
ar
X

iv
:1

80
8.

05
79

7v
1 

 [
cs

.I
T

] 
 1

7 
A

ug
 2

01
8

1

Single-Server Multi-Message Private Information

Retrieval with Side Information
Su Li and Michael Gastpar

EPFL

Abstract

We study the problem of single-server multi-message private information retrieval with side information. One user wants to
recover N out of K independent messages which are stored at a single server. The user initially possesses a subset of M messages
as side information. The goal of the user is to download the N demand messages while not leaking any information about the
indices of these messages to the server. In this paper, we characterize the minimum number of required transmissions. We also
present the optimal linear coding scheme which enables the user to download the demand messages and preserves the privacy
of their indices. Moreover, we show that the trivial MDS coding scheme with K − M transmissions is optimal if N > M or
N

2
+ N ≥ K − M . This means if one wishes to privately download more than the square-root of the number of files in the

database, then one must effectively download the full database (minus the side information), irrespective of the amount of side
information one has available.

I. INTRODUCTION

Consider K independent messages stored at a single server. One user wants to download N messages from the sever while it

already has M messages as side information. The user sends queries to the server and the server replies with (coded) messages

according to the user’s requests. Private information retrieval requires that the server should not be able to infer any information

about the indices of the messages that the user wants to download. We refer to this problem as Single-server Multi-message

Private Information Retrieval with Side Information (SMPIRSI). To solve the SMPIRSI problem, we need to find the minimum

required number of transmissions that the user should request from the server and the optimal linear coding scheme which

enables the user to decode the demand messages while protecting the indices of the demand messages from the server.

A. Related Work

The Private Information Retrieval (PIR) problem was first studied in [1] from a computational complexity perspective.

Recently, the PIR problem attracted considerable attention in the information theory society and many works study this

problem from an information-theoretic point of view [2], [3], [4], [5]. A single user wants to privately download one message

from a database. To achieve perfect privacy in the information-theoretic sense, if the database is only stored at one server,

the user has to download all messages. The problem becomes more interesting if one supposes that the database is stored in

multiple servers and there is no collusion between these servers. By exploiting the advantages of replications of the database in

non-colluding servers, private information retrieval can be achieved without downloading all messages and the capacity of this

problem is characterized in [4]. Ensuing work has studied many variations of this theme, including databases coded by erasure

codes [6], [7], [8], [9], [10], [11], partial colluding servers [5], [12], [13], side information messages available at users [14],

[15], [16], [17], [18] and multiple messages [19], [20],

In [19], Banawan and Ulukus consider the problem that the user wants to download multiple messages from multiple

servers, but there is no side information at the user. In [20], Shariatpanahi et al. study the multi-message PIR problem with

side information and the user wants to protect both the privacy of the indices of demand messages and of the side information

messages. In our problem, the user is only interested in protecting the privacy of the indices of the demand messages, which is

a more challenging problem than protecting both the indices of the demand and side information messages. The single-server

multi-message PIR with side information problem is studied concurrently in [21], which has the same results as us when

N > M and presents achievability results when N ≤ M 1.

B. Contributions

(1) We present a closed-form expression for the minimum number of required transmissions for SMPIRSI problem.

(2) We propose a novel method, Partition-and-MDS-Coding, to generate optimal linear coding schemes with satisfy the

requirements of SMPIRSI and use the minimum number of transmissions.

(3) We show that the trivial MDS coding scheme with K−M transmissions is optimal when the number of demand messages

satisfies either N > M or N2 +N ≥ K −M .

1Our work and [21] study the same problem independently. We submitted our work to the 56th Allerton conference on 9th July 2018.

http://arxiv.org/abs/1808.05797v1
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II. SYSTEM MODEL AND DEFINITION

Consider a server which stores K independent messages, denoted by X = {X1, . . . , XK}. Each message Xi ∈ F, where F

is some finite field. One user initially has M side information messages and wants to download N messages from the server,

while the user does not want to reveal any information about the indices of the demand messages to the server. We assume

that the server only knows the number M of side information messages of the user but has no idea about which messages the

user has.

Let W = {W1, . . . ,WN} ⊆ [K] denote the set of indices of the demand messages and S = {S1, . . . , SM} ⊂ [K] \ W

denote the set of side information messages. Let S and W denote the random variables corresponding to the indices of side

information messages and demand messages. We assume that W is uniformly distributed over all subsets of [K] with size N ,

i.e.,

Pr(W = W) =
1

(

K
N

) ∀W ⊆ [K], |W| = N. (1)

Moreover, S is also uniformly distributed over all subsets of [K] \W with size M , i.e.,

Pr(S = S|W) =
1

(

K−N
M

) ∀S ⊆ [K] \W, |S| = M. (2)

To retrieve the demand messages, the user sends a query Q(W,S), which is determined by the indices of the demand

messages and side information messages, to the server and the server replies coded messages according to the query. In this

paper, we only consider linear coding schemes. Let T = {T1, . . . , TR} denote the linear coding scheme with R transmissions

to be sent to the user by the server. Private information retrieval requires T to satisfy two conditions:

1) Retrieval Condition (Correctness): The user should be able to decode all demand messages from T by using its locally

available side information messages, that is,

H(XW|T, XS) = 0. (3)

2) Privacy Condition: The server should not be able to infer any information about the indices of the demand messages

from the query, that is,

I(W ;Q(W,S)) = 0. (4)

To satisfy the Privacy Condition, it is equivalent to have

H(W|Q(W,S)) = H(W) (5)

Definition 1 (Coding subspace). For any linear coding scheme T = {T1, . . . , TR}, let supp(Ti) denote the messages which

are used to generate Ti. Define a partition of messages P(T) = {℘1, . . . } such that for each Ti, there exists a unique ℘j ∈ P
such that supp(Ti) ⊆ ℘j . We call the subspace spanned by each ℘j a coding subspace.

For any linear coding scheme, it is possible to find its coding subspace(s). The coding subspaces should jointly contain

all messages, otherwise the non-included message cannot be the demand message, which violates the Privacy Condition. The

minimum number of required transmissions for single-server multi-message private information retrieval with side information

can be computed by

R∗ = min
L∈Π(K)

|L|
∑

i=1

R(Li) (6)

where Π(K) is the set of all partitions of K , L = {L1, . . . ,L|L|} and R(Li) is the minimum number of required transmissions

for coding subspace with size Li.

Definition 2 (MDS-Condition). A linear coding scheme T satisfies the MDS-Condition in the coding subspace spanned by the

messages in ℘i ∈ P(T) if there exists a non-negative integer Mi such that given any Mi messages in ℘i, all other messages

can be decoded and none of the messages can be decoded given any Mi − 1 messages.

Example 1. Consider the SMPIRSI problem with the following setup: X = {X1, X2, . . . , X13}, W = {2, 5} and S =
{1, 4, 6, 7, 9}. We give the following linear coding scheme T = {T1, . . . , T6}:

T1 = X1 +X2 +X4 +X6 +X8 (7)

T2 = X1 + 2X2 + 3X4 + 4X6 + 5X8 (8)

T3 = X3 +X10 +X11 +X13 (9)

T4 = X3 + 2X10 + 3X11 + 4X13 (10)

T5 = X5 +X7 +X9 +X12 (11)

T6 = X5 + 2X7 + 3X9 + 4X12 (12)
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From the user’s perspective: X2 can be decoded from T1 and T2 given that X1, X4 and X6 are side information. X5 can

be decoded from T5 and T6 given that X7 and X9 are side information. Hence, the Retrieval Condition is satisfied.

From the server’s perspective: The linear coding scheme has 3 coding subspaces: ℘1 = {X1, X2, X4, X6, X8}, ℘2 =
{X3, X10, X11, X13} and ℘3 = {X5, X7, X9, X12}. They satisfy the MDS-Condition with m1 = 3, m2 = 2 and m3 = 2,

respectively. Since the server only knows that the user has 5 side information messages and wants to download 2 messages, it

can only infer that the demand messages are in either the same coding subspace or in 2 different coding subspaces. By using

the randomized construction process shown in Section IV, we can show that the probability for any two messages to be the

demand messages is the same. Hence, this coding scheme also satisfies the Privacy Condition.

We will show that for this problem, we need at least 6 transmissions and present the proof for the reason why it is optimal

to partition messages into these three coding subspaces and why it is sufficient to have two transmissions in each coding

subspace in Section III.

III. MAIN RESULT

The main result of this paper is presented by the following theorem. We give a closed-form expression for the minimum

number of required transmissions for SMPIRSI problem.

Theorem 1. For the single-server multi-message private information retrieval with side information problem, the minimum

number of required transmissions satisfies

R∗(K,M,N) = K −M − (L∗ − 1−N)+M̄ − ((L∗ −N)V )+ (13)

where M̄ = ⌊M
N
⌋, t = M −NM̄ , L∗ =

⌈

K−t
M̄+N

⌉

and V = (K − (L∗ − 1)(M̄ +N)− t−N)/(L∗ −N).

Remark 1. According to Theorem 1, the minimum number of required transmissions is always upper bounded by K − M ,

which is consistent with the fact that there always exists a linear PIR coding scheme which is an MDS code with K − M
transmissions. This code has all messages in a single coding subspace.

In order to prove Theorem 1, we first prove some useful lemmas. We also provide an alternative proof in Appendix.

Lemma 1. [18] For any linear coding scheme that satisfies the Privacy Condition, without loss of optimality, the MDS-Condition

should be satisfied in every coding subspace.

Proof. For a linear coding scheme T = {T1, . . . , TR}, suppose there exists a coding subspace ℘ ∈ P(T) such that the MDS-

Condition is not satisfied in ℘. Let D(T, X) denote the minimum number of side information messages which are required

to decode message X from linear coding scheme T. Then, there must exists two messages Xi and Xj in the same coding

subspace ℘ such that

(i) D(Xi) > D(Xj).
(ii) D(Xi) = D(Xj), but there are more choices of side information messages for Xj than Xi.

For the first case, suppose Xj can be decoded from Tk given D(T, Xi) as side information. If Tk is not the transmission

that will be used by the user to decode the demand messages, then it is possible to remove messages in supp(Tk) which are

also in supp(Tl) ∀l 6= k. As a result, we either Xj cannot be decoded from Tk or Xj is in another coding subspace. For

the second case, we can do similar operation on the transmissions which can be used to decode Xj given D(T, Xj) as side

information. In both cases, If the original coding scheme satisfies Privacy condition, the modified coding scheme also satisfies

Privacy condition and uses the same number of transmissions. Hence, it is optimal to only consider the linear coding schemes

which satisfy MDS-Condition in every coding subspace as the candidate PIR coding scheme.

According to Lemma 1, it is without loss of optimality to restrict attention to linear coding schemes which satisfy the

MDS-Condition in every coding subspace. For such coding schemes, the minimum number of required transmissions in each

coding subspace should satisfy the condition stated in the following Lemma.

Lemma 2. For coding subspace ℘, the number of transmissions in this coding subspace, R(℘), satisfies

R(℘,m(℘))

{

= |℘|, |℘| ≤ N

≥ |℘| −m(℘), N + 1 ≤ |℘| ≤ K
(14)

where m(℘) ∈ {0, 1, . . . , |℘| −N} is the number of side information messages that are used in such coding subspace.

Proof. If the coding subspace ℘ includes no more than N messages, since all the messages in ℘ can be the demand message,

the transmissions in such coding subspace should be equal to the dimension of the coding subspace, which is |℘|. If the coding

subspace ℘ includes more than N messages, then it must satisfy the MDS-Condition, according to Lemma 1. Hence, by using

m(℘) side information messages, the number of transmissions in such coding subspace should be |℘| −m(℘). Additionally,

since it is possible that all N demand messages are in ℘, the number of transmissions in ℘ is at least N . Thus, the maximum

number of side information messages that can be used in this coding subspace is |℘| −N .
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Example 1 revisited. It can be verified that the coding scheme proposed in Example 1, T = {T1, . . . , T6}, satisfies MDS-

Condition in all three coding subspaces, with m1 = 3, m2 = 2 and m3 = 2, respectively.

Let P = {℘1, . . . , ℘L} denote the coding subspaces. Without loss of generality, we assume that |℘1| ≥ . . . , |℘L|. The

minimum number of required transmissions of any linear PIR scheme based on such coding subspaces can be computed as

R(P) = min
m

L
∑

i=1

R(℘i,mi) (15)

where m = {m1, . . . ,mL} is the vector of the number of side information messages used in each coding subspace. It is easy

to see that a coding subspace of larger size should have no fewer side information messages, i.e., m1 ≥ · · · ≥ mL. Since the

total number of side information messages is M , the feasible side information vector should satisfy

min{L,N}
∑

i=1

mi = M (16)

The reason why the summation is taken only from 1 to min{L,N} is that when L > N , the number of coding subspaces

which contain demand messages is at most N . If the first mi’s sums up to M , every subset of mi’s with size N has sum

no larger than M . Hence, Eqn. (16) guarantees that the total number of side information messages used by any N coding

subspaces is not larger than M . Additionally, if the size of one coding subspace is equal to or less than N , the number of side

information messages that can be used in such coding subspace can only be zero.

The optimization problem (6) for the minimum number of required transmissions can be expressed as follows by optimizing

over side information vectors:

R∗ = min
L∈Π(K)

|L|
∑

i=1

R(Li) (17)

= min
L∈Π(K)

min
m∈P(M)

|L|
∑

i=1

R(Li,mi) (18)

= min
L∈Π(K)

min
m∈P(M)

|L|
∑

i=1

Li −mi (19)

= K − max
L∈Π(K)

max
m∈P(M)

|L|
∑

i=1

mi (20)

where L = {L 1, . . . ,L|L|} is a partition of the integer K which satisfies ∀i ∈ [|L|] : Li > N and m = {m1, . . . ,m|L|} is the

vector of the number of side information messages used in each coding subspace which satisfies Eqn. (16) and mi ≤ (Li−N)+.

Since L is a partition of K , it is always true that the summation
∑|L|

i=1 Li = K . Therefore, the optimization problem becomes

find the optimal partition (L) and optimal side information vector m such that
∑|L|

i=1 mi is maximized.

Lemma 3. For any linear PIR coding scheme with fewer than N coding subspaces, the minimum number of required

transmissions is always K −M .

Proof. For any partition L = {L1, . . . ,LL}, if L ≤ N , it is possible that every coding subspace contains at least one demand

messages. Hence, the number of side information messages used in all coding subspace must sum up to M . Thus, we have

R∗(L) =
L
∑

i=1

R(Li,mi) =

L
∑

i=1

(Li −mi) =

L
∑

i=1

Li −
L
∑

i=1

mi = K −M (21)

Lemma 4. For any linear PIR coding scheme based on a partition L = {L1, . . . ,LL} with L > N and L1 ≥ · · · ≥ LL ≥ N ,

the minimum number of transmissions satisfies

R(L)∗ = min
m

L
∑

i=1

R(Li) = K −max
m

L
∑

i=1

mi = K −M −max
m

L
∑

i=N+1

mi (22)

where m = {m1, . . . ,mL} is the vector of the number of side information messages in each coding subspace.

Hence, when the number of coding subspaces is larger than N , the number of side information messages that can be used

in the coding subspace corresponding to LN+1, . . . ,LL should be maximized. Recall that we assume m1 ≥ m2 ≥ · · · ≥ mL,

hence, we actually need to maximize mN . Since vector m = {m1, . . . ,mL} satisfies Eqn. (16), we have mN ≤ ⌊M
N
⌋.
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Moreover, for coding subspaces with size Li such that N < Li < N + ⌊M
N
⌋, the number of side information messages used in

such a coding subspace satisfies mi ≤ Li −N , since the number of transmissions used in such a coding subspace is at least

N .

Lemma 5. Let m = {m1, . . . ,mL} denote the number of side information messages used in each coding subspace, where

L > N and m1 ≥ · · · ≥ mL. Let Li denote the size of the i-th coding subspace and t = M −N⌊M
N
⌋. The optimal choice for

m is

∀i ∈ [t] : mi = min{⌊
M

N
⌋+ 1, (Li −N)+} (23)

∀i ∈ {t+ 1, . . . , L} : mi = min{⌊
M

N
⌋, (Li −N)+} (24)

Lemma 6. The optimal partitions, {L1, . . . ,LL} satisfy

∀i ∈ [t] : Li = ⌊
M

N
⌋+N + 1 (25)

∀i ∈ {t+ 1, . . . , L− 1} : Li = ⌊
M

N
⌋+N (26)

∀i = L : LL = K − (L− 1)(⌊
M

N
⌋+N)− t (27)

where t = M −N⌊M
N
⌋.

Proof. According to Lemma 5, in order to maximize the number of side information messages in each coding subspace, it is

sufficiently optimal to have

∀i ∈ [t] : Li = ⌊
M

N
⌋+ 1 +N (28)

∀i ∈ {t+ 1, . . . , L− 1} : Li = ⌊
M

N
⌋+N (29)

Then, the total size of the first L− 1 coding subspace is

L−1
∑

i=1

Li = t(⌊
M

N
⌋+ 1 +N) + (L− 1− t)(⌊

M

N
⌋+N) = (L− 1)(⌊

M

N
⌋+N) + t (30)

Then the size of the last coding subspace can only be q = K − (L− 1)(⌊M
N
⌋+N)− t. If q > ⌊M

N
⌋+N , then we can further

decompose the last coding subspace into two smaller coding subspaces with size ⌊M
N
⌋+N and q − ⌊M

N
⌋+N . Thus, we can

assume that L is large enough such that q < ⌊M
N
⌋+N . If N < q < ⌊M

N
⌋+N , the number of side information messages in

this coding subspace is equal to q −N . If q ≤ N , the number of transmissions required for the last coding subspace is equal

to its size and hence the number of side information messages is zero.

Now we are ready to prove Theorem 1.

Proof. (Theorem 1) As has been shown in the proof of Lemma 6, Eqn. (30), for the optimal partition, {L1, . . . ,LL}, we have
∑L−1

i=1 Li = (L− 1)(⌊M
N
⌋+N) + t. Since the total number of messages is K , we have

K ≥
L−1
∑

i=1

Li = (L− 1)(⌊
M

N
⌋+N) + t (31)

Additionally, L is an integer, we have the optimal number of coding subspaces is

L∗ =

⌈

K − t

⌊M
N
⌋+N

⌉

(32)

The side information vector m = {m1, . . . ,mL} satisfies

∀i ∈ [t] : mi = ⌊
M

N
⌋+ 1 (33)

∀i ∈ {t+ 1, . . . , L∗ − 1} : mi = ⌊
M

N
⌋ (34)

∀i = L∗ : mL = (K − (L∗ − 1)(⌊
M

N
⌋+N)− t−N)+ (35)
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Hence the total number of required transmissions is

R∗ = K − max
L∈Π(K)

max
m

|L|
∑

i=1

mi (36)

= K −M −max
m

L∗

∑

i=N+1

mi (37)

=











K −M if L∗ ≤ N

K −M − ((L∗ −N)V )+ if L∗ = N + 1

K −M − (L∗ − 1−N)+M̄ − ((L∗ −N)V )+ if L∗ > N + 1

(38)

= K −M − (L∗ − 1−N)+M̄ − ((L∗ −N)V )+ (39)

where M̄ = ⌊M
N
⌋, t = M −NM̄ , L∗ =

⌈

K−t
M̄+N

⌉

and V = (K − (L∗ − 1)(M̄ +N)− t−N)/(L∗ −N).

Example 1 revisited. For Example 1, we have K = 13, M = 5 and N = 2. According to Theorem 1, it is easy to get that

M̄ = ⌊M
N
⌋ = 2, t = M −NM̄ = 1 and L∗ =

⌈

K−t
M̄+N

⌉

= 3. The minimum number of required transmissions is R∗ = 6.

Theorem 2. For given total number of messages K and number of side information messages M , it is optimal to download

K − M transmissions by using the trivial MDS coding scheme with all messages in one coding subspace if either of the

following conditions is satisfied.

1) N > M .

2) N2 +N ≥ K −M

Proof. If the first condition is satisfied, N > M , as it is optimal to only consider the coding schemes with partition of size

larger than N , it can be shown that the number of side information messages used in the N -th coding subspace is mN = 0.

Hence, we have mN+1 = . . . ,mL = 0. The minimum number of required transmission is K −M .

If the second condition holds, N2 +N ≥ K −M . Let us further assume that N2 > K −M , then we have

N2 +N⌊
M

N
⌋ > K −M +N⌊

M

N
⌋ (40)

⇔N + 1 >
K −M +N⌊M

N
⌋

N + ⌊M
N
⌋

+ 1 ≥ L∗ (41)

Hence we have L∗ ≤ N . According to Lemma 3, the minimum number of required transmissions is K−M . If N2 ≤ K−M ≤
N2 +N , then it can be shown that L∗ = N + 1 and

K −M −N⌊
M

N
⌋ ≤ N2 +N −N⌊

M

N
⌋ (42)

⇔K −N(⌊
M

N
⌋+N)− (M −N⌊

M

N
⌋)−N ≤ 0 (43)

⇔mN+1 = (K −N(⌊
M

N
⌋+N)− (M −N⌊

M

N
⌋)−N)+ = 0 (44)

Since L∗ = N+1 and mN+1 = 0, according to Theorem 1, R∗ = K−M . Thus, if any of the three conditions is satisfied, it is

optimal to use the trivial MDS coding scheme with K−M transmissions which takes all messages in one coding subspace.

IV. OPTIMAL LINEAR CODING SCHEME

In this section, we show how to construct an optimal coding scheme for the single-server multi-message private information

retrieval with side information problem.

For any single-server multi-message private information retrieval with side information problem with K total messages, M
side information messages and N demand messages, we first compute L∗ defined by Eqn. (32) and mL defined by Eqn. (35).

If L∗ ≤ N +1 and mL = 0, then R∗ = K −M . It is trivial that the optimal linear coding scheme is the MDS coding scheme

that takes all messages into one coding subspace. If L∗ > N + 1 or L∗ = N + 1, mL > 0, we use the following steps to

construct the optimal linear coding schemes:
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Step 1: The user creates a set of L∗ subsets, denoted by {℘1, . . . , ℘L∗} and ∀i ∈ [L∗], the size of ℘i satisfies:

|℘i| =



























⌊
M

N
⌋+N + 1, ∀t ∈ {1, . . . , t}

⌊
M

N
⌋+N, ∀t ∈ {t+ 1, . . . , L∗ − 1}

K − (L− 1)(⌊
M

N
⌋+N)− t, for i = L∗

(45)

where t = M −N⌊M
N
⌋. Let ci for i ∈ [L∗] denote the number of demand messages in subset ℘i and initiate to 0

Step 2: For the first demand message XW1
, the user randomly selects one subset ℘i (i ∈ [L∗]) to contain it with probability

|℘i|
K

. The user updates ci = ci + 1. Then for the j-th demand message (j ∈ [N ]), the user randomly selects one subset

℘u (u ∈ [L∗]) to contain it with probability
|℘u|−cu
K−j+1 . Iteratively, the user places all demand messages into the subsets.

Step 3: For each subset ℘i with ci > 0, the user randomly selects mi side information messages to put into ℘i, where

mi satisfies:

mi =



















⌊
M

N
⌋+ 1, 1 ≤ i ≤ t

⌊
M

N
⌋, t+ 1 ≤ i ≤ L∗ − 1

(|℘L∗ | −N)+, i = L∗

(46)

Step 4: The user randomly distributes the other messages to fill up the remaining empty spaces in each subset.

Step 5: The user sends queries to the server according to the coding scheme which satisfies the MDS-Condition in each

coding subspace ℘i (∀i ∈ [L∗]) with R(|℘i|,mi) transmissions.

We name the coding schemes constructed by this method as Partition-and-MDS-Coding scheme, which is a modified based

on optimal coding scheme for single demand message [14]. The way we select subsets for demand messages is related to the

URN problem. The probability of any N messages to be the demand messages follows the binomial distribution.

Theorem 3. The Partition-and-MDS-Coding schemes satisfies the Retrieval Condition and the Privacy Condition.

Proof. For each coding subspace ℘i, if it contains demand messages, the number of transmissions R(|℘i|,mi) and the number

of side information messages mi in such coding subspace satisfy R(|℘i|,mi) + mi = |℘i|. Additionally, the Partition-and-

MDS-Coding scheme satisfies MDS-Condition in very coding subspace. Thus, all missing messages in ℘i can be successfully

decoded, including the demand messages. Therefore, the Retrival Condition is satisfied.

The probability that any N messages (e.g. {XZ1
, . . . , XZN

}) are the demand messages can be computed as

Pr(W = {Z1, . . . , ZN}) = N ! Pr(W1 = Z1,W2 = Z2, . . . ,WN = ZN) (47)

= N ! Pr(W1 = Z1)Pr(W2 = Z2, . . . ,WN = ZN |W1 = Z1) (48)

= N !

N
∏

i=1

Pr(Wi = Zi|W
i−1
1 = Zi−1

1 ) (49)

According to the construction of the Partition-and-MDS-Coding scheme and assume that Zi ∈ ℘j , we have

Pr(Wi = Zi|W
i−1
1 = Zi−1

1 ) = Pr(Wi ∈ ℘j |W
i−1
1 = Zi−1

1 ) Pr(Wi = Zi|Wi ∈ ℘j ,W
i−1
1 = Zi−1

1 ) (50)

=
|℘j | − ℘j \ (℘j ∩ {Z1, . . . , Zi−1})

K − i+ 1

1

|℘j | − ℘j \ (℘j ∩ {Z1, . . . , Zi−1})
(51)

=
1

K − i+ 1
(52)

Hence, we have

Pr(W = {Z1, . . . , ZN}) = N !

N
∏

i=1

1

K − i+ 1
=

N !

K(K − 1) · · · (K −N + 1)
=

1
(

K
N

) (53)

Since there are
(

K
N

)

possible demand message pairs with size N , every N -message pair is equally likely to be the demand

messages, which satisfies the Privacy Condition of multi-message PIR.

Example 1 revisited. We construct the linear coding scheme in Example 1 by using the Partition-and-MDS-Coding method.

It is easy to compute and verify that L∗ = 3 > N and m3 = 2 > 0. Step 1: We first create three coding subspace (℘1,

℘2, ℘3) with size |℘1| = 5, |℘2| = 4 and |℘3| = 4. Step 2: We randomly select one coding subspace from {℘1, ℘2, ℘3}
to contain the first demand message X2 with probability 5

13 , 4
13 and 4

13 , respectively. Suppose ℘1 is chosen. Then for the

second demand message X2, we randomly select one coding subspace from {℘1, ℘2, ℘3} to contain the first demand message
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X2 with probability 4
13 , 4

13 and 4
13 , respectively. Suppose ℘3 is chosen. Step 3: For ℘1 and ℘3, the coding subspaces which

are chosen to contain demand messages, we randomly distribute 3 and 2 side information messages into them, respectively.

Suppose X1, X4, X6 are placed in ℘1 and X7, X9 are placed in ℘2. Step 4: Randomly distribute the remaining messages into

the coding subspaces. Suppose we get ℘1 = {X1, X2, X4, X6, X8}, ℘2 = {X3, X10, X11, X13} and ℘3 = {X5, X7, X9, X12}.

Step 5: The user generates queries according to the linear coding scheme T = {T1, . . . , T6} shown in Example 1.

From the server’s perspective, the probability for any two messages to be the demand message is the same, which is
1

(132 )
= 1

78 . Thus, the server cannot infer any information about the indices of the demand messages.

APPENDIX

We provide an alternative proof for the converse of the minimum number of required transmissions for the single-server

multi-message private information retrieval with side information problem. The proof techniques are inspired by [17]. Suppose

each message has L bits and messages are independent from each other, i.e.,

H(X1, . . . , XK) = H(X1) + · · ·+H(XK), (54)

H(X1) = · · · = H(XK) = L. (55)

Recall that W and S denote the sets of indices of demand messages and side information messages, respectively. Let Q[W,S]

denote the query that is generated for side information indexed by S and demand messages indexed by W. Let A[W,S] denote

the answer generated by the server after receiving query Q[W,S]. Since the answer generated by the server is a deterministic

function of the query and messages, we have

H(A[W,S]|Q[W,S], X1:K) = 0 (56)

The retrieval condition (3) is equivalent to

H(XW|A[W,S], Q[W,S], XS) = 0. (57)

The privacy condition (4) is equivalent to the condition that for any W,W′ ⊆ [K] and |W| = |W′| = N , there exists

S ⊆ [K] \W, S′ ⊆ [K] \W′ and |S| = |S′| = M such that

(A[W,S], Q[W,S], X1:K) ∼ (A[W′,S′], Q[W′,S′], X1:K). (58)

where A ∼ B means that A and B are identically distributed.

Suppose W0 = W and S0 = S are the set of indices of demand messages and side information messages, respectively.

Then the total number of download bits (D) can be lower-bounded as follows.

D ≥ H(A[W0,S0]|Q[W0,S0], XS0
) (59)

= H(XW0
, A[W0,S0]|Q[W0,S0], XS0

)−H(XW0
|A[W0,S0], Q[W0,S0], XS0

) (60)

(63)
= H(XW0

|Q[W0,S0], XS0
) +H(A[W0,S0]|Q[W0,S0], XW0∪S0

) (61)

= NL+H(A[W0,S0]|Q[W0,S0], XW0∪S0
). (62)

According to the privacy condition, for any Wi ⊆ [K], |Wi| = N , there exists Si ⊆ [K] \Wi which satisfies the retrieval

condition, i.e.,

H(XWj
|A[Wj ,Sj ], Q[Wj,Sj], XSj

) = 0. (63)

We have

H(A[W0,S0]|Q[W0,S0], X[K]) = min
Si

H(A[Wi,Si]|Q[Wi,Si], X[K]). (64)

Hence, for the special case i = 1, we have

D ≥ NL+min
S1

H(A[W1,S1]|Q[W1,S1], XW0∪S0
) (65)

= NL+min
S1

H(XW1,S1
|Q[W1,S1], XW0∪S0

) +H(A[W1,S1]|Q[W1,S1], XW1
0
∪S1

0
)

−H(XW1∪S1
|A[W1,S1], Q[W1,S1], XW0∪S0

) (66)

= NL+min
S1

H(XW1,S1
|Q[W1,S1], XW0∪S0

) +H(A[W1,S1]|Q[W1,S1], XW1
0
∪S1

0
)

−H(XS1
|A[W1,S1], Q[W1,S1], XW0∪S0

)−H(XW1
|A[W1,S1], Q[W1,S1], XW0∪S1

0
) (67)

(63)
= NL+min

S1

H(XW1,S1
|Q[W1,S1], XW0∪S0

)−H(XS1
|A[W1,S1], Q[W1,S1], XW0∪S0

)

+H(A[W1,S1]|Q[W1,S1], XW1
0
∪S1

0
) (68)
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We can apply the following substitutions iteratively

min
Si

H(A[Wi,Si]|Q[Wi,Si], XWi
0
∪Si

0
) = min

Si+1

H(A[Wi+1,Si+1]|Q[Wi+1,Si+1], X
W

i+1

0
∪S

i+1

0

). (69)

Suppose after T substitutions, we have

W
T
0 ∪ S

T
0 = [K]. (70)

Then we have the lower-bound for D as follows.

D ≥ NL+ min
S1,...,ST

T
∑

i=1

[

H(XWi,Si
|Q[Wi,Si], X

W
i−1

0
∪S

i−1

0

)−H(XSi
|A[Wi,Si], Q[Wi,Si], X

W
i−1

0
∪S

i−1

0

)
]

+H(A[WT ,ST ]|Q[WT ,ST ], XWT
0
∪ST

0
) (71)

(56)(70)
= NL+ min

S1,...,ST

T
∑

i=1

[

H(XWi,Si
|Q[Wi,Si], X

W
i−1

0
∪S

i−1

0

)−H(XSi
|A[Wi,Si], Q[Wi,Si], X

W
i−1

0
∪S

i−1

0

)
]

(72)

Note that each term in the summation is non-negative, since

H(XWi,Si
|Q[Wi,Si], X

W
i−1

0
∪S

i−1

0

) ≥ H(XSi
|Q[Wi,Si], X

W
i−1

0
∪S

i−1

0

) (73)

≥ H(XSi
|A[Wi,Si], Q[Wi,Si], X

W
i−1

0
∪S

i−1

0

) (74)

In order to get a lower-bound for the total number of download bits (D), we need to minimize the summation. And this

lower-bound works for any choice of {W1, . . . ,WT }. We will construct a special set {W1, . . . ,WT } such that we can

compute the minimum of the summation.

For any i ∈ W0, let Vi ⊂ S0 denote the minimum subset such that

H(Xi|A
[W0],S0 , Q[W0],S0 , XVi

) = 0 (75)

Without loss of optimality, we may assume that ∪i∈W0
Vi = S0. Let i∗ = argmaxi | ∪j∈W0\i Vj |. We construct Wt for

t ∈ [T ] as the following steps.

1) Put indices W0 \ i∗ into Wt.

2) Add another index it into Wt, where it 6∈ W
t−1
0 .

After we have Wt, we can select St to maximize the corresponding term in the summation in Equation (72). In such way,

each round we add a new index in W
t
0. Hence, after T = K −N rounds, we have W

T
0 = [K].

When the newly added index it ∈ S
t−1
0 , the optimal choice for St is St ⊂ (Wt−1

0 ∪ S
t−1
0 \ it). In such case

H(XWt,St
|Q[Wt,St], X

W
t−1

0
∪S

t−1

0

)−H(XSt
|A[Wt,St], Q[Wt,St], X

W
t−1

0
∪S

t−1

0

) = 0, (76)

implying that this choice achieves the minimum.

By assumption, A[Wt,St] given side information XSt
permits to decode XWt

. It is possible that the same A[Wt,St], given

the same side information XSt
, also permits to decode further messages. Let us denote the indices of these decodable messages

by Ut (noting that Ut may be the empty set), and the corresponding messages by XUt
. Clearly, Ut ⊆ [K] \ (Wt ∪ St), and

the definition of XUt
can be written as

H(XUt
|A[Wt,St], Q[Wt,St], XSt

) = 0. (77)

Similarly, when the newly added index it ∈ U
t
0, we can show that the optimal choice for St is St ⊂ (Wt−1

0 ∪ S
t−1
0 \ it).

In such cases,

H(XWt,St
|Q[Wt,St], X

W
t−1

0
∪S

t−1

0

)−H(XSt
|A[Wt,St], Q[Wt,St], X

W
t−1

0
∪S

t−1

0

) = H(Xit) = L. (78)

which achieves the minimum.

Now, the difficulty is minimizing those terms in the summation of Equation (72) where it 6∈ (Wt−1
0 ∪S

t−1
0 ∪U

t−1
0 ). To deal

with them, we need to further exploit the lower-bound expression. Since XWt∪St
is independent from the query Q[Wt,St], we

have

T
∑

i=1

H(XWi,Si
|Q[Wi,Si], X

W
i−1

0
∪S

i−1

0

) =

T
∑

i=1

H(XWi,Si
|X

W
i−1

0
∪S

i−1

0

) (79)

= (|WT
0 ∪ S

T
0 | − |W0 ∪ S0|)L (80)

= (K −N −M)L. (81)
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Thus, the total number of download bits D is also lower-bounded by

D ≥ NL+ (|WT
0 ∪ S

i
0| − |W0 ∪ S0|)L − max

S1,...,ST

T
∑

i=1

H(XSi
|A[Wi,Si], Q[Wi,Si], X

W
i−1

0
∪S

i−1

0

) (82)

= (K −M)L− max
S1,...,ST

T
∑

i=1

H(XSi
|A[Wi,Si], Q[Wi,Si], X

W
i−1

0
∪S

i−1

0

) (83)

Thus, we can also maximize the summation of conditional entropies in Equation (83) to get the lower-bound. As we have

shown before, for Wt with it ∈ {Wt−1
0 ∪ S

t−1
0 ∪U

t−1
0 }, the optimal choice St ⊂ (Wt−1

0 ∪ S
t−1
0 \ it), which implies

H(XSt
|A[Wt,St], Q[Wt,St], X

W
t−1

0
∪S

t−1

0

) = 0. (84)

For Wt with it 6∈ {Wt−1
0 ∪ S

t−1
0 ∪ U

t−1
0 }, since W0 \ i∗ ⊂ Wt, we have ∪j∈W0\i∗Vj ⊆ St to guarantee the decoding

correctness of XW0\i∗ . Thus, we can upper-bound the corresponding conditional entropy by

H(XSt
|A[Wt,St], Q[Wt,St], X

W
t−1

0
∪S

t−1

0

) ≤ H(XSt
|Wt−1

0 ∪ S
t−1
0 ∪U

t−1
0 ) (85)

≤ (|St| − | ∪j∈W0\i∗ Vj |) (86)

By assumption, ∪j∈W0
Vj = S0, we have

max
VN

1
:|∪i∈W0

Vi|=M
|St| − | ∪j∈W0\i∗ Vj | = M − min

VN
1
:|∪i∈W0

Vi|=M
max

i
| ∪j∈W0\i Vj | (87)







≤

⌊

M

N

⌋

if M ≥ N

= 0 if M < N

(88)

where the maximum is achieved when Vi ∩Vj = ∅ and (M −N
⌊

M
N

⌋

) |Vi|’s are equal to
⌈

M
N

⌉

and others are equal to
⌊

M
N

⌋

.

Therefore, for any t ∈ [T ], if M < N

H(XSt
|A[Wt,St], Q[Wt,St], X

W
t−1

0
∪S

t−1

0

) = 0. (89)

Otherwise, if M ≥ N

H(XSt
|A[Wt,St], Q[Wt,St], X

W
t−1

0
∪S

t−1

0

) ≤

⌊

M

N

⌋

. (90)

Lemma 7. If the number of side information messages is smaller than the number of demand messages, i.e. M < N , the

minimum number of required transmissions is K −M .

Proof. Suppose M < N , from Equation (88) we have that

M − min
VN

1
:|∪i∈W0

Vi|=M
max

i
| ∪j∈W0\i Vj | = 0. (91)

Thus, each conditional entropy in the summation is zero, except the first term H(XS0
) = ML. Hence, we have D ≥ (K−M)L

which gives R = D
L

≥ K −M . Additionally, we know that the MDS coding scheme with K −M is always a PIR scheme.

Therefore, R∗ = K −M .

Based on this, we can conclude the following useful proportions.

Proportion 1. If there exists j 6= i (i, j ∈ W0) such that Vj = Vi, where Vi and Vj are defined in Equation (75), then the

minimum number of required transmissions is K −M .

Proof. If Vi = Vj (i 6= j), then when we construct Wt, we can remove either i or j from W0 and keep the others. In

such way, no matter what new index we add into Wt, we have H(XSt
|XS0

) = 0. Hence, the lower bound for the number of

transmissions is K −M and we know that MDS coding scheme can achieve this lower bound.

Proportion 2. For any PIR coding scheme, for each Vi 6= ∅, defined by Equation (75), given XVi
, besides decoding Xi,

there must exist at least another N − 1 messages that can also be decoded.

Proof. Let Yi denote the set of indices of the messages that can be decoded given XVi
. Apparently, i ∈ Yi, since Xi can

be decoded. Suppose |Yi| ≤ N − 1. Then for any j ∈ Vi, the set of messages XYi∪{j} cannot be decoded given any N
messages in [K] \ (Yi ∪ {j}). This is because Vi are the minimum set of messages that are required to decode Xi. Hence,

XYi∪{j} cannot be the demand messages, which violates the privacy condition. Therefore, |Yi| ≥ N .
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Proportion 3. For i ∈ W0, let Yi denote the set of indices of the messages that can be decoded given XVi
. Without loss of

optimality, we can assume that Yi ∩Yj = ∅ for any i 6= j.

Proof. Suppose there is one message Xu, which can be decoded given either Vi or Vj . Additionally, we assume i 6∈ Yj and

j 6∈ Yi. To construct a new coding scheme, we can remove Xu from the coded transmissions which can be used to decoded

Xu and Xj given XVj
. After the modification, Xu can still be decoded given XVi

and XYj\{u} can still be decoded given

XVj
. And the total number of required transmissions does not increase.

Lemma 8. If K ≤ N2 +N +M , the minimum number of required transmissions is K −M .

Proof. According to Proportion 2, for each Vi 6= ∅ (i ∈ W0), we have |Yi| ≥ N . According to Proportion 3, we can assume

that for any i 6= j ∈ W0, Yi ∩Yj = ∅, then we have
∑

i∈W0

|Vi|+ |Yi| = M +N2 (92)

Thus, if K < N2 + M , there must exist l ∈ W0 such that Yl = ∅. In such cases, i∗ = l and | ∪j∈W0\i∗ Vj | = M . That

means all conditionally entropies in the summation are zero, except the first term H(XS0
) = ML, and the total number of

required transmissions is K −M .

If N2 + M ≤ K ≤ N2 + M + N , there are enough messages such that for any i, j ∈ W0, Yi ∩ Yj = ∅ and Vi 6= ∅.

However, since |W0∪S0∪U0| ≥ M+N , the number of messages for XW1
, XS1

and XU1
is at most N . The side information

that can be used to decode the new message which was added in W1 is zero. Hence, we have

H(XS1
|A[W1,S1], Q[W1,S1], XW0∪S0∪U0

) = 0. (93)

Otherwise, if H(XS1
|XW0∪S0∪U0

) > 0, we have |W1∪U1| < N . This means messages indexed by subset of W1∪S1 ∪U1

with size N cannot be the indices of demand messages, which violates the privacy condition. Therefore, for K ≤ N2+N+M ,

the minimum number of required transmissions is K −M .

If K ≥ N2 + N + M , it is possible to select Vi’s (i ∈ W0) such that each conditional entropy in the summation can

achieve their maximum. The number of required messages for W0, S0 and U0 is

|W0 ∪ S0 ∪U0| = |W0|+ |S0|+ |U0| (94)

= N +M +N(N − 1) (95)

= N2 +M (96)

As we have shown, only when it 6∈ (Wt−1
0 ∪ S

t−1
0 ∪ U

t−1
0 ), the corresponding conditional entropy is positive. And for

each it 6∈ (Wt−1
0 ∪ S

t−1
0 ∪U

t−1
0 ), there must have N − 1 messages that can also be decoded given the new side information

messages which are used for decoding Xit .

Hence, we have

T ∗ =

⌈

K −M −N2

N + ⌊M
N
⌋

⌉

(97)

And if K − M − N2 − (T 8 − 1)(N + ⌊M
N
⌋) ≤ N , there are at most N messages left after using X

W
T∗−1

0
∪S

T∗−1

0
∪U

T∗−1

0

.

Hence, they should be sent separately. Therefore, we have

R = lim
L→∞

D

L
≥ K −M − (T ∗ − 1)+⌊

M

N
⌋+ (K −M −N2 − (T ∗ − 1)+(N + ⌊

M

N
⌋)−N)+ (98)

which can be shown to be equivalent to (13). Therefore we prove the converse of the minimum number of required transmissions

in an alternative way.
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