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On the Modeling of Non-Vertical Risers in the
Interaction of Electromagnetic Fields With
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Abstract—This paper proposes a simple method to take into
account non-vertical risers through an equivalent partial induc-
tance. The proposed approach was validated considering several
examples and taking as reference full-wave results obtained using a
numerical electromagnetics code numerical electromagnetics code
(NEC)-4.

Index Terms—Induced current, non-vertical riser, total voltage,
transient electromagnetic field, transmission line model.

1. INTRODUCTION

UE to difficulties in performing experiments related to

lightning-induced voltages on power distribution and
transmission lines, engineers depend to a great extent on nu-
merical simulations in making assessments concerning the pro-
tection of these systems against lightning.

Several models have been used in the literature to estimate
the voltages induced on power lines due to lightning [1]-[7].
While some of these models are actually different representa-
tions of the solution to the transmission line equations pertinent
to the problem under consideration, the others are either incor-
rect or partially correct solutions [7]. All these models adhere to
the approximation that the response of the overhead transmis-
sion line to the incident electromagnetic field is quasi-transverse
electromagnetic (TEM) [8].

In the analysis to follow, we will adopt the model presented
by Agrawal et al. [1] and we will consider a single overhead con-
ductor, but the conclusions to be extracted from the study are also
applicable to all the other models and to multiconductor lines.

II. MODEL OF AGRAWAL et al.

Let us consider, without loss of generality, a single-wire line
located at a height 4 above a perfectly-conducting ground plane.
The line is located along the x-axis and the z-axis is aligned with
the vertical. The height of the line is 4. The line impinged upon
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by an exciting (external) electromagnetic field. We represent the
vertical and the horizontal components of the exciting electric
field, respectively, by E¢ and E¢. These exciting electric fields,
which are evaluated in the absence of the line conductors, in-
duce currents in the line which, in turn, generate the so-called
scattered electric and magnetic fields. Let us define the vertical
component of the scattered electric field by E%. The two trans-
mission line equations of the model of Agrawal et al. can be
written as

ov® (z,t) .. ,0i(x,t)
~om + R'i(xz,t) + L 5 = ES(z,0,h,t) (1)
di(z,t) 00 (z,1)

or +C o =0 2)

in which R’, L’, and C ’ are, respectively, the per-unit-length
resistance, inductance, and capacitance of the line, i(z, t) is the
current, and v* (x, t) is the scattered voltage defined as

h
El(z,y,z,t)dz.
0

v (z,t) = — 3)

The total line voltage of the line, v(z,t) , can be obtained as

h
v(x,t) = v (x,t) + v (2, t) = v° (2, 1) — / Ef(x,0,z,t)dz.
0
“)

Note that, unlike the scattered electric field in (4), the coordi-
nate y has been set to zero in the exciting field in the integrand
on the right hand side of (3) since the exiting field is, in general,
not conservative.

The boundary conditions at the two line ends terminated in
impedances, Z4 and Zp, written in terms of the scattered volt-
ages, are given by

h

v*(0,t) = =Z44(0,t) + [ EZ(0,0,z,t)dz Q)

0

h
v (Lot) = Zui(Lt) + / EY(L,0,20)d=  (6)
0

The equivalent circuit of the Agrawal ef al. model equations
is shown in Fig. 1. It should be noted that it is implicitly assumed
that the risers at the two line ends are vertical and, therefore,
the integrals of the vertical electric field in (4)—(6) are performed
along the vertical straight line from the ground plane to the
conductor.
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Fig. 1. Equivalent circuit of the Agrawal et al. model for a single-wire line

above a perfectly conducting ground plane. The risers at the two line ends are
assumed to be vertical in the original model of Agrawal et al.
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Fig. 2. Non-vertical riser at the left end of the line with a lumped termination
impedance.
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Fig.3.  Equivalent circuit for the left termination when the riser is not vertical.

III. TREATMENT OF NON-VERTICAL RISERS

Consider the situation shown in Fig. 2, where the terminal
riser is not vertical and is characterized by an arbitrary shape,
and not necessarily in the transverse plane.

Unlike the original model of Agrawal et al. since the riser
is not vertical, the sources at the terminations are the line inte-
grals of the exiting electric fields along the risers’ non-vertical
geometries.

Moreover, the termination impedances, represented by Z4
and Zp in Fig. 3, are the series combination of the actual termi-
nation and an additional inductive impedance stemming from
the more general geometry for the risers. In the next section, we
present a derivation of these boundary conditions.

A. Boundary Conditions for Non-Vertical Risers

Integrating along the non-vertical riser on the left-hand side
of the line shown in Fig. 2, we can write

—

—/ E-dl=—-1(0)Zy4. 7)
Riser
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Separating the total field into the exiting and scattered com-
ponents, (7) can be written as follows:

_ B dl —

Riser

E¢-dl'=—I1(0)Z4.  (8)
Riser

Now, applying the Maxwell-Faraday’s equation to the scat-

tered field around the loop hashed in yellow in the figure, we
can write

h

E®-dl —
Riser 0
Solving for the first term on the left-hand side of (9) and
substituting the second term by the scattered voltage [see (3)],

we obtain
E”dﬂ:—vs—ﬂ{z/éﬁdﬁ
Riser

Replacing (10) into (8) and solving for the scattered voltage
yields

Ve :/ E°-dl - 1(0)Z4 —jw//ﬁ“" dS. (1)
Riser

The surface integral in the third term on the right-hand side of
(11) is a scattered magnetic flux. Considering the assumption of
an electrically small line cross section, this flux is proportional
to the termination current, through an inductive term. As a result,
we can rewrite (11) as

VS:/ E - dl—I(0)Z4 — jwLaI(0)  (12)
Riser

Edz = —jw/ B*-dS. (9

(10)

in which the inductance L4, whose value depends only on the
geometry of the riser, is

_JIB-as
N (R

Equation (12) is the result sought. Fig. 3 shows the
equivalent circuit for the left-hand side of the line based
on (12).

Thus, the integrals of the exciting electric field at the two line
ends are evaluated along a path defined by the geometry of the
risers.

13)

B. Validation Using Full-Wave Simulations

In this section, we will use full-wave simulations to vali-
date the equivalent inductance (13) that needs to be considered
in the case of non-vertical risers. We will consider a single
wire of length L, height A, and radius r above a perfectly con-
ducting ground. The left and right terminations are, respec-
tively, Z4 and Zp. The line is illuminated by a uniform plane
wave characterized by an azimuth angle 6, an elevation angle
1), and a polarization angle « [see Fig. 4]. The terminal riser
at the right end is assumed to be vertical, while three different
configurations will be considered for the left-end riser, as shown
in Fig. 5(a)—(c).

For the cases of a non-vertical riser [see Fig. 5(b) and (¢)], the
equivalent (partial) inductance L4 should be evaluated using
(13). The scattered magnetic field is first evaluated using the
Biot—Savart law. Then, the total magnetic flux is computed by
numerical integration, taking into account the riser image, as
shown in Fig. 6.

The field-to-transmission-line coupling equations including
the treatment of the non-vertical risers are solved using the
Baum-Liu-Tesche (BLT) equations [9]. According to the BLT
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Fig. 4. Single-wire transmission line excited by an incident plane wave.
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Fig. 5. Cross-section of the three considered geometries for the left-end riser.

(a) Vertical. (b) Rectangular. (c) Triangular.
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Fig. 6. Illustration of the geometry for the calculation of the total magnetic
flux for the left-end riser. (a) Rectangular. (b) Triangular.

equations, the solution for the induced voltages at both ends can
be expressed by

—pa(1 4 p1)S1 (jw) — e7E (1 + p1)Ss (jw)
p1p2 — ek

=L (1+ p2)Si(jw) — p1(1 + p2) S (jw)
p1p2 — €1k

V(O>jw) =

V(L jw) =
(14)

where the source terms S; and S are given by

RN O . [N
S100) = 5 [ 7B s = 5Vi(e) + 5Va )

IR
Saw) = = 5 [ S o gl
0

1 1
+ §V1(J'W)6VL - 51/2(]'@)

Mo = - [ Eedl ) = [ Edl
RiserA RiserB (15)

in which p; and p9 are the reflection coefficients at the near-end
and far-end of the line, respectively, and + is the propagation
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Fig. 7. Induced currents as a function of frequency. (a) Left end. (b) Right
end. The left end of the line is terminated in vertical risers at both ends. The
dashed line is used to represent the calculations obtained using the transmission
line theory (BLT equations) and the solid line presents the NEC-4 results.

constant along the line. Expressions for the line parameters can
be found in [10].

In order to validate the calculation results, the numerical
electromagnetics code NEC-4, a full-wave solver based on the
method of moments, was used [11]. In what follows, we will
consider the three cases for the geometry of the left-end riser
shown in Fig. 5.

Case 1: Vertical Risers: In this case, we considered a 20-m
long wire located at a height of 0.1 m above a perfectly conduct-
ing ground. The conductor radius is I mm. The line is terminated
at both ends in 100 € resistive loads. The azimuth angle, ele-
vation angle, and polarization angle of the exciting plane wave
are 0°, 45°, and 0°, respectively. The frequency range of the
wave is 10 kHz-50 MHz, and the amplitude of the E-field is
1 V/m across the whole frequency spectrum. Fig. 7 presents a
comparison between the results obtained by way of the BLT
equations and of the NEC-4 code for the case of vertical risers.
As expected, it can be seen that the results based on the trans-
mission line theory (BLT equations) are in excellent agreement
with the full-wave results obtained using the NEC-4.

Case 2: Rectangular Riser at the Left-End: As in Case 1, we
considered a 20-m long wire located at a height of 0.1 m above
a perfectly conducting ground and a conductor radius of 1 mm.
The line is terminated at both ends in 100 €2 resistive loads.
The left-end riser corresponds to Fig. 5(b), while the right-end
riser is kept vertical. The azimuth angle, elevation angle, and
polarization angle of the exciting plane wave are 0°, 45°, and
0°, respectively. The frequency range of the wave is 10 kHz—
50 MHz, and the amplitude of the E-field is 1 V/m across the
whole frequency spectrum. We considered two different values
for the length L, [see Fig. 5(b)], namely 0.5 and 1 m. For those
two lengths, the equivalent inductance L 4 is, respectively, 0.66
and 1.2 pH. The calculated results for the induced currents are
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Fig.8. Induced currents as a function of frequency. (a) Left end. (b) Right end.

The left end of the line is terminated in a rectangular shape riser [L1 = 0.5 m,
Fig. 5(b)], and in a vertical riser on its right end. Calculations obtained using
the classical transmission line theory, the transmission line theory including the
partial inductance, and the NEC-4 are shown, respectively, using a dashed-line,
a solid black line, and a solid blue line.
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Fig.9. Induced currents as a function of frequency. (a) Left end. (b) Right end.

The left end of the line is terminated in a rectangular shape riser [L1 = 1 m,
Fig. 5(b)], and in a vertical riser on its right end. Calculations obtained using
the classical transmission line theory, the transmission line theory including the
partial inductance, and NEC-4 are shown, respectively, using a dashed-line, a
solid black line, and a solid blue line.
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Fig. 10. Induced currents as a function of frequency. (a) Left end. (b) Right
end. The left end of the line is terminated in a rectangular shape riser [L; =
I m, & = 45°, Fig. 5(b)], and in a vertical riser on its right end. Calculations
obtained using the classical transmission line theory, the transmission line theory
including the partial inductance, and NEC-4 are shown, respectively, using a
dashed-line, a solid black line, and a solid blue line.
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Fig. 11.  Induced currents as a function of frequency. (a) Left end. (b) Right
end. The left end of the line is terminated in a rectangular shape riser [L =
1000m, L; = 3 m,Fig.5(b)], and in a vertical riser on its right end. Calculations
obtained using the classical transmission line theory, the transmission line theory
including the partial inductance, and NEC-4 are shown, respectively, using a
dashed-line, a solid black line, and a solid blue line.
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Fig. 12.  Induced currents as a function of frequency. (a) Left end. (b) Right
end. The left end of the line is terminated in a triangular shape riser [L; = 0.5m,
Fig. 5(c)], and in a vertical riser on its right end. Calculations obtained using
the classical transmission line theory, the transmission line theory including the
partial inductance, and NEC-4 are shown, respectively, using a dashed-line, a
solid black line, and a solid blue line.
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Fig. 13. Induced currents as a function of frequency. (a) Left end. (b) Right
end. The left end of the line is terminated in a triangular shape riser [L; = 1 m,
Fig. 5(c)], and in a vertical riser on its right end. Calculations obtained using
the classical transmission line theory, the transmission line theory including the
partial inductance, and NEC-4 are shown, respectively, using a dashed-line, a
solid black line, and a solid blue line.

shown in Figs. 8 and 9. It can be seen that the results calculated
using the classical transmission line theory deviate from the
full-wave results obtained using NEC-4. Taking into account
the non-vertical riser using the partial equivalent inductance
yields significantly more accurate results.

Note that, in these figures, as well as in the next ones, we have
indicated in the plots the frequency at which the impedance of
the equivalent inductance becomes equal to that of the terminal

impedance. This frequency gives an indication of the frequen-
cies above which this correction needs to be taken into account.

We now consider another example with the same line config-
uration but considering an azimuth angle of the exciting field
of 45°. The calculated results for the induced current are shown
in Fig. 10. Again, one can appreciate the fact that the taking
into account of the equivalent inductance results in significant
improvement of the results, especially at high frequencies.

We also considered the case of a 1000-m long wire at a height
of 5 m above a perfectly conducting ground. The conductor
radius is 5 mm. The line is terminated at both ends in 100-2
resistive loads. The left-end riser corresponds to Fig. 5(b), while
the right-end riser is assumed to be vertical. The adopted value
for the length L; is 3 m. In this case, the equivalent inductance
Ly is 10.6 pH. The azimuth angle, elevation angle, and polar-
ization angle of the exciting plane wave are 0°, 45°, and 0°,
respectively. The amplitude of the E-field is 1 V/m across the
complete frequency spectrum. The calculated results for the in-
duced current are shown in Fig. 11. Again, it can be seen that the
results from the proposed approach agree well with the full-wave
results obtained using NEC-4, while the classical transmission
line approach fails in reproducing the induced currents in high
frequencies.

Case 3: Triangular Riser at the Left-End: In this final case, we
considered a 20-m long wire located at a height of 0.1 m above
a perfectly conducting ground. The conductor radius is 1 mm.
The line is terminated at both ends in 100-() resistive loads.
The left-end riser corresponds to Fig. 5(c), while the right-end
riser is kept vertical. We considered two different values for
the length L;, namely 0.5 and 1 m, respectively. In these two
cases, the equivalent inductance L, is respectively 0.49 and
0.96 pH. The calculated results for the induced currents are
shown in Figs. 12 and 13. Again, it can be seen that the pro-
posed approach allows to obtain results that are in an excellent
agreement with full-wave results obtained using NEC-4, while
the classical transmission line approach fails in reproducing the
induced currents, especially in high frequencies.

IV. CONCLUSION

In this paper, we showed that the classical transmission line
theory is not able to accurately take into account non-vertical
risers. We proposed a simple method to take into account non-
vertical risers through an equivalent partial inductance. The pro-
posed approach was validated considering several examples and
taking as a reference full-wave results obtained using NEC-4.
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