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ABSTRACT
Direct simulation Monte-Carlo (DSMC) is the most established method for rarefied gas flow simulations. It is valid from continuum to near
vacuum, but in cases involving small Knudsen numbers (Kn), it suffers from high computational cost. The Fokker-Planck (FP) method, on
the other hand, is almost as accurate as DSMC for small to moderate Kn, but it does not have the computational drawback of DSMC, if Kn is
small [P. Jenny, M. Torrilhon, and S. Heinz, “A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular
motion,” J. Comput. Phys. 229, 1077–1098 (2010) and H. Gorji, M. Torrilhon, and P. Jenny, “Fokker–Planck model for computational studies
of monatomic rarefied gas flows,” J. Fluid Mech. 680, 574–601 (2011)]. Especially attractive is the combination of the two approaches leading
to the FP-DSMC method. Opposed to other hybrid methods, e.g., coupled DSMC/Navier-Stokes solvers, it is relatively straightforward to
couple DSMC with the FP method since both are based on particle solution algorithms sharing the same data structure and having similar
components. Regarding the numerical accuracy of such particle methods, one has to distinguish between spatial truncation errors, time
stepping errors, statistical errors and bias errors. In this paper, the bias error of the FP method is analyzed in detail, and it is shown how it
can be reduced without increasing the particle number to an exorbitant level. The effectiveness of the discussed bias error reduction scheme
is demonstrated for uniform shear flow, for which an analytical reference solution was derived.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5097884

I. INTRODUCTION

While the Navier-Stokes Fourier system accurately describes
compressible gas flows, if the mean free path length between molec-
ular collisions remains extremely small compared to any geometrical
length scale of interest, these equations fail to be predictive in cases
where this is not the case. For such high Knudsen number (Kn) gas
flows, which occur under rarefied conditions or in very small geome-
tries, the Boltzmann equation has to be considered. It describes
the evolution of the molecular velocity probability density function
(PDF) and has to be solved in a high dimensional space (e.g., in
7D; three dimensions for the velocity sample space, three dimen-
sions for the physical space, and one dimension for time). Due to the
curse of dimensionality and due to the integral molecular collision
term, typical continuum methods like finite-volume, finite-element,

and finite-difference methods are in general not suited for this task,
and therefore, often particle methods are used instead. Neverthe-
less high fidelity schemes can be constructed by the direct approach,
where the probability density is discretized in the whole phase space
(see, e.g., Ref. 3). Accordingly, spectral methods have been developed
for computing the collision operator.4–6

An ab inito molecular based description of rarefied gas flows is
provided by molecular dynamics (MD), which considers the inter-
actions between all molecules in a fluid.7 However, stiff spatiotem-
poral resolutions and the enormous amount of required computa-
tional particles make its application only suitable for extremely small
problems.

Direct simulation Monte Carlo (DSMC) pioneered by Bird,8,9

on the other hand, requires a much smaller number of compu-
tational particles than there are molecules. It is based on two
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fractional steps, i.e., a streaming step, in which the particles are
evolved in physical space, and a collision step, in which collisions
are calculated for randomly selected particle pairs. DSMC proved
to be extremely powerful and is widely used to solve scientific and
technical rarefied gas dynamics (RGD) problems.10–13 It is accurate
for all Kn and much more efficient than MD. However, since the size
of the computational grid cells has to be chosen in the order of the
mean free path length, and since the number of computational par-
ticles per cell has to be reasonably large, DSMC becomes extremely
expensive for small Kn (though still much cheaper than MD).14,15

Moreover, the time step size has to be small enough to resolve the
mean free time. Note that typically, these spatial and temporal res-
olution requirements are much more severe than those imposed by
variations of macroscopic quantities.

Motivated by the high computational cost of DSMC for low
Kn gas flow simulations, a Fokker-Planck (FP) collision operator
was introduced as an approximation of the integral collision term in
the Boltzmann equation.1 It consists of a drift term and a diffusion
term in the velocity sample space, and substituting it into the Boltz-
mann equation one obtains a FP equation. Already, Kirkwood16 and
Kirkwood et al.17 introduced a Fokker-Planck model for liquids, and
Lebowitz et al.18 showed that the velocity distribution function for
the Fokker-Planck equation matches well with the Boltzmann dis-
tribution for small Knudsen numbers, i.e., close to equilibrium. It
was shown by Pawula and Gradiner that for any continuous stochas-
tic Markov process, there exists a FP equation, which describes the
evolution of the corresponding PDF. In the case considered here,
the velocity PDF is governed by a jump process, but if the mean
free time is small enough (i.e., if Kn is small enough), the discon-
tinuous velocity process can be well approximated by a continuous
one. Therefore, it is not surprising that the FP model is very accu-
rate for small to moderate Kn and less predictive for large Kn. Main
advantage of the FP method is its computational efficiency. Unlike in
DSMC, it is not necessary to resolve mean free path length and mean
free time scale in FP simulations since an accurate time integration
scheme could be devised requiring to resolve spatial and temporal
variations of only macroscopic quantities. First, a FP collision oper-
ator with linear drift was proposed.1 For various test cases with Kn
up to about two, it was demonstrated that obtained velocity distribu-
tion, molecular stresses, and drag were comparable with experiments
and DSMC results. As analytically shown, however, the linear drift
model results in wrong heat fluxes and thus cannot accurately pre-
dict temperature distributions. This Prandtl number problem could
be fixed with the introduction of a cubic drift model,2,19 which was
demonstrated for various challenging test cases.20 This issue is also
discussed in the recent work by Singh et al.,21 in which they proposed
a way to fix the Prandtl number resulting from the Fokker-Planck
equation. They achieved that by introducing an extra streaming in
the particle position to fix the transport properties including the
Prandtl number. However, their modification requires evaluation
of the temperature gradient and hence does not reproduce correct
relaxation rates of heat fluxes in a space-independent scenario. Later,
the FP model was extended for mixtures22 and polyatomic gas,23–26

and a noise reduction scheme for low Mach numbers was devised.27

In this context also, an improved wall kernel was developed,19 which
accounts for internal energy modes.22,28

To take advantage of both the accuracy of DSMC for large Kn
and the efficiency of FP for small Kn, a framework to combine the

two methods was proposed.29,30 Since both FP and DSMC solution
algorithms are based on evolving computational particles, it is pos-
sible to switch between the two methods on a cell-by-cell and a
time-step-by-time-step basis. This FP-DSMC method was tested for
various difficult test cases, e.g., for a Laval nozzle flow expanding
into vacuum, which is challenging, since Kn varies from very small
inside the nozzle (continuum condition) to very large (near vacuum
condition). It was shown that the obtained results were essentially
identical to those from DSMC, but could be obtained at a small frac-
tion of the cost.30 Recently, a general purpose FP-DSMC code for
complex geometries, adaptive grid refinement, and load balancing
was developed.31–33

Particle methods used for FP simulations and DSMC suffer
from four types of numerical errors, i.e., (i) from time stepping
errors, (ii) spatial discretization errors, (iii) statistical errors, and
(iv) bias errors.14,15,34–36 These errors approach zero in the limit of
infinitesimal time steps (i), infinitely fine grids, (ii) and infinitely
many particles (iii) and (iv), respectively. Recently, a particle time
integration scheme for the FP method was devised1 to deal with
errors associated with (i). It allows to take time steps much larger
than the mean free time scale. In fact, for the FP model with lin-
ear drift, it is statistically exact for stationary homogeneous cases.
Practically, this means that only spatial and temporal variations of
macroscopic quantities have to be resolved, but not mean free path
and mean free time. In order to reduce errors associated with (ii),
it was proposed to interpolate macroscopic quantities appearing in
the stochastic particle evolution equations from grid cells to the esti-
mated particle locations after half a time step. Errors associated with
(iii) can simply be reduced by averaging the results from multiple
independent (with different random seeds) simulations of the same
case, or, if statistically stationary, by time averaging. Interestingly,
however, such averaged results do not converge to those obtained
from single simulations with increased numbers of particles. This
difference is related to (iv), i.e., it is termed bias error.

As mentioned previously, most particle methods suffer from
bias errors in one way or another. For example, in PDF, methods
used to model turbulent reactive flows bias errors were investigated,
and in order to reduce them, a hybrid finite-volume/particle method
was devised as a solution algorithm.34,35,37 This approach indeed
proved to be extremely effective, i.e., in some cases, the computa-
tional cost to achieve a specified level of accuracy could be reduced
by almost two orders of magnitude. As those transported PDF meth-
ods for turbulent reactive flows also aim to solve a Fokker-Planck
equation, a similar hybrid approach could be envisioned for the FP
method for RGD. In this paper, however, exponentially weighted
time averaging (EWTA) is investigated for bias error reduction.

The paper is structured as follows. In Sec. II, the FP method
for RGD is briefly revisited and its necessary basics are explained.
Section III deals with an analysis of the bias error and its origin, and
in Sec. IV, EWTA for bias error reduction is explained. Numerical
studies of bias errors in uniform shear flow are presented in Sec. V
and the effect of EWTA is demonstrated. The paper concludes with
Sec. VI.

II. THE FOKKER-PLANCK METHOD FOR RAREFIED
GAS DYNAMICS

As mentioned in Sec. I, DSMC is a very powerful method
to compute nonequilibrium gas flows, and as shown, e.g., in
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Ref. 38, converged DSMC results are consistent with solutions of the
Boltzmann equation. If the Boltzmann equation is written as

∂F

∂t
+ vi

∂F

∂xi
+
∂aiF
∂vi

= SB, (1)

where v = (v1, v2, v3)
T and x = (x1, x2, x3)

T are velocity sample
space coordinates and physical space coordinates, F = F(v, x, t)
the mass density function, i.e., the gas density in the v − x-space,
a = (a1, a2, a3)

T an external acceleration, and SB the Boltzmann
collision source term accounting for redistribution of mass in the
v-space. The macroscopic gas flow quantities, i.e., density, velocity,
molecular stresses, and temperature are obtained as

ρ(x, t) = ∫
R3

F(v, x, t) dv, (2)

U(x, t) =
1

ρ(x, t) ∫R3
F(v, x, t)v dv, (3)

pij(x, t) = Pij(x, t) − ρ(x, t)Ui(x, t)Uj(x, t), (4)

and
θ(x, t) =

pii(x, t)
ρ(x, t)

m
3k

, (5)
respectively, where

Pij(x, t) = ∫
R3

F(v, x, t)vivj dv. (6)

Here, dv = dv1dv2dv3 and in the whole paper, wherever the same
index appears twice in a term, Einstein’s summation convention is
applied. Furthermore, m is the molecular mass and k the Boltzmann
constant. DSMC proved to be accurate for all Knudsen numbers,
i.e., in the continuum limit as well as for near vacuum. For small
Knudsen numbers, however, it becomes very expensive since spa-
tial and temporal resolution requirements are directly linked to the
mean free path length and the mean free time. For example, there
exist many flow problems where Kn is very small, but nonequilib-
rium effects still play an important role, or where continuum and
rarefied regions coexist. For such cases, the Fokker-Planck method
was developed.

The Fokker-Planck method is based on the FP equation
∂F

∂t
+ vi

∂F

∂xi
+
∂aiF
∂vi

= SFP (7)

with, e.g.,

SFP = −
∂

∂vi
(

1
τ
(Ui − vi)F) +

∂2

∂vi∂vi
(
θk
τm

F). (8)

The two terms of the FP collision operator (8) describe drift and dif-
fusion of F in the v-space. It is evident that Eq. (7) is obtained by
replacing SB in the Boltzmann equation (1) with SFP, and like the
Boltzmann collision operator, SFP conserves mass, momentum, and
energy. Furthermore, the time scale τ can be chosen such that the
molecular stresses evolve correctly as described by the Boltzmann
equation.

Like DSMC, due to the curse of dimensionality, the FP method
relies on a particle solution algorithm. Concretely, the mass density
function is represented by a cloud of particles as

F(v, x) ≈ F̄
N
(v, x) =

N
∑
k=1

{M(k)δ(v −V(k))δ(x − X(k)}, (9)

and if consistent, then F(v, x) = E[F̄N
(v, x)], where the operator

E[⋅] denotes expectation. Each of the N particles has an index k, a
mass M(k) (total gas mass divided by N), a position X(k) in physi-
cal space, and a molecular velocity V (k). Note that for N →∞, the
mass density F in the v − x-space is exactly represented by the par-
ticle density F̄

N . Furthermore, if in addition the particles evolve as
described by the stochastic differential equations

dX(k)i = V(k)i dt (10)

and

dV(k)i = aidt +
dt
τ
(Ui − V(k)i ) +

√
2θk
τm

dW(k)
i , (11)

then F̄
N
= F obeys the FP equation (7) with (8).39–41

The crucial advantage of the FP method for RGD compared to
DSMC is that the relaxation time scale τ, which is proportional to the
mean free time, does not have to be resolved, if the particle positions
and velocities are evolved as

Vn+1
i − Vn

i = −(1 − e−∆t/τ)(Vn
i −Ui − aiτ)

+

√
C2

B
ξ1,i +

√

A −
C2

B
ξ2,i (12)

and

Xn+1
i − Xn

i = (1 − e−∆t/τ)(Vn
i −Ui − aiτ)τ

+ (Ui + aiτ)∆t +
√
B ξ1,i (13)

with
A =

θk
m

(1 − e−2∆t/τ
), (14)

B =
θkτ2

m
(

2∆t
τ

− (1 − e−∆t/τ)(3 − e−∆t/τ)), (15)

and
C =

θkτ
m

(1 − e−∆t/τ)
2
, (16)

where ξ1,i and ξi ,2 are independent normally distributed random
variables with zero mean and a variance of one.1 Note that the super-
script (k) was omitted to improve readability. Instead, the super-
scripts n + 1 and n were introduced denoting the new and old time
levels, respectively; ∆t = tn+1

− tn is the time step size. It can be
proven that the particle integration scheme (12) and (13) is statis-
tically exact for any time step size ∆t, if τ, a, U , and θ are inde-
pendent of x and t. Practically, this means that only these macro-
scopic quantities have to be spatially and temporally resolved, i.e.,
opposed to DSMC, it is not necessary to resolve mean free path and
mean free time. The advantage of this approach has been demon-
strated for a large variety of relevant flows and up to Kn ≈ 2 the
FP method proved to deliver accurate velocity fields.2,20 It has to
be mentioned, however, that opposed to DSMC the scheme (12)
and (13) honors momentum and energy conservation only statis-
tically. Thus, a disadvantage of models based on Langevin equations
is that additional noise gets introduced, which also affects the bias
error.

Since with the linear drift term in the FP collision operator (8),
it is not possible to also obtain the correct heat fluxes an improved
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FP collision operator with a cubic drift term was devised.2 Here, for
simplicity, we focus on SFP given by Eq. (8). The FP method for
RGD was also generalized for mixtures and polyatomic gas, and a
variance reduction scheme was devised to cope with the stochas-
tic noise, which is, in particular, problematic in low Mach number
flow simulations.24,25,27 The most important development, however,
is the combination of the FP method with DSMC.30,31,42 The result-
ing FPDSMC method offers unique advantages in simulating gas
flows where continuum and rarefied regions coexist. Such cases
are extremely challenging to simulate since Navier-Stokes solvers
can only appropriately describe gas flow in thermodynamic equi-
librium, i.e., in general only if the Knudsen number is very small
and thus when DSMC is exorbitantly expensive. Several attempts
have been made to couple Navier-Stokes solvers with DSMC, but
this is problematic due to coupling issues between continuum and
particle solvers, and since there exists a wide range of small Kn
where nonequilibrium effects still can play a role.43 Therefore it is
often unclear where to put the boundary between Navier-Stokes and
DSMC domains. Coupling the FP method with DSMC is much less
problematic since there exists quite a large range in which Kn is
small enough that the FP method is accurate and large enough that
DSMC is still efficient. Therefore, and since both methods share the
same data structure, one can simply switch between the two collision
operators; i.e., in each cell and every time step one can determine
the cell Knudsen number (mean free path length divided by the cell
width), and if it is smaller than one, then SFP and otherwise SB is
applied. It was demonstrated, for example, that FP-DSMC of gas
flow through a Laval nozzle expanding into vacuum is up to 40 times
faster than pure DSMC, while the results are virtually indistinguish-
able.30 This particular test case is representative for satellite attitude
controllers, but many other examples exist, where the FP-DSMC
method provides a unique advantage.31,32,42

Like DSMC, the particle method developed for the FP method
suffers from time stepping errors, spatial discretization errors, sta-
tistical errors and bias errors. While time stepping errors and spatial
discretization errors can be kept small by applying the scheme (12)
and (13) and by employing a grid and time step size fine enough to
resolve the macroscopic quantities, statistical errors and bias errors
can be severe, unless a huge number of particles is employed. While
statistical errors can be reduced by averaging independent simula-
tion results (i.e., obtained with different random seeds), or, if statis-
tically stationary, by averaging over a time window, the bias error is
more problematic. The latter is discussed in Sec. III.

III. ANALYSIS OF BIAS ERROR
To analyze the bias error arising in FP simulations, only the

velocity sample space is considered here. Without external accel-
eration nor transport in physical space the Langevin equation (11)
reduces to the Ornstein-Ulenbeck (OU) process

dV(k)i =
dt
τ
(Ui − V(k)i ) +

√
2θk
τm

dW(k)
i , (17)

and the mass density function F(v, t) is governed by the FP
equation

∂F

∂t
= −

∂

∂vi
(

1
τ
(Ui − vi)F) +

∂2

∂vi∂vi
(
θk
τm

F)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SFP

. (18)

Based on the conservation properties of SFP, it directly follows that
ρ(t) = ρ, U(t), and θ(t) are constant in time (therefore, for simplicity
and without loss of generality, a constant ρ can be assumed in the
following derivations). The molecular stresses, on the other hand,
relax toward ρθkm−1δij, i.e.,

∂pij
∂t

=
∂Pij
∂t

=
2
τ
(
ρθk
m
δij − pij)

=
2
τ
(
Pll
3
δij − Pij) −

2ρ
τ
(
UlUl

3
δij −UiUj)

=
2
τ
(
pll
3
δij − pij). (19)

In order to study the bias errors related to U and p, we consider
a cloud of N particles with index k and estimate the macroscopic
quantities as

U ≈ ŪN
=

1
N

N
∑
k=1

V(k), (20)

Pij ≈ P̄N
ij =

ρ
N

N
∑
k=1

V(k)i V(k)j , (21)

and
pij ≈ p̄Nij = P̄N

ij − ρŪN
i Ū

N
j . (22)

Note that ŪN , P̄N
ij , and p̄Nij are random numbers with the expectations

E[ŪN
] = U , (23)

E[P̄N
ij ] = Pij, (24)

and
E[p̄Nij ] = Pij − ρE[ŪN

i Ū
N
j ], (25)

respectively, i.e., there is no bias in estimatingU andP, but in general
there is one in estimating p.

Next, we consider for each particle the stochastic difference
equation

V(k)
n+1

i = V(k)
n

i +
∆t
τ
(ŪNn

i − V(k)
n

i ) +

√
2p̄Nn

ll ∆t
3ρτ

ξ(k)
n+1

i . (26)

Note that ξ(k)
n+1

i are independent normally distributed random vari-
ables with E[ξ(k)

n+1

i ] = 0 and E[ξ(k)
n+1

i ξ(k)
n+1

j ] = δij. Furthermore, we
introduce

ξ̄Ni =
1
N

N
∑
k=1
ξ(k)i , (27)

Ξ̄N
ij =

1
N

N
∑
k=1
ξ(k)i ξ(k)j , (28)

and

ξU
N
ij =

1
N

N
∑
k=1
ξ(k)j V(k)i . (29)

The evolution of ŪN
i according to Eq. (26) reads

ŪNn+1

i = ŪNn

i +
∆t
τ
(ŪNn

i − ŪNn

i )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
0

+

√
2p̄Nn

ll ∆t
3ρτ

ξ̄N
n+1

i , (30)
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and the expectation of ŪNn+1

i is

E[ŪNn+1

i ] = E[ŪNn

i ] + E
⎡
⎢
⎢
⎢
⎢
⎣

√
2p̄Nn

ll ∆t
3ρτ

⎤
⎥
⎥
⎥
⎥
⎦

E[ξ̄N
n+1

i ]

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
0

= E[ŪNn

i ], (31)

i.e., there is no bias error associated with the evolution of ŪN . To
investigate the bias error associated with the evolution of P̄N

ij , we first

multiply Eq. (26) with V(k)
n+1

j and obtain

V(k)
n+1

i V(k)
n+1

j = V(k)
n

i V(k)
n

j +
∆t
τ
(ŪNn

i V(k)
n

j + ŪNn

j V(k)
n

i

− 2V(k)
n

i V(k)
n

j )+ (V(k)
n

i ξ(k)
n

j +V(k)
n

j ξ(k)
n

i )

√
2p̄Nn

ll ∆t
3ρτ

+
∆t2

τ̄N2 (Ū
Nn

i − V(k)
n

i )(ŪNn

j − V(k)
n

j ) +
∆t
τ
(ŪNn

i

−V(k)
n

i )ξ(k)
n

j

√
2p̄Nn

ll ∆t
3ρτ

+
∆t
τ
(ŪNn

j − V(k)
n

j )ξ(k)
n

i

×

√
2p̄Nn

ll ∆t
3ρτ

+
2p̄N

n

ll ∆t
3ρτ

ξ(k)
n

i ξ(k)
n

j . (32)

Then, we sum over all N realizations, divide by N, multiply with ρ,
and in the limit of ∆t → 0, we obtain

P̄Nn+1

ij − P̄Nn

ij

∆t
=

2
τ
⎛

⎝

P̄Nn

ll
3

Ξ̄Nn

ij − P̄Nn

ij
⎞

⎠
−

2ρ
τ
⎛

⎝

ŪNn

l ŪNn

l
3

Ξ̄Nn

ij − ŪNn

i ŪNn

j
⎞

⎠

+ (ξU
N
ij + ξU

N
ji )

√
2ρp̄Nn

ll
3τ∆t

. (33)

The expectation of Eq. (33) is

∂Pij
∂t

=
2
τ
(
Pll
3
δij − Pij) −

2ρ
τ
E[

ŪN
l Ū

N
l

3
δij − ŪN

i Ū
N
j ]

=
2
τ
(
E[ p̄Nll ]

3
δij − E[ p̄Nij ]) (34)

and the difference between Eqs. (19) and (34) leads to the equation

∂εij
∂t

=
2ρ
3τ

E[(ŪN
l −Ul)(Ū

N
l −Ul)]δij

−
2ρ
τ
E[(ŪN

i −Ui)(ŪN
j −Uj)] (35)

of the bias error εij associated with the numerical evolution of Pij.
From this simple analysis, it becomes evident that the bias error of
the molecular stresses can be reduced, if better approximations of
the mean velocity are used, e.g., if N is increased.

IV. EWTA FOR BIAS ERROR REDUCTION
From a practical viewpoint, unfortunately, the number of par-

ticles which can be employed is always limited due to computational
cost and memory requirements. This is the motivation for consistent
hybrid finite-volume/particle methods, where the noisy estimates

ŪN
i are replaced by the consistent, but much less noisy finite vol-

ume fieldsUFV
i .34,35 In PDF simulations of turbulent reactive flows, it

was shown that such hybrid finite-volume/particle methods indeed
can reduce the bias error dramatically37 and nothing speaks against
the idea of applying the same approach for RGD. Here, however,
bias error reduction based on EWTA is investigated. Obviously,
time averaging of the macroscopic quantities used in the particle
evolution equations is much less memory intensive than increas-
ing N, and in general also computationally more efficient. Moreover,
time averaging also reduces the statistical error. Note, however, that
EWTA, which is explained in more detail next, is only applicable to
statistically stationary cases.

As discussed in Sec. III, the estimate ŪN
i of the gas velocity

component U i is a random variable with a standard deviation (sta-
tistical error) proportional to N−1/2. But if V(k)i (t) obeys a stationary
stochastic process, instead of simply increasing N also time aver-
aging can be employed to reduce statistical errors and bias-errors,
i.e.,

Un
i ≈ (ŪN,M

i )
n
=

1
M

n
∑

m=n−M+1
(ŪN

i )
m

=
1

MN

n
∑

m=n+1−M

N
∑
k=1

(V(k)i )
m. (36)

Note that limM→∞(ŪN,M
i )

n
= Ui, for all N > 0, and that in the ideal

case where ∀m : E[Vm
(i)V

m−1
(i) ] ≡ U(i)U(i), the statistical error of

(ŪN,M
i )

n is the same as that of (ŪNM
i )

n (indices in brackets indicate
that Einstein’s summation convention is suppressed). Furthermore,
note that

(ŪN,M+1
i )

n+1
=

1
M + 1
´¹¹¹¹¹¸¹¹¹¹¹¶

1−µ

(ŪN
i )

n+1 +
M

M + 1
´¹¹¹¹¹¸¹¹¹¹¹¶

µ

(ŪN,M
i )

n, (37)

which is much simpler to implement. The memory factor µ ∈ [0, 1]
can also be fixed, which leads to the EWTA scheme

(ŪN,µ
i )

n+1
= (1 − µ)(ŪN

i )
n+1 + µ(ŪN,µ

i )
n (38)

with the integral time averaging constant T = −∆t/ ln(µ) (∆t is
the time step size). In inhomogeneous simulations, EWTA can be
applied in each cell Ω, but since the number of particles in Ω varies,
it is advised to also apply EWTA for N, i.e.,

(N̄µ
)
n+1

= (1 − µ)Nn+1 + µ(N̄µ
)
n, (39)

and to compute ŪN,µ
i as

(ŪN,µ
i )

n+1
=

(1 − µ)(NŪN
i )

n+1 + µ(N̄µŪN,µ
i )

n

(N̄µ)n+1 . (40)

EWTA has been proposed previously, but here for the first time,
it is systematically investigated in the context of the FP method for
RGD.

V. NUMERICAL STUDIES
To investigate the bias error resulting from the FP method, evo-

lution of molecular stresses in uniform shear flow is considered. This
simple test case is highly relevant, as relaxation of second moments
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in nonequilibrium shear flows is largely responsible for the accu-
racy of RGD models and solution algorithms; also in predicting
more complicated flow scenarios. Furthermore, the test case is sim-
ple enough that we could derive an analytical solution, and therefore,
there is no uncertainty regarding reference with which the numer-
ical results are compared. Also important is the fact that this flow
can be simulated in zero spatial dimensions (note that reduction of
uniform shear flow to a homogeneous relaxation problem has often
been used in the literature for a variety of reasons44,45) and that a sta-
tistically exact particle velocity integration scheme could be devised.
This rules out spatial discretization and time stepping errors. Fur-
thermore, the statistical error was reduced to a very low level as all
the presented results are averages over a huge number of indepen-
dent simulations (with different random seeds). All this allowed us
to systematically study the bias error in almost complete isolation.
Numerical studies illustrate convergence as the number of parti-
cles gets increased and show the effectiveness of EWTA to obtain
accurate steady state solutions despite small particle numbers.

A. Analytical reference–Uniform shear flow
Uniform shear flow with

∇U = A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∂U1/∂x1 ∂U1/∂x2 ∂U1/∂x3
∂U2/∂x1 ∂U2/∂x2 ∂U2/∂x3
∂U3/∂x1 ∂U3/∂x2 ∂U3/∂x3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 S 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(41)

is considered. Note that by definition in uniform shear flow, all sec-
ond and higher moments are constant in space, but not the mean
velocity components, rather their first spatial derivatives. Therefore
the matrix A has nonzero components, i.e., the gas velocity varies in
space.

It will be shown that an analytical solution for the first two
velocity moments resulting from the Langevin equation

dV(k)i = −(
1
τ

+
1
τ′

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
τ−1
e

(V(k)i −Ui)dt +

√
2θk
τm

dW(k)
i (42)

can be derived. The superscript (k), which refers to the particle with
index k, will be omitted in the following derivations. Note that the
term −(V i −U i)dt/τ′ in Eq. (42) is an energy sink to allow for steady
state solutions (thus τe is the effective drift time scale) and that
Eqs. (17) and (42) are identical for τ′ → ∞. Since the gas velocity
gradient and all second and higher velocity moments are invariant
in space, it is convenient to work with a Lagrangian equation for
the fluctuating velocity V ′ = V − U . Therefore, we first derive an
equation which describes the evolution of the gas velocity U along a
molecular path. While the gas velocity equation

∂Ui

∂t
+ Ul

∂Ui

∂xl
= −

1
ρ
∂pil
∂xl

(43)

is equivalent to
∂Ui

∂t
+ Vl

∂Ui

∂xl
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dUi(X(t),t)
dt

= (Vl −Ul)
∂Ui

∂xl
−

1
ρ
∂pil
∂xl

, (44)

the latter has a stochastic component, i.e., the left-hand side
describes how U changes as one moves through physical space with
the molecular velocity V . Note that due to homogeneity, the last
term becomes zero and this equation reduces to

dUi = Ail(Vl −Ul)dt. (45)

Taking the difference between Eqs. (42) and (45), one arrives at the
evolution equation for the fluctuating velocity components V′

i = V i
− U i of a nominal molecule, which reads

dV′
i = −AilV

′
l dt − (

1
τ

+
1
τ′

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
τ−1
e

V′
i dt +

√
2θk
τm

dWi. (46)

To derive the evolution of the molecular stresses, the consistent
difference equation

V′n+1
i = V′n

i − AilV
′n
l ∆t −

∆t
τe

V′n
i +

√
2θk∆t
τm

ξn+1
i (47)

is multiplied with ρV′n+1
j /∆t and the expectation of the result (for ∆t

→ 0) reads

dpij
dt

= − (Ailplj + Ajlpli)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S Bij

−αpij + αΛδij (48)

with

α =
2
τe

, (49)

Λ =
ρθk
m

τe
τ

, (50)

and

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2p12 p22 p23
p22 0 0
p23 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (51)

Equivalently, one can write

∂p23

∂t
= −αp23, (52)

∂p22

∂t
= −αp22 + αΛ, (53)

∂p33

∂t
= −αp33 + αΛ, (54)

∂p13

∂t
= −αp13 − S p23, (55)

∂p12

∂t
= −αp12 − S p22, (56)

and
∂p11

∂t
= −αp11 − 2 S p12 + αΛ (57)

for the individual components. Note that in general solutions of
this system involve varying temperatures θ. To derive an analytical
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reference solution of p(t), however, we require that Λ = ρθkτe/(mτ)
remains constant, which implies that θ = piim/(3ρk) = θref ; later, we
determine under which conditions this is the case. One can verify
that under this assumption the solution is given by the analytical
expressions

p23(t) = p23(0) e−αt , (58)

p22(t) = (p22(0) −Λ) e−αt + Λ, (59)

p33(t) = (p33(0) −Λ) e−αt + Λ, (60)

p13(t) = (p13(0) − S t p23(0)) e−αt , (61)

p12(t) = −
S
α
Λ + (SΛ(t +

1
α
) + p12(0) − Sp22(0) t)e−αt , (62)

and

p11(t) = (S2p22(0) − S2Λ)t2e−αt − (2Sp12(0) + 2
S2

α
Λ)te−αt

+(p11(0) −Λ(1 + 2
S2

α2 ))e
−αt + Λ(1 + 2

S2

α2 ). (63)

As mentioned above, we are interested in solutions with pii(t)
= 3Λτ/τe (∀t ≥ 0), which is only possible, if pii(0) = 3Λτ/τe. On the
other hand, the condition that limt→∞ pii(t) = 3Λ+ΛS2τ2

e/2 = pii(0)
leads to the relationship

τ = (τe +
S2τ3

e

6
) (64)

between τ, τe, and S. For arbitrary t ≥ 0, one obtains

pii(t) = 3Λ +
ΛS2τ2

e

2
+ (S2p22(0) − S2Λ)t2e−αt

−(2Sp12(0) + 2
S2

α
Λ)te−αt , (65)

which fulfills the requirement that ∀t ≥ 0 : pii(t) = 3Λ + ΛS2τ2
e/2, if

the initial conditions

p22(0) = Λ and p12(0) = −
S
α
Λ (66)

are applied.
As a concrete case, we consider argon at 1 atm and 300 K, which

at equilibrium has a density of 1.449 kg/m3 and a dynamic viscosity
of µ = τρθk/m = 3.77 × 10−5 Pa s. Furthermore, an argon molecule
has a mass m of 6.633 521 355 393 869 × 10−23 kg, and therefore the
relaxation time scale becomes τ = 4.167 × 10−7 s. Here, we choose
S = α/2 = τ−1

e = 7/(6τ), which fulfills condition (64) and results in
strong nonequilibrium solutions. The initial condition is chosen as

p(0) =
Λ
4

⎡
⎢
⎢
⎢
⎢
⎢
⎣

5 −2 0
−2 4 0
0 0 5

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(67)

and relaxes to

lim
t→∞

p(t) =
Λ
4

⎡
⎢
⎢
⎢
⎢
⎢
⎣

6 −2 0
−2 4 0
0 0 4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (68)

B. Numerical scheme
For the numerical studies, ensembles of N particles with index

k and initial random velocities

V(k)1 =

√
Λ/ρ
2

√
5 ξ(k)1 , (69)

V(k)2 =

√
Λ/ρ
2

⎛

⎝

√
16
5
ξ(k)2 −

√
4
5
ξ(k)1

⎞

⎠
, (70)

and

V(k)3 =

√
Λ/ρ
2

√
5 ξ(k)3 (71)

are generated (the superscript (k) will be omitted in the following
derivation). Note that their statistics is consistent with p(0). In order
to study the bias error of p̄N(t), ŪN is not explicitly set to zero, i.e.,
equation

dVi = −(
δil
τe

+ Ail)(Vl − ŪN
l )dt +

√
2Λ̄N

ρτe
dWi (72)

with

Λ̄N
=
p̄Nll
3
τe
τ

(73)

is solved. Furthermore, to eliminate time stepping errors, the inte-
gration schemes

Vn+1
1 − Vn

1 = (ŪN
1 − Vn

1 )(1 − e−∆t/τe) + (ŪN
2 − Vn

2 )S∆t e
−∆t/τe

+

√

B −
C2

A
ξ1 + C

√
1
A
ξ2, (74)

Vn+1
2 − Vn

2 = (ŪN
2 − Vn

2 )(1 − e−∆t/τe) +
√

A ξ2, (75)

and
Vn+1

3 − Vn
3 = (ŪN

3 − Vn
3 )(1 − e−∆t/τe) +

√
A ξ3 (76)

with

A =
Λ̄N

ρ
(1 − e−2 ∆t

τe ), (77)

B =
Λ̄N

ρ
S2τ2

e

2
(1 − (

2∆t2

τ2
e

+
2∆t
τe

+ 1)e−2 ∆t
τe ) + A, (78)

and

C =
Λ̄N

ρ
Sτe
2

((
2∆t
τe

+ 1)e−2 ∆t
τe − 1) (79)

are employed; its derivation is found in the Appendix. Note that the
scheme (75) and (74) is statistically exact for frozen ŪN and p̄N .

C. Bias error investigations
The N particles are evolved according to Eqs. (75) and (74),

and in order to achieve steady state solutions with EWTA, which
are independent of the initial conditions, the parameters U and Λ
were estimated as

U =
9

10
ŪN (80)

and

Λ =
9

10
(
p̄Nll
3
τe
τ
) +

1
10

(
ρθref k
m

τe
τ
). (81)
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FIG. 1. Molecular stress components p11, p22, p33, p12, and p13 (normalized by
Λ/4) as functions of t/τ. The lines show the result of the particle algorithm with
N = 512 and dt = τ/50 (averaged over 8′192 independent simulations), and the
symbols represent the analytical solution.

Note that these choices are consistent with the analytical solution,
which predicts that U(t) ≡ 0 and pll ≡ 3ρθref k/m. The numerical
results, however, are subject to bias errors.

Figure 1 shows the evolution of the molecular stress com-
ponents p11, p22, p33, p12, and p13 (normalized by Λ/4). It can
be observed that the result of the particle algorithm with N
= 512 and dt = τ/50 (lines; averaged over 8′192 independent
simulations) and the analytical solution (symbols) are almost
identical.

The lines in Fig. 2 show the stress components p11 and p33 com-
puted by the particle algorithm with N ∈ {2, 8, 32, 128, 512} and dt
= τ/50. Since the data represent values averaged over a huge number

FIG. 2. Molecular stress components p11 and p33 (normalized by Λ/4) as functions
of t/τ. The lines show the result of the particle algorithm with N ∈ {2, 8, 32, 128,
512} and dt = τ/50 (averaged over 4′194′304/N independent simulations), and the
symbols represent the analytical solution.

FIG. 3. Relative bias errors of p11 at different times t ∈ {0.4τ, 0.8τ, 1.2τ, 1.6τ,
2.0τ} as functions of N.

(4′194′304/N) of independent simulations with different random
seeds, their standard deviations are tiny, which is the reason that
no error bars are shown. Note that the deviation from the analytical
solution (symbols) represents the bias error, which becomes smaller
for increasing N. The convergence of the relative bias error of p11,
i.e., of

p̄N11 − 1.5Λ
1.5Λ

(82)

at different times t ∈ {0.4τ, 0.8τ, 1.2τ, 1.6τ, 2.0τ} is shown
in the plot of Fig. 3. It can be observed that it scales with
approximately N−1.

Figures 4 and 5 show the effect of EWTA for N = 2 and N = 8,
respectively. In both cases, dt was equal to τ and time averaging con-
stants of T = 0, T = 50τ, and T = 200τ were used. It can be seen

FIG. 4. Molecular stress components p11 and p33 (normalized by Λ/4) as functions
of t/τ. The lines show the result of the particle algorithm with N = 2, dt = τ and a
time averaging constant T ∈ {0τ, 50τ, 200τ} (averaged over 131′072 independent
simulations), and the symbols represent the analytical solution.
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FIG. 5. Molecular stress components p11 and p33 (normalized by Λ/4) as functions
of t/τ. The lines show the result of the particle algorithm with N = 8, dt = τ, and a
time averaging constant T ∈ {0τ, 50τ, 200τ} (averaged over 32′768 independent
simulations), and the symbols represent the analytical solution.

that even for such small particle numbers the numerical steady state
values of p11 and p33 (lines; averaged over 131′072 independent sim-
ulations) converge to the analytical solution (symbols). This can also
be observed (for N = 2 and N = 8) in the plot of Fig. 6, which shows
the relative bias error of p11 at steady state, i.e.,

1
20′000τ ∫

30′000τ

10′000τ

⎛

⎝

p̄N,µ
11 − 1.5Λ

1.5Λ
⎞

⎠
dt, (83)

as function of the time averaging constant T = −∆t/ln(µ). Since the
data points represent time averaged values over the last 20′000 time
steps, their standard deviation is tiny and therefore no error bars are
shown. One can see that the bias error scales with approximately
T−1. It has to be mentioned that EWTA was also applied for Pij,
although the analysis of Sec. III suggests that better estimates are

FIG. 6. Relative bias errors of p11 at steady state for N = 2 and N = 8 as functions
of T /τ.

only necessary for U i. The reason for this is that P̄N
ij − ρŪ

N,µ
i ŪN,µ

j

can become negative, while P̄N,µ
ij − ρŪN,µ

i ŪN,µ
j ≥ 0 by construction.

VI. CONCLUSIONS
The bias error of the Fokker-Planck method for rarefied gas

dynamics simulations was analyzed, and as an effective mean to
reduce it, exponentially weighted time averaging was explored. For
these investigations, an analytical reference solution of a uniform
shear flow with dissipation was derived, and in order to exclude
time stepping errors, a statistically exact particle integration scheme
was devised for this case. Furthermore, to reduce the statistical
error to an insignificant level, the numerical results were averaged
over large numbers of independent simulations. It is shown that
the bias error converges with N−1 and T−1. It has to be noted
here that for DSMC, this technique only helps to reduce the sta-
tistical error but not the bias error. In terms of memory require-
ment for Fokker-Planck simulations, it is very encouraging that even
with extremely small particle numbers, converged results can be
obtained. Moreover, the asymptotic scaling of the bias error sug-
gest that Richardson extrapolation may be used to obtain nearly bias
free solutions from two simulations with small, but different particle
numbers.

APPENDIX: PARTICLE INTEGRATION SCHEME
To derive the particle integration schemes (74)–(76) presented

in Sec. V B, we first convince ourselves that according to Eq. (72),
the expectation of Vn+1 conditional on Vn is

E[Vn+1
∣Vn

] = ŪN
(1 − e−∆t/τe) + Vne−∆t/τe

+
⎛
⎜
⎝

0 S 0
0 0 0
0 0 0

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

(ŪN
−Vn

)∆t e−∆t/τe . (A1)

Note that a perturbation δVh of V at time th ∈ [tn, tn+1] has an
additive effect of

δVn+1
= δVhe−(t

n+1
−th)/τe − AδVh

(tn+1
− th) e−(t

n+1
−th)/τe (A2)

on Vn+1. Furthermore, note that one can replace

∫

tn+1

tn
dW(t′)dt′ (A3)

with

lim
n′→∞

√
∆t
n′

n′

∑
h=1

ξ′h, (A4)

where ξ′h are vectors of independent, normally distributed random
variables with zero mean and a variance of one. Therefore, the effect
of the diffusion term in Eq. (72) on Vn+1 during the previous time
step is the same as that of perturbations of strength

√
2Λ̄N

ρτe

√
∆t
n′

ξ′h (A5)
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occurring at a frequency of n′/∆t, and one can write

Vn+1
= ŪN

(1 − e−∆t/τe) + Vne−∆t/τe + A(ŪN
−Vn

)∆t e−∆t/τe

+

√
2Λ̄N

ρτe
lim

n′→∞

√
∆t
n′

n′

∑
h=1

ξ′he
−(tn+1

−th)/τe

−

√
2Λ̄N

ρτe
lim

n′→∞

√
∆t
n′

n′

∑
h=1

Aξ′h(t
n+1

− th)e−(t
n+1
−th)/τe .

(A6)
From this expression, one gets

E[Vn+1
i Vn+1

j ∣Vn
] = E[Vn+1

i ∣Vn
]E[Vn+1

j ∣Vn
]

+
2Λ̄N

ρτe ∫
∆t

0
(δij − S(δi1δ2j + δi2δ1j)t′

+ S2δi1δ1jt′2)e−2t′/τedt′, (A7)

and after evaluating the integrals, one obtains

E[Vn+1
i Vn+1

j ∣Vn
] = E [ Vn+1

i ∣Vn
]E [ Vn+1

j ∣Vn
]

+
Λ̄N

ρ
⎛

⎝
δij(1 − e−2∆t/τe)

+ S(δi1δ2j + δi2δ1j)
τe
2
((

2∆t
τe

+ 1)e−2∆t/τe − 1)

+ S2δi1δ1j
τ2
e

2
(1 − (

2∆t2

τ2
e

+
2∆t
τe

+ 1)e−2∆t/τe)
⎞

⎠
,

(A8)
which is consistent with the schemes (74)–(76) together with the
expressions given by Eqs. (77)–(79).
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