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ABSTRACT: We revisit the problem of the propagation of a plane-strain fluid-driven fracture in a quasi-brittle impermeable medium
accounting for the presence of a fluid lag. The fracture process zone is simulated using a linear-softening cohesive model while
lubrication flow accounts for the possible occurence of a fluid lag. The solution is obtained numerically via a fully implicit scheme
based on a boundary element method for the fracture deformation and finite difference for fluid flow. The fluid lag is first automatically
captured using the Elrod-Adams lubrication cavitation model during the initiation and early stage of fracture growth. We then switch
to an algorithm tracking the fluid front for computational efficiency. Using dimensional analysis, we show that the propagation is
governed by a dimensionless toughness and a time scale characterizing the diappearance of the fluid lag (both similar to the linear
elastic fracture mechanics case) and a ratio between the in-situ minimum confining stress and the material tensile strength. The
cohesive forces reinforce the suction effect associated with a fluid lag, and leads to the further localization of the fluid pressure drop
near the tip. This ultimately results in a slight increase of fracture opening and net pressure.

1. INTRODUCTION

Some discrepancies between predictions based on linear
elastic fracture mechanics (LEFM) and observations from
laboratory and field experiments - notably larger net pres-
sure and shorter fracture length - have been reported by
a number of authors (Shlyapobersky, 1985; Shlyapobersky
et al., 1988; Thallak et al., 1993). These observations have
been often associated with a process zone around the frac-
ture tip where non-elastic processes such as large plastic de-
formations or micro-cracking are no longer negligible (Pa-
panastasiou, 1997). A number of works have accounted for
the presence of cohesive forces to study the effect of near-
tip solid non-linearities on hydraulic fracture growth (Chen
et al., 2009; Chen, 2012; Lecampion, 2012; Yao et al., 2015)
demonstrating a similar fracture evolution to that of a linear
elastic fracture. The importance of the influence of the level
of confining stress and its interplay with the presence of a
fluid lag have been recognized early by Rubin, 1993, but its
impact on propagation has not been systematically investi-
gated.

Cohesive zone models have been widely used in numer-
ical simulations to account for the non-linear behavior of

quasi-brittle materials at fracture. Such type of model re-
quires a sufficient number of elements in the cohesive zone
to ensure the accuracy of the numerical solution. Moës and
Belytschko, 2002 suggest in the context of the extended fi-
nite element method to have at least two elements inside
the cohesive zone. It is here important to note that at min-
ima the mesh scale needs to resolve the tensile zone ahead
of the fracture. This imposes a stronger mesh requirement
as the in-situ compressive stress increases – a fact that has
been seldom discussed in the context of hydraulic frac-
ture propagation with cohesive zone models (Sarris and Pa-
panastasiou, 2011; Carrier and Granet, 2012; Salimzadeh
and Khalili, 2015; Wang, 2015; Wang et al., 2016; Li et al.,
2017).

The existence of suction in the near tip region of a hy-
draulic fracture and the evolution of the fluid lag zone dur-
ing hydraulic fracture growth is now well understood in the
context of linear elastic fracture mechanics (Garagash and
Detournay, 2000; Garagash, 2006; Lecampion and Detour-
nay, 2007). Numerically, different algorithms have been
proposed. Lecampion and Detournay, 2007 and Bunger,
2005 adopt a fully implicit moving mesh method and track
the moving fronts of both the fracture tip and the fluid. A



fixed-grid algorithm is put forward by Zhang et al., 2005
and Gordeliy and Detournay, 2011 who utilize a filling frac-
tion factor / level set approach to model the evolution of
the fluid front and the disappearance of the fluid lag with
time. These different approaches require a known initial
condition (where the fluid lag is maximum) - i.e. Gara-
gash, 2006 for the plane-strain case. However, when in-
vestigating hydraulic fracture initiation and propagation us-
ing a cohesive zone approach, the quasi-brittle nature of the
fracture process and its coupling with lubrication flow re-
sults in a different response for which no initial solution is
available. The modeling of such phenomena therefore re-
quires an approach modeling the spontaneous occurrence of
the fluid lag. Recently, Shen, 2014 and Mollaali and Shen,
2018 have proposed two different approaches to automati-
cally account for a fluid lag using respectively a variational
inequality formulation and an algorithm borrowed from thin
film lubrication cavitation. We have implemented both ap-
proaches and found that the Elrod-Adams method proposed
in Mollaali and Shen, 2018 captures the fluid front position
in the most accurate manner. These lubrication with cavi-
tation algorithms are unfortunately computationally costly,
and as such not well suited at large time when the extent
of the fluid lag slowly decreases after the initial transient
associated with fracture initiation.

In this paper, we develop an algorithm accounting for
the presence of an evolving cohesive zone and a fluid lag.
We first start our scheme using the Elrod-Adams method to
model the early-time fracture growth and the spontaneous
appearance of the fluid lag. As soon as the fluid lag has
fully developed and the fluid front is starting to catch up the
fracture tip, we switch to an algorithm based on the tracking
of the fluid front (similar to the one described by Gordeliy
and Detournay, 2011).

2. PROBLEM DESCRIPTION

We investigate the case of a plane-strain fracture driven by
an incompressible Newtonian fluid under a constant injec-
tion rate in an infinite quasi-brittle impermeable medium.
We denote w as the fracture width, pf , the fluid pressure,
σo as the far-field in-situ confining stress acting normal to
the fracture plane and σyy as the stress component in the y

direction ahead of the fracture tip as illustrated in Fig. 1.
Fluid cavitation may occur due to suction effects asso-

ciated with the coupling between elastic deformation and
fluid flow in the fracture resulting in a lag between the fluid
front and fracture tip. Our objective is to investigate hy-
draulic fracture propagation accounting for the existence of
both the cohesive zone and fluid lag.

The solution of the problem is given by the net fluid pres-
sure p(x, t) = pf (x, t)−σo, the fracture opening w(x, t), the
half fracture length ℓ(t), the cohesive zone length ℓcoh (t)

Fig. 1: Problem description

and the fluid front ℓ f (t) as a function of the position x along
the fracture and time t. We denote the injection rate as Qo,
while we use the following parameters for clarity

K ′ =

√
32

π
KIc, E ′ =

E
1 − ν2

, µ′ = 12µ (1)

where E is the solid elastic modulus, KIc fracture effective
toughness for quasi-brittle solid, ν Poisson’s ratio and µ the
fluid viscosity.

We simulate the quasi-brittle behavior of the material at
fracture via a linear-softening cohesive zone model. Cohe-
sive tractions act on the fracture surface and decay linearly
as function of aperture from the peak tensile strength to zero
for fracture width larger than a critical opening

σcoh (w) =



σT (1 − wc) 0 ≤ w < wc

0 w > wc

(2)

where σT is the maximum cohesive traction and wc the crit-
ical opening beyond which cohesive tractions vanish. The
critical fracture energy of the material for such a linear soft-
ening law is therefore

Gc =
1

2
σTwc =

K2
Ic

E ′
(3)

which, using Irwin’s relation, can be related to the fracture
toughness KIc of the material upon the assumption of linear
elastic fracture mechanics.

3. GOVERNING EQUATIONS

Elasticity For a pure Mode I plane-strain fracture propa-
gating perpendicular to the minimum principal in-situ com-
pressive stress, the elasticity reduces to a boundary integral
equation relating the net pressure p to the fracture opening
w which can be written accounting for the presence of co-
hesive forces (Hills et al., 2013)

E ′

4π

∫ ℓ

0

( 1

x − x ′
−

1

x ′ + x

)
∂w

∂x ′
dx ′ = pf (x)−σo−σcoh (w(x))

(4)
where σo the in-situ compressive stress normal to the frac-
ture plane is uniform.



Lubrication Under the assumption of zero leak-off, as the
fluid compressibility is much smaller than the fracture elas-
tic compliance, the width-averaged mass conservation re-
duces to the following volume conservation:

∂w

∂t
+
∂q
∂x
= 0, 0 < x < ℓ f (5)

where the local fluid flux q is related to the local pressure
gradient under the lubrication approximation

q = −
w3

µ′
∂pf

∂x
, 0 < x < ℓ f (6)

The viscous fluid flow in the fracture is therefore gov-
erned by

∂w

∂t
=
∂

∂x

(
w3

µ′
∂pf

∂x

)
, 0 < x < ℓ f (7)

Boundary condition At the fracture center x = 0, injec-
tion of the fluid is idealized as a line source with a constant
injection rate Qo. The fracture front x = ℓ is constrained by
zero fracture opening.

lim
x→0

q = Qo, w(ℓ, t) = 0 (8)

while in the fluid lag and at the fluid front boundary ℓ f (t) ,
we have the following:

pf (x) = 0, ℓ f ≤ x < ℓ, ℓ̇ f = −
w2

µ′
∂pf

∂x

�����x=ℓf
(9)

Global continuity equation By integrating the lubrica-
tion equation considering the inlet condition, one gets the
global fluid balance,

2

∫ ℓf

0
wdx = Qot (10)

Propagation criteria For a quasi-brittle medium, the on-
set of de-cohesion is controlled by the stress component per-
pendicular to the fracture plane σyy ,

σyy ≥ σT (11)

In linear elastic materials, a propagating fracture, as a re-
sult of LEFM, can be expressed as a limiting asymptote of
the fracture opening at the tip.

w ∼
K ′

E ′
(ℓ − x)1/2, 1 − x/ℓ ≪ 1 (12)

Table 1: Viscosity scaling (M-scaling) and toughness scaling (K-
scaling, an equivalent scaling, see Eq. (3), where the effective
toughness dominates the hydraulic fracture propagation in quasi-
brittle medium)

M K

ϵ ϵm =

(
µ′

E ′t

)1/3
ϵmK

4/3
m

L Lm =

(
E ′Q3

ot4

µ′

)1/6
LmK

−2/3
m

Gk Km =
K ′

E ′

(
E ′

µ′Qo

)1/4
1

Gm 1 K −4m

4. DIMENSIONAL ANALYSIS

We scale the different variables focusing on a scaling em-
phasizing fracture toughness and viscosity following Gara-
gash, 2006. We scale w(x, t), pf (x, t), and ℓ(t) as follows:

w = ϵLΩ, pf − σo = ϵE ′Π, ℓ = Lγ (13)

We also define the normalized position along the fracture
ξ = x/ℓ, the dimensionless cohesive length ξcoh = ℓcoh/ℓ
and fluid front location ξ f = ℓ f /ℓ. We denote the viscos-
ity scaling and toughness scaling respectively by subscript
m and k. The expressions for the length scale L and the
small number ϵ are shown in Table 1 where Gm and Gk
are dimensionless groups. These scalings are similar to the
one obtained assuming linear elastic fracture mechanics by
defining a corresponding fracture toughness using Eq. (3),
i.e. KIc =

√
GcE ′ =

√
σTwcE ′/2. In the case of a cohesive

zone, the solution is function of an additional dimensionless
parameter relating the ratio of in-situ confinement to tensile
strength σo/σT .

Note that we can also define a length scale wµ character-
izing the opening at the fluid front like in Garagash, 2015,
and its ratio with critical opening wc which characterizes
the boundary of the cohesive zone

wµ =

(
µ′E ′Qo

σ2
o

)1/2
,

wc

wµ
=
π

16

σo
σT
K 2

m (14)

The penetration of the cohesive zone by the fluid is linked
to wc/wµ and thus ultimately to σo/σT and the dimension-
less fracture toughness Km (see Table 1). This expression
agrees with the intuition that a larger confining stress tends
to push the fluid toward the fracture tip and results in a larger
penetration degree of the cohesive zone.

We will formulate the problem in a time-domain viscosity
scaling similar to Lecampion and Detournay, 2007. The so-
lution (γm, ξ f , ξcoh,Ωm,Πm) therefore depends on the nor-
malized position ξ, the dimensionless toughness Km, the
ratio σo/σT and the dimensionless time defined as



τ = t/tom, tom =
E ′2µ′

σ3
o

(15)

5. NUMERICAL ALGORITHM

We adopt a fixed regular grid and discretize elasticity by us-
ing displacement discontinuity method with piece-wise con-
stant elements. The fluid mass conservation is discretized
by finite difference. We use an implicit scheme to solve
the fluid pressure and the associated opening. Our scheme
consists of the use of two successive algorithms. In the be-
ginning, denoted as the lag-initiation algorithm, we adopt
an Elrod-Adams based method in order to automatically ac-
count for the appearance of the fluid lag. In a second stage,
we use the results of the previous algorithm to initialize a
simulation tracking the fluid front position via the introduc-
tion of a filling fraction variable as in Gordeliy and Detour-
nay, 2011. This allows us to to perform simulations with
a larger span of dimensionless time at a reduced computa-
tional cost. We choose the same element size in both al-
gorithms, and solve iteratively for the time-step increment
corresponding to a given increment of fracture length. A
fully implicit time stepping method is used in both cases.

5.1. Lag-initiation algorithm

Overview We initiate the fracture aperture from the solu-
tion of a static elastic fracture under a uniform fluid pressure
slightly larger than σo. For a given fracture length incre-
ment, the solution is obtained using three nested iterative
loops: starting from a trial time step, we solve the fluid
pressure for all elements inside the fracture using a quasi-
Newton method. Such a procedure is repeated until all ele-
ments reach a consistent state: either fluid or vapor. A new
estimate of the cohesive forces is obtained in another loop.
We obtain the converged solutions on cohesive forces using
fixed-point iterations with under-relaxation. The time step
is adjusted iteratively in an outer loop using a bi-section and
secant method in order to fulfill the propagation criterion.

Elasticity
Aw = p f − σcoh (w) − σo (16)

where A is the elastic matrix obtained via the discretization
of the elastic operator using the displacement discontinuity
method, p f , σo, σcoh are the vectors of fluid pressure, con-
fining stress and cohesive forces respectively.

Elrod-Adams lubrication A state variable θ is intro-
duced in the mass conservation, characterizing the percent-
age of liquid occupying the fracture within a certain element
as in Mollaali and Shen, 2018. All the elements inside the
fracture can be classified into three domains.

ηp = {i ∈ ηΓ | θi = 1, pf i > 0}

ηθ = {i ∈ ηΓ | 0 < θi < 1, pf i = 0}

ηex = {i ∈ ηΓ | i < (ηp ∪ ηθ ), pf i = 0, θi = 0}

(17)

where ηp ∩ ηθ = ∅, ηΓ = ηp ∪ ηθ ∪ ηex . For ηp, liq-
uid is completely filled inside the element, while ηθ, ηex
corresponds to the fluid lag. The percentage of the liquid
mass inside the fluid lag differs from ηθ (0 < θ < 1) and
ηex (θ = 0). The lubrication equation integrated over ele-
ment i writes as

∫
i

∂(θw)
∂t

dx︸         ︷︷         ︸
1

+

∫
i

∂

∂x

(
−
w3

µ′
∂pf

∂x

)
dx︸                      ︷︷                      ︸

2

−
Qo

2
δ(i,1)︸    ︷︷    ︸
3

= 0 (18)

The first term is discretized as ,∫
i

∂θw

∂t
dx =

1

∆t
h(θiwi − θ

o
i w

o
i ) (19)

where the superscript o denotes the solution at the previous
time step. The second term is discretized as∫

i

∂

∂x

(
−
w3

µ′
∂pf

∂x

)
dx =

[
−
w3

µ′
∂pf

∂x

] i+1/2

i−1/2

=
1

µ′
w3
i−1/2

( pf ,i − pf ,i−1

h

)
−

1

µ′
w3
i+1/2

( pf ,i+1 − pf ,i

h

)
(20)

wi−1/2 =
wi + wi−1

2
, wi+1/2 =

wi + wi+1

2
(21)

where h is the element size.
After back-substituting the elasticity into the lubrication

equation, we solve for pf ,i (i ∈ ηp) and θi (i ∈ ηθ ) through
a quasi-Newton method using the solution of the previous
time step as an initial guess. The lag-initiation algorithm
consists of updating the sets of ηp and ηθ as demonstrated
in Table 2 , which is already implemented in Mollaali and
Shen, 2018 to study the propagation of a linear elastic hy-
draulic fracture.

Propagation condition In the context of a cohesive zone,
we check the equality of the tensile stress component ahead
of the fracture tip with the material tensile strength:

σyy,n+1 = An+1, jw j − σo = σT , j = 1...n (22)

where n is the element number inside the fracture at the cur-
rent time step.

In a linear elastic medium, the propagation condition is
obtained by integrating the tip asymptote over the element
closest to the fracture tip. The averaged opening for this
element wn is in function of K ′

wn =
2

3

K ′
√

h
E ′

(23)



Table 2: Algorithm using the Elrod-Adams model (adjusted from Mollaali and Shen, 2018) within one iteration with a given cohesive
force vector

Repeat solving for pf ,i, θi for i ∈ ηp ∪ ηθ using Newton’s method;
for i ∈ ηΓ do

if pf ,i < 0 then set pf ,i = 0, ηp ← ηp \ {i}, ηθ ← ηθ ∪ {i}, ηex ← ηΓ \ (ηp ∪ ηθ )
if θi > 1 then set θi = 1, ηθ ← ηθ \ {i}, ηp ← ηp ∪ {i}, ηex ← ηΓ \ (ηp ∪ ηθ )
if θi < 0 then set θi = 0, ηθ ← ηθ \ {i}, ηex ← ηΓ \ (ηp ∪ ηθ )

end
until pf ,i ≥ 0, 0 ≤ θi ≤ 1 for i ∈ ηΓ are satisfied.

5.2. Fluid-front-tracking algorithm

Overview The fluid-front tracking algorithm considers
that there is a clear boundary between the injection fluid
and cavity. By using a filling fraction ϕ, such code collects
all the liquid mass in the fluid lag to one partially-filled ele-
ment which is next to the fully-filled element (fluid channel
element) nearest to the tip (denoted as the mth element).

We solve the increment of the opening in the channel ele-
ments for a given fracture front through three nested loops.
One tracks the fluid front, one updates the time step to fulfill
the propagation condition and another solves the non-linear
system due to the cohesive forces and lubricated fluid flow
through a fixed-point scheme.

Elasticity

pc − σo − σcohc = Acww + Aol (−σo − σcohl) (24)

where pc is the vector net pressures in the channel part of
the fracture; σcohc and σcohl cohesive forces applied in the
fluid channel and fluid lag.

Acw = Acc − AclA
−1
ll Alc

Aol = AclA
−1
ll

(25)

Acc,Acl,Alc,All are sub-matrix of the elastic matrix A as-
sociated with elements inside the fluid channel and lag.

Lubrication flow For fluid channel elements (1 ≤ i ≤ m),

∆wi =
∆t
µ′h2

(
w3
i−1/2pc,i−1 + w3

i+1/2pc,i+1
)

−
∆t
µ′h2

(w3
i−1/2 + w

3
i+1/2)pc,i + δ(i,1)

Qo∆t
2h

− δ(i,m)Fm − H (i − mo)
m∑

k=mo+1

δ(i,k)Fk

(26)

The second term on the second line represents the contri-
bution due to a constant injection rate and the two terms on
the thrid line are mass corrections due to the partially-filled
element where the fluid front locates. H (·) is the Heaviside
step function.

Fm =



ϕwm+1 − ϕ
owo

m+1, m = mo

ϕwm+1 − ϕ
owo

mo+1 −
∑mo

i=m+1 wi, m < mo

(27)

Fk =



(1 − ϕo)wo
k
, k = mo + 1

wo
k
, k > mo + 1

(28)

where the superscript o refers to the solutions at the previous
time step. The lubrication equation can be thus arranged as

∆w = L · pc + S1 − Sm − Smo (29)

Coupled system of equations We back-substitute the
elasticity and write the coupled system as in Eq. (30). For
a given fracture front and a trial time step, we solve for in-
cremental apertures ∆w using fixed-point iterations. The
tangent linear system reads:

(I − L(∆w(s−1))Acw)∆ws = L(∆w(s−1))Acww
o

+L(∆w(s−1))Aol (−σo − σcohl (∆w(s−1)))
(30)

where s refers to the formulation related to the solution of
the previous iteration.

Update of the fluid front position The fluid front esti-
mation is conducted based on the solution at the previous
iteration.

ℓ(s)
f
= (mo + ϕo)h + V (s−1)

∆t,

m(s) = floor[ℓ(s)
f
/h],

ϕ(s) = ℓ(s)
f
/h − m(s)

(31)

where V is the fluid front velocity and can be obtained
through the fracture opening and net pressure,

V =
1

2

(
Vo −

1

µ′
w2
m

∂p
∂x

)
,

∂p
∂x
=

(
pc,m −

pc,m + σo
ϕ + 1/2

− pc,m−1

)
/(2h), m > 1

(32)

The iteration starts with V (0) = Vo and continues until
|(ℓ(s)

f
− ℓ(s−1)

f
)/ℓ(s−1)

f
| is within a set tolerance.



5.3. Connection of the two algorithms

The fluid-front-tracking algorithm calls for the solution at
the previous time step (wo, po

f
,Vo,mo, ϕo, ℓo

f
) as an initial

condition. Such a solution comes from the results of the lag-
initiation / Elrod-Adams based algorithm at a chosen time
step k. Vo is approximated by the velocity of the fluid front
by using fluid front at the previous (k − 1) and the latter
(k + 1) time step of the chosen one.

Vo = (ℓ f ,k+1 − ℓ f ,k−1)/(tk+1 − tk−1) (33)

where tk−1 and tk+1 are respectively propagation time at the
(k − 1)th and (k + 1)th time step.

mo = mk
o is the number of elements in the domain ηp

at the time step k. ϕo is obtained by considering the fluid
mass in the lag elements all gathered in the partially-filled
element (the (mk

o + 1)th element).

ϕo =
∑
i

θki w
k
i /wmk

o+1
, i ∈ ηθ (34)

We get the initial guess of the fluid front through Eq. (31).

6. RESULTS AND DISCUSSIONS

6.1. Benchmark for LEFM

Several simulations using a linear elastic fracture mechan-
ics criterion (no cohesive zone) have been carried out using
different Km values in order to benchmark our scheme. We
present here the evolution of fluid fraction and dimension-
less fracture length with dimensionless time spanning from
τ = 10−9 to 1 as illustrated in Fig. 2 and Fig. 3. The solu-
tions obtained from our calculation (CZMLAG) match well
the numerical solutions reported in Lecampion and Detour-
nay, 2007.
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Fig. 2: Evolution of fluid front ξ f for different Km
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Fig. 3: Evolution of fracture length γm in viscosity scaling for
different toughness Km

6.2. A stress-dependent numerical accuracy

The mesh size has a significant effect on the stress accuracy
ahead of the tip and influences a lot the validity of the propa-
gation criterion. By studying the stress field of a static frac-
ture with uniform net pressure, we show that large σo/σT
calls for more elements inside the cohesive zone to maintain
the same stress accuracy, as shown in Fig. 4.

1 5 10 50 100 500
0.001

0.010

0.100

1

Fig. 4: Mesh dependency of the stress accuracy ahead of the frac-
ture tip σyy,n+1 (stress component of the element nearest to the
fracture tip). The relative error is calculated only when σyy,n+1 is
in traction.

6.3. Effect of the solid non-linearity

We present in this section the numerical results of a perme-
able cohesive zone with Km = 1.009 and discuss briefly
the impact of the solid non-linearity and the dimensionless
ratio σo/σT on the fracture propagation. For all simula-
tions shown here, there are sufficient elements in the cohe-
sive zone to assure that the stress field calculation ahead of
the fracture tip is around a tolerance of 1%.

In quasi-brittle materials, the cohesive zone develops and
saturates after a certain time. We are more interested in the
states with already a saturation of the cohesive zone. As il-



lustrated in Fig. 5, the length of the non-cohesive part of the
fracture develops with time and slowly converge to the lin-
ear elastic curve. σo/σT determines the dimensionless time
at which the non-cohesive fracture length begins to develop.
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Fig. 5: Time evolution of the non-cohesive part of the fracture for
different ratio σo/σT - - Km = 1.009 case.

The dimensionless fracture length presents an evolution
similar to that of a linear elastic fracture, as shown in Fig. 6.
However, the fluid fraction can be much less than the linear
elastic case depending on the evaluated dimensionless time,
as shown in Fig. 7.

As the propagation goes on, the fluid lag and cohesive
zone take up less and less fraction of the whole fracture.
For a given dimensionless toughness Km, a larger σo/σT
makes it easier to keep the fluid front embedded inside the
cohesive zone as shown in Fig. 8. The fluid lag can be much
larger compared with an elastic fracture, as shown in Fig. 9.

Cohesive forces strengthen the suction effect associated
with the fluid lag and confining stress. With a small amount
of fluid pushed toward the fracture center, we observe an
increase of the net pressure and fracture opening at the in-
let as demonstrated in Fig. 10 and Fig. 11. The drop of the
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Fig. 6: Time evolution of the dimensionless fracture length
γm = ℓ/Lm in viscosity scaling for different ratio σo/σT - -
Km = 1.009 case.
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Fig. 7: Time evolution of the fluid fraction ξ f for different ratio
σo/σT - - Km = 1.009 case.
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Fig. 8: Time evolution of cohesive length ξcoh (shown as stars)
and fluid lag 1 − ξ f (shown as squares) in viscosity scaling for
different ratio σo/σT - - Km = 1.009 case.
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Fig. 9: Time evolution of fluid lag (ℓ − ℓ f )/Lm for different ratio
σo/σT - - Km = 1.009 case.



pressure is localized near the tip because of the strengthened
suction effect via cohesive traction, leading to a more uni-
form pressure distribution near the fracture center as shown
in Fig. 12.
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Fig. 10: Time evolution of the dimensionless opening at the frac-
ture inlet - - Km = 1.009 case.
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Fig. 11: Time evolution of the dimensionless net pressure at the
inlet - - Km = 1.009 case.

7. CONCLUSION

We have studied the effect of solid non-linearity on the prop-
agation of a plane-strain hydraulic fracture by considering
the existence of a cohesive zone and a fluid lag. The suction
associated with the fluid lag and the cohesive zone clamps
the fracture tip, and further localizes the pressure drop. As a
result, the opening and the net pressure increases when the
cohesive zone becomes relatively small compared with the
whole fracture. The propagation is not solely determined
by the dimensionless toughness Km (related to the fracture
energy) and the time scale tom but also by the ratio σo/σT .
For a given Km value, σo/σT determines the development
of the cohesive zone and the evolution of the fluid lag.

The algorithm presented in this paper is very specific to
the problem of a plane strain hydraulic fracture. However, it
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Fig. 12: Dimensionless opening and net pressure profiles at τ =
0.002 for Km = 1.009 case. “+” indicates the boundary of the
cohesive zone and “×” indicates the fluid front location.

can be easily extended to solve the equivalent axisymmetric
fracture case. In spite of the simple geometry, it is already
an extremely challenging effort for such algorithm dealing
with several orders of magnitude of time and fracture ex-
tension. The numerical difficulty is mainly brought by the
requirement of a sufficiently fine mesh to capture the small
tensile zone ahead of the tip which is significantly shrinking
for larger ratio σo/σT . Without the knowledge of an ini-
tial solution in the quasi-brittle case, the algorithm proposed
here shows less computational cost compared with the lag-
initiation algorithm. More work is still required in order
to investigate larger ratio σo/σT as well as longer fracture
propagation.
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