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Introduction

Dataflow model of computation

Tool: ORCC
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(@) An example with three actors (Pro-

ducer, Increment and Consumer) and two
buffers (b; and b,).
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New challenges in software design
Portability of applications

* Abstracting massive parallelism
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(c) Producer.cal (d) Increment.cal

Fig.1: RVC-CAL program example: dataflow network topology and actors
source code.
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Problem statement

For shared memory architecture a lot
of unnecessary copies are generated
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Design proposition

Composite data types

Introduce composite data types such as
list to represent actions firing

e e.g. two firings of five integers

Using primitive type
(Integer)
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i i Using list

Buffer identification

' Chain of actors

Implementations

Fully dynamic solution

Multiple fan-out * Consume data at any rate

Semi dynamic solution

e Consume data of a size

One stage
5 dividing an entire chunk

communication
Static solution

* Always consume an entire chunk
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Conclusions

 Tradeoff between memory copy and
memory allocation

Not beneficial for all applications

Future work

* Automatic selection of the
appropriate implementation

* |Integration in TURNUS framework




