
Composite Data Types in Dynamic
Dataflow Languages as Copyless Memory

Sharing Mechanism

Aurelien Bloch1(B) , Endri Bezati2 , and Marco Mattavelli1

1 EPFL SCI STI MM, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

{aurelien.bloch,marco.mattavelli}@epfl.ch
2 EPFL VLSC, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

endri.bezati@epfl.ch

Abstract. This paper presents new optimization approaches aiming at
reducing the impact of memory accesses on the performance of dataflow
programs. The approach is based on introducing a high level manage-
ment of composite data types in dynamic dataflow programming lan-
guage for the memory processing of data tokens. It does not require
essential changes to the model of computation (MOC) or to the dataflow
program itself. The objective of the approach is to remove the unneces-
sary constraints of memory isolations without introducing limitations to
the scalability and composability properties of the dataflow paradigm.
Thus the identified optimizations allow to keep the same design and
programming philosophy of dataflow, whereas aiming at improving the
performance of the specific configuration implementation. The different
optimizations can be integrated into the current RVC-CAL design flows
and synthesis tools and can be applied to different sub-networks parti-
tions of the dataflow program. The paper introduces the context, the def-
inition of the optimization problem and describes how it can be applied
to dataflow designs. Some examples of the optimizations are provided.

Keywords: Dynamic dataflow programs · RVC-CAL ·
Shared memory · Composite data types

1 Introduction

In recent years the difficulties of CMOS technologies to scale-up by increasing
the processors frequency, led the processor research and industry to investigate
the scale-out by increasing the number of processing units using multi-core,
many-core architecture combined with different memory architectures and pos-
sibly programmable HW elements building heterogeneous platform. However,
these new platforms require software developments to be adapted to the specific
platform architecture to take full advantage of the potential hardware paral-
lelism. Such constrains introduce new challenges to software design such as the
c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11540, pp. 717–724, 2019.
https://doi.org/10.1007/978-3-030-22750-0_70

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22750-0_70&domain=pdf
http://orcid.org/0000-0003-3893-5103
http://orcid.org/0000-0003-3446-9838
http://orcid.org/0000-0002-7742-0332
https://doi.org/10.1007/978-3-030-22750-0_70


718 A. Bloch et al.

portability of applications across platforms or the ability for the programmer
to properly abstract and correctly design algorithms using imperative program-
ming languages that take advantage of the processing power available in terms
of massive parallelism.

High-level dataflow programming languages are well recognized to be able to
overcome those issues [7]. They are used in several fields for modeling data-driven
algorithms and in many application areas such as video and audio processing,
bioinformatics, financial trading and packet switching. Their essential feature
is to be able to abstract parallelism regardless of the targeted hardware plat-
form [4].

The nice properties of dataflow MoC are valid for any type of memory archi-
tectures, ranging from the most restricted architectures, for which each mem-
ory component is only accessible by a single computational unit, to full shared
memory architectures, for which memory is freely accessible by any processing
element. However, the performance of dataflow programs on less constrained
platforms using the same implementation assumptions of more constrained plat-
forms may result sub-optimal.

Indeed to guarantee the absence of data races in highly parallel platforms,
dataflow programs relies on the concept of a full memory isolation for each com-
putational kernel called actors. This assumption which provides the guarantees
of correctness of the executions for any mapping of the network of actors on
any platform, may lead to memory inefficiencies when some actor partitions (i.e.
dataflow network partitions) share some or all memory elements.

The paper presents a new approach for data sharing between actors of a
dataflow network that reduces the amount of data transfers without changing
the model of computation or the semantic of a given application, but only chang-
ing the data transfers implementation. The cases for which the communication
buffers can be implemented more efficiently, by removing memory isolation con-
straints for specific partitioning of the dataflow network, are first identified and
then three different optimized implementation solutions are defined.

The paper is structured as follows: Sects. 2 and 3 present the context of the
dataflow model of computation and compiler. Section 4 provide an overview of
the related work. Section 5 presents the design proposition of this new approach,
discusses application cases and present different implementations. Finally, Sect. 6
concludes the paper and outlines other directions for further investigations and
more effective optimizations.

2 Dataflow Model of Computations

A dataflow program is composed of a (hierarchical) directed graph called, net-
work, where each node is an actor and each directed edge is a lossless and order
preserving communication channel called buffer. These buffers are used to asyn-
chronously transmit atomic data packets called tokens between actors. Different
dataflow MoC have been defined. A common characteristic is the fact that actors
do not have access to a shared memory allowing parallel executions without data
race.



Composite Data Types in Dynamic Dataflow Languages 719

Dynamic Process Network (DPN) is one of the most expressive MoC where
the actors consumption and production of tokens can vary according to the
nature of the available inputs and their internal states [8]. This flexibility is well
suited for designing, real-world and complex algorithms at the cost of facing
more challenging analysis and optimization problems.

In this work RVC-CAL, a dataflow programming language standardized by
the MPEG committee, which fully captures the behavioral features of the DPN
model of computation [6] is used. In RVC-CAL, each actor can contain a set
of atomic firing functions, called actions and internal state variables. When an
actor is executed, only a single action can fire at a time. The firing of an action
depends on the input availability and values of its tokens, the output available
spaces, and the internal state of the actor.

3 Dataflow Compiler

The Open RVC-CAL Compiler (Orcc) is an open-source Integrated Development
Environment (IDE) based on Eclipse and dedicated to dataflow programming [1].
It is the compiler used in this work and is mainly a source-to-source compiler
that translates the RVC-CAL application into another programming language
depending on the backend selected during compilation.

In this work, the Xronos backend [3] is used. It generates from an RVC-CAL
description, a C++ implementation with all the necessary library dependencies.
The objective is to improve the quality of the generated code by minimizing
the overall amount of memory copies by providing when compatible with the
dataflow MoC, specific memory sharing mechanism across actors. The intro-
duction of such optimizations can improve the performance of implementations
for specific partitioning and scheduling configurations. It can also provide an
extension of the design exploration space and yield new scheduling, partition-
ing and buffer size design points for the design space exploration framework,
TURNUS [2].

4 Related Work

A first approach for solving this problem of memory sharing across actors has
been presented in the same design context [9]. it is proposed to have actual shared
variables, breaking the encapsulation of actors. To do so, internal variables that
are shared among multiple actors are tagged with @shared. In addition, a Shared
Memory Controller (SMC) along with a specific protocol were designed for access
synchronization. The solution has shown the benefice of relevant performance
gains due to the instant access to the shared memory once granted access to it
and low overhead of the synchronization protocol. The drawback of the solution is
that designers have to modify the model of computation and break the principle
of memory encapsulation of actors to allow to share their internal states. This
means than the compiler cannot guarantee that the generated code is free of data
races and that the validity solution has to rely on the designer knowledge. This



720 A. Bloch et al.

brings the solution closer to what it is obtained in more traditional settings in
which parallelism is obtained by introducing additional synchronization barriers
to general purpose imperative languages.

There also exists in the literature some work done such as [5] but they mostly
target Synchronous Dataflow (SDF) MoC.

5 Design Proposition

The proposed solution aim at optimizing the performance of the implementation
of the generated code for data communication between actors, when targeting a
hardware platform where actors partitions are mapped to processing units having
access to a common physical memory. In doing so, the model of computation
remains unchanged keeping all the properties guaranteed by construction by
applying code synthesis and compilation.

5.1 Composite Data Types

The current implementation of the code generation for the standard version of
RVC-CAL, processes inter-actor communications by instantiating buffers using
primitive data types. A consequence of this relatively low granularity of data
transfer may impact the performance of the application compared to design
using other models of computation. Furthermore depending on the application
some amounts of data might need to be copied over different buffers through the
dataflow network even if not all data is relevant for the processing of an actor
internal algorithm. To illustrate this fact an example can be useful. Consider
an action that produce five tokens to its output buffer at each firing. Figure 1a
represents the content of such a buffer after two firings.

Currently, when synthesizing code for such simple program, the Orcc compiler
generates a loop, that copy the tokens from the internal memory of the actor to
the memory of the output buffer. This makes the amount of copy to the same
physical memory for each firing linearly proportional to the production of tokens.

The approach described in this paper is to introduce composite data types as
objects manipulated with pointers, which would allow fewer data copies. Lists
(arrays) are considered here an example. Figure 1b shows how the status of the
buffer might look like, when list to represent data in the same example of two
firings of five tokens each are used. It can be observed that instead of having
a loop copying the ten primitive values, it is only necessary to copy the two
pointers to the corresponding memory chunks. This makes the amount of data
copy proportional to the number of moved chunks instead of the number of
tokens. This approach keeps the same philosophy for avoiding data races like
what Orcc is currently implementing. In fact, it does not propose to modify the
model by offering shared memories between actors and still can rely on buffers
to synchronize communication between them.



Composite Data Types in Dynamic Dataflow Languages 721

Fig. 1. Buffer filled with two firings of five primitive tokens each.

5.2 Buffer Identification

In this section the different cases where this optimization can be applied are
identified. First of all, this proposition can only be beneficial for actions that
produce multiple tokens in a single firing. This is the case for example, when
actions uses a repeat expression. In addition to that, three different configuration
cases can be identified.

The first one is when a buffer has multiple fan-out as shown in Fig. 2a. In this
case, it is necessary to duplicate the composite data to avoid the data race. This
is due to the fact that pointers are used, to be copied at the place of the data. If
the data is not duplicated, each actor has a reference to the same piece of data,
which might yield data races problems. This configuration should only improve
performances to a fraction inversely proportional to the fan-out numbers, as only
the first actor will have access to the original data whereas the others need a
copied version.

The second case is when a list is transmitted only between two actors as
shown in Fig. 2b. In this case the proposition will not result in any performance
improvement as it is already optimized by the current implementation of the
Orcc compiler. Indeed, instead of generating the tokens to a local array and then
copying this data to the output buffer memory, the compiler generated code uses
a pointer to the buffer memory and store the tokens directly there when they
are available. In the same way, the consumer actor (actor B in the schema) use
a pointer to the buffer memory to directly process the data read, instead of first
copying them locally and then processing them. This optimization prevent the
introduction of list to bring performance improvement in this particular case.

The third case is the one where the use of composite data types can provide
the higher performance gain. It can be identified when multiple actors process
the same composite structure of data. An illustration of this case is depicted in
Fig. 2c. The achievable performance improvement is proportional to the size of
the chunk of data and to the number of stages the same data is processed by a
different actor.



722 A. Bloch et al.

Fig. 2. Buffer identification.

5.3 Implementations Discussion

In this section the implementation challenges that need to be addressed so that
the Orcc compiler is able to generate valid C++ code implementing the proposed
optimization is discussed.

Fully Dynamic Solution. In this case the consumer can read list of token
of any sizes regardless of the size of the emitted list. This solution is the most
general. It means that actors can read chunks of data smaller than the actual
list and even read chunks that span across two physical data allocations. An
illustration of this implementation is depicted in Fig. 1b, where the pointers
returned to the reader at each firing are the red arrows. In this example, the
read size is 2 and it can be observed that the third read (composing or the
numbers 4 and 5) span across the two continuous memory allocation. This fully
flexible settings raises two implementation challenges.

One is that since a single continuous allocation can be linked to from different
actors during the runtime of the application, it can be difficult to pinpoint when
this memory chunk can be released especially in environment with no native
garbage collection like in C++. For that, we used std::shared ptr that offers a
kind of autorelease mechanism once a memory chunk is no longer referenced by
any actors or buffers.

Another technicality to be solved is the need to transparently handle reads
that can reach multiple memory chunks. For this purpose a custom proxy class
has been developed that is returned, instead of a direct pointer to a memory
block, that act as a middle man and handles reads through an indirection,
which can affect performance and prevent processor vectorization. This side-
effect might be somewhat mitigated if the proxy is used only in the corner cases
where it is necessary and if the memory allocator used is tuned so that most
consecutive chunks would be allocated consecutively in memory removing the
need also in these cases. A custom allocator that would be used explicitly and
provided with network specific information to make the use of consecutive allo-
cation more frequent could also be considered.

Semi Dynamic Solution. This case is a constrained version of the previous
more general case, where the consumer can only read at each firing a number



Composite Data Types in Dynamic Dataflow Languages 723

of tokens that is a divider of the size of the produced list. This constraint is
equivalent to impose that a read would never reach across two different memory
allocation, which removes the need for any proxy or special allocator, while keep-
ing some amount of flexibility. The difficulty here is to be able to guarantee that
this property is always satisfied to allow the safe usage of this implementation
solution.

Static Solution. In the third case, the reader has always to consume an entire
chunk of data seen in this case as an object. This is the most restrictive config-
uration, but also the simpler to implement. The need to use memory releasing
mechanisms can be avoided as only a single actor or buffer can reference an
object at any time allowing for an explicit freeing of memory from the actor
itself when the chunk is no longer needed.

6 Conclusions

This paper presents a new approach for the synthesis of efficient implementations
of data sharing between actors of a dynamic dataflow networks in the context of
the RVC-CAL programing language. The approach introduces composite data
types as a ways to avoid data copies whenever possible. It shows for which
buffer configuration the optimization solutions can be beneficial and specifies
the different ways of implementing them in C++ depending on the flexibility,
given to the rate at which an actor can consume data.

Future work considers automatizing the selection by the Orcc compiler of
the generated solution depending on the configuration (i.e. Buffer configuration,
Network partition, targeted platform). Moreover, this would enable more design
point to be considered by the TURNUS framework.

References

1. Orcc. http://github.com/orcc/orcc. Accessed Apr 2019
2. Casale-Brunet, S.: Analysis and optimization of dynamic dataflow programs. Tech-

nical report EPFL (2015)
3. Casale-Brunet, S., Bezati, E., Mattavelli, M.: Programming models and methods

for heterogeneous parallel embedded systems. In: 2016 IEEE 10th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pp.
289–296. IEEE (2016)

4. Castrillon, J., Leupers, R.: Programming Heterogeneous MPSoCs. Tool Flows to
Close the Software Productivity Gap. Springer, Switzerland (2013). https://doi.
org/10.1007/978-3-319-00675-8

5. Desnos, K., Pelcat, M., Nezan, J.F., Aridhi, S.: Distributed memory allocation tech-
nique for synchronous dataflow graphs. In: 2016 IEEE International Workshop on
Signal Processing Systems (SiPS), pp. 45–50. IEEE (2016)

6. Eker, J., Janneck, J.: CAL language report: Specification of the CAL Actor Lan-
guage. Technical Memo UCB/ERL M03/48, Electronics Research Laboratory, Uni-
versity of California at Berkeley, December 2003

http://github.com/orcc/orcc
https://doi.org/10.1007/978-3-319-00675-8
https://doi.org/10.1007/978-3-319-00675-8


724 A. Bloch et al.

7. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information Processing, pp. 471–475. North Holland, Amsterdam,
Stockholm, Sweden, August 1974

8. Lee, E., Parks, T.: Dataflow process networks. In: Proceedings of the IEEE, pp.
773–799 (1995)

9. Modas, A., Casale-Brunet, S., Stewart, R., Bezati, E., Ahmad, J., Mattavelli, M.:
Shared-variable synchronization approaches for dynamic data flow programs. In:
2018 IEEE International Workshop on Signal Processing Systems (SiPS), pp. 263–
268. IEEE (2018)


	Composite Data Types in Dynamic Dataflow Languages as Copyless Memory Sharing Mechanism
	1 Introduction
	2 Dataflow Model of Computations
	3 Dataflow Compiler
	4 Related Work
	5 Design Proposition
	5.1 Composite Data Types
	5.2 Buffer Identification
	5.3 Implementations Discussion

	6 Conclusions
	References




