=PFL

Aurelien Bloch

Composite data types in dynamic dataflow
languages as copyless memory sharing mechanism

1 Endri Bezati?, Marco Mattavelli!

LEPFL SCI-STI-MM, 2 EPFL VLSC
Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{aurelien.bloch,endri.bezati,marco.mattavelli}@epfl.ch

Introduction

Dataflow model of computation

Tool: ORCC

r*

(@) An example with three actors (Pro-

ducer, Increment and Consumer) and two
buffers (b; and b,).

OOOOOOOOOO

exec : action

CPU VS.
Scale-Up

Scale-Out

.
-
-
-
.
.
.
-

New challenges in software design
Portability of applications

* Abstracting massive parallelism

L
b5

—{I Tl

@ Internal
variables

£
. B
< Q
< Q
b Q
° Q
G 0
< 0
< Q
< Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
0
Q
Q
Q
Q
Q
0
Q
. o
“ | n. - ﬂ_’n

(c) Producer.cal (d) Increment.cal

Fig.1: RVC-CAL program example: dataflow network topology and actors
source code.

b3

Problem statement

For shared memory architecture a lot
of unnecessary copies are generated

3 -

Design proposition

Composite data types

Introduce composite data types such as
list to represent actions firing

e e.g. two firings of five integers

Using primitive type
(Integer)

9876543210

i i Using list

Buffer identification

' Chain of actors

Implementations

Fully dynamic solution

Multiple fan-out * Consume data at any rate

Semi dynamic solution

e Consume data of a size

One stage
5 dividing an entire chunk

communication
Static solution

* Always consume an entire chunk

«—e 3

+—0a )

+«——eo

TTTRE

Conclusions

 Tradeoff between memory copy and
memory allocation

Not beneficial for all applications

Future work

* Automatic selection of the
appropriate implementation

* |Integration in TURNUS framework




