
Introduction
Dataflow model of computation Tool: ORCC

Problem statement

Design proposition

Composite data types Buffer identification Implementations

Fully dynamic solution

Semi dynamic solution

Static solution

New challenges in software design

Multiple fan-out

One stage
communication

Chain of actors

Introduce composite data types such as
list to represent actions firing

Using primitive type
(Integer)

Using list

• Always consume an entire chunk

• Consume data of a size
dividing an entire chunk

• Consume data at any rate

2
3
4

0
1

7
8
9

5
6

1

2

3

123456789 0

2
3
4

0
1

7
8
9

5
6

Composite data types in dynamic dataflow
languages as copyless memory sharing mechanism

A B c

Scale-Up Scale-Out

For shared memory architecture a lot
of unnecessary copies are generated

Conclusions Future work

• Tradeoff between memory copy and
memory allocation

• Not beneficial for all applications

• Automatic selection of the
appropriate implementation

• Integration in TURNUS framework

A B

A

C

[…]

B

• Portability of applications
• Abstracting massive parallelism

• e.g. two firings of five integers

Aurelien Bloch1, Endri Bezati2, Marco Mattavelli1
1 EPFL SCI-STI-MM, 2 EPFL VLSC

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{aurelien.bloch,endri.bezati,marco.mattavelli}@epfl.ch

(a) An example with three actors (Pro-
ducer, Increment and Consumer) and two
bu↵ers (b1 and b2).

actor Consumer () int In ==> :
consume: action In:[a] repeat 128 ==> end
end

(b) Consumer.cal

actor Producer (int count=10) ==> int Out:
int i := 0;

prod : action ==> Out:[tbl] repeat 512
guard i < count
var List(type:int, size=512) tbl
do
tbl := [j : for int j in 1 .. 512];
i := i + 1;

end
end

(c) Producer.cal

actor Inc () int In ==> int Out:

exec : action
In :[a] repeat 512 ==>
Out:[a] repeat 512
do
foreach int i in 32 .. 63 do
a[i] := a[i] + 1;

end
end
end

(d) Increment.cal

Fig. 1: RVC-CAL program example: dataflow network topology and actors
source code.

