt

≤
∫
[−1,1]d

∫
R
‖hu‖L∞ ·

∥∥∥f (L)(· − thu)
∥∥∥
Lp,−α(Rd)

βL−1(t)χ (u) du dt

≤ hL ·
∫
[−1,1]d

∫
R

∥∥∥f (L)(· − thu)
∥∥∥
Lp,−α(Rd)

βL−1(t)χ (u) dudt. (20)

On the other hand,∥∥∥f (L)(· − thu)
∥∥∥
Lp,−α(Rd)

=

(∫
Rd

∣∣∣〈x〉−α f (L)(x− thu)
∣∣∣p dx

)1/p

≤ Cα 〈thu〉α
(∫

Rd

∣∣∣〈x− thu〉−α f (L)(x− thu)
∣∣∣p dx

)1/p

= Cα 〈thu〉α
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
.

Thus, for t ∈ [0, L] and h ∈ (0, 1),∥∥∥f (L)(· − thu)
∥∥∥
Lp,−α(Rd)

≤ Cα Lα 〈u〉α
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
. (21)

Combining (21) with (20) leads to

‖f − Jhf‖Lp,−α(Rd) ≤ Cα L
α · hL ·

∥∥∥f (L)∥∥∥
Lp,−α(Rd)

∫ L

0
βL−1(t)dt

∫
[−1,1]d

〈u〉α χ (u) du

= CL,α · hL ·
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
,

which completes the proof.

Proposition 2. Assume that 1 ≤ p ≤ ∞, L ∈ N, and α ≥ 0. Let q := max(p, p′) and let Jh be the smoothing
operator defined in (15). If ϕ is an element of Wq,L+α(Rd) that satisfies the Strang-Fix conditions of order L, then
there exists a constant Cϕ,L,α such that, for all f ∈ HL

p,−α(Rd) and for all h ∈ (0, 1),

‖Jhf − Pϕ,hJhf‖Lp,−α(Rd) ≤ Cϕ,L,α · h
L ·
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
.

Proof. We begin the proof with a lemma; its proof is given in Section V.

Lemma 3. Let wh(x) := 〈hx〉α, α ≥ 0. Then, there exists a constant CL,α such that, for all f ∈ Lp,−α(Rd) and
for all h ∈ (0, 1), ∥∥(σ1/hJhf)[·]

∥∥
`p,1/wh (Zd)

≤ CL,α · h−d/p · ‖f‖Lp,−α(Rd) . (22)

Let us now put g := Jhf and e := g − Pϕ,hg. It is clear that g is infinitely differentiable. For x ∈ Rd, let Rx

denote the remainder of the order-(L − 1) Taylor series of function g about x. Since ϕ satisfies the Strang-Fix
conditions of order L, it is known [14] that Pϕ,h maps every polynomial of degree less than L to itself. Therefore,
it is possible to write

e(x) = −
∑
`∈Zd

cx[`]ϕ
(x
h
− `
)
, (23)

where the sequence cx is given by

cx[`] :=
1

hd

∫
Rd
Rx(y)ϕd

(y
h
− `
)

dy. (24)
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The weighted-Lp norm of the projection error is then bounded as

‖e‖pLp,−α(Rd) =
∑
k∈Zd

∫
[0,h]d

∣∣〈x + hk〉−α e(x + hk)
∣∣p dx

= hd ·
∫
[0,1]d

∑
k∈Zd

∣∣〈hx + hk〉−α e(hx + hk)
∣∣p dx

= hd ·
∫
[0,1]d

∑
k∈Zd

∣∣∣∣∣〈hx + hk〉−α
∑
`∈Zd

chx+hk[`] · ϕ (x + k − `)

∣∣∣∣∣
p

dx

≤ Cα · hd ·
∫
[0,1]d

∑
k∈Zd

(∑
`∈Zd
〈hk〉−α |chx+hk[k − `]| · |ϕ (x + `)|

)p
dx. (25)

The last estimate is due to a change of variable and to the fact that 〈hx + hk〉−α ≤ Cα 〈hk〉−α, ∀x ∈ [0, 1]d,
∀h ∈ (0, 1). Let us define the two sequences: cx,`[k] := 〈hk〉−α |chx+hk[k − `]| and ϕx[·] = |ϕ(x + ·)|, for each
x ∈ [0, 1]d and each ` ∈ Zd. Plugging these notations into (25) and applying Minkowski’s inequality, we obtain

‖e‖pLp,−α(Rd) ≤ Cα · h
d ·
∫
[0,1]d

∑
k∈Zd

(∑
`∈Zd

cx,`[k] · ϕx[`]

)p
dx

≤ Cα · hd ·
∫
[0,1]d

(∑
`∈Zd
‖cx,`‖`p(Zd) · ϕx[`]

)p
dx. (26)

We now proceed to bound the quantity ‖cx,`‖`p(Zd). By Taylor’s theorem

Rhx+hk(hy + hk) =

∫ 1

0

(1− τ)L−1

(L− 1)!
Sτhy+(1−τ)hxD

L
hy−hx(Jhf)(hk)dτ

=

∫ 1

0
JhTy,τf(hk)dτ, (27)

where the operator Ty,τ is defined as

Ty,τ :=
(1− τ)L−1

(L− 1)!
Sτhy+(1−τ)hxD

L
hy−hx. (28)

Note that the swapping of Ty,τ and Jh in (27) is justified because Jh is a convolution operator and hence commutes
with differential and shift operators. From (24) and the definition of cx,`, one has

cx,`[k] = 〈hk〉−α
∫
Rd
Rhx+hk(hy + hk)ϕd (y + `) dy

=

∫
Rd
ϕd (y + `)

∫ 1

0

1

wh(k)
· JhTy,τf(hk)dτdy, (29)

where wh := 〈h·〉α. By Minkowski’s inequality and by Lemma 3

‖cx,`‖`p(Zd) ≤
∫
Rd
|ϕd (y + `)|

∫ 1

0

∥∥(σ1/hJhTy,τf)[·]
∥∥
`p,1/wh (Zd)

dτdy

≤ CL,α · h−d/p
∫
Rd
|ϕd (y + `)|

∫ 1

0
‖Ty,τf‖Lp,−α(Rd) dτdy. (30)
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On the other hand

‖Ty,τf‖Lp,−α(Rd) =
(1− τ)L−1

(L− 1)!
·
∥∥Sτhy+(1−τ)hxD

L
hy−hxf

∥∥
Lp,−α(Rd)

≤ CL ·
∥∥∥f (L)(· − τhy − (1− τ)hx)

∥∥∥
Lp,−α(Rd)

‖hy − hx‖L (31)

≤ CL,α ·
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
· 〈τhy + (1− τ)hx〉α ‖hy − hx‖L (32)

≤ CL,α · hL ·
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
· 〈y − x〉α ‖y − x‖L (33)

≤ CL,α · hL ·
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
· 〈y − x〉L+α , (34)

where (31) follows from Lemma 2; (32) is due to the submultiplicativity of the weight 〈·〉α; and (33) is because
h, τ ∈ (0, 1) and x ∈ [0, 1]d. Putting (30) and (34) together

‖cx,`‖`p(Zd) ≤ CL,α · h
−d/p · hL

∥∥∥f (L)∥∥∥
Lp,−α(Rd)

∫
Rd
〈y − x〉L+α |ϕd(y + `)|dy

= CL,α · h−d/p · hL
∥∥∥f (L)∥∥∥

Lp,−α(Rd)

∫
Rd
〈y − `− x〉L+α |ϕd(y)|dy

≤ CL,α · h−d/p · hL
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
〈x + `〉L+α ‖ϕd‖L1,L+α(Rd). (35)

The last estimate is again due to the submultiplicativity of the weight 〈·〉α.
Since ϕ ∈ Wq,L+α(Rd), it follows from [25, Proposition 6] that ϕd also belongs to Wq,L+α(Rd). Since

Wq,L+α(Rd) ⊂W1,L+α(Rd) = L1,L+α(Rd), it must be that ϕd ∈ L1,L+α(Rd) and so the right-hand side of (35) is
finite. Plugging (35) into (26) yields

‖e‖Lp,−α(Rd) ≤ CL,α · h
L ·
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
‖ϕd‖L1,L+α(Rd)

(∫
[0,1]d

(∑
`∈Zd
〈x + `〉L+α |ϕ(x + `)|

)p
dx

)1/p

= CL,α · ‖ϕd‖L1,L+α(Rd) · ‖ϕ‖Wp,L+α(Rd)︸ ︷︷ ︸
Cϕ,L,α

·hL ·
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
,

which is the desired bound.

With the above results in hands, we are now ready to prove Theorem 2.

Proof of Theorem 2. Without loss of generality, assume that h ∈ (0, 1). Put g := Jhf . By using the triangle
inequality and by applying Theorem 1, we have that

‖f − Pϕ,hf‖Lp,−α(Rd) ≤ ‖f − g‖Lp,−α(Rd) + ‖Pϕ,hf − Pϕ,hg‖Lp,−α(Rd) + ‖g − Pϕ,hg‖Lp,−α(Rd)
≤ (1 + Cϕ,α) ‖f − g‖Lp,−α(Rd) + ‖g − Pϕ,hg‖Lp,−α(Rd) .

This bound together with Propositions 1 and 2 immediately implies (14), completing the proof.

IV. INTERPOLATION ERROR BOUND

We consider in this section the approximation scheme in which a function is ideally sampled (without a
prefilter) and reconstructed using an interpolating kernel. Consider throughout this section a kernel ϕ that satisfies
condition (5). The interpolation operator associated with kernel ϕ and sampling step h is defined by

Iϕ,h : f 7→ f̃int =
∑
k∈Zd

f(hk)ϕint

( ·
h
− k

)
, (36)

where the interpolant ϕint is related to the kernel ϕ by

ϕint :=
∑
k∈Zd

a[k]ϕ(· − k), (37)
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and where a is a discrete filter given by

a[n] :=
1

(2π)d

∫
[−π,π]d

ej〈ω,n〉∑
k∈Zd ϕ(k)e−j〈ω,k〉

dω, for n ∈ Zd. (38)

This filter is to make sure that f(hk) = f̃int(hk), for all k ∈ Zd. We have assumed implicitly in (38) that∑
k∈Zd ϕ(k)e−j〈ω,k〉 is nonzero for all ω ∈ Rd. It is noteworthy that, in the absence of a prefilter, the function f

to be approximated has to be continuous everywhere for the sampling to make sense.
Another way to express (36) is

Iϕ,h : f 7→ f̃int =
∑
k∈Zd

c[k]ϕ
( ·
h
− k

)
, (39)

where c := (σ1/hf)[·]∗a is the sampled sequence of f discretely filtered by a. This is the way interpolation is often
implemented in practice since it is generally much easier to work with the kernel ϕ than with ϕint. To simplify the
notation, we write Iϕ for Iϕ,1.

The following lemma says that the interpolant ϕint and the kernel ϕ can be made to lie in the same weighted
hybrid-norm space by imposing on ϕ some mild conditions that are satisfied by, for example, B-splines of all
orders.

Lemma 4. Let 1 ≤ p ≤ ∞ and α ≥ 0. Let ϕ ∈ Wp,α(Rd) such that ϕ[·] ∈ `1,α(Zd) and
∑

k∈Zd ϕ[k]e−j〈ω,k〉 is
nonzero for all ω ∈ Rd. Then, the corresponding interpolant ϕint defined in (37) also belongs to Wp,α(Rd).

Proof. See Section V.

The next result is the interpolation counterpart of Theorem 1 and can be thought of as the scaled version of [25,
Proposition 9]. It asserts that Iϕ,h is a bounded operator from L

d/p+ε
p,−α (Rd) to Vp,−α,h(ϕ) whose norm is bounded as

h→ 0. The underlying condition is that the interpolant ϕint belongs to the weighted hybrid-norm space Wp,α(Rd).

Theorem 3. Assume that 1 ≤ p ≤ ∞, α ≥ 0, and r > d/p. Let ϕ ∈ Wp,α(Rd) such that ϕ[·] ∈ `1,α(Zd) and∑
k∈Zd ϕ[k]e−j〈ω,k〉 is nonzero for all ω ∈ Rd. Then, there exists a constant Cϕ,r,α such that, for all continuous

functions f ∈ Lrp,−α(Rd) and for all h ∈ (0, 1),

‖Iϕ,hf‖Lp,−α(Rd) ≤ Cϕ,r,α · ‖f‖Lrp,−α(Rd) . (40)

Proof. Let Br := F−1{〈·〉−r} be the kernel associated with the Bessel potential of order r. Recall from [45,
Proposition 6.1.5] that Br(x) > 0, for all x ∈ Rd, and that

Br(x) ≤ Cr e−
‖x‖
2 , ∀ ‖x‖ ≥ 2. (41)

Moreover, since r > d/p, it is also known [25, Proposition 7] that Br ∈ Lp′,α(Rd).
Let us now define the weight wh(x) := 〈hx〉α. Recall that wh is submultiplicative with the same constant Cα

for all h > 0. Observe from (36) that Iϕ,h = σhIϕσ1/h. Therefore, by a change of variable, we have

‖Iϕ,hf‖Lp,−α(Rd) =
∥∥σhIϕσ1/hf∥∥Lp,−α(Rd) = hd/p ·

∥∥Iϕ (σ1/hf)∥∥Lp,1/wh (Rd) . (42)

We now invoke [25, Proposition 4] to get∥∥Iϕ (σ1/hf)∥∥Lp,1/wh (Rd) ≤ Cα · ‖ϕint‖Wp,wh
(Rd) ·

∥∥(σ1/hf) [·]
∥∥
`p,1/wh (Zd)

. (43)

Note that, for all h ∈ (0, 1), wh(x) ≤ 〈x〉α, and so, the quantity ‖ϕint‖Wp,wh
(Rd) is bounded since

‖ϕint‖Wp,wh
(Rd) ≤ ‖ϕint‖Wp,α(Rd) , (44)

which is finite due to Lemma 4. On the other hand, since f = Br ∗Drf , we can write

σ1/hf = hd ·
(
σ1/hBr

)
∗
(
σ1/hD

rf
)
,
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and apply [25, Proposition 5] to obtain∥∥(σ1/hf) [·]
∥∥
`p,1/wh (Zd)

≤ Cα · hd
∥∥σ1/hBr∥∥Wp′,wh (R

d)
·
∥∥σ1/hDrf

∥∥
Lp,1/wh (Rd)

= Cα · hd
∥∥σ1/hBr∥∥Wp′,wh (R

d)
· h−d/p ‖f‖Lrp,−α(Rd) , (45)

where (45) is due to a change of variable and the definition of the Sobolev norm ‖·‖Lrp,−α(Rd). Combining (42),
(43), (44), and (45), we arrive at

‖Iϕ,hf‖Lp,−α(Rd) ≤ C
2
α · ‖ϕint‖Wp,α(Rd) · h

d
∥∥σ1/hBr∥∥Wp′,wh (R

d)
· ‖f‖Lrp,−α(Rd) . (46)

Hence, the desired bound (40) will be achieved if∥∥σ1/hBr∥∥Wp′,wh (R
d)
≤ Cr,α · h−d, ∀h ∈ (0, 1), (47)

for some constant Cr,α. In the rest of the proof, we will show that this claim is true. Let us put T := [0, 1]d,
Th := [0, h]d, and Br,α := 〈·〉αBr. From the positivity of Br, it is clear that Br,α(x) > 0, ∀x ∈ Rd. By the
definition of the mixed norm, we express

∥∥σ1/hBr∥∥Wp′,wh (R
d)

=
∥∥σ1/hBr,α∥∥Wp′ (Rd)

=

∥∥∥∥∥∑
k∈Zd

(
σ1/hBr,α

)
(·+ k)

∥∥∥∥∥
Lp′ (T)

= h−d/p
′

∥∥∥∥∥∑
k∈Zd

Br,α(·+ hk)

∥∥∥∥∥
Lp′ (Th)

.

Applying Minkowski’s inequality, we get

∥∥σ1/hBr∥∥Wp′,wh (R
d)
≤ h−d/p′

∑
k∈Sh

‖Br,α(·+ hk)‖Lp′ (Th) + h−d/p
′

∥∥∥∥∥∥
∑

k∈Zd\Sh

Br,α(·+ hk)

∥∥∥∥∥∥
Lp′ (Th)

=: A+B, (48)

where Sh is a subset of Zd defined by

Sh :=

{
k ∈ Zd : ‖k‖ ≤

√
d+ 2

h

}
.

We complete the proof by showing that both terms A and B in (48) are bounded by Cr,α h
−d. It is clear that

|Sh| = Ch−d, for some constant C. Therefore, by Hölder’s inequality

A ≤ h−d/p′ ·

(∑
k∈Sh

1p

)1/p

·

(∑
k∈Sh

‖Br,α(·+ hk)‖p
′

Lp′ (Th)

)1/p′

= h−d/p
′ · |Sh|1/p ·

(∑
k∈Sh

∫
Th
|Br,α(x + hk)|p

′
dx

)1/p′

≤ h−d/p′ · C · h−d/p ·

(∑
k∈Zd

∫
Th
|Br,α(x + hk)|p

′
dx

)1/p′

≤ C · h−d ·
(∫

Rd
|Br,α(x)|p

′
dx

)1/p′

≤ C · ‖Br‖Lp′,α(Rd)︸ ︷︷ ︸
Cr,α

·h−d. (49)
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The constant Cr,α in (49) is finite because Br ∈ Lp′,α(Rd). We now proceed to bound the term B in (48). As
h ∈ (0, 1), we have that, for all x ∈ T and for all k /∈ Sh,

‖hx + hk‖ ≥ h ‖k‖ − h ‖x‖ > (
√
d+ 2)− h

√
d > 2,

which, according to (41), implies that

Br(hx + hk) ≤ Cr e−‖hx+hk‖/2 ≤ Cr e
‖hx‖−‖hk‖

2 .

Plugging this bound into the formula of B and using the submultiplicativity of the weight 〈·〉α and the fact that
h ∈ (0, 1), we get

B =

∫
T

 ∑
k∈Zd\Sh

〈hx + hk〉αBr(hx + hk)

p′

dx


1/p′

≤ Cr,α ·

∫
T

 ∑
k∈Zd\Sh

〈x〉α 〈hk〉α e
‖x‖−‖hk‖

2

p′

dx


1/p′

≤ Cr,α ·
(∫

T
〈x〉p

′α e
p′‖x‖

2 dx

)1/p′

·
∑
k∈Zd

〈hk〉α e−
‖hk‖

2 · (50)

Since the integral in (50) is a constant independent of h, we only need to show that the sum is bounded by Cα h−d.
Again, by the submultiplicativity of the weight 〈·〉α and by the assumption that h ∈ (0, 1), we have∫

Rd
〈x〉α e−

‖x‖
2 dx =

∑
k∈Zd

∫
Th
〈x + hk〉α e−

‖x+hk‖
2 dx

≥ Cα
∫
Th
〈x〉−α e−

‖x‖
2 dx

∑
k∈Zd

〈hk〉α e−
‖hk‖

2

= Cα · hd
∫
T
〈hx〉−α e−

‖hx‖
2 dx

∑
k∈Zd

〈hk〉α e−
‖hk‖

2

≥ Cα · hd
∫
T
〈x〉−α e−

‖x‖
2 dx

∑
k∈Zd

〈hk〉α e−
‖hk‖

2 ,

which implies ∑
k∈Zd

〈hk〉α e−
‖hk‖

2 ≤ C−1α
∫
Rd
〈x〉α e−

‖x‖
2 dx

(∫
T
〈x〉−α e−

‖x‖
2 dx

)−1
· h−d

= Cα · h−d.

Combining this with (50) yields that B ≤ Cr,α h
−d which, together with (49), establishes the claim (47) and

therefore completes the proof.

In the rest of this section, we state and prove the interpolation counterpart of Theorem 2.

Theorem 4. Assume that 1 ≤ p ≤ ∞, L ∈ N, α ≥ 0, and r > d/p. Let ϕ be an element of Wp,L+α(Rd) that satisfies
the Strang-Fix conditions of order L. Assume also that ϕ[·] ∈ `1,L+α(Zd) and

∑
k∈Zd ϕ[k]e−j〈ω,k〉 is nonzero for

all ω ∈ Rd. Then, there exists a constant Cϕ,L,α such that, for all continuous functions f in HL,r
p,−α(Rd),

‖f − Iϕ,hf‖Lp,−α(Rd) ≤ Cϕ,L,α · h
L ·
∥∥∥(Drf)(L)

∥∥∥
Lp,−α

, (51)

when h→ 0.

Similar to the proof of Theorem 2, we divide the proof of Theorem 4 into two propositions.
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Proposition 3. For 1 ≤ p ≤ ∞, L ∈ N, α ≥ 0, r > 0, and Jh being the smoothing operator defined in (15), there
exists a constant CL,α such that, for all f ∈ HL,r

p,−α(Rd) and for all h ∈ (0, 1),

‖f − Jhf‖Lrp,−α(Rd) ≤ CL,α · h
L ·
∥∥∥(Drf)(L)

∥∥∥
Lp,−α(Rd)

.

Proof. Put Br := F−1
{
〈·〉−r

}
. Since Jh is a convolution operator, we have the expression

f − Jhf = Br ∗Drf − Jh(Br ∗Drf) = Br ∗ (Drf − JhDrf).

Hence

‖f − Jhf‖Lrp,−α(Rd) = ‖Drf − JhDrf‖Lp,−α(Rd) . (52)

We now apply Proposition 1 to Drf ∈ HL
p,−α(Rd) to obtain

‖Drf − JhDrf‖Lp,−α(Rd) ≤ CL,α · h
L ·
∥∥∥(Drf)(L)

∥∥∥
Lp,−α(Rd)

. (53)

Putting (52) and (53) together completes the proof.

Proposition 4. Assume that 1 ≤ p ≤ ∞, L ∈ N, α ≥ 0, and r > 0. Let Jh be the smoothing operator defined
in (15). If ϕ satisfies the conditions of Theorem 4, there exists a constant Cϕ,r,L,α such that, for all f ∈ HL,r

p,−α(Rd)
and for all h ∈ (0, 1),

‖Jhf − Iϕ,hJhf‖Lp,−α(Rd) ≤ Cϕ,r,L,α · h
L ·
∥∥∥(Drf)(L)

∥∥∥
Lp,−α(Rd)

. (54)

Proof. We first show that f ∈ HL
p,−α(Rd). Indeed, since f = Br ∗Drf , where Br := F−1

{
〈·〉−r

}
, we have the

estimate ∥∥∥∂`f∥∥∥
Lp,−α(Rd)

=
∥∥∥∂`(Br ∗Drf)

∥∥∥
Lp,−α(Rd)

=
∥∥∥Br ∗ ∂`Drf

∥∥∥
Lp,−α(Rd)

≤ Cα · ‖Br‖L1,α(Rd) ·
∥∥∥∂`Drf

∥∥∥
Lp,−α(Rd)

(55)

= Cr,α ·
∥∥∥∂`Drf

∥∥∥
Lp,−α(Rd)

, ∀|`| ≤ L (56)

where (55) is a consequence of weighted Young’s inequality. On the other hand, it was shown in [25, Proposition
7] that Br ∈ L1,α(Rd), for r > 0. This means that the constant Cr,α in (56) is finite, which then implies that
f ∈ HL

p,−α(Rd).
Let Rx be the remainder of the order-(L − 1) Taylor series of the infinitely differentiable function g := Jhf

about x. Since ϕint is a quasi-interpolant of order L, Iϕ,h maps every polynomial of order less than L to itself.
Following the path of the proof of Proposition 2, we write

e(x) := g(x)− (Iϕ,hg)(x) = −
∑
`∈Zd

cx[`]ϕint

(x
h
− `
)
,

where the sequence cx is redefined as

cx[`] := Rx(h`), for ` ∈ Zd.

Therefore, (26) still holds and we only need to estimate ‖cx,`‖`p(Zd), where

cx,`[k] := 〈hk〉−α |chx+hk[k − `]| = 〈hk〉−α |Rhx+hk(hk − h`)|.

Similarly to (27), we express

Rhx+hk(hk − h`) =

∫ 1

0
JhT−`,τf(hk)dτ,
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where the operator Ty,τ is given in (28). Repeating the manipulations in the proof of Proposition 2, we obtain the
counterpart of (35):

‖cx,`‖`p(Zd) ≤ CL,α · h
−d/p

∥∥∥f (L)∥∥∥
Lp,−α(Rd)

〈x + `〉L+α .

Substituting this bound into (26), we end up with

‖e‖Lp,−α(Rd) ≤ CL,α · ‖ϕint‖Wp,L+α(Rd) · h
L ·
∥∥∥f (L)∥∥∥

Lp,−α(Rd)
, (57)

where ‖ϕint‖Wp,L+α(Rd) is a finite constant thanks to Lemma 4. Combining (57) and (56) gives us the desired
bound (54).

Proof of Theorem 4. Without loss of generality, assume that h ∈ (0, 1). Let g := Jhf . By the triangle inequality

‖f − Iϕ,hf‖Lp,−α(Rd) ≤ ‖f − g‖Lp,−α(Rd) + ‖Iϕ,h(f − g)‖Lp,−α(Rd) + ‖g − Iϕ,hg‖Lp,−α(Rd) . (58)

From Theorem 3 and Propositions 3, the first two terms in the right-hand side of (58) are bounded as

‖f − g‖Lp,−α(Rd) + ‖Iϕ,h(f − g)‖Lp,−α(Rd) ≤ ‖f − g‖Lrp,−α(Rd) + Cϕ,r,α · ‖f − g‖Lrp,−α(Rd)

≤ Cϕ,r,L,α · hL ·
∥∥∥(Drf)(L)

∥∥∥
Lp,−α(Rd)

, (59)

whereas the third term is also bounded, according to Proposition 4, as

‖g − Iϕ,hg‖Lp,−α(Rd) ≤ Cϕ,r,L,α · h
L ·
∥∥∥(Drf)(L)

∥∥∥
Lp,−α(Rd)

. (60)

Finally, the desired bound (51) is obtained by combining (58), (59) and (60).

V. PROOFS OF AUXILIARY RESULTS

A. Proof of Lemma 1

It is clear that

F
{
DL

uf
}

= (j 〈u, ·〉)L f̂ .

On the other hand, the Fourier transform of the B-spline βL−1 is given by [52]

β̂L−1(ω) =

(
1− e−jω

jω

)L
.

Therefore, the Fourier transform of the right-hand side (RHS) of (18) is given by

F{RHS} =

∫
R
F
{
DL

uf(· − tu)
}
βL−1(t)dt

=

∫
R

e−j〈tu,·〉F
{
DL

uf
}
βL−1(t)dt

= (j 〈u, ·〉)L f̂ ·
∫
R

e−j〈u,·〉tβL−1(t)dt

= (j 〈u, ·〉)L β̂L−1(〈u, ·〉)f̂

=
(

1− e−j〈u,·〉
)L

f̂ ,

which is exactly the Fourier transform of the left-hand side of (18), completing the proof.
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B. Proof of Lemma 2

The claim is trivial for L = 0. We now show (19) based on the induction hypothesis that∣∣DL−1
u f(x)

∣∣ ≤ ‖u‖L−1∞ · f (L−1)(x), ∀x ∈ Rd. (61)

By definition of directional derivatives, we have that

∣∣DL
uf(x)

∣∣ =

∣∣∣∣∣
d∑
i=1

ui
∂

∂xi
DL−1

u f(x)

∣∣∣∣∣ ≤ ‖u‖∞ ·
d∑
i=1

∣∣∣∣DL−1
u

∂f

∂xi
(x)

∣∣∣∣ .
It then follows from (61) that

∣∣DL
uf(x)

∣∣ ≤ ‖u‖∞ · ‖u‖L−1∞ ·
d∑
i=1

(
∂f

∂xi

)(L−1)
(x)

≤ ‖u‖L∞ ·
d∑
i=1

∑
|k|=L−1

∣∣∣∣∂k( ∂f∂xi
)

(x)

∣∣∣∣
= ‖u‖L∞ · f (L)(x),

completing the proof.

C. Proof of Lemma 3

It is clear from the definition of Jh that σ1/hJh = Jσ1/h. Then, we write

σ1/hJhf = Jσ1/hf = (σ1/hf) ∗ ψ, (62)

where the kernel ψ is given by

ψ :=

L∑
n=1

(−1)n−1
(
L

n

)
σnχ

nd
.

Since χ is a compactly supported smooth function, it is easy to see that the kernel ψ given above is an element
of the hybrid-norm space W∞,α(Rd), which is clearly a subspace of Wp′,α(Rd). Then, the convolution expression
in (62) allows us to invoke [25, Proposition 5] to obtain∥∥(σ1/hJhf)[·]

∥∥
`p,1/wh (Zd)

≤ Cα ‖ψ‖Wp′,wh
·
∥∥σ1/hf∥∥Lp,1/wh (Rd)

≤ Cα ‖ψ‖Wp′,α
·
∥∥σ1/hf∥∥Lp,1/wh (Rd) (63)

= Cα ‖ψ‖Wp′,α
· h−d/p · ‖f‖Lp,−α(Rd) , (64)

where (63) is due to the assumption that h ∈ (0, 1) and (64) is the result of a change of variable. Putting CL,α :=
Cα ‖ψ‖Wp′,α

gives us the desired bound (22).

D. Proof of Lemma 4

Recall that, for α ≥ 0, the weight 〈·〉α is submultiplicative and satisfies the Gelfand-Raikov-Shilov condition.
Since ϕ[·] ∈ `1,α(Zd) and since

∑
k∈Zd ϕ[k]e−j〈ω,k〉 is nonzero for all ω ∈ Rd, we are allowed to invoke the

weighted version of Wiener’s lemma [43, Theorem 6.2] to deduce that the sequence a defined in (38) also belongs
to `1,α(Zd). Now that ϕint has the representation (37) with a ∈ `1,α(Zd) and ϕ ∈ Wp,α(Rd), it must be that
ϕint ∈Wp,α(Rd) as a consequence of [25, Lemma 1].
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