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ABSTRACT
Programmable multistable mechanisms exhibit stability be-

havior whereby the stiffness and the number of stable states can
be controlled via programming inputs. In this paper, we report
the zero stiffness behavior of a 2-degree of programming (DOP)
T-combined, axially loaded double parallelogram multistable
mechanism. We demonstrate zero force monostability, constant
force monostability, zero force bistability, constant force bista-
bility and zero force tristability behaviors by tuning the program-
ming input. We derive analytically the reaction force of the mech-
anism for each configuration and verify our analytical results
using numerical simulations and experimental measurements,
showing less than 10% discrepancy. The concept of constant-
force programming can be extended to N-DOP T-combined, se-
rial combined and parallel combined programmable multistable
mechanisms. Finally, we present potential applications of stabil-
ity programming.

1 Introduction
Compliant mechanisms are mechanical devices that perform

their function through the bending of their flexural elements.
They can exhibit negative and zero stiffness behaviors affect-
ing the mechanism stability, such as constant force mechanisms
(CFMs) [1] and multistable mechanisms [2]. CFMs exhibit a
near zero stiffness (ZS) within a certain range of their stroke and
are applied in micro-manipulation of sensitive objects such as

∗Address all correspondence to this author.

medical operations and micro-assembly [3]. Examples of CFMs
are elastically loaded nonuniform cams [4]. Parallel combina-
tions of bistable springs with positive-stiffness spring can lead to
constant-force response [5]. Special shapes of curved beams can
exhibit zero stiffness response as discussed in [6]. Morsch [7]
and Merriam [8] reported a constant torque mechanism combin-
ing compliant cross pivots with preloaded springs. However, all
these mechanisms are monostable, i.e., they have only one stable
state.

Multistable mechanisms have more than one stable state
within their range of motion. They are characterized by the
stiffness and position of their equilibrium states and their de-
gree of stability (DOS), which represents the number of stable
states [9–11]. They have a wide range of applications such as
mechanical switching [12] and energy harvesting [13]. Combin-
ing multistability with ZS enables new applications such as force
regulation demonstrated by the constant force bistable mecha-
nism - DOS =2, in [14].

In this paper, we study the stiffness behavior of pro-
grammable multistable mechanisms (PMMs), which demon-
strate combined programmable ZS and multistability behaviors.
We report analytically, numerically and experimentally for the
first time the zero force monostability, constant force monostabil-
ity, zero force bistability, constant force bistability and zero force
tristability of the T-shaped mechanism, an example of PMMs.
This can bring new applications such as tunable constant force
grippers and programmable force regulators. PMMs were intro-
duced in the authors’ previous work [15, 16] in which the DOS,
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FIGURE 1. T-shaped mechanism based on double parallelogram
mechanisms with rectangular hinges.

the stiffness and the position of the stable states of the mech-
anism are modified by external inputs, known as programming
input. In the case of the T-shaped mechanism, the stability be-
havior can switch between monostability, bistability, tristability,
and quadrastability.

The paper is organized as follows. Firstly, we introduce the
operation of the T-shaped mechanism and possible stability and
stiffness behaviors. We calculate the reaction force based on Eu-
ler Bernoulli equations and represent it as a seventh order poly-
nomial and the stiffness as a sixth order polynomial from which
the stability and stiffness behaviors are characterized. We verify
our analysis using finite element analysis and experimental mea-
surements. Finally, we present potential applications of PMMs.

2 T-shaped mechanism
The T-shaped mechanism consists of two orthogonally com-

bined modules in a way similair to [17], as illustrated in Figure 1.
Each module is an axially loaded double parallelogram mecha-
nism consisting of eight rectangular hinges monolithically con-
nected by rigid links. Module 1 is fixed on one extremity and
axially guided on the other extremity by the programming input,
p1. Module 2 is guided on one extremity by the programming
input p2 and the other extremity is connected to the central block
of module 1 in the lateral direction of the module 1 beams. The
actuation input x is applied to the central block of module 2 in
the lateral direction of its beams.

Stability behavior of the mechanism depends on p1 and p2,
as we illustrated previously [16]. We define pcr

1 as the minimum
value of p1 at which module 1 buckles with sufficient lateral
force to buckle module 2 and pc

2 as the maximum value of p2
at which module 2 exhibits zero stiffness around x = 0.

If p1 < pcr
1 , the mechanism is either monostable for p2 < pc

2
or bistable for p2 > pc

2. For p1 > pcr
1 , module 1 buckles and it has

three equilibrium states at y = pa
2, pb

2, pc
2, where pa

2 < pb
2 < pc

2.
Stable states occur at pa

2, pc
2 and unstable state at pb

2. If p2 < pa
2,

TABLE 1. Stable states for each stability region and their program-
ming conditions.

Stable states DOS p1p1p1 p2p2p2

q0 1 p1 < pcr
1 p2 < pc

2

p1 > pcr
1 p2 < pa

2

q−1 ,q
+
1 2 p1 < pcr

1 p2 > pc
2

q−3 ,q
+
3 2 p1 > pcr

1 pa
2 < p2 < pb

2

q−3 ,q0,q+3 3 p1 > pcr
1 pb

2 < p2 < pc
2

q−3 ,q
−
1 ,q

+
1 ,q

+
3 4 p1 > pcr

1 p2 > pc
2

the mechanism is monostable as module 1 does not reach either
of its stable states. For pb

2 > p2 > pa
2, module 1 surpasses a sta-

ble state and the mechanism is bistable. If pc
2 > p2 > pb

2, module
1 surpasses its unstable state and the mechanism exhibits trista-
bility. For p2 > pc

2, module 1 surpasses both of its stable states
and the mechanism is quadrastable [15]. Table 1 summarizes
the conditions of the programming inputs, illustrating the stable
states of the T-mechanism for each region.

The T-mechanism exhibits zero stiffness within a certain
range of its stroke as it switches its DOS, behaving as pro-
grammable constant force mechanism as illustrated in Figure 2.
On fixing p1 such that p1 > pcr

1 and changing p2, the mechanism
is zero force monostable (ZFMM) at p2 = pa

2, where the mecha-
nism switches from monostability to bistability. The mechanism
is zero force bistable (ZFBM) at p2 = pb

2, where the mechanism
switches from bistability to tristability and zero force tristable
(ZFTM) at p2 = pc

2 for p1 > pcr
1 where the mechanism switches

from tristability to quadrastability.
On selecting pb

2 < p2 < pc
2 and sweeping p1, the mecha-

nism shows zero stiffness region and behaves as a constant force
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TABLE 2. Zero stiffness behavior as a function of programming in-
puts and their DOS.

ZS Behavior Conditions DOS Localization

ZFMM p2 = pc
2, p1 < pcr

1 Boundary 1−2

ZFMM p2 = pa
2 Boundary 1−2

CFMM p1 = pz
1, p2 < pc

2 Region 1

ZFBM p2 = pb
2 Boundary 2−3

CFBM p1 = pz
1, p2 > pc

2 Region 2

ZFTM p2 = pc
2, p1 > pcr

1 Boundary 3−4

FIGURE 2. Reaction force of the mechanism as it evolves from
monostability to bistability to tristability to quadrastability on sweeping
p2 for p1 > pcr

1 , (a) monostable, (b) ZFMM, (c) bistable, (d) ZFBM,
(e) tristable, (f) ZFTM, (g) quadrastable.

monostable mechanism (CFMM) as it switches from monosta-
bility to tristability, given in Figures 3(a), (b), (c). Similarly,
for p2 > pc

2, the mechanism exhibits zero stiffness response on
switching from bistability to quadrastability and it is a constant
force bistable mechanism (CFBM) as shown in Figures 3(d), (e),
(f).

Table 2 summarizes the different zero stiffness (ZS) behav-
iors of the T-mechanism as a function of the programming inputs
and DOS localization. We denote the value of p1 at which the
mechanism exhibits zero stiffness response for a given value of
p2 as pz

1. It should be noted that

1. The value pcr
1 depends only on the dimensions of the mech-

anism.
2. The values, pa

2, pb
2, pc

2 are functions of p1.
3. The values, pa

2, pb
2 exist only for p1 > pcr

1 .
4. The value pz

1 is a function of p2.

Figure 4 shows the T-mechanism discussed in this paper
with its main dimensions given in Table 3. A programming
spring with stiffness kr is used to axially load module 1. The

FIGURE 3. Reaction force of the mechanism as it evolves from
monostability to tristability, on sweeping p1 for pb

2 < p2 < pc
2 (a)

monostable, (b) CFMM, (c) tristable, and from bistability to quadrasta-
bility for p2 > pc

2, (d) bistable, (e) CFBM, (f) quadrastable.

central block of module 2 is replaced by two rigid blocks con-
nected by two pivots to avoid kinematic over constraints [16].

The reaction force f depends on the lateral stiffness ratio be-
tween module 1 to the programming spring, the lateral stiffness
ratio of module 2 to module 1 and beam length ratio which we
denote as η1,η2,α2, respectively.

η1 =
I1`

3
r

Ir`
3
1
, η2 =

I2`
3
1

I1`
3
2
, α2 =

`2

`1
(1)

where I1 = wt3
1/12, I2 = wt3

2/12, Ir = wt3
r /12. We define the

parameters, Γ1, Γ2, Ψ1, Ψ2 to represent the effect of the rigid
links [18].

Γ1 =
1

2a01(3−6a01 +4a2
01)

, Γ2 =
1

2a02(3−6a02 +4a2
02)

Ψ1 =
15−50a01 +60a2

01 −24a3
01

2(3−6a01 +4a2
01)

2 ,

Ψ2 =
15−50a02 +60a2

02 −24a3
02

2(3−6a02 +4a2
02)

2

(2)
where

a01 =
c1

`1
, a02 =

c2

`2
.

3 Copyright © 2018 by ASME



TABLE 3. Dimensions of the T-mechanism

Parameter Description Theortical Measured

w Beam Width 10 [mm] 10[mm]

Programming spring

`r Beam length 15[mm] 15[mm]

tr Beam thickness 350[µm] 345[um]

Module 1

`1 Beam length 23[mm]

t1 Hinge thickness 80[um] 78[µm]

c1 Hinge length 4.0[mm] 3.9[mm]

Module 2

`2 Beam length 36[mm]

t2 Hinge thickness 50[µm] 49[µm]

c2 Hinge length 3[mm] 2.9[mm]

3 Analytical model
We applied Euler Bernoulli equations to model the reaction

force of the mechanism and we assume that:

1. A linear elastic material is used with Young's modulus Y .
2. The forces of module 1 are normalized by EI1/`

2
1 and its

displacement by `1 and forces of module 2 are normalized
by EI2/`

2
2 and its displacement by `2.

3. The beams of the mechanism are slender enough that their
shear strain is ignored.

4. The beams of the mechanism do not buckle for second or
higher order buckling modes.

5. The axial load of the programming spring is negligible com-
pared to its buckling load.

6. The beams of the mechanism deform within their intermedi-
ate range of motion.

Our model is based on calculating the relation between ap-
plied actuation displacement x and axial displacements λ1 and
λ2. After that, we calculate the axial loads of module 1 and
module 2, represented as N1 and N2, respectively as illustrated
in Figure 4. Then, using the secant stiffness of module 2, the
reaction force of the mechanism is represented as seventh order
polynomial [15]:

f̂ =
f `2

2
EI2

= x̂Φ(x̂2) (3)

where

Φ(z) = β0 +β1z+β2z2 +β3z3 (4)

and

β0 =
48
Γ2

− 576Ψ2η2

5Γ1
p̂2 +

3456η1η2Ψ1Ψ2

25
p̂1 p̂2

− 20736η1η2Ψ
2

1 Ψ2α2
2

125
p̂3

2,

β1 =
3456η2Ψ

2
2

25Γ1
− 20736η1η2Ψ1Ψ

2
2 p̂1

125
,

+
373248α2

2 η1η2Ψ
2

1 Ψ 2
2 p̂2

2
625

β2 =
−2239488α2

2 η1η2Ψ
2

1 Ψ 3
2 p̂2

3125
,

β3 =
4478976α2

2 η1η2Ψ
2

1 Ψ 4
2

15625
,

(5)

where x̂ = x/`2, p̂1 = p1/`1 and p̂2 = p2/`2. The stability be-
havior of the mechanism can be extracted from the polynomial
Φ(z) where

1. DOS can be calculated using Descartes rule of sign from
sign alternation of the coefficients β0,β1,β2,β3 and the sign
of ∆φ , the discriminant of Φ(z) as illustrated in Figure 5(a),
(b), (c) [15].

2. The position of equilibrium states are the square roots of zq
i ,

positive-valued zeros of Φ(z),

q̂0 = 0, q̂±i =±
√

zq
i , i = 1,2,3. (6)

3. The value pcr
1 is the value of p1 at which the discriminant of

φ(z) is zero [16],

p̂cr
1 =

pcr
1
`1

=
5

6Γ1η1η2
+

126
127

(
α2

2

η2
1 η2

2 Γ 2
2 Ψ1Ψ

2
2

)1/3
(7)

4. The values of p̂a
2, p̂b

2, p̂c
2 are the zeros of β0.

The tangential stiffness is the first derivative of the reaction
force f with respect to its displacement x.

k̂ =
k`3

2
EI2

=
∂ f̂
∂ x̂

(8)

This is represented as sixth order polynomial such that

k̂ = κ(x̂2) (9)
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FIGURE 4. (a) Programmable T-shaped mechanism with programming inputs p1, p2 and actuation input x, (b) dimensions of the mechanism, (c)
forces and displacements.

where

κ(z) = β0 +3β1z+5β2z2 +7β1z3 (10)

Similarly, we can extract the stiffness behavior of the mech-
anism from the polynomial κ(z) such that

1. The number of zero stiffness states can be calculated using
the number of sign changes of coefficients β0,β1,β2,β3 and
the sign of ∆κ , the discriminant of κ as illustrated in Fig-
ure 5(b), (d), (e).

2. The zero stiffness positions are the square roots of zκ
i , the

positive-valued zeros of κ(z) where

ζ
±
i =±

√
zκ

i , i = 1,2,3. (11)

3. The value of pz
1 is the zero of ∆κ , the discriminant of κ .

Figure 6 shows the zero stiffness boundaries,
pcr

1 , pz
1, pa

2, pb
2, pc

2 and the selected points given in Table 4
that we study in the next section.

4 Results and discussion
The values of the programming inputs, p1, p2 determine the

stability and stiffness behavior of the T-mechanism. In this sec-
tion, we discuss the zero stiffness behavior for different DOS
based on the calculated reaction force and tangential stiffness
from equations (3) and (9), at the points highlighted in Figure 6.

TABLE 4. Selected points for the analysis of the zero stiffness behav-
ior of the T-shaped mechanism.

Points p1p1p1[mm] p2p2p2[mm] Points p1p1p1[mm] p2p2p2[mm]

a -0.2 0.6 b 0.0 1.2

c 0.23 0.0 d 0.27 -0.5

e 0.35 -0.8 f 0.4 -0.6

g 0.14 2 h 0.125 2.5

i 0.35 2.65 j 0.4 2.8

We define the zero stiffness region as the range of the displace-
ment x for which the force varies by ±5% and the zero force re-
gion as the range of x for which the strain energy remains within
±5%.

4.1 Zero force monostable mechanism (ZFMM)
The mechanism is monostable for p2 < pa

2 or for p2 < pc
2

and p1 < pcr
1 . At p2 = pc

2 or p2 = pa
2, the mechanism exhibits

a zero stiffness regime around x = 0. On changing the value of
p1, the values of pa

2, pc
2 change and the stiffness of the mecha-

nism beyond the zero stiffness region changes as well. Figure 7
illustrates the reaction force of the mechanism for points (a), (b).

4.2 Constant force monostable mechanism (CFMM)
The mechanism is monostable for p1 < pcr

1 and p2 < pc
2. At

p1 = pz
1, the mechanism exhibits a constant force regime. The

value of the force depends on p2. As p2 decreases, pz
1 increases

and the value of the constant force decreases and its range in-

5 Copyright © 2018 by ASME



FIGURE 5. (a) Sign of the discriminant of the reaction force polynomial , ∆Φ , (b) Number of sign alternation of the coefficients β0, β1, β2, β3, (c)
Number of stable states, DOS, (d) Sign of the discriminant of the stiffness polynomial, ∆κ , (e) Number of zero stiffness states.

FIGURE 6. Zero stiffness boundaries of the T-mechanism as a func-
tion of the programming inputs highlighting our analysis points.

creases. Decreasing p2 decreases the stiffness of the mecha-
nism around its equilibrium position as illustrated in Figure 8
for points (c), (d).

4.3 Zero force bistable mechanism (ZFBM)
The mechanism is bistable for p1 > pcr

1 and pa
2 < p2 < pb

2.
At p2 = pb

2, the mechanism exhibits a zero stiffness response
around x = 0. On increasing p1, the value of pb

2 increases and
the stiffness around the stable states increases as illustrated in
Figure 9 for points (e), (f).

4.4 Constant force bistable mechanism (CFBM)
The mechanism is bistable for p1 < pcr

1 and p2 > pc
2. At

p1 = pz
1, the mechanism is a constant force bistable as it ex-

hibits a zero stiffness regime. As p2 increases, the value of pz
1

decreases slightly and the stiffness around equilibrium positions
increases. The range of the constant stiffness regime decreases
with increasing p2 as illustrated in Figure 10 for points (g), (h).

FIGURE 7. The reaction force of the mechanism programmed as
ZFMM, the zero force (ZF) region is highlighted.

4.5 Zero force tristable mechanism (ZFTM)
The mechanism is tristable for p1 > pcr

1 and pb
2 < p2 < pc

2.
At p2 = pc

2, the mechanism exhibits near zero stiffness around
x = 0 and becomes a zero force tristable mechanism. On in-
creasing p1, pc

2 increases and the stiffness at equilibrium states
increases as illustrated in Figure 11 for points (i), (j).

5 Zero stiffness and equilibrium positions
We calculated the positions of the near-zero stiffness and

equilibrium regions from the stiffness polynomial κ and force
polynomials Φ , they are the square roots of the positive-valued
zeros as given in equations(11), (6), respectively.

The zero stiffness positions and equilibrium positions are
functions of the programming inputs, p1, p2. We fix one pro-
gramming input and change the other one to study the impact of
the programming inputs on the stiffness and stability behaviors.

5.1 Sweeping p1 and fixing p2
Figure 12 illustrates the variation of zero stiffness and equi-

librium positions as a function of p1 for different values of p2.

6 Copyright © 2018 by ASME



FIGURE 8. The reaction force of the mechanism programmed as
CFMM, , the constant force (CF) region is highlighted.

FIGURE 9. The reaction force of the mechanism programmed as
ZFBM, the zero force (ZF) region is highlighted.

For pa
2 > p2, the mechanism is always monostable with a stable

state q0 at x = 0. As pa
2 < p2, the mechanism exhibits bistabil-

ity. A pitchfork bifurcation occurs, the stable state q0 becomes
unstable and bifurcates into two stable states, q±3 . At pa

2 = p2, a
saddle-node bifurcation of the zero stiffness positions occurs as
well at x = 0 at which the mechanism exhibits zero force regime
leading to ZFMM, as illustrated in Figure 12(a).

As p2 increases two saddle-node bifurcations of the equi-
librium states occur at which states q±2 , q±3 appear. Zero stiff-
ness positions appear at p1 = pz

1 at which the mechanism exhibits
near constant force region, leading to CFMM. As p1 increases,
the zero stiffness positions merge at x = 0, at which zero force
regime occurs resulting in ZFBM, as given in Figure 12(b). It
should be noted that zero stiffness bifurcations occur at lower
values of p1 compared to equilibrium bifurcations, i.e., pz

1 < pcr
1 .

On increasing p2, the zero stiffness positions move apart from

FIGURE 10. The reaction force of the mechanism programmed as
CFBM, the constant force (CF) region is highlighted.

FIGURE 11. The reaction force of the mechanism programmed as
ZFTM, the zero force (ZF) region is highlighted.

x = 0 and pz
1 decreases, as illustrated in Figure 12(c).

If pc
2 < p2, bistability occurs and an inverted pitchfork bi-

furcation appears at which the unstable state q0 becomes stable
and the equilibrium states q±1 merge. A saddle-node bifurcation
of the zero stiffness positions occurs as well at x = 0 at which the
mechanism exhibits zero force response given in Figure 12(d).

On increasing p2, pc
2 increases and pz

1 decreases until the
near constant force regime appears within the bistable regime
leading to CFBM, as illustrated in Figure 12(e).

On further increase of p2, the mechanism exhibits zero stiff-
ness regime at x = 0 within the tristable regime, leading to
ZFTM, as illustrated in Figure 12(f).

5.2 Sweeping p2 and fixing p1
Figure 13 illustrates the variations of the zero stiffness and

equilibrium positions as a function of p2 for different values of

7 Copyright © 2018 by ASME



p1. On selecting p1 < pz
1, the mechanism is monostable for p2 <

pc
2 with a stable state q0. Once p2 exceeds pc

2, the mechanism
becomes bistable. A pitch-fork bifurcation occurs at p2 = pc

2
at which the stable state q0 becomes unstable and bifurcates into
two stable states. A saddle-node bifurcation of zero stiffness state
occurs also at p2 = pc

2 at which the mechanism is ZFMM around
x = 0, as illustrated in Figure 13(a).

On increasing p1 such that p1 > pz
1 for a given range of p2,

two saddle-node bifurcations of zero stiffness positions occur.
The mechanism exhibits constant force regime within the bista-
bility region leading to CFBM, as given in Figure 13(b).

For higher values of p1, the mechanism exhibits constant
force regime within the monostable region leading to CFMM, as
illustrated in Figure 13(c).

At p1 > pcr
1 , the mechanism can exhibit monostability,

bistability, tristability and quadrastability as illustrated in Fig-
ure 13(d). The zero stiffness states merge and the mechanism
has zero stiffness response around p2 = pa

2, pb
2, pc

2 resulting in
ZFMM, ZFBM and ZFTM respectively. The near zero force re-
gions exist only around x = 0. The near constant force region
appears at p1 = pz

1 and its position varies with p2. The higher p2
is, the lower pz

1 becomes.

6 Model verification
6.1 Finite element analysis

We used COMSOL FEM to verify our analysis. Our model
is built using the solid mechanics module and geometric non-
linearity is considered in the model. Mesh converge test is per-
formed to ensure the validity of the solution. We used the dis-
placement driven method as it is a single-valued problem and
easier to converge. On applying a given displacement to the cen-
tral block of module 2 of the mechanism, the total strain energy
is calculated and the reaction force is estimated.

6.2 Experimental setup
A prototype of the T-mechanism is manufactured using

electro-discharge machining as illustrated in Figure 4(a) with the
dimensions given in Table 3. Figure 14 gives the measurement
setup of the mechanism [19]. It consists of three laser sensors
to measure the displacement x, p1, p2 with a resolution down to
50[nm]. A Kistler force sensor is used to measure the reaction
force of the mechanism with a sensitivity of 5[mN]. The actua-
tion input is applied via a micrometric screw mounted on a stage
connected to the actuation block of the T-mechanism by a nylon
wire. A known mass is used to compensate for the negative stiff-
ness of the mechanism. The programming inputs are applied via
micrometric screws.

FIGURE 12. Bifurcation diagrams of zero stiffness and equilibrium
states on sweeping p1 for (a) p2 = −1.2[mm], (b) p2 = −0.8[mm], (c)
p2 = 0[mm], (d) p2 = 1.0[mm], (e) p2 = 2.2[mm], (f) p2 = 2.7[mm] .

6.3 Results
Figure 15 gives the reaction force of the mechanism cal-

culated analytically, numerically and experimentally as ZFMM,
CFMM, ZFBM, CFBM, ZFTM. A good match is found with a
discrepancy of less than 10% due to neglecting higher order stiff-
ness terms of the mechanism in our analytical model and mea-
surement errors. We find the analytical model sufficient for the
estimation of the reaction force of the mechanism and the vali-
dation of the constant force behavior of PMMs.

7 Applications
We applied programmable multistable mechanisms to reti-

nal vein cannulation needles where the puncturing force
and stroke are controlled to avoid vein double puncturing

8 Copyright © 2018 by ASME



FIGURE 13. Bifurcation diagrams of zero stiffness and equilibrium
states on sweeping p2 for (a) p1 = 0.0[mm], (b) p1 = 0.12[mm], (c)p1 =

0.2[mm], (d) p1 = 0.4[mm].

FIGURE 14. Measurement setup of the T-mechanism.

[20]. Other potential applications are micro-computing, pro-
grammable threshold sensors and force regulators, which is the
focus of our current work.

8 Summary
We reported the zero stiffness behavior of the programmable

T-shaped multistable mechanisms. We illustrated that the mech-
anism can be programmed as zero force monostable, constant
force monostable, zero force bistable, constant force bistable and
zero force tristable. Based on Euler-Bernoulli beam theory, the
reaction force and tangential stiffness were derived, from which
the stability and stiffness behaviors were characterized. Finite el-
ement analysis and experimental measurements were conducted
to verify our analytical model and a discrepancy of less than 10%
was found. Finally, we discussed possible applications of pro-
grammable stiffness mechanisms.
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