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Snapping of a slender structure is utilized in a wide range of natural and manmade systems, mostly to
achieve rapid movement without relying on musclelike elements. Although several mechanisms for elastic
energy storage and rapid release have been studied in detail, a general understanding of the approach to
design such a kinetic system is a key challenge in mechanics. Here we study a twist-driven buckling and
fast flip dynamics of a geometrically constrained ribbon by combining experiments, numerical simulations,
and an analytical theory. We identify two distinct types of shape transitions: A narrow ribbon snaps, and a
wide ribbon forms a pair of localized helices. We construct a phase diagram and explain the origin of the
boundary, which is determined largely by the geometry. We quantify the effects of gravity and clarify the
timescale dictating the rapid flipping. Our study reveals the unique role of geometric twist-bend coupling in
the fast dynamics of a thin constrained structure, which has implications for a wide range of biophysical
and applied physical problems.
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Transforming elastic potential energy to kinetic energy is
a key design problem in a range of biological and manmade
systems. Elastic instabilities such as buckling, cavitation,
and fracture have provided elegant solutions such as those
found in plants and fungi [1–5], as well as in a variety of
applications including ancient catapults, children’s toys,
smart materials, and robotics [6–20].
In this study, we reveal the mechanism by which the

elastic energy of an anisotropic rod is stored and rapidly
released by geometric twist-bend coupling. The illustration
of this phenomenon is easy. Take a strip of paper, and hold
the two ends so that it forms an arc [Fig. 1(a)]. As the two
ends are rotated in the same direction, the ribbon initially
deflects, then recoils, and eventually flips with a snap to go
back to its previous configuration [Figs. 1(b) and 1(c)]. See
Supplemental Material for Video S1 [21]. This simple
“clicky” process provides a basis to achieve a cyclic
snapping motion that requires no additional recovery or
sensory processes, which is a distinct advantage for
numerous applications [30–32]. Combining the experi-
ments, simulations, and theory, we show that a narrow
ribbon snaps, whereas a wide ribbon forms a pair of
localized helices [Fig. 1(d)]. In addition, we identify a
geometric criterion for the snapping to occur. The impor-
tance of geometric twist-bend coupling has previously been

a

FIG. 1. (a) Geometry of experiments and definition of our
coordinate system. Two ends of a ribbon (s ¼ �L=2) are
clamped with controlled twisting angles ϕ. (b-i)–(b-iii) Strobo-
scopic figures of a flipping ribbon obtained from our numerical
simulation for ðh; w; RÞ ¼ ð0.2; 8; 115Þ mm. The head of the
ribbon (b–i) goes down, (b-ii) goes up, and (b-iii) flips.
(c) Side view of ribbon center lines obtained in our simulation
(solid lines) and experiment (data points) for various ϕ and
ðh; w; RÞ ¼ ð0.2; 8; 108Þ mm. The chain line y ¼ 0 represents
a shape without twist: ϕ ¼ 0° and 180°. (d-i),(d-ii) Strobo-
scopic figures of a folding ribbon observed in our simula-
tion for ðh; w; RÞ ¼ ð0.2; 15; 115Þ mm. Its head (d-i) goes
down and (d-ii) raises to the back. The ribbon never flips in
this case.
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recognized in the study of supercoiling instabilities in
biological polymers and fibers [33,34] and the rich mor-
phologies of twisted ribbon [35–38]. Our present study
generalizes this concept [39] and shows that it also dictates
the statics and dynamics of a slender structure.
We start our investigation with a slender uniform rod,

followed by increasing the anisotropy of its cross section,
and proceed to a flat ribbon. An intrinsically straight rod or
ribbon was mounted on a mechanical system, forming a
semicircle of radius R. See Fig. 1(a). The two ends were
clamped on rotary optical stages that controlled the rota-
tional angle ϕ. The geometric parameters characterizing a
rod configuration are the width w, thickness h, and radius R
(related to the arc length L as L ¼ πR), which are varied in
the range of 4–16, 0.12–3.8, and 31–178 mm, respectively.
We gradually increased ϕ by carefully rotating the optical
stages by hand with an accuracy of 1°. At each step, the
system was observed till it attained equilibrium (except in
the vicinity of the transition). The morphologies were
recorded with a digital camera, and the resulting images
are analyzed further below.
To complement the experimental data, we also perform

numerical simulations based on the Kirchhoff elastic rod
formulation for a narrow ribbon [21–27], where a weak in-
plane stretch is taken into account.
A fliplike transition was always observed for a slender

anisotropic rod.Only an ideally circular rod (w=h ¼ 1) was a
singular case, as it would simply rotate axially without any
transition. To systematically study the dependence of a
critical twisting angle for the transition ϕ� on the anisotropy,
we used silicone-based rods (WAVE, OM143) with different
cross-sectional ellipticities [Fig. 2(a)], whichwere fabricated
by curing silicone mixtures inside a radially compressed
flexible tube in a controlled manner. To minimize the effects
of gravity, which will be detailed later, we used a relatively
short rod with R ¼ 31 mm for silicone rods, while larger R
was employed for stiff metal ribbons. Figure 2(b) shows that
the flip angle ϕ� is nearly 90° for the vanishing anisotropy
w=h → 1, while it increases with an increasing w=h and

approaches ∼115° in the flat ribbon limit w=h → ∞ (as
confirmed by our numerical simulations without gravity).
For a slightly anisotropic rod, we can rationalize the above

results by the Kirchhoff rod theory. To describe the ribbon
configuration, we assign an orthogonal director frame
ðd̂1; d̂2; d̂3Þ at each point of the center line s [Fig. 1(a)].
d̂3 ¼ r0 is the unit tangent vector, where ðÞ0 denotes the
derivativewith respect to s, while d̂1 and d̂2 point towards the
principal axes in the ribbon’s cross-sectional plane [28,29].
Assuming inextensibility, the rod configuration is deter-
mined by specifying how the frame rotates as it moves along
the center line per unit length: d̂0a ¼ Ω × d̂a (a ¼ 1, 2, 3),
where the direction ofΩ ¼ Ωad̂a sets the rotational axis at s,
and Ωa gives the rate of rotation, i.e., curvature, about d̂a.
Because we consider an almost circular cross section, we
quantify its anisotropy by introducing a small expansion
parameter δ ¼ w=h − 1. At the lowest order of δ ≪ 1,
we observe that Ω1 ∼ Ω2 ∼ 1=R and Ω3 ¼ OðδÞ [21].
Then, the Kirchhoff rod equations are reduced to a
set of three independent linear ordinary differential
equations: Ω0

1 ¼ Ω0
2 ¼ 0 and Ω0

3 ¼ 2δð1þ νÞΩ1Ω2. We
then construct the solutions for Ωa, such that the ribbon
shape satisfies the boundary conditions at s ¼ �L=2 and the
constraint rðL=2Þ − rð−L=2Þ ¼ 2Rx̂. This leads to Ω1 ¼
sinϕ=RþOðδÞ, Ω2 ¼ cosϕ=RþOðδÞ, and

Ω3ðs;ϕÞ ¼ δ
ð1þ νÞs

R2
sin 2ϕþOðδ2Þ: ð1Þ

The critical angle ϕ� is known from the condition that the
torque applied at the clamped end is zero, Tðϕ�Þ ∝
Ω3ð−L=2;ϕ�Þ ¼ 0, which predicts ϕ� ¼ π=2þOðδÞ.
Having addressed the rod regime, we now focus on the

thin flat ribbon to investigate regimes of w=h ≫ 1. For a
smallϕ, a ribbon deflects from the original plane of bending,
symmetrically developing left-handed and right-handed
helices on each side. With increasing ϕ, we observe two
distinctly different behaviors depending onw=h. A relatively
narrow ribbon (w < w�) recoils and eventually flips with a
snap, returning to its original configuration but now inside
out; the critical width w� will be discussed in detail later.
Because the helices at the two sides have opposite handed-
ness, they annihilate at the center when they progress,
triggering the flip with a snap [Figs. 1(b–i)–1(b-iii)]. In
contrast, a sufficiently wide ribbon (w > w�) develops
localized helices formed at the proximity of the two ends,
which remain separated and stabilized for increasing ϕ
[Figs. 1(d-i) and 1(d-ii)]. At self-contact, a further rotation
requires the application of an indefinitely large torque,
leading to the formation of creases or kinks [40,41].
Hereafter, we refer to this mode as a “fold,” and the former
as a “flip.”
To quantify the three-dimensional shape changes, we

tracked the position of a specific point on the ribbon center
line at s ¼ 0 [see Fig. 1(b-iii)] and plotted its y component,

FIG. 2. (a) Image of silicone-based rods with different elliptic
cross sections. (b) Flip transition angle ϕ� as a function of the
aspect ratio δ obtained from the simulation and experiment for
silicone rods and h ¼ 0.2 mm metal ribbon with various R. The
dashed and solid lines denote 90° and 115°, respectively.
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y0 ≡ yðs ¼ 0Þ in Fig. 3(a). Initially, y0 decreases linearly
with ϕ and subsequently increases steeply just before the
flip. For a wide ribbon with w > w�, y0 also decreases
initially; however, it remains negative throughout the
process [Fig. 3(b)]. Note that, during the simulation, we
successfully reproduced the flip transition, where the
shapes agree remarkably well with the experimental data
[Fig. 1(c)]. The linear response can be understood analyti-
cally. In the linear elasticity theory, the elastic deformation
energy is given by Erod ¼

R
dsðA1Ω2

1 þ A2Ω2
2 þ CΩ2

3Þ=2
with the bending and twisting moduli given by A1 ¼
Ehw3=12, A2 ¼ Eh3w=12, and C ¼ Eh3w=½6ð1þ νÞ�.
For our present purpose, it is useful to express Ωa in terms
of the Euler angles ðφ; θ;ψÞ, where φ, θ, and ψ represent
azimuthal, polar, and twist angles, respectively. This leads
to Ω1 ¼ φ0 cos θ sinψ − θ0 cosψ , Ω2 ¼ φ0 cos θ cosψþ
θ0 sinψ , and Ω3 ¼ φ0 sin θ þ ψ 0. To investigate the linear
response, we expand the Euler angles around the base state
of the semicircle: θ ¼ ψ ¼ 0 and φ0 ¼ 1=R. Retaining the
terms up to the quadratic orders in Erod and taking the flat-
ribbon limit h=w → 0, we arrive at the Euler-Lagrange
equations for ψ and θ as θ0 ¼ ψ=R and ψ 0000−
ðΓ − 2Þψ 00=R2 þ ψ=R4 ¼ 0, where Γ ¼ ð1þ νÞ=2. The
equations can be solved for a general Γ [21]; however,

the solutions are particularly compact for Γ ¼ 0. We have
ψðsÞ ¼ −ð2ϕ=πÞ½ðs=RÞ sinðs=RÞ − cosðs=RÞ�. By integrat-
ing r0ðsÞ ¼ d̂3, the center line shape can be determined as

y0 ≃ −
�

1 −
2

π

�

ϕR: ð2Þ

This analytical prediction agrees remarkably well with our
experimental and numerical results [solid lines in Figs. 3(a)
and 3(b)] without fitting parameters. Equation (2) shows
that the out-of-plane deflection y0 arises owing to the
coupling between the induced curvature 1=R and the twist
ϕ. Note that Eq. (2) is also valid for the ribbon shape after
the flip, with the replacement ϕ → ϕ − π, as shown in
Fig. 3(a).
Returning to Fig. 2(b), we note that the flip angle ϕ�

approaches 115° in the flat ribbon limit (for ν ¼ 0.3). The
numerical simulations suggest that ϕ� weakly depends on
the Poisson ratio ν but falls into a narrow range from 110°
(ν ≃ 0) to 120° (ν ≃ 1=2). We are currently unable to
rationalize this observation by the Kirchhoff rod theory.
For a complete theoretical understanding of Fig. 2(b), a
stability analysis of a bent and twisted rod, as done for
isotropic rods [42–44] and Möbius bands [40,45], will have
to be developed for general anisotropic cross sections. We
leave this theoretical challenge as a future subject and now
proceed to determine the flip-fold phase boundary, using
the result ϕ� ¼ 110°–120°.
A mechanical equilibrium of a ribbon is determined by

the energetic balance between bending and twisting
[21,29]. Here, the twisting energy of a ribbonlike object
consists of two parts, Etwist ¼ EKirch þ Estr, where the
former is the linear Kirchhoff strain energy over the
thickness of the ribbon and the latter is from the in-plane
stretch elasticity [26,27,29,46]. At equilibrium, for a given
ϕ, Ebend ≃ Etwist is expected, where Ebend is the ribbon’s
bending energy. Importantly, our numerical investigations
suggest that a Kirchhoff rod (for which Estr ¼ 0) always
undergoes a flip transition. Thus, if EKirch ≫ Estr and
EKirch ≃ Ebend are realized, the ribbon flips at ϕ�, which
is the case for a relatively narrow ribbon such that w < w�.
In contrast, for a sufficiently wide ribbon, the in-plane
stretch elasticity contributes considerably to Etwist. For
Estr ≃ EKirch, a ribbon may behave more like a developable
surface, for which a folding transition may occur. Thus,
examining the relative significance of EKirch and Estr allows
us to determine the boundary between the flipping and
folding phenomena. Note that a typical twist is scaled
as τ ≃ ϕ=R, and the Kirchhoff twist energy per length is
given by EKirch ¼ Cτ2=2 ≃ Eh3wϕ2=½12ð1þ νÞR2�. On the
contrary, for a locally helicoidal midsurface, its
Gaussian curvature is τ2, which amounts to in-plane strain
ϵ ≃ w2τ2. An exact analysis for a helicoid is shown to
provide the stretching energy per length Estr ¼
Ehw5ϕ4=ð1440R4Þ [36,47]. A ribbon may flip for Ebend ≃
EKirch > Estr at ϕ ≃ ϕ�, which predicts

FIG. 3. (a),(b) Rescaled center position y0=R plotted as a
function of angle ϕ, for (a) a narrow ribbon with ðh; w; RÞ ¼
ð0.2; 8; 108Þ mm and for (b) a wide ribbon with ðh; w; RÞ ¼
ð0.2; 15; 108Þ mm. Open squares and filled triangles represent
the simulation and experimental data, respectively. Snapshots are
from our simulations. Solid lines denote our analytical prediction
Eq. (2). (c) Transition-type diagram constructed from our
experimental and numerical data for various combinations of
ðh; w; RÞ. The dashed line represents the scaling prediction,
Eq. (3): w�=R ¼ 2.2

ffiffiffiffiffiffiffiffiffi
h=R

p
.

PHYSICAL REVIEW LETTERS 122, 114301 (2019)

114301-3



w < w� ≃
�

120

ð1þ νÞϕ�2

�
1=4 ffiffiffiffiffiffi

Rh
p

: ð3Þ

For ϕ� ¼ 115° and ν ¼ 0.3, we predict w� ≃ 2.2
ffiffiffiffiffiffi
Rh

p
,

which is in excellent agreement with our experiments
and simulations including the prefactor [Fig. 3(c)], thus
validating our physical argument. Note that the critical
width w� increases with the induced radius of curvature asffiffiffiffi
R

p
and weakly depends on the Poisson ratio.

When gravity dominates bending elasticity, the above
results change significantly. The relative magnitude of
gravity over elasticity is quantified by the dimensionless
number R=lg, where lg ¼ ðEh2=12ρgÞ1=3 is the gravito-
bending length (with ρ the mass density of a rod) [48].
The limit of stiff rods or vanishing gravity corresponds to
R=lg → 0. For the previously described metal ribbons and
silicone rods, we estimate lg > 190 mm and lg≃33mm,
which give R=lg¼0.1–0.5 and R=lg ≃ 0.93, respectively,
justifying our earlier assumption. Alternatively, we test a
ribbon made of PET, where we can realize the opposite
regime R=lg > 1 with lg ≃ 7.45� 0.13 cm. The most
nontrivial behavior can be observed when an initial bending
plane is set to be vertical [49]. Figure 4(a) shows ϕ�
obtained from the experiments and simulations as a
function of R=lg. For R=lg < 1.13, ϕ� ≃ 115° even in

the presence of gravity, again confirming the validity of
our preceding analysis where R=lg → 0 was assumed. A
novel morphology, termed the “M shape,” appears for
R=lg > 1.13, at a stage prior to flipping [Figs. 4(a-i)
and 4(a-ii)]. The ribbon’s own weight stabilizes this
concave shape, and an additional twisting is necessary to
drive the system toward flipping instability [21].
Remarkably, ϕ� increases discontinuously at R=lg≃1.13,
suggesting that the nature of the transition alters in the
presence of gravity. At approximately R=lg ≃ 1.4, the M
shape is stabilized further, and the flipping is no longer
accessible even for ϕ ¼ 180° [Figs. 4(a-iii) and 4(a-iv)].
Thus, the snaplike fast response should be explored for
relatively narrow and stiff ribbons, satisfying R=lg < 1.
Note that there are a variety of shape transitions, i.e.,

flipping with and without the M shapes and folding and
freezing in theM shape, under the influence of gravity. This
implies that a precise control of the transitions may be
possible with different external fields such as gravity, an
electric field, and pressure. Even for a fixed ribbon
geometry and materials, we may be able to control, store,
and release the elastic energy of a constrained ribbon, by
appropriately tuning an external force and twisting. Such
rich morphological and responsive properties will be
potentially advantageous for designing complex yet light-
weight structures in the future.
Finally, we investigate the inertial dynamics by capturing

the shape changes during the flip with a high-speed camera
(Ditect, HAS-D71, 2000 fps). In Fig. 4(b) insets, we show a
set of figures onset of flipping obtained from the experi-
ment with ðh; w; RÞ ¼ ð0.2; 6; 66Þ mm. The video mani-
fests that large-amplitude bending waves are excited when
the head of the ribbon deflects downward and then moves
upward with ringing. The characteristic frequency of the
observed flexural wave may be determined by the growth
rate of the most unstable mode. The linearized equation for
an out-of-plane deflection u (in an appropriately defined
coordinate) has a well-defined timescale tb ¼ ð2RÞ2=hvs,
where vs ¼

ffiffiffiffiffiffiffiffi
E=ρ

p
is the speed of sound vs ≡

ffiffiffiffiffiffiffiffi
E=ρ

p

[10,50]. This arises as the frequency of the flexural wave
[50] but also sets the growth timescale of unstable modes.
In the main panel in Fig. 4(b), the numerically and
experimentally obtained data for z0 ≡ zðs ¼ 0Þ are plotted
as a function of the rescaled time t=tb, demonstrating that z0
oscillates with the timescale of tb ¼ 0.023 s. We now
define the flipping timescale t� as indicated in Fig. 4(b).
Figure 4(c) demonstrates that t� is indeed of the order of tb.
A gradual departure from t� ¼ tb seen in Fig. 4(c) for larger
tb ∼ R2 suggests the weak system-size dependence. Critical
slowing down could influence the overall flip dynamics for
a long ribbon (i.e., for a larger R) [19].
In this study, we have investigated the qualitatively new

snapping instability of a constrained ribbon and anisotropic
rod by highlighting the prominent role of geometric twist-
bend coupling. The results presented are generic and

FIG. 4. (a) Flip transition angle ϕ� plotted as a function of R=lg
obtained from the simulations and experiments for polyethylene
terephthalate (PET) ribbons with ðh; wÞ ¼ ð0.1; 4Þ mm. In the
red region, the ribbon flips in the M-shaped configuration, while
flipping is no longer observed in the blue region. (a-i) Exper-
imentally and (a-ii) numerically obtained stroboscopic figures of
a ribbon during flipping from a stable M-shaped configuration
(R=lg ≃ 1.2). (a-iii) Experimentally and (a-iv) numerically ob-
tained stroboscopic figures of a ribbon that gets stuck in an M-
shaped configuration (R=lg ≃ 1.5). (b) Flip dynamics of a metal
ribbon with ðh; w; RÞ ¼ ð0.2; 6; 66Þ mm. The solid and dashed
lines represent the experimental and numerical time evolution,
respectively, of the rescaled center position z0=R. The red region
defines the timescale of the flip t�. (c) t� obtained from the
experiments and simulation is plotted as a function of tb, with the
dashed line t� ¼ tb.
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scalable; thus they might be applied to a number of
problems of different scales, from torsionally driven insta-
bility of DNA in nucleosomes [51,52] to the design of
nonmuscular engines in soft robotics. It is an intriguing
open question how the nature of the transition revealed here
will be modified by thermal fluctuations, spontaneous
curvatures, and/or active processes.
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