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Abstract—An unusual negative lightning flash was recorded at
the Séntis Tower on June 15, 2012. The flash did not contain an ini-
tial continuous current typical of upward negative lightning, which
is the most common type of event at the Sintis Tower. The flash
contained four strokes, the last three of which were normal while
the current associated with the first stroke resembled a Gaussian
pulse with an unusually high peak value of 102.3 kA, a long rise-
time of 28.4 us, and a pulsewidth of 53.8 us, which was followed
by an opposite polarity overshoot with a peak value of 8.5 kA. Our
current records suggest the involvement of a long upward con-
necting positive leader in response to the approaching downward
negative leader in the formation of this flash. Lightning location
system (LLS) data indicate that a positive cloud-to-ground stroke
occurred 1 ms prior to the first stroke of the flash. In this paper,
we present a detailed description of the data associated with this
event. Moreover, both a return stroke model and an M-component
model are used to reproduce the far-field waveform of this bipolar
stroke. The simulations result in a radiated electric field waveform
that is similar to those of large bipolar events (LBEs) observed in
winter thunderstorms in Japan. A sensitivity analysis of the used
simulation models reveals that, by proper selection of the input
parameters, all field waveform characteristics, except for the posi-
tive half-cycle width, can be made to fall in the range of LBE field
characteristics reported in Japan.

Index Terms—Downward negative leader, large bipolar event,
lightning charge transfer mode, numerical modeling.
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1. INTRODUCTION

IGH-CURRENT lightning discharges are reported to be
H one of the main features of winter lightning in Japan [1].
They constitute one of the major causes for transmission line
(TL) outages [2]. These high-current lightning discharges are
known to have bipolar field signatures that makes them different
from usual return strokes. They are known as large bipolar events
(LBEs), and they are related to cloud-to-ground discharges, as
suggested by slow field antenna records that show that they are
associated with charge transfer to the ground [2]. Both posi-
tive and negative initial polarities of electric fields from LBEs
have been reported. The observed bipolar pulses associated with
LBEs are clearly different from the characteristic field wave-
forms of first return strokes in downward lightning, since the
latter exhibit a slow-front/fast-transition in their rising portion
preceded by small unipolar pulses associated with the downward
stepped leader [3].

Due to the high occurrence of LBEs during the winter pe-
riod, it is believed that the height of the cloud charge centers
must be lower compared to the one characterizing normal return
strokes. This fact has been confirmed using the reported height
of the —10° isotherm [4]. An inverted return stroke model, called
“ground-to-cloud (GC) stroke model” involving a long upward
leader was proposed by Ishii and Saito [2] to simulate the bipo-
lar field signature of these events. Using the “inverted” return
stroke model and the channel-base current waveform, Saito and
Ishii [5] reproduced electric fields of LBEs observed at 117 km.
Using the TL model, Kaneko et al. [6] also reproduced the bipo-
lar magnetic field signatures of LBEs measured at distances of
12.6-129.6 km.

Using numerical simulations based on the bouncing wave
model (developed by Nag and Rakov [7] for compact intracloud
discharges or CIDs), Chen et al. [8] suggested that the only cur-
rent waveform that can reproduce the field signature of LBEs is
a symmetrical Gaussian pulse.

An extensive study on the bipolar field signatures of high
current discharges (LBEs) was presented by Wu et al. [9]. The
electric field signature of LBEs reported by Wu et al. is char-
acterized by a bipolar, symmetrical pulse whose initial polarity
is the same as that of negative return strokes. The waveforms
presented by Wu et al. were all located inland, and 74% of them
were isolated in time. Wu et al. pointed out some similarities
between LBEs and NBEs (narrow bipolar events, which is just
another name for CIDs): both produce a bipolar electric field,
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both are associated with a very large current, both are of short
duration, and they possibly happen in a short channel length.
They also suggested that LBEs and NBEs appear during win-
ter and summer thunderstorms, respectively. They further stated
that LBEs are probably associated with high grounded objects
and they hypothesized that LBEs occur when the negative charge
layer in thunderclouds is close to the top of the tall, grounded
object since this would explain why LBEs were observed pre-
dominantly during winter time.

An overview of LBEs and other similar events is given by
Zhu et al. [10]. The reviewed data were obtained both in winter
and in summer, but in all cases a tall strike object was involved.
Zhu et al. [11] presented a modeling study of LBE-like events.

Even though all of these studies suggest that LBEs are due to a
cloud-to-ground discharge process with channel lengths shorter
than those of return strokes, the cloud charge structure and dis-
charge processes involved in the formation of LBEs are still
unknown.

In this paper, we present an atypical multistroke lightning flash
recorded at the Séntis Tower. The flash contained four strokes,
the last three of which were normal, while the current waveform
associated with the first return stroke of this flash resembled
a Gaussian pulse and, as proposed by Chen ef al. [8], could be
indicative of a process of LBE-type. In order to assess the validity
of this hypothesis, we use numerical simulations to reproduce
the field signature associated with this current pulse and we
compare the obtained parameters of our simulation results with
observed field signatures of LBEs in Japan.

The rest of the paper is organized as follows: Section II briefly
presents the Séntis Tower experimental setup. Section III con-
tains a description of the observed event. Simulation results are
presented in Section IV, along with a comparison with experi-
mental data and discussion. Finally, Section V contains a sum-
mary and conclusion.

II. SANTIS TOWER INSTRUMENTATION AND OBTAINED DATA

The 124-m tall Sintis Tower, located on the top of Mount
Séntis [2502 m above sea level (ASL)], has been instrumented
for lightning current measurements since May 2010 [12]. Ro-
gowski coils and multigap B-dot sensors are installed at two
different heights, 24 and 82 m, for measuring the current and
its time derivative. The B-dot sensor at the lower height was
not present prior to June 29, 2013 (see [13], [14] for more in-
formation and recent updates). In this paper, unless otherwise
specified, use is made of the combination of the Rogowski coil
and the B-dot sensor installed at 82 m to reproduce the current
waveform. The Rogowski coil is used to reproduced the low
frequency (<100 kHz) part of signal, while the B-dot sensor is
used to obtain the high-frequency response (>100 kHz). Addi-
tional information on the current waveform reconstruction algo-
rithm from the Rogowski coil and the B-dot sensor can be found
in [15].

During the period of May 2010 to June 2016, a total of 562
flashes were recorded at the Sintis Tower. Out of these, 473
flashes (84%) were classified as negative flashes, 66 (12%) were
classified as positive, and 23 (4%) were classified as bipolar.
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Fig. 1. Overall current waveform of the flash that occurred on 15 July, 2012
at 16:56:36.

The presence or absence of an initial continuous current was
used to classify the recorded events as upward or downward
flashes. As expected, more than 99% of the lightning flashes
recorded at the Séntis Tower were of the upward type. During the
considered period, only three negative and one positive events
were classified as downward flashes.

III. DESCRIPTION OF THE EVENT
A. Waveform Characteristics

Among the three negative flashes that were classified as down-
ward based on the absence of the initial continuous current, the
one that will be described in this section was a four-stroke flash
recorded on July 15,2012 at 16:56:36. The overall current wave-
form of the flash is shown in Fig. 1.

Note that, throughout the paper, a positive sign for the current
is used for negative return strokes, and the atmospheric electric-
ity sign convention (downward directed electric field or electric
field change vectors are positive) is adopted for the electric field.
The current waveform of the first stroke of this flash, along with
its transferred charge, is shown in Fig. 2. The waveform ap-
pears as a quasi-symmetrical Gaussian-like pulse, which could
be associated with an LBE [8]. The peak current of the first
stroke is about 102.3 kA and the 10%-90% risetime (with re-
spect to the maximum peak) is 28.4 us. It is worth mentioning
that the 10%-90% (with respect to the first peak) risetime is
about 20.7 us. The initial half-cycle of the current waveform is
followed by an opposite polarity overshoot with a peak of 8.5 kA.
The pulsewidth of the negative half-cycle is 33.7 pus. Note that
the observed overshoot cannot be due to a wave reflection from
the tower base, since its occurrence time is much longer than the
round-trip time of the wave along the tower (0.55 us). Note also
that the opposite overshoot is not an artifact of the Rogowski
coil for the following reasons: First, the used coils have an air
core so there are no saturation effects to be expected. Second,
to exclude the possibility of the specific sensor used at 82 m
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Fig. 2. Measured current (blue) and calculated transferred charge associated

with the first return stroke of the flash. An expanded view of the current waveform

is shown in the inset.

TABLE I

‘WAVEFORM PARAMETERS OF THE FIRST STROKE OF THE FLASH

Parameter Value

Initial Half-Cycle Pulse Peak Value (kA) 102.3
Total Transferred Charge (C) 6.5
10-90% Rise Time (us) 28.4

Initial Half-Cycle Pulse Width (ps) 53.7
Negative Half-Cycle Pulse width (us) 33.7
Opposite Polarity Overshoot Peak (kA) -8.5

being defective, we compared with measured waveforms from
our second, independent Rogowski coil installed at a different
height and both measurements are consistent. Third, we have
measured strokes with similar peak current amplitudes with no
opposite polarity overshoot in the past. Finally, even though the
current waveform cannot be faithfully reproduced from the B-
dot sensor only (due to the limited low-frequency response of
that sensor), the waveform from it exhibits the same overshoot.

The total charge transferred to ground in 0.8 ms is 6.5 C,
which is not far from the 4.5 C median impulse charge reported
by Berger et al. for first strokes in negative lightning [16]. The
current waveform characteristics of this stroke are summarized
in Table I.

Fig. 3 shows the recorded current waveform at a height of 24
m along the tower (with better signal-to-noise ratio compared
to the recorded signal at 82 m) in which the start of the sus-
tained (continuously rising) current marked with an arrow, is
presumably associated with the start of an upward connecting
leader (UCL). Current pulses occurring prior to the start of UCL
are referred to as precursor pulses. Similar pulsations have been
observed by Biagi et al. [17] in rocket-triggered lightning. Vis-
caro et al. [18] argued that both the pulses of positive UCL and
the proceeding precursor pulses are induced by the approaching
negative leader. The observed features of the recorded current
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| \ /.

-
T
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Fig. 3. Expanded view of the initial portion of the current measured at 24 m

above ground. The start of sustained upward positive leader current is marked
with an arrow. One of the precursor current pulses is shown in the figure inset.
The blue arrow indicates the time of occurrence of the positive stroke.

waveform suggest the involvement of both, a downward and an
upward leader in the formation of LBEs.

The first stroke was followed by three other negative strokes
with peak current values of 17.2, 29.0, and 26.8 kA. Their cur-
rent waveforms were somewhat similar to that of the first re-
turn stroke, but, unlike the first stroke waveform, they started
with a faster rising portion with superimposed oscillations and
did not exhibit an opposite polarity overshoot. Fig. 4 presents
expanded views of the current waveforms associated with the
second, third, and fourth strokes of this flash. Note that these
waveforms are different from those in typical subsequent return
strokes in downward flashes, as they include fast oscillations in
the rising portion and long time to overall peak of 30—40 us
compared to 0.3-0.6 ps in typical subsequent return stroke in
downward flashes [19]. The oscillations are associated with the
transient process in the tower.

Note also that the presence of the tower causes multiple re-
flections that are only discernible if the tower is electrically long
or, equivalently, if the risetime of the current waveform is shorter
than the round-trip time along the tower. This is the case for the
three subsequent return strokes of this flash. On the other hand,
the transient behavior is not visible in the first, slower return
stroke current waveform. In this paper, we will concentrate on
the analysis of the first return stroke.

B. Correlation With the Data Provided by the European
Cooperation for Lightning Detection Lightning Location
System

The flash observed at the Séntis Tower on July 15, 2012 at
16:56:36 was detected by the European Cooperation for Light-
ning Detection (EUCLID) network [20], [21]. The EUCLID data
revealed that this flash was preceded by a positive stroke which
occurred 1 ms before the start of the first stroke measured on
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Fig. 4. Measured current waveforms associated with three return strokes fol-

lowing the LBE-like stroke of the flash. a) First RS. b) Second RS. ¢) Third
RS.

the tower. The positive stroke was located by EUCLID 0.8 km
away from the tower. The peak current value of this stroke was
estimated to be 30.1 kA. It should be noted that there is a chance
that EUCLID misclassified an in-cloud discharge as the positive
stroke.

Fig. 5 shows the location of each stroke estimated by EU-
CLID. It should be noted that only three out of four strokes of
this flash were detected by EUCLID. The third stroke of the flash
was missed by EUCLID, even though it had the second highest
peak current amplitude.

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

7 N Positive stroke
\ ~ZN\
\\ e/ 4\ LIGHTNING DATA SURVEY
\ ‘- : 15/07/2012 165633
Y y, 15/07/2012 1657:00
\/// Hour GMT
4 — The Tower NUMBER OF STROKES
/ \ Positive: 1
i / N\ Negative:3
Negative / \ Negathe

strokes
Reference :66-1087

——
0 0.10.203 km

Fig.5. Detailed locations of strokes reported by EUCLID. The positive stroke
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TABLE I
EUCLID PEAK CURRENT ESTIMATES VERSUS PEAK CURRENTS DIRECTLY
MEASURED AT THE SANTIS TOWER FOR THE RETURN STROKES OF THE FLASH
THAT OCCURRED ON JULY 15, 2012 AT 16:56:36

Peak current

Stroke Directly measured peak current
Order (kA) reported by
EUCLID (kA)
1 102.3 126.7
2 17.2 22.9
3 29.0 Not Detected
4 26.8 42.3

Table II presents a comparison between the directly measured
peak currents at the Sintis Tower and the peak current estimates
provided by EUCLID.

It can be seen from the table that the EUCLID network sys-
tematically overestimated the peak currents. This overestimation
can be attributed to the enhancement of the radiated fields due
to the propagation along the mountainous terrain [22], [23]. The
proximity of the positive stroke in time (1 ms) and in space
(0.8 km) to the first LBE-like stroke of the flash suggests that
this positive stroke might have been involved in the formation
process of the tower flash.

C. Height of the —10 °C Isotherm

Negative charges are typically located at altitudes correspond-
ing to a temperature range of —10 to —25 °C [24]. Azadifar
et al. [25] used the Advanced Research Weather Research and
Forecast model (WRF-ARW) [26] to evaluate the height of the
—10 °C isotherm associated with 37 lightning events that oc-
curred at the Santis Tower (see [25] for more information on the
performed WRF-ARW numerical simulations). The considered
dataset included 3 downward negative flashes, one of which be-
ing the flash analyzed in this work. The dataset also included 28
negative upward flashes and 6 positive upward ones. The derived
height of the —10 °C isotherm for the flash considered in this
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TABLE III
PARAMETERS OF DOUBLE HEIDLER FUNCTION WHICH HAS BEEN USED TO
REPRESENT THE MEASURED CURRENT WAVEFORM OF LBE-LIKE STROKE

Parameters Toy T11 T2 n; o2 To1 T2 n;
(Unit) kA)  (ps)  (us) kA)  (ms) ()
Value 106.7 53 66 8.0 -542 122 42 13

paper was 3.9 km ASL. The —10 °C isotherm heights for the
other two downward negative flashes were 4.2 and 5 km ASL,
respectively. On the other hand, the —10 °C ASL altitudes for
the upward negative flashes ranged from about 1.9 to 5.5 km,
with a considerable number of flashes having —10 °C heights
lower than 3 km.

IV. MODELING, NUMERICAL SIMULATION, AND COMPARISON
WITH EXPERIMENTAL OBSERVATIONS

In this section, we present simulation results for the elec-
tric field waveform of the first stroke of the flash discussed in
Section III. Two available models describing the charge transfer
to ground are used, one of them assuming a return stroke-like
process, and the other assuming an M-component-like process.

In order to simplify the process of numerical simulations, the
measured current was represented using the sum of two Heidler’s
functions

. Iy (/)™ —t)T
0,8) = o0 WY t/m,
00 = ™ T )
@ (t/TQI) 2 67t/7—22. (1)

n2 [(t/721)" + 1)]

Fig. 6 presents the measured current and its analytical repre-
sentation using two Heidler’s functions. The parameters of the
Heidler’s functions are given in Table III. Once the distribution
of the current along the channel is determined by the charge

Vertical Electric Field (V/m)
N

0 100 200

400 *

Time (us)

300

Fig. 7. Vertical electric field at 100 km from the lightning channel associated
with the first stroke current of the considered stroke (see Fig. 2), computed using
the MTLE return-stroke model. The height of the channel was assumed to be
2 km, the attenuation constant of the MTLE model was set to 1 km, and the
return stroke speed was assumed to be 1.5 x 10% m/s.

transfer model, the vertical electric field is computed by inte-
grating along the channel the following expression [27]:

ds |20z — 2 _ 2 gt
dEZ(r,z,z’,t):z:Eo (2 ;2) ! /R/Cz'(z/,T—R/c)dT
2z—2) —r2 r? 0i(2,7 — R/c)
P TR Ty

@)

in which r and z are the cylindrical coordinates of the observation
point, R is the distance between each current element along the
channel and the observation point (R = \/r>+(z—2)?), i(2/, t) is
the element of current along the channel, c is the speed of light,
and ¢ is the permittivity of free space. It should be noted that a
perfectly conducting flat ground was assumed and the presence
of the tower was ignored.

A. Return Stroke Mode of Charge Transfer

It has been suggested in [8] that both a return stroke-like or an
M-component-like charge transfer process might be associated
with LBEs. The return stroke mode of charge transfer for the
LBE was simulated adopting the MTLE model [28], [29]. Ac-
cording to this model, the current distribution along the channel
can be expressed as

i(2,t) = exp (—2' /L) X ig(t — 2’ Jvrs) X u(t — 2’ JvRs)
3)
in which vgg is the return stroke speed and A is the attenuation
constant.

The height of the lightning channel was assumed to be 2 km
(consistent with the height of the 10 °C isotherm and the moun-
tain height), the current attenuation constant A was set to 1 km
and the return-stroke speed was assumed to be 1.5 x 10® m/s.

Fig. 7 shows the vertical electric field at a distance of 100 km
from the channel. It is clear from Fig. 7 that the field waveform
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Fig. 8. Vertical electric field at 100 km from the lightning channel associated

with the first stroke current of the considered flash (see Fig. 2), computed using
the MTLE return-stroke model. The height of the channel was assumed to be
2 km. (a) The current attenuation constant of the MTLE model was set to 2 km
and variation as a function of the return stroke speed is shown. (b) Variation as
a function of the current attenuation constant. The return stroke speed was set
to 1.5 x 108 my/s.

shows a bipolar signature similar to LBEs observed in winter
thunderstorms in Japan [9], suggesting that a return stroke-like
process might be involved in the formation of LBEs.

Fig. 8 presents a sensitivity analysis of the field waveform as
a function of the return stroke speed (Fig. 8a) and the MTLE
current attenuation constant A [see Fig. 8(b)]. It can be seen
that an increase in the return stroke speed (Fig. 8a) results in a
narrower field waveform. Furthermore, an increase in the return
stroke speed and in the current attenuation constant results in
an increase in the field peaks of both initial half-cycle and op-
posite polarity overshoot. It is worth mentioning that, based on
simulation results (not presented here), the use of the TL model
results in a very similar field waveshape, but a larger field peak,
compared to the MTLE model.
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Sensitivity analysis of the salient parameters of the LBE radiated field at 100 km, assuming a return stroke mode of charge transfer. The height of channel

is set to 2 km. (a) Positive half-cycle width. (b) Ratio of rise to fall times. (c) Ratio of positive to negative half-cycle widths. (d) Ratio of the positive to negative

field peaks.

B. M-Component Mode of Charge Transfer

Ishii and Saito [2] suggested that LBEs can be initiated by a
long UCL that attaches to a horizontal channel section at a high
altitude. They used the Numerical Electromagnetics Code to
calculate the vertical electric field associated with the horizontal
and vertical sections of the channel. The downward progression
of the wave in the vertical section of the channel and its reflection
from the ground are similar to the 2-wave model for the M-
component mode of charge transfer proposed in [30].

We used the guided wave mechanism proposed by Rakov
et al. [31] to describe the current distribution along the channel
associated with LBEs. As with the return stroke mode of charge
transfer simulations presented in Section IV-A, the presence of
the tower was neglected in the calculations. Equation (4) presents
the expressions for the current distribution along the channel
according to Rakov ef al.’s guided wave model

(H,t — (H — 2)/vn), t < H/oym
(H,t — (H = 2)/vnm) “)
+i(H,t — (H + 2)/vm), t> Hjoy

i(z,t) =

TABLE IV
FIELD WAVEFORM CHARACTERISTICS OF LBES OBSERVED IN JAPAN
(ADAPTED FROM WU et al. [9])

Parameter Min Max Median
Initial pulse width (us) 4 32 15
Ratio of rise to fall time 0.4 4.8 1.4
Ratio of posmve. to negative 0.4 5 11
pulse width
Ratio of positive to negative 0.4 24 11
pulse peak

in which H is the junction height and vy, is the current wave
velocity.

Fig. 9 presents vertical electric field waveforms calculated at
a distance of 100 km from the channel, for different values of the
current wave progression speed (Fig. 9a) and assuming different
initiation heights (Fig. 9b). Clearly, the field waveforms become
narrower as the velocity of progression increase (Fig. 9a). It can
be seen that both the wave propagation velocity and the initiation
height affect considerably the radiated field. Increasing the speed
of the wave results in an increase of both positive and negative



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

180 T T T T T T T T T

= Initiation Height = 4 km
= |nitiation Height = 2 km
= Initiation Height = 1 km
140 F = |nitiation Height = 0.5 km

Pulse Width ( us)

20 L 1 1 ) L 1 L L 1
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

M-wave Speed / 108 (m/s)
(a)

22 T T T T T T T T T
= Initiation Height = 4 km
= Initiation Height = 2km | {
= Initiation Height = 1 km
= |nitiation Height = 0.5 km

N

Ratio of Positive to Negative Pulse Width

0.4 L L L I L L L L L
0.2 04 0.6 0.8 1 1.2 14 16 1.8 2
M-wave Speed / 108 (m/s)
()
Fig. 12.

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

= |nitiation Height = 4 km
= Initiation Height = 2 km
= |nitiation Height = 1 km
= Initiation Height = 0.5 km

Ratio of Rise to Fall Time

0.9
0.8
0.7
0.6 | L ) . | L 1 L L
0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2
M-wave Speed / 108 (m/s)
(b)
22

©

o

kSN

Ratio of Positive to Negative Peak

== |nitiation Height = 4 km
= Initiation Height = 2 km
= |nitiation Height = 1 km 4
= |nitiation Height = 0.5 km

02 04 06 08 1 12 14 16 18 2 22
M-wave Speed / 10° (m/s)

(d)

Sensitivity of M-component model predictions (salient parameters of the LBE radiated field at 100 km) to the variation of Vs and H. (a) Positive

half-cycle width. (b) Ratio of rise to fall times. (c) Ratio of positive to negative half-cycle widths. (d) Ratio of the positive to negative field peaks.

field peaks, and a decrease in the initial (positive) half-cycle
width (Fig. 9a). A higher initiation height also results in higher
field peaks of both polarities, and an increase in the width of the
positive half-cycle (Fig. 9b).

C. Comparison With LBE Observations

As seen in Figs. 8 and 9, the field waveforms calculated using
the two models are quite similar. They exhibit the bipolar signa-
ture typical of LBEs observed in winter storms in Japan. Fig. 10
shows an example of observed electric field of LBEs in Japan at
distance of 236 km (adapted from [9]). Table IV presents a sum-
mary of the parameters of the LBE field waveforms observed
in Japan by Wu et al. [9]. It can be seen that, although the ratio
of positive to negative pulse peak varies from 0.4 to 2.4 and the
ratio of the positive to negative pulse durations varies from 0.4
to 2, both median values are close to 1.

Both the return stroke and M-component models contain ad-
justable parameters which can affect the resulting field wave-
form. A sensitivity analysis to assess the effect of the variation
of the model parameters on the field salient parameters of the
waveform will be presented in the next two subsections.

The considered parameters for the analysis (see Fig. 7) are as
follows:

1) the initial half-cycle width, defined as the sum of the rise

and fall times ¢, + 1 ¢;
2) the ratio of rise to fall times ¢,. /¢ 5
3) the ratio of positive to negative half-cycle widths (¢, +
tr) /tN;

4) the ratio of the positive to negative field peaks Ap /Ax.

Here, ¢, is the time interval between 10% and 100% of the
first half-cycle and ¢ is the time interval between the peak of
the positive half-cycle and the peak of the negative half cycle.

1) Sensitivity Analysis With Respect to the Parameters of the
Return-Stroke Model: Fig. 11 shows the sensitivity of model
predictions to variation in two adjustable parameters of the
MTLE model, namely the return stroke speed vrg and the cur-
rent attenuation constant . It can be observed that by increasing
the value of the return stroke speed, regardless of the attenua-
tion constant, all the considered parameters, except for the pos-
itive half-cycle width, are within the range of those in the field
observations by Wu et al. in Japan (see Table IV). With increas-
ing the return stroke speed, the positive half-cycle width would
tend to a value of about 40 us, which is somewhat higher than



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AZADIFAR et al.: STUDY OF A LARGE BIPOLAR LIGHTNING EVENT OBSERVED AT THE SANTIS TOWER 9

the maximum value of 32 pus reported by Wu et al. [9]. The
discussion presented in the Appendix shows that the parameters
of the radiated electric fields tend to those of the current time
derivative, with increasing return-stroke speed.

2) Sensitivity Analysis With Respect to the Parameters of the
M-Component Model: Fig. 12 shows the sensitivity of model
predictions to variations in adjustable parameters of the M-
component model. In this case, the adjustable parameters are
the initiation height (H) and the current wave speed (vy/). It
can be seen that, except for the positive half-cycle width, for
which the computed values are again larger than the maximum
observed value, the ranges of observed values can be reproduced
by adjusting the parameters of the model. It is interesting to ob-
serve that, similar to the RS model, the positive half-cycle width
tends to a value of about 40 us, which corresponds to the width
of the current derivative waveform (see Appendix).

V. SUMMARY AND CONCLUSION

We presented a four-stroke downward negative lightning flash
recorded at the Séntis Tower that occurred on July 15, 2012. The
current waveform associated with the first return stroke of this
flash resembles a Gaussian pulse which, according to [4], could
be indicative of an LBE-type event.

We also presented simulation results for the radiated electric
fields considering two different models for the LBE and found
that the simulated waveforms for both models have character-
istics that agree fairly well with the experimentally observed
characteristics of radiated fields associated with LBEs, except
for the initial (positive) half-cycle width, which was somewhat
larger than the maximum experimentally observed value.

APPENDIX

As seen in Table I, the current waveform of the LBE-like pro-
cess presented in this paper is characterized by a relatively slow
risetime of 28.4 us, which is considerably longer than the rise-
time of normal return strokes. The long risetime indicates that
the frequency spectrum of the LBE current waveform contains
more lower frequencies compared to return strokes. At lower fre-
quencies, the length of the channel that carries the LBE current
can be considered as electrically short, especially for higher cur-
rent wave speeds. As a result, the higher the propagation speed,
the more the channel will look like a Hertzian dipole and, at
large distances, the radiation field will be proportional to the
derivative of the current, for which we can write

Zol [ di(t)
Efar _
= (1) 27T7'C( dt )

where [ is the length of the channel, ¢ is the speed of light,
Z, = 1207 is the intrinsic impedance of the free space, and r is
the distance to the observation point.

To illustrate the above point, we have plotted the derivative
of the measured current waveform in Fig. 13. The parameters
of the current derivative waveform are given on the figure. With
reference to Figs. 11 and 12, we can see that, indeed, as the speed
of the current wave increases, the values of the parameters of
the field waveforms tend to those of the current derivative. For
instance, the initial pulsewidth of the calculated field tends to

(AD)
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Fig. 13.  Current derivative waveform of LBE event recorded at Séntis Tower.

37 ps as the speed increases to 1.5 x 108 m/s [see Fig. 8(a)].
This value is indeed very similar to the width of the initial half-
cycle of the current derivative waveform (see Fig. 13).
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