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Abstract
The operators of power distribution systems strive to lower their operational costs and improve

the quality of the power service provided to their customers. Furthermore, they are faced with

the challenge of accommodating large numbers of Distributed Energy Resources (DERs) into

their grids. It is expected that these problems will be tackled with a large-scale deployment

of automation technology, which will enable the real-time monitoring and control of power

distribution systems (i.e., similar to power transmission systems). For this purpose, real-time

situation awareness w.r.t. the state and the stability of the system is needed. In view of the

deployment of such automation functions into power distribution grids, there are two binding

requirements. Firstly, the system models have to account for the inherent unbalances of

power distribution systems (i.e., w.r.t. the components of the grid and the loads). Secondly,

the analysis methods have to be real-time capable when deployed into low-cost embedded

systems platforms, which are the cornerstones of automation. In other words, the analysis

methods need to be computationally efficient.

This thesis focuses on the modeling of unbalanced polyphase power systems, as well as the

development, validation, and deployment of real-time methods for State Estimation (SE) and

Voltage Stability Assessment (VSA) for such systems. More precisely, the following theoretical

and practical contributions are made to the field of power system engineering.

1. Fundamental properties of the compound admittance matrix of polyphase power grids

are identified. Specifically, theorems w.r.t. the rank of the compound admittance matrix,

the feasibility of Kron Reduction (KR), and the existence of compound hybrid matrices

are stated and formally proven. These theorems hold for generic polyphase power grids

(i.e., which may be unbalanced, and have an arbitrary number of phases).

2. A Voltage Stability Index (VSI) for real-time VSA of polyphase power systems is proposed.

The proposed VSI is a generalization of the well-known L-index, which is achieved by

integrating more generic models of the power system components. More precisely, the

grid is represented by a compound hybrid matrix, slack nodes by Thévenin equivalents,

and resource nodes by polynomial load models. In this regard, the theorems mentioned

under item 1 substantiate the applicability of the proposed VSI.
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3. A Field-Programmable Gate Array (FPGA) implementation for real-time SE of polyphase

power systems is presented. This state estimator is based on a Sequential Kalman

Filter (SKF), which – in contrast to the standard Kalman Filter (KF) – is suitable for

implementation in such dedicated hardware. In this respect, it is formally proven that

the SKF and the standard KF are equivalent if the measurement noise variables are

uncorrelated. To achieve high computational performance, the grid model is reduced

through KR, and the SKF calculations on the FPGA are parallelized and pipelined.

4. The methods stated under items 1–3 are deployed into an industrial real-time controller,

which is used to control a real-scale microgrid. This microgrid is equipped with a

metering system composed of Phasor Measurement Units (PMUs) coupled with a Phasor

Data Concentrator (PDC). The real-time capability of the developed methods is validated

experimentally by measuring the latencies of the PDC-SE-VSA processing chain w.r.t.

the PMU timestamps.

Keywords: power distribution systems, automation, active distribution networks, microgrids,

polyphase power systems, unbalanced power grids, compound admittance matrix, compound

hybrid matrix, Kron reduction, state estimation, sequential Kalman filter, phasor measurement

units, voltage stability assessment, voltage stability index, L-index, Thévenin equivalent,

polynomial load model, embedded systems, field-programmable gate arrays, COMMELEC.
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Zusammenfassung

Verteilnetzbetreiber sind bestrebt, ihre Betriebskosten zu senken und die Qualität der Dienst-

leistungen für ihre Kunden zu verbessern. Ausserdem sehen sie sich gegenwärtig mit dem

Problem konfrontiert, eine grosse Zahl verteilter Energieanlagen (Distributed Energy Resources,

DERs) ins Netz zu integrieren. Um dieser Probleme Herr zu werden, werden die Betreiber

voraussichtlich die Automatisierung der Verteilnetze in Angriff nehmen, um diese dann in

Echtzeit überwachen und regeln zu können (d.h., ähnlich wie dies bei Übertragungsnetzen

bereits der Fall ist). Die Grundvoraussetzungen hierfür sind die Erfassung des Zustandes und

der Stabilität des Stromnetzes in Echtzeit. Im Hinblick auf den Einsatz in Verteilnetzen gilt

es hierbei, die folgenden Anforderungen zu erfüllen. Erstens müssen die Systemmodelle den

Asymmetrien elektrischer Verteilnetze (d.h., des Netzes und der Lasten) Rechnung tragen.

Zweitens müssen die Analyseverfahren den Echtzeitanforderungen eingebetteter Systeme

genügen, da diese das technische Rückgrat der Automatisierung bilden. Dies verlangt nach

Recheneffizienz.

Die vorliegende Doktorarbeit befasst sich mit der Modellierung asymmetrischer Mehrpha-

sensysteme, sowie mit der Entwicklung, Validierung, und dem Einsatz von Echtzeitmethoden

zur Zustandsbeobachtung (State Estimation, SE) und Spannungsstabilitätsanalyse (Voltage

Stability Assessment, VSA) solcher Systeme. In diesem Zusammenhang leistet diese Arbeit die

folgenden Beiträge auf dem Gebiet der elektrischen Energietechnik:

1. Grundlegende Eigenschaften der Verbundamittanzmatrix von Mehrphasensystemen

werden identifiziert. Genauer gesagt, es werden Lehrsätze aufgestellt und bewiesen,

welche sich mit dem Rang der Verbundadmittanzmatrix, der Durchfürbarkeit der Kron-

schen Reduktion (Kron Reduction, KR), und der Existenz von Verbundhybridmatrizen

beschäftigen. Die besagten Lehrsätze sind für allgemeine Mehrphasensysteme gültig

(d.h., asymmetrisch und mit einer beliebigen Anzahl Phasen).

2. Ein Spannungsstabilitätsindex (Voltage Stability Index, VSI), welcher die Analyse von

Mehrphasensystemen in Echtzeit ermöglicht, wird vorgestellt. Der besagte VSI ist eine

Verallgemeinerung des bekannten L-Index, welche allgemeinere Modelle der Systembe-

standteile verwendet. Genauer gesagt wird das Netz durch eine Verbundhybridmatrix,

Bilanzknoten durch Théveninsche Äquivalente, und Generator- sowie Lastschienen

durch polynomielle Modelle dargestellt. Hierbei werden die unter Punkt 1 aufgeführten

Lehrsätze hinzugezogen, um die Anwendbarkeit des VSI zu untermauern.
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3. Ein auf einer anwenderprogrammierbaren logischen Schaltung (Field-Programmable

Gate Array, FPGA) basierter, echtzeitfähiger Zustandsbeobachter für Mehrphasensy-

steme wird vorgestellt. Dieser Zustandsbeobachter fusst auf einem sequentiellen Kal-

manschen Filter (Sequential Kalman Filter, SKF), welches sich – im Gegensatz zum

herkömmlichen Kalmanschen Filter (Kalman Filter, KF) – für derlei Geräte eignet. Hier-

für wird ein weiterer Lehrsatz aufgestellt und bewiesen, welcher für unkorreliertes

Messrauschen die Äquivalenz der besagten Filter garantiert. Um hohe Rechenleistung

zu erreichen, wird das Netzmodell durch KR reduziert, und der Durchsatz des SKF

mittels Parallelisierung und Pipelining auf dem FPGA optimiert.

4. Die unter Punkt 1–3 erwähnten Verfahren werden in einen Echtzeitregler integriert

und in einem realen Inselnetz getestet. Dieses Inselnetz ist mit einem Messsystem

ausgerüstet, welches sich aus Phasormesseinheiten (Phasor Measurement Units, PMUs)

und einem Phasordatenkonzentrator (Phasor Data Concentrator, PDC) zusammensetzt.

Die Echtzeitfähigkeit der entwickelten Verfahren wird experimentell nachgewiesen,

nämlich durch Messung der Latenzzeiten der PDC-SE-VSA-Verarbeitungskette im Bezug

auf die Zeitmarken der PMUs.

Stichwörter: Stromverteilnetze, Automatisierung, Inselnetze, Mehrphasensysteme, Phasen-

asymmetrie, Verbundadmittanzmatrix, Verbundhybridmatrix, Kronsche Reduktion, Zustands-

beobachtung, sequentielles Kalmansches Filter, Phasormesseinheiten, Spannungsstabilitäts-

analyse, Spannungsstabilitätsindex, L-Index, Théveninsches Äquivalent, polynomielles Last-

modell, eingebettete Systeme, programmierbare logische Schaltungen, COMMELEC.
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Résumé

Les gestionnaires des réseaux de distribution d’électricité s’efforcent de réduire les coûts

d’exploitation et d’améliorer la qualité de service à la clientèle. En plus, l’intégration d’un

grand nombre de ressources énergétiques distribuées (Distributed Energy Resources, DERs)

dans les réseaux de distribution pose un grand défi. Ce problème peut être maîtrisé avec

des technologies d’automation, qui permettront la surveillance et le pilotage des réseaux

de distribution en temps réel (c.-à-d., avec une approche similaire à celle utilisée dans les

réseaux de transport). Cela requiert la connaissance situationnelle quant à l’état et à la stabilité

du système. Des outils d’automation pour des résaux de distribution doivent répondre aux

critères suivants. Premièrement, les modèles de systèmes doivent prendre en compte les

déséquilibres qui existent dans les réseaux de distributions (c.-à-d., déséquilibres du réseau et

des charges). Deuxièmement, les méthodes d’analyse doivent être capable d’être exécutées en

temps réel dans des systèmes embarqués, qui constituent l’épine dorsale de l’automation. Par

conséquence, les méthodes d’analyse doivent être computationellement efficaces.

Cette thèse traite la modélisation de systèmes électriques polyphasés déséquilibrés, ainsi

que le développement, la validation, et la mise en service de méthodes pour l’observation de

l’état (State Estimation, SE) et l’analyse de la stabilité de tension (Voltage Stability Assessment,

VSA) de ce genre de systèmes électriques. Plus préciseément, les contributions théoriques et

pratiques de la thèse sont les suivantes :

1. Des attributs fondamentaux de la matrice d’admittance composite de systèmes élec-

triques polyphaseés sont identifiés. Plus précisément, des théorèmes concernant le rang

de la matrice d’admittance composite, la faisabilité de la réduction de Kron, et l’exis-

tence des matrices hybrides composites sont formulés et démontrés. Ces théorèmes

sont valides pour des réseaux polyphasés généraux (c.-à-d., déséquilibrés et avec un

nombre quelconque de phases).

2. Un indice de stabilité de tension (Voltage Stability Index, VSI) pour des systèmes élec-

triques polyphasés est proposé. Ce VSI est une généralisation du L-indice, qui employes

des modèles plus génériques des composants du réseau. Plus précisément, le réseau

est décrit par une matrice hybride composite, les noeuds pivots par des équivalents de

Thévenin, et les neouds de ressources par des modèles polynomiales. Les théorèmes

mentionnés dans le point 1 sont utilisés pour certifier l’applicabilité du VSI.
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3. Une implementation en temps réel d’un observateur d’état dans un réseau de portes

programmables à la demande (Field-Programmable Gate Array, FPGA) est présentée.

Cet observateur d’état est basé sur un filtre de Kalman séquentiel (Sequential Kalman

Filter, SKF), qui est approprié pour ce genre de dispositifs – contrairement au filtre

de Kalman (Kalman Filter, KF) standard. Dans ce contexte, il est démontré que ces

filtres sont équivalents au cas où les variables aléatoires qui représentent le bruit soient

décorrelées. Afin d’atteindre de bonne performance, le modèle de réseau est réduit via

la méthode KR, et les calculs pour le SKF sont parallelisés et expédiés par pipeline.

4. Les méthodes listées dans les points 1–3 sont mises en service dans un contrôleur

industriel, qui gère en temps réel un microréseau à l’échelle réelle. Ce microréseau est

équipé avec un système de mesure qui se compose d’unités de mesure de phaseurs

(Phasor Measurement Units, PMUs) et d’un concentrateur de données de phaseurs

(Phasor Data Concentrator, PDC). Le fonctionnement en temps réel de ces méthodes est

validée expérimentalement en mesurant les latences de la chaîne de calcul PDC-SE-VSA

par rapport aux chronotimbres issues des PMUs.

Mots clefs : systèmes de distribution d’électricité, automation, microréseaux, systèmes élec-

triques polyphasés, réseaux électriques déséquilibrés, matrice d’admittance composite, ma-

trice hybride composite, réduction de Kron, observation d’état, filtre de Kalman séquentiel,

unités de mesure de phaseurs, analyse de stabilité de tension, indice de stabilité de tension,

L-indice, équivalent de Thévenin, modèles polynomiales, systèmes embarqués, réseaux de

portes programmables à la demande, COMMELEC.
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1 Introduction

1.1 Motivation

As known, the operation of power transmission systems is automated to a very high degree.

This automation relies on the integration of Supervisory Control and Data Acquisition (SCADA)

and Energy Management Systems (EMSs) [1] (see Figure 1.1). The EMS is a centralized platform

of computer-aided tools which perform different functions like state estimation, contingency

analysis, stability assessment, voltage/frequency monitoring, economic dispatch, and so forth.

These applications are facilitated by a library of numerical methods for (standard, optimal, or

continuation) power flow, least-squares regression, Kalman filtering, and the like. Conversely,

the SCADA is a distributed infrastructure composed of instrumentation and communication

systems, which acquires measurement data and may send control signals. That is, the SCADA

interfaces the EMS with the power system apparatus.

Historically, power distribution systems did not have a part in this automation effort. Instead,

operational issues were solved entirely during the planning stage (e.g., [2], [3–5], and [6–8]).

Recently, automation technology has found its way into power distribution systems, because

the operators strive to keep the operational costs low, and improve the quality and reliability of

the services provided to their customers. This development is fostered further by the massive

integration of Distributed Energy Resources (DERs), such as distributed generators (e.g., solar

cells or wind turbines), energy storage systems (e.g., supercapacitor, battery, or power-to-gas

technologies), and novel loads (e.g., electric vehicles). That is, the power distribution systems

of the future are envisioned as Active Distribution Networks (ADNs), which allow to manage

the electricity flows through control of the DERs and the grid topology (cf. [9]). In this regard,

automation tools for real-time monitoring and control are practicable solutions to operate

ADNs safely (i.e., keep the voltages within specified bounds, avoid line congestions, etc.) and

enable dispatchability along with the provision of ancillary services to the bulk power system.

Of course, real-time control requires real-time situation awareness w.r.t. the state (e.g., [10])

and the stability (e.g., [11]) of the system. This has driven the development and standardization

of methods for monitoring [12] and control [13] of ADNs. In view of large-scale utilization,
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Energy Management System (EMS)

Supervisory Control and Data Acquisition System (SCADA)

Power System Apparatus

Instrumentation (Remote Terminal Units, Phasor Measurement Units)

Data Acquisition Supervisory Control

Measurement Data Control Signals

Applications
● Topology Processing
● State Estimation
● Contingency Analysis
● Stability Assessement
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● Economic Dispatch

Numerical Methods
● Power Flow
● Optimal Power Flow
● Continuation Power Flow
● Least-Squares Regression
● Kalman Filters

Communication Systems (Optical Fiber, Electrical Wire, Radio)

Grid (Lines, Transformers, Compensators, Breakers)

Generators Loads

Figure 1.1 – Functionality and interaction of EMS, SCADA, and power system apparatus.

these methods have to be deployed into low-cost embedded systems, for instance based

on Field-Programmable Gate Arrays (FPGAs), and run in real time (i.e., at refresh rates of

tens of frames per second) with highly deterministic execution time. Thus, they have to be

computationally efficient. Moreover, the inherent unbalances of power distribution systems

w.r.t. the components of the grid and the loads have to be considered – as opposed to power

transmission systems, which are typically balanced.

Within this context, this thesis continues the research activities carried out at the Distributed

Electrical Systems Laboratory (DESL) of the École Polytechnique Fédérale de Lausanne (EPFL) in

terms of real-time monitoring [14–16] and control [17] of power distribution grids. Specifically,

this thesis deals with the modeling of unbalanced polyphase power grids, as well as the

development, validation, and deployment of real-time methods for State Estimation (SE) and

Voltage Stability Assessment (VSA) for such systems. To this end, model reduction techniques

are applied, computationally efficient algorithms are proposed, and implementations of these

algorithms are developed in dedicated hardware and software.
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1.2. Contributions

1.2 Contributions

The contributions of this thesis are as follows.

1. Fundamental properties of the equivalent circuits of unbalanced polyphase grids are

rigorously identified. Namely, conditions that determine the rank of the compound

admittance matrix1 of polyphase circuits and its diagonal subblocks are established.

In particular, it is shown that the diagonal blocks of the compound admittance matrix

have full rank, if the branch graph is weakly connected and the compound electrical

parameters of the polyphase lumped elements are symmetric, invertible, and lossy.

Based on this property, it is proven that Kron Reduction (KR) (i.e., the elimination of

nodes with zero injected currents) is feasible for any set of zero-injection nodes, and

that a compound hybrid matrix exists for any partition of the nodes. These findings are

the cornerstones for the further contributions to SE and VSA.

2. An Voltage Stability Index (VSI) for unbalanced polyphase power systems is proposed.

To this end, the grid is described by a compound hybrid matrix, and slack and resource

nodes2 are represented by Thévenin Equivalents (TEs) and Polynomial Models (PMs),

respectively. The proposed VSI is a generalization of the well-known L-index [18], which

is achieved by incorporating the aforementioned models into the classical formulation

of the L-index. In this regard, the aforestated properties w.r.t. the feasibility of KR and

the existence of compound hybrid matrices are used to substantiate the applicability of

the proposed VSI. This establishes a rigorous theoretical foundation for the L-index and

its descendants.

3. A prototype of a real-time state estimator for power distribution grids, which is hosted

in the FPGA of an industrial real-time controller, is presented. This prototype is based

on a Sequential Kalman Filter (SKF), which is suitable for implementation in such

dedicated hardware – as opposed to the standard Kalman Filter (KF). In this context,

it is proven that the standard KF and the SKF yield identical estimates if the noise

variables associated with different measurements are uncorrelated. Furthermore, the

computational complexity of the SKF is analyzed in detail, in order to substantiate its

suitability for implementation into embedded systems. To achieve high computational

performance, the developed real-time state estimator relies on KR of the grid model, as

well as parallelization and pipelining of the SKF calculations on the FPGA level.

1The compound admittance matrix is the polyphase analogon of the positive-sequence admittance matrix used
in classical power system analysis.

2Slack/resource nodes correspond to V δ/PQ buses in classical power system analysis.
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4. The applicability of the methods described under 1.–3. is verified numerically. Moreover,

their real-time capability is demonstrated experimentally. To this end, the developed

methods are deployed into the microgrid facility of the DESL at the EPFL in Lausanne,

Switzerland. This setup is a real-scale implementation of the low-voltage benchmark

grid defined by the Conseil International des Grands Réseaux d’Électricité (CIGRÉ) [19].

The metering system consists of high-accuracy Phasor Measurement Units (PMUs) [14],

which are coupled with a low-latency Phasor Data Concentrator (PDC) [15]. The SKF and

the VSI are embedded into modular applications for SE and VSA, which are deployed into

an industrial real-time controller together with the PDC. The real-time capability of the

PDC-SE-VSA pipeline is validated by assessing the latencies w.r.t. the PMU timestamps.
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1.3. Document Outline

1.3 Document Outline

The remainder of this thesis is organized as follows:

In Chapter 2, the state of the art in modeling, state estimation, and voltage stability assessment

of power systems is discussed. With regard to the applicability to polyphase power systems,

special emphasis is put on the treatment of grid unbalances.

In Chapter 3, the essentials of modeling polyphase power grids are discussed. Specifically, it is

shown that such grids can be represented by polyphase branch and shunt elements, whose

compound electrical parameters (i.e., impedance/admittance matrices) are symmetric, in-

vertible, and lossy. Based on these properties, theorems concerning the rank of the compound

admittance matrix, the feasibility of KR, and the existence of compound hybrid matrices are

proposed and formally proven.

In Chapter 4, the prototype real-time state estimator is presented. The working hypotheses

w.r.t. the measurement and process model, as well as the essentials of KF theory are recalled.

Based on these fundamentals, the equivalence of the SKF and the standard KF is postulated

and formally proven. Moreover, their computational complexity is analyzed to substantiate the

suitability of the SKF (as opposed to the standard KF) for implementation in FPGA hardware.

Finally, the design and validation of the FPGA implementation of the SKF are discussed.

In Chapter 5, the proposed VSI is presented. First, the system model is defined. Specifically,

it is shown that slack and resource nodes can be represented by TEs and PMs, respectively.

Furthermore, the Continuation Power Flow (CPF) approach, which is commonly used for

VSA, is recalled. Afterwards, the proposed VSI is derived by incorporating the TEs and the

PMs, along with the compound hybrid matrix of the grid, into the classical formulation of

the L-index. Through comparison with the classical CPF approach, it is confirmed that the

proposed VSI correctly detects voltage instability.

In Chapter 6, the deployment of the developed methods into the microgrid facility of the DESL,

which is a real-scale implementation of the low-voltage benchmark grid defined by CIGRÉ,

is illustrated. The SKF and the VSI are embedded into modular applications for SE and VSA,

respectively, which are deployed into an industrial real-time controller. These applications are

coupled with a PDC in order to use PMUs installed in the microgrid. The real-time capability

of this setup is confirmed by assessing the latencies of the PDC-SE-VSA processing chain w.r.t.

the PMU timestamps.

Finally, the thesis is concluded with a synopsis of the findings and an outlook on future work.
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2 Review of the State of the Art

This chapter reviews the state of the art in power systems engineering w.r.t. circuit analysis,

state estimation, and voltage stability assessment. These topics are covered in Sections 2.1,

2.2, and 2.3, respectively. For illustration purposes, some basic concepts and notation are

introduced on the fly. Rigorous definitions are provided in Chapters 3, 4, and 5, respectively,

in function of the subject treated in the respective chapter.

2.1 Circuit Analysis of Power Systems

Techniques for power system analysis inherently need an analytical description of the grid.

This description is derived from equivalent circuits of its electrical components (e.g., lines and

transformers). For instance, in power-flow study (e.g., [20]), state estimation (e.g., [21–23]),

and voltage stability assessment (e.g., [24–26]), the grid is described by the nodal admittance or

impedance matrix, or by hybrid matrices. The numerical methods used for these applications

are computationally intensive. Therefore, model reduction techniques like Ward reduction [27]

or Kron Reduction (KR) [28] are often employed in order to reduce the number of unknowns.

In this way, the execution speed can be improved without having to use of high-performance

computers (e.g., [29]). However, neither the applicability of KR nor the existence of hybrid

parameters are guaranteed a priori. In the following, the state of the art in circuit analysis is

reviewed with a specific focus on these subjects.

2.1.1 Equivalent Circuits of Polyphase Power Systems

Traditionally, power system analysis deals with three-phase grids. Supposing that the system

is in sinusoidal steady state, voltages and currents can be represented by phasors, and resistors,

inductors, and capacitors by impedances or admittances [30].
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 ZAA ZAB ZAC

ZBA ZBB ZBC

ZCA ZCB ZCC



E A

I A I A

EB

IB IB

EC

IC IC

VA

VB

VC

Figure 2.1 – Phase-domain model of a three-phase circuit in sinusoidal steady state.

Consider the three-phase circuit shown in Figure 2.1. In phase domain (i.e., ABC coordinates),

this circuit is described by VA

VB

VC

=

 E A

EB

EC

−

 ZAA ZAB ZAC

ZBA ZBB ZBC

ZCA ZCB ZCC


 I A

IB

IC

 (2.1)

Note that the matrix on the right-hand side of (2.1) is a compound impedance matrix [31] (i.e.,

the off-diagonal terms represent the electromagnetic coupling between the phases).

Typically, power transmission grids are electrically balanced. That is, the compound electrical

parameters of the electrical components (e.g., lines and transformers) are circulant:

ZAA = ZBB = ZCC (2.2)

ZAB = ZBC = ZCA (2.3)

ZAC = ZBA = ZCB (2.4)

In this case, the method of symmetrical components [32] can be used to simplify the circuit

equations. Namely, the system is represented by positive-sequence (P ), negative-sequence (N ),

and homopolar-sequence (H) components, which are defined by the transformation1

T :

 A

B

C

 7→

 P

N

H

 , T := 1

3

 1 α α2

1 α2 α

1 1 1

 , α := exp

(
j

2π

3

)
(2.5)

1This follows directly from the fact that the columns of T are eigenvectors of the circulant matrices of size 3×3
(note that the elements of T are the cube roots of unity).
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EP

ZP IP

VP

(a)

EN

ZN IN

VN

(b)

EH

ZH IH

VH

(c)

Figure 2.2 – Sequence-domain model in case the compound impedance matrix is circulant (i.e.,
the sequence components are decoupled): (2.2a) positive-sequence, (2.2b) negative-sequence,
and (2.2c) homopolar-sequence equivalent circuit.

Applying this transformation to (2.1) yields the circuit equations in sequence domain: VP

VN

VH

=

 EP

EN

EH

−

 ZP 0 0

0 ZN 0

0 0 ZH


 IP

IN

IH

 (2.6)

where ZP 0 0

0 ZN 0

0 0 ZH

= T−1

 ZAA ZAB ZAC

ZBA ZBB ZBC

ZCA ZCB ZCC

T (2.7)

Note that the sequence-domain impedance matrix is diagonal iff the phase-domain impedance

matrix is circulant. In this case, ZP , ZN , and ZH are the eigenvalues of the phase-domain

impedance matrix. The diagonal structure of the sequence-domain impedance matrix implies

that (2.6) can be represented by three independent equivalent circuits as shown in Figure 2.2.

In fact, this is the main advantage of sequence-domain analysis over phase-domain analysis.

In contrast to power transmission grids, power distribution grids are typically unbalanced.

That is, the compound electrical parameters are symmetric, but not necessarily circulant:

ZAA 6= ZBB 6= ZCC (2.8)

ZAB = ZBA 6= ZAC = ZCA 6= ZBC = ZCB (2.9)

As a result, the circuit equations in sequence domain cannot be decoupled in general. Hence,

it is incorrect (rigorously speaking) to use symmetrical components. In fact, various works

acknowledge that it is more meaningful to analyze unbalanced three-phase grids in phase-

domain (e.g., [33,34]). This is even more true for generic polyphase power grids with more

than three phases, because balancedness is difficult to achieve in practice [35]. However, this

case is seldom examined in the literature.
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2.1.2 Kron Reduction of Electrical Circuits

Now, consider an electrical circuit whose nodes are partitioned into two sets labeled 1 and 2.

The admittance equations of this circuit can be written in block form as[
I1

I2

]
=

[
Y11 Y12

Y21 Y22

][
V1

V2

]
(2.10)

Suppose that the current injections in the second set of nodes are strictly zero. That is

I2 = Y21V1 +Y22V2 = 0 (2.11)

Obviously, V1 and V2 are linearly dependent. If Y22 is invertible, V2 can be expressed as

V2 =−Y−1
22 Y21V1 (2.12)

Substituting this formula into (2.10) yields

I1 =
(
Y11 −Y12Y−1

22 Y21

)
V2 (2.13)

This process is known as KR [28].

As previously mentioned, the invertibility of Y22 is a prerequisite for the applicability of KR.

Although KR is commonly used in the field, users hardly ever verify whether this condition

actually holds. Apparently, even the inventor himself (i.e., the author of [28]) did not take this

issue into account. According to practical experience, KR is indeed feasible, but there was

no theoretical proof for this empirical evidence until recently. One work [36] investigates the

particular case of single-phase grids. Specifically, it is shown that KR is feasible if Y is strictly

diagonally dominant. However, this reasoning is based on the assumption that the circuit

is purely resistive or inductive, which is unrealistic for power grids. Two other works [37,38]

examine the more generic case of unbalanced three-phase grids. Specifically, it is proven that

a block of the admittance matrix, which is obtained by removing only the rows and columns

associated with one node, is invertible. However, it is not straightforward to extend this finding

to the elimination of several nodes.

2.1.3 Hybrid Matrices of Electrical Circuits

In circuit theory and power system analysis, it is often more convenient to describe a circuit by

hybrid instead of admittance equations (e.g., [39,40]). For instance, (2.10) could be restated as[
V1

I2

]
=

[
H11 H12

H21 H22

][
I1

V2

]
(2.14)

where H is the hybrid matrix. The term “hybrid” refers to the fact that voltages and currents

appear both on the left-hand and the right-hand side of the aforestated equation.
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In general, the existence of hybrid matrices depends on the electrical properties of the circuit,

and on the partition of the nodes for which the hybrid equations are to be formulated [41].

There are works which have investigated this matter for single-phase circuits. Many authors

simply propose methods for building H, but do not substantiate their feasibility (e.g., [42–44]).

Other authors do formulate criteria for the feasibility, but only for “some” (i.e., at least one)

partition of the nodes (e.g., [45–47]).
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2.2 State Estimation of Power Systems

State Estimation (SE) is the process of inferring the states of a system from noisy measurements

and known inputs. In the case of power systems, the state vector x and measurement vector y

consist of nodal and branch quantities (i.e., voltages, currents, and powers). Assuming that the

system is in sinusoidal (quasi-)steady state, these quantities are represented by phasors [30].

Depending on the application, the input vector u may be considered or neglected.

2.2.1 Static Approaches

Static approaches neglect any time evolution of the state. The estimated state is calculated

as the maximum likelihood fit to the measurements available at a given point in time [48].

Usually, this problem is solved through Weighted Least-Squares Regression (WLSR) [22,23].

Recall that the states and measurements are phasors, which can be expressed in rectangular

or polar coordinates. Therefore, in general, the measurement model is nonlinear [21,49]:

y =Ψ(x,u)+v (2.15)

whereΨ(·) is the output function, and v is the measurement noise. The nonlinear regression

problem has to be solved numerically using iterative methods (e.g., [50,51]). Every iteration

requires the calculation and inversion of the Jacobian matrix ofΨ(·), which is computationally

intensive. Alternatively, the measurement model can be linearized locally around the present

operating point (e.g., [52–54]).

If the states and measurements consist of voltage and current phasors, which are expressed in

rectangular coordinates, the measurement model is exactly linear [55,56]:

y = Cx+Du+v (2.16)

where C is the output matrix, and D is the feedthrough matrix. In contrast to the nonlinear

regression problem, the linear one can be solved analytically. This is more efficient from the

computational point of view [57]. In particular, the use of Phasor Measurement Units (PMUs)

yields linear measurement models [58].

Finally, it is worth mentioning measurement model can be used to identify so-called bad data

(i.e., grossly erroneous measurements). Namely, using the estimated state x̂, the measurement

noise can be approximately reconstructed as

v̂ = y−Ψ(x̂,u) (2.17)

Whether a measurement is bad can be determined based on the statistical distribution of the

elements of v̂ [59,60]. This approach is known as Hypothesis Testing Identification (HTI).
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2.2.2 Quasi-Static Approaches

Quasi-static approaches do consider the time evolution of the state to some extent. Namely,

the system is assumed to change between quasi-steady operating points2. This is represented

by a process model, which links the states at successive instants k and k +1.

Like the measurement model, the process model is nonlinear in general:

xk+1 =Φ(xk ,uk )+wk (2.18)

whereΦ(·) is the system function, and wk is the process noise. The complete system model

xk+1 =Φ(xk ,uk )+wk (2.19)

yk =Ψ(xk ,uk )+vk (2.20)

can be treated using nonlinear Kalman Filter (KF) theory. IfΦ(·) andΨ(·) are differentiable,

the extended KF can be used (e.g., [61–63]). Essentially, the system model is linearized around

the present operating point, and the standard KF [64] is applied. In case the system model is

strongly nonlinear, the linearization yields a poor approximation, though. The unscented KF,

which does not approximateΦ(·) andΨ(·) in this way, can avoid this problem (e.g., [65]).

If the system model is (exactly or approximately) linear, that is

xk+1 = Axk +Buk +wk (2.21)

yk = Cxk +Duk +vk (2.22)

where A is the system matrix, the standard KF [64] can be used (e.g., [66–68]). Notably, the

standard KF performs better than WLSR [58] in terms of estimation accuracy, provided that

the statistical distribution of the process noise is known exactly [69,70].

Some works suppose that the elements of yk can be processed sequentially (i.e., one by one),

since this enables computationally efficient implementations (e.g., [68,71]). This formulation

is known as the Sequential Kalman Filter (SKF). However, the authors of these works do not

verify whether the SKF and the standard KF yield the same results, or under which conditions

this may be the case.

2In the literature, these approaches are often called dynamic. In this thesis, the term quasi-static is preferred,
because it avoids confusion with truly dynamic approaches (i.e., based on differential equations).
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2.3 Voltage Stability Assessment of Power Systems

IEEE and CIGRÉ define voltage stability as “the ability of a power system to maintain steady

voltages at all buses in the system after being subjected to a disturbance from a given initial

operating condition”, and note that “it depends on the ability to maintain/restore equilibrium

between load demand and load supply from the power system” [72]. Accordingly, Voltage

Stability Assessment (VSA) is the study of equilibrium points of power systems w.r.t. the (nodal)

voltages. For this purpose, one can use dynamic methods, such as time-domain simulation, or

static methods, such as Power-Flow Study (PFS) [24–26].

This thesis focuses on static analysis. Specifically, voltage instability is considered to be due to

loadability limits only. As known, loadability limits are critical points w.r.t. the loading of a

power system, beyond which the grid cannot support the transfer of power [73]. Assuming that

the device dynamics (i.e., control loops of generators/loads) can be neglected and the device

ratings (e.g., generator reactive power limits) are respected, a loadability limit implies that

the Jacobian matrices of the power-flow equations and the dynamic equations, respectively,

are singular [74–76]. That is, the power-flow equations are “borderline solvable”, and the

(linearized) dynamic system is marginally stable. Hence, if the aforesaid assumptions hold,

loadability limits are critical points w.r.t. voltage stability.

2.3.1 Continuation Power Flow

Loadability limits can be determined graphically using nose curves (a.k.a. PV /QV curves),

which describe the relation between active/reactive power and voltage. At a loadability limit,

the load/generation cannot be increased further, which means that the the characteristic

curve of the load/generation is tangent to the nose curve of the system [26].

Nose curves are obtained using Continuation Power Flow (CPF) methods. For this purpose,

the power-flow equations are parametrized w.r.t. a predefined change of the load/generation.

That is, the power-flow equations are expressed in the form

g (x,ξ) = 0 (2.23)

where x is the state, and ξ a parameter that represents the loading of the grid [73]. CPF methods

track a solution path in (x,ξ)-space using a predictor-corrector scheme (e.g., [77–79]). That is,

starting from a known solution, the next solution is first guessed using a prediction method,

and then refined using a correction method. The corrector step involves the solution of the

system of nonlinear equations (2.23). As a results, CPF methods are computationally intensive

and hence slow, even if advanced predictors/correctors (e.g., [80]) or adaptive stepsize control

(e.g., [81]) are used to accelerate the calculation.

In principle, both generation and load can cause voltage instability. However, if the grid is lossy,

instability due to generation is of little relevance, as it occurs at very high power injections [82].
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2.3. Voltage Stability Assessment of Power Systems

That is, thermal ratings of lines or transformers are reached prior to instability. In contrast,

instability due to load can occur while respecting these ratings [11]. CPF methods usually

operate with positive-sequence equivalent circuits of balanced three-phase systems, but the

concept can be extended to unbalanced three-phase systems (e.g., [83,84]).

2.3.2 Maximum Loadability

Instead of tracing the whole solution path to a loadability limit via numerical continuation,

the loadability limit can also be determined directly through nonlinear programming [85].

Namely, one can solve the nonlinear program

max ξ

s.t. g (x,ξ) = 0
(2.24)

This corresponds to the maximization of the loading factor ξ (e.g., in one single node, an area,

or the entire system) subject to the power-flow equations.

The nonlinear program (2.24) can be solved using iterative methods. Direct methods account

for the constraints explicitly, so each intermediate solution is feasible w.r.t. the constraints.

For example, interior-point methods (e.g., [86]) belong to this category. Indirect methods

solve a series of unconstrained nonlinear programs, whose objective functions include a term

which penalizes constraint violations. Thus, only the final solution (if it exists), but not the

intermediate ones, is ensured to be feasible. For instance, augmented Lagrangian methods

(e.g., [87]) and penalty methods (e.g., [88]) belong to this family.

2.3.3 Maximum Power Transfer

If the load is of Constant-Power (CP) type, the loadability limit lies at the tip of the nose curve,

which corresponds to maximum power transfer. As known, the power delivered by a source

to a load is maximum when the source impedance ZS (i.e., output impedance of the source)

matches the load impedance ZL (i.e., the input impedance of the load) [89]:

ZS = Z∗
L (2.25)

This is the well-known impedance-matching criterion.

Typically, the impedance matching criterion is applied to equivalent two-node systems, each of

which consists of the local CP load and a Thévenin Equivalent (TE) of the external system [90].

The loads can also be represented by Polynomial Models (PMs), whose Constant-Current (CI)

and Constant-Impedance (CZ) components are incorporated into the aforementioned TEs [91].

Alternatively, the impedance-matching criterion can be used to construct the loadability

surfaces of the equivalent two-node systems in the PQ-plane [92,93]. It is important to note

that these approaches tacitly assume that the TEs reasonably reproduce the behavior of the
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external systems seen by the local loads over the whole relevant range of operating conditions.

A priori, this is a coarse approximation. In order to solve this problem, the concept of coupled

single-port circuits has been proposed [94]. Essentially, additional terms which account for

the interaction between the loads are added to the equivalent two-node systems. For example,

the TEs can be refined with information from sensitivity coefficients [95], or Ward equivalents

can be used instead of TEs [96].

2.3.4 Formal Analysis of the Solvability of the Power-Flow Equations

Recall that, under the assumptions made, a loadability limit corresponds to an operating point

at which the power-flow equations are “borderline solvable”. The solvability of the power-flow

equations can be analyzed formally. For instance, one can formulate necessary conditions for

solvability [97], or approximate the solvability set [98–100]. However, these approaches tend

to be mathematically intricate.

Hence, most works instead exploit the fact that the Jacobian matrix is singular if the power-flow

equations are unsolvable [74]. That is, the determinant [11], eigenvalues [101], and singular

values [102] of the Jacobian matrix can serve as Voltage Stability Indices (VSIs). Another family

of VSIs descends from the well-known L-index [18]. Essentially, the power-flow equations are

locally approximated by complex quadratic equations, whose discriminant is used to derive

the L-index. In the original formulation [18], generators are represented by constant voltage

sources, loads by constant power sources, and the grid by the hybrid matrix. Moreover, there

exist extended formulations, which model generators by TEs [103] or loads by PMs [104].

Finally, it is worth noting that the aforementioned VSIs vary nonlinearly with the load. Hence,

it may be challenging to infer the absolute loadability margin (i.e., in kW/kVAR) from the VSI.

However, for special cases, such as CP loads [105] or PMs with constant power factor [106],

VSIs with reasonably linear behavior have been proposed. In these cases, there is a one-to-one

correspondence between the VSI and the absolute loadability margin.
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2.4 Contributions of this Thesis

In view of the state of the art that has been discussed in this chapter, the contributions of this

thesis are further detailed here below.

1. Fundamental properties of the equivalent circuits of unbalanced polyphase power grids

are identified. Specifically, theorems w.r.t. the rank of the compound admittance matrix,

the feasibility of KR, and the existence of compound hybrid matrices, are stated and

formally proven. In comparison to the existing theorems [37,38] (admittance matrix),

[36] (KR) and [45–47] (hybrid matrix), the proposed ones make weaker hypotheses (i.e.,

the compound electrical parameters do not have to be circulant) and give stronger

conclusions (i.e., which are valid for arbitrary subsets or partitions of the nodes).

2. A VSI for unbalanced polyphase power systems is developed. More precisely, the grid is

described by a compound hybrid matrix, and slack and resource nodes are represented

by TEs and PMs, respectively. This VSI is a generalization of the known L-index [18],

which incorporates the aforestated models. In this regard, the theorems w.r.t. the

feasibility of KR and the existence of compound hybrid matrices are used to substantiate

the applicability of the proposed VSI. This establishes a rigorous theoretical foundation

for the L-index [18] and its descendants (e.g., [103,104]), which – to the best of the

author’s knowledge – is truly original.

3. A real-time state estimator for power distribution grids is presented. This state estimator

is based on a SKF, which is implemented into an FPGA. It is formally proven that the

SKF and the standard KF produce identical estimates if the measurement noise vari-

ables are uncorrelated. To the best of the author’s knowledge, this is the first complete

and rigorous proof of equivalence in the literature. Notably, this finding establishes a

rigorous theoretical foundation for existing works that use the SKF without justifying its

applicability (e.g., [68,71]). Moreover, the suitability of the SKF for implementation into

dedicated hardware is substantiated by detailed analysis of its computational complexity

(in comparison with the standard KF).

4. It is experimentally demonstrated that the developed methods are real-time capable.

To this end, they are deployed into an industrial embedded systems platform, which is

used for real-time control of a real-scale experimental microgrid.
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3 Analysis of Equivalent Circuits of
Polyphase Power Grids

Contributions: This chapter lays the theoretical foundations for the analysis of unbalanced

polyphase power grids in the phase domain. First, it is shown that polyphase power grids can

be represented by equivalent circuits composed of polyphase branch and shunt elements,

which are characterized by compound electrical parameters. Specifically, it is demonstrated

that these compound electrical parameters are symmetric, invertible, and lossy. Using these

properties, plus the assumption that the branch graph of the grid is weakly connected, condi-

tions that determine the rank of the compound admittance matrix of the grid, as well as its

diagonal blocks, are stated and formally proven. More precisely, it is shown that the compound

admittance matrix has full rank if there is at least one shunt element, and that its diagonal

blocks always have full rank. Building upon these findings, it is formally proven that Kron

Reduction (KR) is feasible for any set of zero-injection nodes, and that a compound hybrid

matrix exists for any partition of the nodes. The theorems w.r.t. the rank of the compound

admittance matrix, the feasibility of KR, and the existence of compound hybrid matrices

establish a rigorous theoretical foundation for the methods developed in the rest of this thesis.

Keywords: polyphase power systems, unbalanced power grids, compound admittance matrix,

compound hybrid matrix, Kron reduction.
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Chapter 3. Analysis of Equivalent Circuits of Polyphase Power Grids

3.1 Modeling of Polyphase Power Grids

3.1.1 Hypotheses with Respect to the Electrical Components of the Grid

Neutral Conductor and Earthing System

Consider a generic polyphase power system, which is equipped with a neutral conductor.

Label the ground node as G := {0} and the phases as P := {1, . . . , |P |}, where |·| is the cardinality.

A polyphase node consists of a full set of phase terminals that belong to the same bus. In this

respect, the terminals of the grid define the physical polyphase nodes Nphysical. Regarding the

wiring and the earthing of the neutral conductor, the following hypothesis is made:

Hypothesis 1 (Neutral Conductor). The reference points of all sources (i.e., voltage or current

sources) are connected to the neutral conductor. Moreover, the neutral conductor is grounded

by means of an effective earthing system. That is, the earthing system is able to establish a null

voltage between the neutral conductor and the physical ground (see [6,109,110]).

Given that the neutral-to-ground voltages are effectively zero,the phase-to-neutral voltages

directly correspond to phase-to-ground voltages, and fully describe the grid1.

Electrical Components Interconnecting the Polyphase Nodes

The grid is built of electrical components which connect the physical polyphase nodes with

each other and the ground node. With respect to these electrical components, the following

hypothesis is made:

Hypothesis 2 (Electrical Components). The grid consists of electrical components which are

linear and passive. Moreover, only the electromagnetic coupling among the phases of the same

component is significant. That is, in a per-unit model, they can be represented by polyphase

Π-section or T-section equivalent circuits, whose branch and shunt elements are described by

compound electrical parameters (see Figure 3.1).

Let m,n ∈Nphysical be two polyphase nodes that are connected by an electrical component.

A polyphaseΠ-section equivalent circuit is described by one compound impedance matrix

ZΠ,(m,n) and two compound admittance matrices YΠ,m|(m,n), YΠ,n|(m,n) (see Figure 3.1a):

ZΠ,(m,n), YΠ,m|(m,n), YΠ,n|(m,n) ∈C|P |×|P | (3.1)

A polyphase T-section equivalent circuit is described by one compound admittance matrix

YT,x and two compound branch impedance matrices ZT,(m,x), ZT,(n,x) (see Figure 3.1b):

YT,x , ZT,(m,x), ZT,(n,x) ∈C|P |×|P | (3.2)

1In practice, neutral-to-ground voltages are seldom measured, since they are only used to check human safety.
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3.1. Modeling of Polyphase Power Grids

Note that the off-diagonal elements of the aforestated matrices represent the coupling between

the phases (see Section 2.1).

It is important to note that the electrical components are not necessarily reciprocal. That is,

the transfer functions from m to n and vice versa can be different. So, in general

YΠ,m|(m,n) 6= YΠ,n|(m,n) (3.3)

ZT,(m,x) 6= ZT,(n,x) (3.4)

The polyphase two-port equivalent circuits of the electrical components constitute the overall

equivalent circuit of the grid. This equivalent circuit may contain virtual polyphase nodes

Nvirtual, which are present in the model, but do not exist in reality. Namely, every T-section

equivalent circuit contributes one virtual polyphase node (see Figure 3.1b).

3.1.2 Mathematical Description of the Equivalent Circuit of the Grid

Branch Graph and Shunt Graph

Let N contain all polyphase nodes (i.e., physical and virtual ones):

N :=Nphysical ∪Nvirtual (3.5)

The topology of the equivalent circuit of the grid is described by directed graphs, whose vertices

and edges correspond to the nodes (i.e., polyphase nodes plus ground node, see Figure 3.2a)

and the lumped elements of the equivalent circuit, respectively.

The polyphase branches L are connections between pairs of polyphase nodes (see Figure 3.2b).

More precisely, L consists of two subsets LΠ and LT, which are associated with theΠ-section

and T-section equivalent circuits, respectively. Namely (see Figure 3.1)

L =LΠ∪LT (3.6)

LΠ ⊆Nphysical ×Nphysical (3.7)

LT ⊆Nphysical ×Nvirtual (3.8)

where × is the Cartesian product. Jointly, N and L span the branch graph B

B := (N ,L ) (3.9)

Let E(·) be the function which returns the edges of a graph. The incoming branches Ein (B,n)

and the outgoing branches Eout (B,n) of B w.r.t. n are defined as

Ein (B,n) := {` ∈ E(B) | `= (u,n), u ∈ V(B)} (3.10)

Eout (B,n) := {` ∈ E(B) | `= (n, v), v ∈ V(B)} (3.11)

21



Chapter 3. Analysis of Equivalent Circuits of Polyphase Power Grids

ZΠ,(m,n)

(m,n) ∈LΠm ∈Nphysical n ∈Nphysical

g ∈G

YΠ,m|(m,n) YΠ,n|(m,n)

(a)

ZT,(m,x) ZT,(n,x)

m ∈Nphysical n ∈Nphysical(m, x) ∈LT (n, x) ∈LT

g ∈G

YT,x

x ∈Nvirtual

(x, g ) ∈TT

(b)

Figure 3.1 – Polyphase two-port equivalent circuits of the electrical components of the grid:
(3.1a)Π-section equivalent circuit, (3.1b) T-section equivalent circuit.

The connectivity of B is described by the incidence matrix AB, which is defined as

AB : AB,kn =


−1 if `k ∈ Ein (B,n)

+1 if `k ∈ Eout (B,n)

0 otherwise

(3.12)

A directed graph is weakly connected if there exists a path, which need not respect the directions

of the edges, between any pair of vertices. Let V(·) be the function which returns the vertices

of a graph. As known from graph theory, it holds that (for proof, see [111])

Lemma 1. If the branch graph B is weakly connected, then rank
(
AB

)= |V(B)|−1.

Now, consider a nonempty subset M (N of the nodes. The internal branches Eint (B,M ) of
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. . . . . .1 n |N |

g

N

G

(a)

. . .. . . . . .
m n

B : L ⊆N ×N

`= (m,n)

(b)

. . . . . .n

g

S : T =N ×G

t = (n, g )

(c)

Figure 3.2 – Topology of the overall equivalent circuit of the grid: (3.2a) vertices N and G ,
(3.2b) edges L of the branch graph B, (3.2c) edges T of the shunt graph S.

B w.r.t. M are the branches which start and end in M :

Eint (B,M ) := {(u, v) ∈ V(B) | u, v ∈M } (3.13)

Let M{ :=N \M be the complement of M in N . The cut-set Ecut (B,W ) ofBw.r.t. M consists

of the branches which start in M and end in M{:

Ecut (B,M ) := {
(u, v) ∈ V(B) | u ∈M , v ∈M{

}
(3.14)

The polyphase shunts T are connections between the polyphase nodes and the ground node

(see Figure 3.2c). T includes the subset TT, which is associated with the virtual polyphase

nodes originating from the T-section equivalent circuits. So (see Figure 3.1)

T :=N ×G (3.15)

TT :=Nvirtual ×G (T (3.16)

In analogy to the branch graph B, the shunt graph S is defined as

S := (N ∪G ,T ) (3.17)

Associated Compound Electrical Parameters

The polyphase branches are related to the longitudinal electrical parameters of the electrical

components of the grid. Every polyphase branch ` ∈L is associated with a compound branch

impedance matrix Z`. The Z` directly correspond to the compound impedance matrices of

the branch elements of the polyphase two-port equivalent circuits. More precisely, they are
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g ∈G

Z`i

m ∈N n ∈N

`i = (m,n) ∈L

Z` j

` j = (n,u) ∈L

u ∈N

Z`k

`k = (n, v) ∈L

v ∈N

Ytn
tn = (n, g ) ∈T

Figure 3.3 – Compound electrical parameters of the overall equivalent circuit of the grid:
compound branch impedance matrices Z` (` ∈L ) and shunt admittance matrices Yt (t ∈T ).
For the sake of clarity, polyphase terminals and wires are shown by bundles only.

given by (see Figures 3.1 and 3.3)

Z` =
{

ZΠ,(m,n) if `= (m,n) ∈LΠ

ZT,(u,v) if `= (u, v) ∈LT
(3.18)

Likewise, the polyphase shunts are related to the transversal electrical parameters of the

electrical components of the grid. Every polyphase shunt t ∈T is associated with a compound

shunt admittance matrix Yt . In general, severalΠ-section equivalent circuits can be connected

to the same node, and contribute to its shunt admittance. Define the aggregate compound

shunt admittance matrix YΠ,n due to the polyphaseΠ-section equivalent circuits connected

to the polyphase node n as (see Figure 3.1a)

YΠ,n := ∑
(n,m)∈LΠ

YΠ,n|(n,m) +
∑

(m,n)∈LΠ

YΠ,n|(m,n) (3.19)

Then, somewhat analogous to the Z`, the Yt are given by (see Figures 3.1 and 3.3)

Yt =
{

YΠ,n if t = (n, g ) ∈T \TT

YT,x if t = (x, g ) ∈TT
(3.20)
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3.1.3 Hypotheses with Respect to the Equivalent Circuit of the Grid

As to the compound electrical parameters Z` and Yt , the following hypothesis is made:

Hypothesis 3 (Properties of Z` and Yt ). The compound branch impedance matrices Z` given

by (3.18) are symmetric, invertible, and lossy:

∀` ∈L :


Z` = ZT

` (symmetry)

∃Y` = Z−1
` (invertibility)

ℜ{
Z`

}º 0 (lossiness)

(3.21)

Notably, this implies Z` 6= 0. The compound admittance matrices Yt given by (3.20), on the

other hand, may be zero. Otherwise, they are also symmetric, invertible, and lossy:

t ∈T for which Yt 6= 0 :


Yt = YT

t (symmetry)

∃Zt = Y−1
t (invertibility)

ℜ{
Yt

}º 0 (lossiness)

(3.22)

It is worth noting that the properties stated above are related to fundamental laws of physics.

The symmetry property refers to the reciprocity of electromagnetism (which follows from

Maxwell’s equations), and the lossiness property is an inherent characteristic of real systems.

Hypotheses 2–3 may not hold generally, but they do apply to a broad variety of components

in practice. For instance, transmission lines, transformers, and various Flexible Alternating-

Current Transmission Systems (FACTS) devices, such as series or shunt compensators, satisfy

Hypotheses 2–3 (see Appendix A.2). Phase-shifting transformers, on the other hand, do not

satisfy the symmetry property of Hypothesis 3.
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g ∈G

Z`i

I`i
m ∈N n ∈N

`i = (m,n) ∈L

Z` j I` j

` j = (n,u) ∈L

u ∈N

Ytn

Itn

tn = (n, g ) ∈T

In

Vn

Figure 3.4 – Vectors of voltage and current phasors: phase-to-ground voltages Vn (n ∈ N ),
nodal injected currents In (n ∈N ), branch currents I` (` ∈L ), and shunt currents It (t ∈T ).
For the sake of clarity, polyphase terminals and wires are shown by bundles only.

3.1.4 Construction of the Compound Admittance Matrix

Definition of Voltage and Current Phasors

Let Vn,p and In,p be the phasors of the phase-to-ground voltage and the nodal injected current,

respectively, in phase p ∈P of node n ∈N . Moreover, define Vn and In as the column vectors

composed of all Vn,p and In,p of n (see Figure 3.4):

Vn := colp∈P (Vn,p ) (3.23)

In := colp∈P (In,p ) (3.24)

Analogously, define V and I as the block column vectors composed of all Vn and In :

V := coln∈N (Vn) (3.25)

I := coln∈N (In) (3.26)

Let I`,p and It ,p denote the phasors of the currents in phase p ∈P of the branch ` ∈L and the

shunt t ∈T , respectively. Moreover, analogous to In , define I` and It as the column vectors

containing all I`,p of ` or It ,p of t , respectively (see Figure 3.4):

I` := coln∈N (I`,p ) (3.27)

It := coln∈N (It ,p ) (3.28)
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Further, analogous to I, define IL and IT as the block column vectors containing all I` and It ,

respectively:

IL := col`∈L (I`) (3.29)

IT := colt∈T (It ) (3.30)

Formulation of Kirchhoff’s Current Law

By Kirchhoff’s current law, the current injected into a node is the sum of all branch currents

entering or leaving the said node plus the shunt current. Formally (see Figure 3.4)

In =−
( ∑
`∈Ein(B,n)

I`

)
+

( ∑
`∈Eout(B,n)

I`

)
+ It ∀n ∈N , t = (n, g ) (3.31)

Whether a branch current is entering or leaving the node is given by the corresponding entries

of the branch incidence matrix AB (3.12). Define the polyphase branch incidence matrix AP
B

as the polyphase analogon of AB. More precisely

AP
B := AB⊗diag

(
1|P |

)
(3.32)

where diag
(
1|P |

)
is the identity matrix of size |P |×|P |, and ⊗ is the Kronecker product. Then,

(3.31) can be written compactly as (see [111])

I =
(
AP
B

)T
IL + IT (3.33)

Formulation of Ohm’s Law

Ohm’s law relates the nodal injected currents I with the phase-to-ground voltages V through

the compound (nodal) admittance matrix Y (i.e., if it is formulated in admittance form).

I = YV (3.34)

Subsequently, Y is derived by transforming Kirchhoff’s current law (3.33) into Ohm’s law (3.34).

To this end, IL and IT need to be expressed in function of V.

Since the compound branch admittance matrices Y` = Z−1
` do exist according to Hypothesis 3,

and the polyphase shunts are characterized by compound shunt admittance matrices Yt , the

currents flowing through the branches ` and the shunts t can be expressed as (see Figure 3.4)

I` = Y`(Vm −Vn) ∀`= (m,n) ∈L (3.35)

It = Yt Vn ∀t = (n, g ) ∈T (3.36)

The primitive compound branch admittance matrix YL and the primitive compound shunt
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admittance matrix YT are block-diagonal matrices composed of the Y` and Yt , respectively:

YL := diag`∈L (Y`) (3.37)

YT := diagt∈T (Yt ) (3.38)

Using these definitions, (3.35) and (3.36) can be written compactly as (see [111])

IL = YL AP
BV (3.39)

IT = YT V (3.40)

These are the desired formulas for IL and IT in function of V. Substitute (3.39) and (3.40) into

Kirchhoff’s current law (3.33) to obtain

I =
((

AP
B

)T
YL AP

B +YT

)
V (3.41)

By comparison with Ohm’s law (3.34), it follows straightworward that (see [31,111])

Y =
(
AP
B

)T
YL AP

B +YT (3.42)

Properties of the Block Form of the Matrix

According to (3.25)–(3.26), V and I consist of blocks that correspond to the polyphase nodes.

Hence, Y can be written in block form as Y = (
Ymn

)
, where Ym,n is the block which relates Im

with Vn . As known from circuit theory (for proof, see [31,111])

Lemma 2. The summation over a block row or column of the compound admittance matrix Y

produces the compound shunt admittance matrices Yt of the corresponding polyphase node.

Formally∑
m∈N

Ynm = ∑
m∈N

Yms = Yt ∀t = (n, g ) ∈T (3.43)
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. . .

V1 V|N |

I1 I|N |

B

G

(a)

. . .

V1 V|N |

V′

V′
g

I1 I|N |

B

G

B′

G ′

(b)

Figure 3.5 – Proof of Theorem 1: (3.5a) case 1: Yt = 0 ∀t ∈T , (3.5b) case 2: ∃t ∈T s.t. Yt 6= 0.
The surfaces indicate weakly connected graphs.

3.2 On the Rank Properties of the Compound Admittance Matrix

3.2.1 The Rank of the Overall Matrix

The properties listed in Hypotheses 1–3, along with the connectivity of the branch graph B,

allow to determine the rank of the compound admittance matrix Y. Namely

Theorem 1 (Rank of Y). If the Hypotheses 1–3 are satisfied, and the branch graph B= (N ,L )

is weakly connected, then it holds that

rank(Y) =
{

(|N |−1) |P | if Yt = 0 ∀t ∈T

|N | |P | otherwise
(3.44)

Proof. (Case 1: Yt = 0 ∀t ∈T , see Figure 3.5a). Yt = 0 ∀t ∈T implies that YL = 0, see (3.38).

Therefore, according to (3.42), Y is given by

Y =
(
AP
B

)T
YL AP

B (3.45)

Recall from (3.37) that YL is block-diagonal. Moreover, by Hypothesis 3, its blocks Y` (` ∈L )

are symmetric and invertible. Therefore, YL is also symmetric and invertible. By consequence,

the matrix YL can be factorized into a unitary matrix DL and a positive diagonal matrix DL

using the so-called Autonne-Takagi factorization (see Lemma 10 in Appendix A.1.3):

YL = UT
L DL UL (3.46)

The matrix DL can be written as the square of a positive diagonal matrix EL :

DL = ET
L EL (3.47)
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Note that the diagonal elements of EL are the square roots of the diagonal elements of DL .

Substitute (3.46) and (3.47) into (3.45), and express Y as

Y = MT
L ML , ML := EL UL AP

B (3.48)

The product of a matrix and its transpose has the same rank as the original matrix (see Lemma 4

in Appendix A.1.1). Accordingly

rank(Y) = rank
(
MT

L ML

)
= rank(M) = rank

(
EL UL AP

B

)
(3.49)

Note well that EL and UL are nonsingular, because they are positive diagonal and unitary,

respectively. As known, the multiplication of an arbitrary matrix with a nonsingular matrix

preserves the rank of the former (see Lemma 5 in Appendix A.1.1). Therefore

rank(Y) = rank
(
EL UL AP

B

)
= rank

(
AP
B

)
(3.50)

Recall from (3.32) that AP
B := AB⊗diag

(
1|P |

)
. As known, the rank of the Kronecker product

of two matrices is given by the product of the ranks of the said matrices (see Lemma 13 in

Appendix A.1.4). Accordingly

rank(Y) = rank
(
AP
B

)
= rank

(
AB⊗diag

(
1|P |

))= rank
(
AB

) · |P | (3.51)

The graph B= (N ,L ) is assumed to be weakly connected. Therefore, according to Lemma 1

(see Section 3.1), rank
(
AB

)= |N |−1. By consequence

rank(Y) = rank
(
AB

) · |P | = (|N |−1) |P | (3.52)

This proves the first part of the claim.

Proof. (Case 2: ∃t ∈T s.t. Yt 6= 0, see Figure 3.5b). Introduce the virtual ground node G ′, and

build an augmented grid, in which the physical ground node G is treated as polyphase node:

N ′ :=N ∪G (3.53)

Moreover, let V′ and V′
g be the voltages of the polyphase nodes N and physical ground G ,

respectively, referenced w.r.t. the virtual ground G ′. Obviously, polyphase shunts are treated

as polyphase branches in the augmented grid. Define

L ′ :=L ∪{
t ∈T | Yt 6= 0

}
(3.54)

which is the analogon of L for the augmented grid. By construction

Z`′ =
{

Z` if `′ = ` ∈L

Y−1
t if `′ = t ∈L ′ \L

(3.55)
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Recall Hypothesis 3, which states that Z` (` ∈L ) and Yt (t ∈T ) are symmetric and invertible.

Therefore, the Z`′ (`′ ∈L ′) are symmetric and invertible. Define

B′ := (N ′,L ′) (3.56)

which is the analogon of B for the augmented grid. Note that B′ is obtained from B by adding

one vertex (i.e., the virtual ground) and at least one edge (i.e., a polyphase shunt). Therefore,

since B is weakly connected, B′ is weakly connected. Define

T ′ :=N ′×G ′ (3.57)

which is the analogon of T for the augmented grid. By construction

Yt ′ = 0 ∀t ′ ∈T ′ (3.58)

In that sense, the augmented grid corresponds to case 1, which has already been proven. By

consequence, the compound admittance matrix Y′ of the augmented grid has rank

rank
(
Y′)= (∣∣N ′∣∣−1

) |P | = |N | |P | (3.59)

Now, it is shown that Y′ and Y have the same rank. For this purpose, Ohm’s law is formulated

for the augmented grid using the voltages V′ and V′
g , which are referenced w.r.t. G ′:

Y′ :

 I

Ig

=
 Y −colt∈T

(
Yt

)
−rowt∈T

(
Yt

) ∑
t∈T Yt

 V′

V′
g

 (3.60)

It is known from linear algebra that elementary row/column operations preserve the rank.

Thus, the first |N | block rows/columns of Y′ can be added to the last one without changing the

rank. By Lemma 2, the summation of the block rows or block columns of Y yields rowt∈T

(
Yt

)
and colt∈T

(
Yt

)
, respectively. Therefore Y −colt∈T

(
Yt

)
−rowt∈T

(
Yt

) ∑
t∈T Yt

 ∣∣∣∣∣ row|N |+1 +=
∑

n∈N

rown (3.61)

[
Y −colt∈T

(
Yt

)
0 0

] ∣∣∣∣∣ col|N |+1 +=
∑

n∈N

coln (3.62)[
Y 0

0 0

]
(3.63)

So, rank
(
Y′)= rank(Y). Recall from (3.59) that rank

(
Y′)= |N | |P |. By consequence

rank
(
Y′)= rank(Y) = |N | |P | (3.64)

This proves the second part of the claim.
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3.2.2 The Rank of the Diagonal Blocks

If the compound impedance matrices Z` are even strictly lossy (i.e., ℜ{
Z`

}Â 0 ∀` ∈L ), then

the diagonal blocks of the compound admittance matrix Y have full rank. Namely

Theorem 2 (Rank of the Diagonal Blocks of Y). Suppose that Hypotheses 1–3 are satisfied, and

that the branch graph B= (N ,L ) is weakly connected. If the compound branch impedance

matrices Z` (` ∈L ) are strictly lossy

ℜ{
Z`

}Â 0 ∀` ∈L (3.65)

then the diagonal blocks of the compound admittance matrix Y have full rank

rank
(
YM×M

)= |M | |P | ∀M (N (3.66)

Proof. Define M{ :=N \M , and write Ohm’s law (3.34) in block form:[
IM

IM{

]
=

[
YM×M YM×M{

YM{×M YM{×M{

][
VM

VM{

]
(3.67)

YM×M relates IM and VM for VM{
= 0. Since VM and VM{

are referenced w.r.t. the ground

(Hypothesis 1), YM×M can be interpreted as compound admittance matrix of a fictitious grid,

in which the polyphase nodes M{ are short-circuited. The internal branches Eint (B,M ) of B

w.r.t. M are not affected by this fictitious process. The cut-sets Ecut (B,M ) and Ecut

(
B,M{

)
of B w.r.t. M , which connect M and M{, are turned from polyphase branches into shunts.

The branch graph C of the fictitious grid is given by

C := (
M ,Eint (B,M )

)
(3.68)

In general, C is disconnected (see Figure 3.6). However, as B is weakly connected as a whole,

there exists a partition {Mk | k ∈K } of M , such that the subgraphs Ck of B w.r.t. Mk

Ck := (
Mk ,Eint

(
B,Mk

))
(3.69)

are each weakly connected, but mutually disconnected (see Figure 3.6). By consequence,

YM×M is block-diagonal with blocks YMk×Mk
:

YM×M = diagk∈K

(
YMk×Mk

)
(3.70)

The blocks YMk×Mk
can be interpreted as compound admittance matrices of fictitious grids,

in which the polyphase nodes
(
Mk

)
{ :=N \Mk are short-circuited. Define Lk and Tk as the

polyphase branches and shunts of the fictitious grid associated with Mk :

Lk := E
(
Ck

)= Eint

(
B,Mk

)
(3.71)

Tk :=Mk ×G (3.72)
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B

C Ck
m

Ecut

(
B,Mk

)

Ecut

(
B,

(
Mk

)
{

)

Ecut

(
B,Mk

)∩Eout (B,m)

Ecut

(
B,

(
Mk

)
{

)∩Ein (B,m)

Figure 3.6 – Proof of Theorem 2: branch graphs, cut-sets, and connectivity in the fictitious grid.
The surfaces indicate weakly connected graphs.

Furthermore, let Z̃` and Ỹt be the associated compound branch impedance matrices and

compound shunt admittance matrices, respectively. Now, it is shown that Z̃` and Ỹt satisfy

Hypothesis 3. Since the branches Lk are internal w.r.t. the nodes Mk , they are not affected by

the fictitious short-circuiting of other nodes
(
Mk

)
{. By consequence

Z̃` = Z` ∀` ∈Lk (3.73)

Obviously, the properties of Hypothesis 3 w.r.t. Z` also apply to Z̃`. The branches Ecut

(
B,Mk

)
and Ecut

(
B,

(
Mk

)
{

)
, which connect the nodes Mk and

(
Mk

)
{, become shunts (see Figure 3.6).

Let X (B,Mk ,m) be the branches starting or ending in the node m ∈Mk , which are turned

into shunts by the fictitious short-circuiting of the nodes
(
Mk

)
{. Formally (see Figure 3.6)

X (B,Mk ,m) := {
Ecut

(
B,Mk

)∩Eout (B,m)
}∪{

Ecut

(
B,

(
Mk

)
{

)∩Ein (B,m)
}

(3.74)

By consequence, the Ỹt are given by (see Figure 3.7)

t = (m, g ) ∈Tk : Ỹt = Yt +
∑

`∈X (B,Mk ,m)
Z−1
` (3.75)

According to Hypothesis 3 and the conditions of Theorem 2, the Z` are symmetric, invertible,

and strictly lossy (i.e., ℜ{
Z`

}Â 0). As known, a symmetric matrix with positive definite real

part is invertible, and its inverse has the same properties (see Lemma 8 in Appendix A.1.2).

Therefore, Z−1
` is symmetric, invertible, and strictly lossy. If the sum in (3.75) is nonempty,

then Ỹt is symmetric, has positive definite real part, and is thus invertible. If the sum in (3.75)

is empty, then Ỹt = Yt . In both cases, Ỹt satisfies Hypothesis 3.

33



Chapter 3. Analysis of Equivalent Circuits of Polyphase Power Grids

g ∈G

Z̃` = Z`

µ ∈Mk

` ∈Lk

Zλ

λ= (µ,ν) ∈X (B,Mk ,µ)

ν ∈ (
Mk

)
{

Yτ Ỹττ= (µ, g ) ∈Tk

Figure 3.7 – Proof of Theorem 2: compound branch impedances Z̃` and compound shunt
admittances Ỹt in the fictitious grid (i.e., where the polyphase nodes

(
Mk

)
{ are grounded).

Since B is weakly connected, there exists at least one node µ ∈ Mk in every Mk such that

X (B,Mk ,µ) is nonempty. Hence, there exists a branch λ ∈X (B,Mk ,µ) of the original grid,

whose other end is short-circuited in the fictitious grid (see Figure 3.7). Formally

∀Mk : ∃µ ∈Mk s.t. X (B,Mk ,µ) 6= ; ⇐⇒ ∃λ ∈X (B,Mk ,µ) (3.76)

The shunt τ= (µ, g ) has Ỹτ 6= 0, because Z−1
λ contributes to Ỹτ (see Figure 3.7). In summary,

the fictitious grid associated with Mk consists of branch and shunt elements which satisfy

Hypothesis 3, and there is at least one shunt with nonzero admittance. According to Theorem 1,

its compound admittance matrix YMk×Mk
therefore has full rank:

rank
(
YMk×Mk

)
= ∣∣Mk

∣∣ |P | ∀k ∈K (3.77)

Recall from (3.70) that YM×M is block-diagonal with blocks YMk×Mk
. By consequence

rank
(
YM×M

)= ∑
k∈K

rank
(
YMk×Mk

)
= |P | ∑

k∈K

∣∣Mk

∣∣= |P | |M | (3.78)

This proves the claim.
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3.3 On the Feasibility of Kron Reduction

Recall that the compound admittance matrix Y relates the nodal injected current phasors I

with the nodal phase-to-ground voltage phasors V. Let Z a set of zero-injection nodes, and

Z{ :=N \Z its complement in N . Accordingly, (3.34) can be written in block form as[
IZ{

IZ

]
=

[
YZ{×Z{

YZ{×Z

YZ×Z{
YZ×Z

][
VZ{

VZ

]
(3.79)

where IZ = 0 (i.e., zero injections). As known from power system analysis, the variables VZ can

be eliminated via KR, if the diagonal block YZ×Z of Y is invertible (see [28] and Section 2.1).

This yields a reduced system of linear equations, in which only the variables VZ{
remain.

Theorem 2 guarantees that the diagonal blocks of Y have full rank, and can therefore provide a

guarantee for the feasibility of KR (i.e., if the theorem applies). This is proven subsequently.

3.3.1 Reduction of a Single Set of Zero-Injection Nodes

First, consider that the entire set Z is to be reduced “en bloc”. That is, KR is applied to all

polyphase nodes in Z in parallel. In this case, the following property holds:

Corollary 1 (KR). Suppose that Theorem 2 applies. Let Z be a set of zero-injection nodes, and

Z{ its complement in N . That is

Z : Z (N , Z 6= ; s.t. IZ = 0 (3.80)

Z{ :=N \Z (3.81)

Then, VZ is a linear function of VZ{
, namely

VZ =−Y−1
Z×Z YZ×Z{

VZ{
(3.82)

and can therefore be eliminated from the admittance equation (3.34). The reduced system of

linear equations is described by the Schur complement of Y w.r.t. YZ×Z . Formally

IZ{
= ŶVZ{

, Ŷ = Y/YZ×Z = YZ{×Z{
−YZ{×Z Y−1

Z×Z YZ×Z{
(3.83)

Every diagonal block of the reduced compound admittance matrix Ŷ has full rank. Formally

rank
(
ŶM×M

)= |M | |P | ∀M (Z{ (3.84)

In other words, the reduction preserves the rank property stated in Theorem 2.
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Proof. By (3.81), Z and Z{ form a partition of N . Hence, the admittance equations (3.34)

can be written in block form as[
IZ{

IZ

]
=

[
YZ{×Z{

YZ{×Z

YZ×Z{
YZ×Z

][
VZ{

VZ

]
(3.85)

According to Theorem 2, YZ×Z has full rank, and is thus invertible. So, the second block row

of (3.85) can be solved for VZ . This yields

VZ = Y−1
Z×Z

(
IZ −YZ×Z{

VZ{

)
(3.86)

By assumption (3.80), IZ = 0. Therefore, (3.86) simplifies to

VZ =−Y−1
Z×Z YZ×Z{

VZ{
(3.87)

which proves the first claim (3.82) of Corollary 1. Substitute (3.87) into the second block row

of (3.85). This yields

IZ{
= YZ{×Z{

VZ{
+YZ{×Z VZ (3.88)

=
(
YZ{×Z{

−YZ{×Z Y−1
Z×Z YZ×Z{

)
VZ{

(3.89)

= (Y/YZ×Z )VZ{
(3.90)

which proves the second claim (3.83) of Corollary 1. As known from linear algebra, the Schur

complement can be computed blockwise (see Lemma 12 in Appendix A.1.4). More precisely,

the diagonal block ŶM×M of Ŷ associated with a subset M (Z{ is given by

ŶM×M = (
Y/YZ×Z

)
M×M (3.91)

=
[

YM×M YM×Z

YZ×M YZ×Z

]
/ YZ×Z (3.92)

= Y(M∪Z )×(M∪Z )/YZ×Z (3.93)

From M (Z{ =N \Z and Z (N , it follows that M ∪Z (N (i.e., M ∪Z and Z are proper

subsets of N ). According to Theorem 2, Y(M∪Z )×(M∪Z ) and YZ×Z thus have full rank. So

det
(
Y(M∪Z )×(M∪Z

) 6= 0 (3.94)

det
(
YZ×Z

) 6= 0 (3.95)

As known from linear algebra, the determinant of ŶM×M is the product of the determinants of

Y(M∪Z )×(M∪Z and YZ×Z (see Lemma 11 in Appendix A.1.4). Accordingly

det
(
ŶM×M

)= det
(
Y(M∪Z )×(M∪Z

) ·det
(
YZ×Z

) 6= 0 (3.96)

which proves the third claim (3.84) of Corollary 1.
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3.3.2 Sequential Reduction of Multiple Sets of Zero-Injection Nodes

According to Corollary 1, the reduced compound admittance matrix Ŷ satisfies the same rank

property as Y (i.e., the diagonal blocks of Ŷ have full rank). Therefore, Ŷ can be reduced further,

in case there are more zero-injection nodes to be eliminated.

Observation 1. KR preserves the rank property which guarantees its feasibility (i.e., Theorem 2).

Therefore, in case Z is partitioned as {Zk | k ∈K }, the parts Zk can be reduced sequentially,

and the (partially or fully) reduced compound admittance matrices obtained in each step also

satisfy the said rank property (i.e., Theorem 2)..

Sequential KR (i.e., rather than “en bloc”) can be computationally efficient, because the Schur

complement requires a matrix inversion. This operation is computationally intensive, and

scales poorly with problem size (even if the inverse is not computed explicitly).

37



Chapter 3. Analysis of Equivalent Circuits of Polyphase Power Grids

3.4 On the Existence of Compound Hybrid Matrices

Evidently, (3.34) is in admittance form. That is, the nodal injected currents and the nodal phase-

to-ground voltages appear in separate vectors I and V, which are linked by the compound

admittance matrix Y. In power system analysis, it is often more convenient to write the grid

equations in hybrid form (i.e., if this is feasible). Let M (N be nonempty, and M{ :=N \M .

The grid equations in hybrid form (w.r.t. M ) read as follows:[
VM

IM{

]
=

[
HM×M HM×M{

HM{×M HM{×M{

][
IM

VM{

]
(3.97)

The block matrix H is the compound hybrid matrix (w.r.t. M ). A priori, the existence of such a

matrix is not guaranteed, and may depend both on Y and the choice of M . To be more precise,

the diagonal block YM×M of Y has to be invertible in order for H to exist (see Section 2.1).

Recall from Section 2.1 that various researches have investigated the matter of hybrid matrices.

Some authors merely describe how a hybrid matrix can be built, if it exists at all (e.g., [42–44]).

Other authors do provide criteria for the existence of hybrid matrices, but only for some (i.e.,

at least one) partition of the nodes (e.g., [45–47]). The existing works exclusively deal with

single-phase grids. Hence, their findings can (at best) be applied to balanced three-phase

grids (i.e., to their equivalent positive-sequence equivalent circuits). In contrast, Theorem 2

guarantees the existence of H for arbitrary choices of M in unbalanced polyphase grids.

3.4.1 The Case of Unreduced Grid Models

For now, suppose that Y is unreduced (this is the base case of Theorem 2).

Corollary 2 (Existence of H). Suppose that Theorem 2 applies. Let M (N be nonempty, such

that M and M{ :=N \M form a nontrivial partition of N . Then, ∃H so that[
VM

IM{

]
=

[
HM×M HM×M{

HM{×M HM{×M{

][
IM

VM{

]
(3.98)

where

HM×M = Y−1
M×M (3.99)

HM×M{
=−Y−1

M×M YM×M{
(3.100)

HM{×M = YM{×M Y−1
M×M (3.101)

HM{×M{
= YM{×M{

−YM{×M Y−1
M×M YM×M{

= Y/YM×M (3.102)

Observe that the term Y−1
M×M appears in every block of H.
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Proof. Write the admittance equation (3.34) in block form for M and M{:[
IM

IM{

]
=

[
YM×M YM×M{

YM{×M YM{×M{

][
VM

VM{

]
(3.103)

By Theorem 2, YM×M has full rank. Thus, the first block row of (3.103) can be rewritten as

VM = Y−1
M×M

(
IM −YM×M{

VM{

)
(3.104)

= Y−1
M×M IM −Y−1

M×M YM×M{
VM{

(3.105)

= HM×M IM +HM×M{
VM{

(3.106)

This proves the claims w.r.t. HM×M and HM{×M .

Substitute (3.104) into the second block row of (3.103), and group the terms w.r.t. IM and VM{

IM{
= YM{×M Y−1

M×M

(
IM −YM×M{

VM{

)
+YM{×M{

VM{
(3.107)

= YM{×M Y−1
M×M IM +

(
YM{×M{

−YM{×M Y−1
M×M YM×M{

)
VM{

(3.108)

= HM{×M IM +HM{×M{
VM{

(3.109)

This proves the claims w.r.t. HM{×M and HM{×M{
.

3.4.2 The Case of (Partially) Reduced Grid Models

It is worthwhile noting that compound hybrid matrices H do also exist if Y is reduced via KR.

This is due to the fact that KR preserves the rank property stated in Theorem 2.

Observation 2 (Existence of H under Application of KR). The existence of compound hybrid

matrices is guaranteed by the very same rank property as the feasibility of KR (i.e., Theorem 2).

Since KR preserves the said property (see Observation 1), compound hybrid matrices can also be

constructed from unreduced and (partially or fully) reduced compound admittance matrices.

That is, Y can be replaced by Ŷ in Corollary 2.
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Contributions: Control functions (e.g., voltage/current control) and protections are usually

implemented into embedded systems, especially in power distribution systems. The said

applications can profit from real-time knowledge of the grid state [112]. For instance, Phasor

Measurement Units (PMUs) can be used to acquire measurements at high refresh rates [113].

In addition to the measurement units, a state estimator is required to remove measurement

noise, and infer states which are not directly observed (i.e., through a measurement model).

Therefore, there is an interest in embedding state estimators into the same kind of platforms

that are used for control and protection. In this respect, one of the major challenges is the

implementation into dedicated hardware like Field-Programmable Gate Arrays (FPGAs), which

are widely used in embedded systems. For instance, the standard Kalman Filter (KF) is difficult

to implement in such hardware. In this chapter, it is demonstrated that the Sequential Kalman

Filter (SKF) is suitable for embedded systems. First, the measurement model and process

model of a generic power grid, which are prerequisites for the estimation of its state, are

developed. Specifically, the measurement model includes the reduced compound admittance

matrix of the grid, which is obtained via Kron Reduction (KR) (see Section 3.3). The working

hypotheses w.r.t. the statistical properties of the measurement noise and process noise are

discussed. Afterwards, the essentials of minimum-mean-squared-error estimation, which

lead to the standard KF, are recalled. Then, it is formally proven that the standard KF can be

equivalently rewritten as the SKF, provided that the measurements can be divided into blocks

whose noise variables are uncorrelated. In this respect, it is illustrated that the SKF is com-

putationally less intensive than the standard KF. To this end, the computational complexity

of these filters is quantified in terms of additions/subtractions and multiplications/divisions.

Based on the detailed analysis of the operations underlying the SKF, the hardware architecture

for the implementation into the FPGA is designed. In particular, it is illustrated how these

operations can be parallelized and pipelined to achieve high performance. Finally, the FPGA

prototype is validated using a test grid based on the IEEE 34-node distribution feeder.

Keywords: state estimation, sequential Kalman filter, embedded systems, field-programmable

gate array, phasor measurement units.
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4.1. Formulation of the Measurement Model

4.1 Formulation of the Measurement Model

4.1.1 Structure of the Measurement Model

States

As known from classical control theory, the measurement model relates the measurements

with the states. The state of a power system can be described by the phase-to-ground voltages,

branch voltages, nodal injected currents, branch currents, or a combination of them (cf. [58]).

If PMUs are used as meters, and the states and the measurements are expressed in rectangular

coordinates, then the measurement model is linear. In this thesis, the grid state is described

purely by phase-to-ground voltage phasors.

Recall from Section 3.3 that the phase-to-ground voltage phasors VZ in the zero-injection

nodes Z of a grid are a linear function of the phase-to-ground voltage phasors VZ{
in the

remainder of the nodes Z{ :=N \Z . The fact that IZ = 0 can be considered in different ways.

For instance, one can introduce pseudo-measurements, whose noise has very low variance

(i.e., by several order of magnitude lower than the variance of physical measurement noise).

However, this approach is prone to numerical ill-conditioning (e.g., of the gain matrix of a

weighted-least-squares estimator). Another possibility is to the eliminate the states associated

with the zero-injection nodes, for example via LQ or QR decomposition [16] or KR [115]. These

approaches reduce the size of the SE problem, and improve its numerical conditioning.

In this thesis, the KR approach is employed. More precisely, the grid state is described by the

phase-to-ground voltage phasors VZ{
of the non-zero-injection nodes Z{. The state vector x

is composed of the real and imaginary parts of the said phasors:

x :=
 ℜ

{
VZ{

}
ℑ

{
VZ{

}  (4.1)

Measurements

As previously mentioned, it is supposed that PMUs are used as meters. Suppose further that

these PMUs monitor nodal quantities (i.e., phase-to-ground voltages and injected currents at

the nodes Z{)1. Let Γ1 and Γ2 be indicator functions that select which elements of VZ{
and

IZ{
are measured. In analogy to the state vector x, the measurement vector y is defined as

y =
[

y1

y2

]
, y1 ∼

 Γ1ℜ
{

VZ{

}
Γ1ℑ

{
VZ{

}  , y2 ∼
 Γ2ℜ

{
IZ{

}
Γ2ℑ

{
IZ{

}  (4.2)

where y1 and y2 correspond to the voltage and current measurements, respectively.

1Branch currents can easily be treated, as IL can be written in function of VZ using (3.39) (i.e., IL = YL AP
BV)

and Corollary 1 (i.e., VZ =−Y−1
Z×Z YZ×Z{

VZ{
). However, this is not discussed here for the sake of space.
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Recall from Corollary 1 that IZ{
and VZ{

are linked by Y/YZ×Z . Let G and B denote the real

and imaginary part of Y/YZ×Z , respectively:

IZ{
= (

Y/YZ×Z

)
VZ{

:= (
G+ j B

)
VZ{

(4.3)

If the PMUs were ideal meters

y1 = C1x, C1 :=
[
Γ1 0

0 Γ1

]
(for ideal meters) (4.4)

y2 = C2x, C2 :=
[
Γ2 0

0 Γ2

][
G −B

B G

]
(for ideal meters) (4.5)

The state vector x and the measurement vector y are related by the output matrix C

y = Cx, C :=
[

C1

C2

]
(for ideal meters) (4.6)

In reality, phasor measurements are corrupted with noise, which originates both from the

hardware (e.g., the sensors) and the software (e.g., the signal processing) of the PMUs, and

from the grid (e.g., power electronic devices and the like) [116]. This can be represented by a

measurement noise vector v, which is added to Cx [58]. Moreover, as x, y and v vary over time,

they are considered to be discrete-time signals xk , yk , and vk , respectively. In summary

Hypothesis 4 (Measurement Model). The measurement model is linear with additive noise:

yk = Cxk +vk (4.7)

4.1.2 Hypotheses with Respect to the Measurement Noise

In the aforestated measurement model, there is an implicit transformation from polar to

rectangular coordinates. This is due to the fact that PMUs provide measurements of magnitude

and phase [113], whereas y is expressed in real and imaginary parts.

The measurement noise in polar coordinates is approximately normally distributed [117]. The

transformation from polar to rectangular coordinates does not preserve the normality of the

probability density function. For practical values of the sensor accuracy in polar coordinates,

the normality of the probability distribution is not substantially affected, though. In order for

the effect to become noticeable, the standard deviation of the measurement error would have

to exceed 5% [116]. PMUs are typically equipped with voltage and currents sensors of class 1 or

better. Therefore, the measurement noise in rectangular coordinates is normally distributed

in practice [118]. However, the coordinate transformation does affect the standard deviations.

That is, the standard deviations associated with polar coordinates are functions of those

associated with rectangular coordinates. The interested reader is referred to Appendix A.3,

where this subject is discussed in detail.
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Let N
(
µ,Σ

)
denote the multivariate normal distribution with mean vector µ and covariance

matrix Σ, and E [·] the expected-value operator. The measurement noise is described by the

model stated below (see [58]):

Hypothesis 5 (Measurement Noise). The measurement noise vector vk is normally distributed

and white:

vk ∼ N
(
0,Rk

)
(4.8)

E
[

vk vTl
]
=

{
Rk l = k

0 l 6= k
(4.9)

Note that the measurement noise covariance matrix Rk is known (i.e., it can be derived from

the metrological characteristics of the PMUs). Since Rk is a covariance matrix, it is positive

semidefinite: Rk º 0. In general, Rk is time-variant (i.e., vk is non-stationary) and dense (i.e.,

the elements of vk are correlated) [119–121].

4.1.3 The Necessary Condition for Observability

In order to achieve observability (i.e., to infer all states from the measurements), the output

matrix C needs to have full rank [23]. To that effect, a sufficient number of PMUs needs to be

placed appropriately in the grid [122]. Hereafter, it is assumed that this is the case:

Hypothesis 6 (Observability). The output matrix C has full rank (i.e., the grid is observable).

In this regard, it is worth mentioning that the measurement model may include critical and

leverage measurements. A critical measurement is a measurement whose loss causes the grid

to become unobservable (i.e., it decreases the rank of C). The residuals (i.e., the difference

between the raw and the estimated measurements, see Section 2.2) of critical measurements

are idental to zero [23]. A leverage measurement is a measurement whose residual remains

close to zero even in presence of large measurement errors (i.e., due to the structure of C) [23].

Recall that bad data can be identified based on the statistical distribution of the residuals

(e.g., [59,60]). Namely, a measurement is marked as bad if its residual exceeds a certain

statistical threshold. Since critical and leverage measurements have residuals identical or

close to zero, respectively, bad data occurring on these measurements cannot be detected.

The identification and the treatment of critical and leverage measurements are well-discussed

in the existing literature (e.g., [22,23], but are beyond the scope of this thesis.
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4.2 Formulation of the Process Model

4.2.1 Structure of the Process Model

As known from classical control theory, the process model describes the evolution of the state

over time. For a discrete-time, linear, time-invariant system, the process model is of the form

xk+1 = Axk +Buk +wk (4.10)

where u is the vector of controllable variables, w is the vector of process noise variables, A is the

system matrix, and B tis he input matrix [58,64].

In the case of power systems, the aforestated process model can be simplified as proposed

in [58,68]. Firstly, PMUs are required to stream measurements at high refresh rates [123,124]

(i.e., tens of frames per second). Therefore, the state varies only little between two consecutive

time steps. Hence, a quasi-static process model can be used (i.e., A is an identity matrix).

Secondly, from the point of view of the state estimator, the inputs of a power system are not

controllable. Accordingly, they can be ignored in the process model (i.e., B is a null matrix).

This yields an Autoregressive Integrated Moving Average (ARIMA) model of order (0,1,0) [125]:

Hypothesis 7 (Process Model). The process model is an ARIMA model of order (0,1,0):

xk+1 = xk +wk (4.11)

It is worthwhile noting that this process model can capture power system transients, provided

that the associated time constants are reasonably longer than the time window used for the

synchrophasor extraction (i.e., several cycles of the fundamental component). Typically, the

windows length is 40–100 milliseconds (i.e., 2–5 cycles) [126]. Accordingly, slow transients with

time constants of several hundreds of milliseconds can be treated, while fast transients with

time constants of a few tens of milliseconds cannot.

4.2.2 Hypotheses with Respect to the Process Noise

With regard to the noise, there is a fundamental difference between the measurement model

and the process model. The measurement noise is a statistical property of observations, which

is due to both the hardware (e.g., the sensors) and the software (e.g, the signal processing).

Therefore, the measurement noise can be characterized experimentally, for instance using a

calibrator [127]. The process noise, on the other hand, is a virtual construct, which is related

to the mathematical model of the evolution of the system state. More precisely, it captures the

mismatch between the chosen process model and the true evolution of the system state. In

practice, the true system state is unknown. Hence, the process noise cannot be characterized

experimentally like the measurement noise. Normally, it is assumed that the process noise

behaves similar to the measurement noise (e.g., [58,68]):
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Hypothesis 8 (Process Noise). The process noise wk is normally distributed and white:

wk ∼ N
(
0,Qk

)
(4.12)

E
[

wk wT
l

]
=

{
Qk l = k

0 l 6= k
(4.13)

Usually, process noise covariance matrix Qk is assumed constant (i.e., Qk = Q), and set to a

value which ensures that the process model captures the typical dynamics well. Nevertheless,

based on the aforestated hypothesis that the process noise is normally distributed, Qk can

be assessed on-line. For instance, Qk can be approximated by the sample variance of the

estimated state [69], or by solving a log(det(.)) optimization problem [70]. However, such

methods are beyond the scope of this thesis, and are thus not considered in the following.

Instead, it is simply assumed that Qk is known.
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4.3 Estimation of the System State using Kalman Filters

4.3.1 Recall of the Standard Kalman Filter

The KF produces an estimate of the true state xk , which minimizes the mean squared error [64].

It consists of a prediction step, which relies only on information from the past time step k −1,

and an estimation step, which takes into account information from the present time step k.

Let x̂−k and x̂+k be the predicted state and estimated state, respectively. The prediction error e−k
and the estimation error e+k are defined as the differences w.r.t. the true state xk :

e−k := x̂−k −xk (4.14)

e+k := x̂+k −xk (4.15)

Suppose that the said errors have zero mean (i.e., x̂−k and x̂+k are on average equal to xk ):

E
[
e−k

]= 0 (4.16)

E
[
e+k

]= 0 (4.17)

Under these conditions, the prediction error covariance matrix P−
k and the estimation error

covariance matrix P+
k are given by

P−
k := E

[
e−k

(
e−k

)T]
(4.18)

P+
k := E

[
e+k

(
e+k

)T]
(4.19)

Derivation of the Prediction Step

Assume that the estimated state x̂+k−1 of the past step k−1 is known. According to Hypothesis 7,

the true state remains constant between step k −1 and k (except for process noise). Therefore,

one can set (see [128])

x̂−k = x̂+k−1 (4.20)

Given this relation, the prediction error covariance matrix P−
k can be expressed in function of

the estimation error covariance matrix P+
k−1 and the process noise covariance matrix Qk−1.

First, substitute (4.14) and (4.20) into (4.18):

P−
k = E

[
e−k

(
e−k

)T]
(4.21)

= E
[(

x̂−k −xk

)(
x̂−k −xk

)T]
(4.22)

= E
[(

x̂+k−1 −xk

)(
x̂+k−1 −xk

)T]
(4.23)
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Then, use (4.15) (i.e., e+k = x̂+k −xk ) and Hypothesis 7 (i.e., xk+1 = xk +wk ), and simplify:

P−
k = E

[(
x̂+k−1 −xk

)(
x̂+k−1 −xk

)T]
(4.24)

= E
[(

xk−1 +e+k−1 −
(
xk−1 +wk−1

))(
xk−1 +e+k−1 −

(
xk−1 +wk−1

))T]
(4.25)

= E
[(

e+k−1 −wk−1

)(
e+k−1 −wk−1

)T]
(4.26)

Expanding the product yields

P−
k = E

[(
e+k−1 −wk−1

)(
e+k−1 −wk−1

)T]
(4.27)

= E
[

e+k−1

(
e+k−1

)T]
+E

[
wk−1wT

k−1

]
+E

[
e+k−1wT

k−1

]
+E

[
wk−1

(
e+k−1

)T]
(4.28)

If the estimation error e+k−1 and the process noise wk−1 are uncorrelated, that is

E
[

e+k−1wT
k−1

]
= 0 (4.29)

E
[

wk−1

(
e+k−1

)T]
= 0 (4.30)

then the prediction error covariance matrix P−
k is given by

P−
k = E

[
e+k−1

(
e+k−1

)T]
+E

[
wk−1wT

k−1

]
(4.31)

Using (4.19) (i.e., P+
k = E

[
e+k

(
e+k

)T]
) and Hypothesis 8 (i.e., wk ∼ N

(
0,Qk

)
), one finds

P−
k = P+

k−1 +Qk−1 (4.32)

Derivation of the Estimation Step

Now, the measurement yk shall be used in order to obtain the estimated state x̂+k . To this end,

the predicted state x̂−k is corrected using the mismatch between the observed measurement yk

and the expected measurement ŷk = Cx̂−k (see [128]):

x̂+k = x̂−k +Kk

(
yk −Ck x̂−k

)
(4.33)

The selection of the Kalman gain Kk (a.k.a. blending factor) is discussed later in this chapter.

The estimation error covariance matrix P+
k can be expressed in function of the prediction error

covariance matrix P−
k , the output matrix Ck , the measurement noise covariance matrix Rk ,

and the Kalman gain Kk . First, substitute (4.15) and (4.33) into (4.19):

P+
k = E

[
e+k

(
e+k

)T]
(4.34)

= E
[(

x̂+k −xk

)(
x̂+k −xk

)T]
(4.35)

= E
[(

x̂−k +Kk

(
yk −Ck x̂−k

)−xk

)(
x̂−k +Kk

(
yk −Ck x̂−k

)−xk

)T]
(4.36)
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Then, use Hypothesis 4 (i.e., yk = Ck xk +vk ) and (4.14) (i.e., e−k = x̂−k −xk ), and simplify:

P+
k = E

[(
x̂−k +Kk

(
yk −Ck x̂−k

)−xk

)(
x̂−k +Kk

(
yk −Ck x̂−k

)−xk

)T]
(4.37)

= E
[(

x̂−k +Kk

(
Ck xk +vk −Ck x̂−k

)−xk

)(
x̂−k +Kk

(
Ck xk +vk −Ck x̂−k

)−xk

)T]
(4.38)

= E
[(

x̂−k −xk +Kk

(
vk −Ck

(
x̂−k −xk

)))(
x̂−k −xk +Kk

(
vk −Ck

(
x̂−k −xk

)))T]
(4.39)

= E
[(

e−k +Kk

(
vk −Ck e−k

))(
e−k +Kk

(
vk −Ck e−k

))T]
(4.40)

= E
[((

I−Kk Ck

)
e−k +Kk vk

)((
I−Kk Ck

)
e−k +Kk vk

)T]
(4.41)

Expanding the product yields

P+
k = E

[((
I−Kk Ck

)
e−k +Kk vk

)((
I−Kk Ck

)
e−k +Kk vk

)T]
(4.42)

=
 (

I−Kk Ck

)
E
[

e−k
(
e−k

)T](
I−Kk Ck

)T+Kk E
[

vk vTk
]

KT
k

+(
I−Kk Ck

)
E
[

e−k vTk
]

KT
k +Kk E

[
vk

(
e−k

)T](
I−Kk Ck

)T (4.43)

If the prediction error e−k and the measurement noise vk are uncorrelated, that is

E
[

e−k vTk
]
= 0 (4.44)

E
[

vk

(
e−k

)T]
= 0 (4.45)

then the estimation error covariance matrix P+
k is given by

P+
k = (

I−Kk Ck

)
E
[

e−k
(
e−k

)T](
I−Kk Ck

)T+Kk E
[

vk vTk
]

KT
k (4.46)

Using (4.18) and Hypothesis 5 (i.e., vk ∼ N
(
0,Rk

)
), one finds

P+
k = (

I−Kk Ck

)
P−

k

(
I−Kk Ck

)T+Kk Rk KT
k (4.47)

The prediction error covariance matrix P−
k is given at this point. Moreover, the output matrix Ck

and the measurement noise covariance matrix Rk are known by Hypothesis 4 and Hypothesis 5,

respectively. The Kalman gain Kk can be selected such that the estimated state x̂+k is optimal

w.r.t. a given design objective.

The objective for designing the KF is to minimize the mean squared error (e.g., [128,129]):

x̂+k = argmin
(
E
[(

e+k
)T

e+k
])

= argmin
(
trace

(
P+

k

))
(4.48)

To this end, the Kalman gain Kk needs to satisfy the following condition:

d
[
trace

(
P+

k

)]
dKk

= 0 (4.49)
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First, substitute (4.47) into trace
(
P+

k

)
:

trace
(
P+

k

)= trace
((

I−Kk Ck

)
P−

k

(
I−Kk Ck

)T+Kk Rk KT
k

)
(4.50)

= trace
(
P−

k −Kk Ck P−
k −P−

k CT
k KT

k +Kk Ck P−
k CT

k KT
k +Kk Rk KT

k

)
(4.51)

= trace
(
P−

k −
(
Kk Ck P−

k +P−
k CT

k KT
k

)
+Kk

(
Ck P−

k CT
k +Rk

)
KT

k

)
(4.52)

= trace
(
P−

k −
(
Kk Ck P−

k + (
Kk Ck P−

k

)T)
+Kk

(
Ck P−

k CT
k +Rk

)
KT

k

)
(4.53)

= trace
(
P−

k

)−2trace
(
Kk Ck P−

k

)+ trace
(
Kk

(
Ck P−

k CT
k +Rk

)
KT

k

)
(4.54)

Now, the derivative of trace
(
P+

k

)
w.r.t. Kk is calculated. It is known that (for proof, see [130])

d [trace(AB)]

dA
= BT if AB = square (4.55)

d
[

trace
(
ACAT

)]
dA

= 2AC if C = CT (4.56)

It follows that

d
[
trace

(
P+

k

)]
dKk

=−2
d

[
trace

(
Kk Ck P−

k

)]
dKk

+
d

[
trace

(
Kk

(
Ck P−

k CT
k +Rk

)
KT

k

)]
dKk

(4.57)

=−2P−
k CT

k +2Kk

(
Ck P−

k CT
k +Rk

)
(4.58)

= 0 (4.59)

Provided that the term Ck P−
k CT

k +Rk is non-singular, the Kalman gain Kk is obtained as

Kk = P−
k CT

k

(
Ck P−

k CT
k +Rk

)−1
(4.60)

Formulation of the Standard Kalman Filter

In summary, the standard KF consists of the prediction step

P−
k = P+

k−1 +Qk−1 (4.61)

x̂−k = x̂+k−1 (4.62)

and the estimation step

Kk = P−
k CT

k

(
Ck P−

k CT
k +Rk

)−1
(4.63)

P+
k = (

I−Kk Ck

)
P−

k

(
I−Kk Ck

)T+Kk Rk KT
k (4.64)

x̂+k = x̂−k +Kk

(
yk −Ck x̂−k

)
(4.65)

In classical control theory, various equivalent formulations of the KF are known (see [131]).
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Lemma 3 (KF). Consider a power grid, whose measurement model and process model satisfy

Hypotheses 4–6 and Hypotheses 7–8, respectively. If it holds that

E
[

vk wT
l

]
= 0 (4.66)

(i.e., the measurement noise v and the process noise w are uncorrelated), the KF gives an estimate

with minimal mean squared error. More precisely, the KF consists of the prediction step

P−
k = P+

k−1 +Qk−1 (4.67)

x̂−k = x̂+k−1 (4.68)

and the estimation step

Kk = P−
k CT

k

(
Ck P−

k CT
k +Rk

)−1
(4.69)

P+
k = (

I−Kk Ck

)
P−

k

(
I−Kk Ck

)T+Kk Rk KT
k = (

I−Kk Ck

)
P−

k (4.70)

x̂+k = x̂−k +Kk

(
yk −Ck x̂−k

)
(4.71)

The latter can be equivalently written as(
P+

k

)−1 = (
P−

k

)−1+CT
k R−1

k Ck (4.72)

Kk = P+
k CT

k R−1
k (4.73)

x̂+k = x̂−k +Kk

(
yk −Ck x̂−k

)
(4.74)

The first formula for P+
k in (4.70) (a.k.a. Joseph’s form) is more complex than the second one,

but grants immediate insight into the positive (semi)definiteness of P+
k . The interested reader

is referred to Appendix A.4.1, where the equivalence of the two formulas is proven.

Evidently, in order for the KF to be applicable, the inverses of Rk , P−
k , P+

k , and Ck P−
k CT

k +Rk

have to exist. A priori, there is no guarantee for this: Rk , P−
k , and P+

k are covariance matrices,

which means that they are only ensured to be positive semidefinite, and may thus be singular.

In practice, the positive definiteness (and thus invertibility) of these terms can be enforced.

For instance, the diagonal elements of the process noise covariance matrix Qk can be inflated,

so that the error covariance matrices P−
k /P+

k become positive definite. This comes at the cost

of higher estimation error. In case the measurement noise covariance matrix Rk is positive

definite, P−
k /P+

k are also guaranteed to be positive definite. The interested reader is referred to

Appendix A.4.2, where this subject is discussed in detail. Hereafter, whenever the KF is utilized,

it is supposed that the following hypothesis holds:

Hypothesis 9 (Positive Definiteness of Rk , P+
k ). The measurement noise covariance matrix Rk

and the estimation error covariance matrix P+
k are positive definite.

Incidentally, Hypothesis 9 is the basis for the equivalence of the formulations (4.69)–(4.71)

and (4.72)–(4.74) of the estimation step. The proof is given in Appendix A.4.3.
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4.3.2 The Sequential Kalman Filter

Correlation of the Measurement Noise Variables

Recall that the measurement noise vector vk is additive and normally distributed with zero

mean (Hypothesis 4–5), and that its covariance matrix Rk is positive definite (Hypothesis 9):

vk ∼ N
(
0,Rk

)
, Rk Â 0

So far, no assumptions have been made w.r.t. to the correlation between the elements of vk .

In theory, all measurement noise variables could be correlated. That is, all elements of Rk

could be non-zero. In practice, most of them are zero, though. For instance, noise variables

associated with different PMUs are uncorrelated. By contrast, noise variables associated with

channels of the same PMU (i.e., phase-to-ground voltages and injected currents at the same

node) may be correlated. Recall that PMUs provide measurements in polar coordinates (i.e.,

magnitude and phase) [113] . The magnitude noise variables are uncorrelated, because they

stem from separate sensors. By contrast, the phase noise variables are correlated, since the

phases are defined w.r.t. to the same synchronized clock [121]. Recall that the measurement

model (4.2) is expressed in rectangular coordinates. If the noise variables associated with

the phases of the channels of a PMU are correlated, the same holds for the noise variables

associated with the real and imaginary parts.

On these grounds, the measurement noise vector vk is thought to be composed of blocks vk,i

that are mutually uncorrelated. In other words, the measurement noise covariance matrix Rk

is block-diagonal. Formally:

Hypothesis 10 (Diagonality of Rk ). The measurement noise vector vk consists of blocks vk,i ,

which are mutually uncorrelated:

E
[

vk,i vTk, j

]
=

{
Rk,i i = j

0 i 6= j
(4.75)

By consequence, the measurement noise covariance matrix Rk is block-diagonal:

Rk = diagi

(
Rk,i

)
(4.76)

Sequential Treatment of the Measurements

Let yk,i and Ck,i be the blocks of yk and Ck which correspond to the block vk,i of vk :

yk,i = Ck,i xk +vk,i (4.77)
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Note that yk,i , Ck,i , and vk,i are the i -th block rows of yk , Ck , and vk , respectively. Accordingly

yk = coli

(
yk,i

)
(4.78)

Ck = coli

(
Ck,i

)
(4.79)

vk = coli

(
vk,i

)
(4.80)

As it turns out, provided that the blocks of measurement noise variables vk,i are uncorrelated,

the blocks of measurements yk,i can be processed sequentially rather than simultaneously.

That is, the KF can be equivalently reformulated as the SKF. Let B be the number of blocks of

the measurement model (i.e., i = 1, . . . ,B). The SKF is as follows (see [131]):

Theorem 3 (SKF). Suppose that the conditions of Lemma 3 are met and that Hypothesis 9 holds.

If Hypothesis 10 is satisfied, the KF can be equivalently reformulated as the SKF. More precisely,

the blocks of measurements yk,i are processed sequentially (i.e., in a FOR loop that runs over i )

in the estimation step. The initial values are the results of the prediction step:

P+
k,0 = P−

k (4.81)

x̂+k,0 = x̂−k (4.82)

The iteration step for (4.69)–(4.71) is

Kk,i = P+
k,i−1CT

k,i

(
Ck,i P+

k,i−1CT
k,i +Rk,i

)−1
(4.83)

P+
k,i =

(
I−Kk,i Ck,i

)
P+

k,i−1

(
I−Kk,i Ck,i

)T+Kk,i Rk,i KT
k,i =

(
I−Kk,i Ck,i

)
P+

k,i−1 (4.84)

x̂+k,i = x̂+k,i−1 +Kk,i

(
yk,i −Ck,i x̂+k,i−1

)
(4.85)

and the one for (4.72)–(4.74) is(
P+

k,i

)−1 = (
P+

k,i−1

)−1+CT
k,i R−1

k,i Ck,i (4.86)

Kk,i = P+
k,i CT

k,i R−1
k,i (4.87)

x̂+k,i = x̂+k,i−1 +Kk,i

(
yk,i −Ck,i x̂+k,i−1

)
(4.88)

The final results of the SKF are identical to the results of the KF:

P+
k = P+

k,B (4.89)

x̂+k = x̂+k,B (4.90)

The term Ck,i P+
k,i−1CT

k,i +Rk,i is equal in size to Rk,i , which is typically much smaller than Rk .

By contrast, P+
k,i has the full size of P+

k . Hence, the calculation of the inverse in (4.83) is less

demanding than the calculation of the inverses in (4.86). If all measurement noise variables

are uncorrelated, which means that all Rk,i have size 1×1, the inversion in (4.83) simplifies to

a division. This is beneficial w.r.t. computational complexity (see Section 4.5), and facilitates

the implementation of the SKF into an FPGA (see Section 4.6).
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4.4 Equivalence of the Considered Kalman Filters

Obviously, the sequential formulations (4.83)–(4.85)/(4.86)–(4.88) are structurally similar to

the standard formulations (4.69)–(4.71)/(4.72)–(4.74). Nevertheless, it is not evident that the

measurements can be processed sequentially, and that the sequential calculation yields the

same results as the standard one. Notably, the iterations of the SKF are not independent

estimations, since one block of measurement yk,i does not suffice to infer the entire state xk

(i.e., the partial measurement model yk,i = Ck,i xk +vk,i is underdetermined). Furthermore,

although the SKF occasionally appears in the literature (e.g., [68,71]), a complete proof of

equivalence is nowhere to be found to the best of the author’s knowledge. Therefore, the

equivalence of the SKF and the standard KF is now proven.

Due to the similarity of the SKF and the standard KF, it is simple to show that the sequential

formulations (4.83)–(4.85) and (4.86)–(4.88) are equivalent. In fact, the proof in Appendix A.4.3,

which establishes that the standard formulations (4.69)–(4.71) and (4.72)–(4.74) are equivalent,

applies with minor changes. As the sequential formulations are equivalent, it suffices to show

that either of them produces the same results as one of the standard formulations. The proof

of equivalence is performed separately for the estimation error covariance matrix and the

estimated state vector.

4.4.1 Estimation Error Covariance Matrix

Proof. (P+
k = P+

k,B ). (4.86) is a recursion formula for
(
P+

k,i

)−1
. Expanding it for i = B yields

(
P+

k,B

)−1 = (
P+

k,B−1

)−1+CT
k,B R−1

k,B Ck,B (4.91)

= (
P+

k,0

)−1 B∑
i=1

CT
k R−1

k,i Ck (4.92)

Recall equation (4.79) (i.e., Ck = coli

(
Ck,i

)
), Hypothesis 10 (i.e., Rk = diagi

(
Rk,i

)
), as well as

equation (4.81) (i.e., P+
k,0 = P−

k ). It follows that

(
P+

k,B

)−1 = (
P+

k,0

)−1+ B∑
i=1

CT
k R−1

k,i Ck (4.93)

= (
P−

k

)−1+CT
k R−1

k Ck (4.94)

Finally, using (4.72) (i.e.,
(
P+

k

)−1 = (
P−

k

)−1+CT
k R−1

k Ck ), one finds that(
P+

k,B

)−1 = (
P−

k

)−1+CT
k R−1

k Ck (4.95)

= (
P+

k

)−1
(4.96)

This proves the claim w.r.t. P+
k .
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4.4.2 Estimated State Vector

Proof. (x̂+k = x̂+k,B ). Group the terms in (4.88) w.r.t. to x̂+k,i−1 and yk,i :

x̂+k,i = x̂+k,i−1 +Kk,i

(
yk,i −Ck,i x̂+k,i−1

)
(4.97)

= (
I−Kk,i Ck,i

)
x̂+k,i−1 +Kk,i yk,i (4.98)

This is a recursion formula for x̂+k,i . Expand it for i = B , and use (4.82) (i.e., x̂+k,0 = x̂−k ):

x̂+k,B = (
I−Kk,B Ck,B

)
x̂+k,B−1 +Kk,B yk,B (4.99)

=
j=B∏

1

{
I−Kk, j Ck, j

}
x̂−k +Kk,B yk,B +

B−1∑
i=1

j=B∏
i+1

{
I−Kk, j Ck, j

}
Kk,i yk,i (4.100)

Note that the indices of the multiplicands are decreasing. If x̂+k,B = x̂+k , then it must hold that

i=B∏
1

{
I−Kk,i Ck,i

}
x̂−k = (

I−Kk Ck

)
x̂−k (4.101)

Kk,B yk,B +
B−1∑
i=1

j=B∏
i+1

{
I−Kk, j Ck, j

}
Kk,i yk,i = Kk yk (4.102)

Recall that the claim P+
k = P+

k,B has already been proven. Thus, (4.84) yields the same as (4.70)

after B iterations. Namely

i=B∏
1

(
I−Kk,i Ck,i

)
P−

k = (
I−Kk Ck

)
P−

k (4.103)

By comparison of the coefficients, it follows that (4.101) holds. Now, solve (4.84) for I−Kk,i Ck,i ,

and use the result to rewrite the product term on the left-hand side of (4.102):

j=B∏
i+1

{
I−Kk, j Ck, j

}
=

j=B∏
i+1

{
P+

k, j

(
P+

k, j−1

)−1}
(4.104)

= P+
k,B

(
P+

k,i

)−1
(4.105)

Therefore, the sum term on the left-hand side of (4.102) can be rewritten as follows:

B−1∑
i=1

j=B∏
i+1

{
I−Kk, j Ck, j

}
Kk,i yk,i = P+

k,B

B−1∑
i=1

(
P+

k,i

)−1
Kk,i yk,i (4.106)

Substitute (4.87) (i.e., Kk,i = P+
k,i CT

k,i R−1
k,i ) into the aforestated equation:

P+
k,B

B−1∑
i=1

(
P+

k,i

)−1
Kk,i yk,i = P+

k,B

B−1∑
i=1

CT
k,i R−1

k,i yk,i (4.107)
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So, the left-hand side of (4.102) can be simplified as follows:

Kk,B yk,B +
B−1∑
i=1

j=B∏
i+1

{
I−Kk, j Ck, j

}
Kk,i yk,i = P+

k,B

B∑
i=1

CT
k,i R−1

k,i yk,i (4.108)

From (4.79) (i.e., Ck = coli

(
Ck,i

)
), Hypothesis 9 (i.e., Rk = diag

(
Rk,i

)
), and the first claim (i.e.,

P+
k = P+

k,B ), it follows that

P+
k,B

B∑
i=1

CT
k,i R−1

k,i yk,i = P+
k CT

k R−1
k yk (4.109)

Using (4.87) (i.e., Kk = P+
k CT

k R−1
k ), it is found that

P+
k CT

k R−1
k yk = Kk yk (4.110)

which is the right-hand side of (4.102). Since (4.101) and (4.102) hold, x̂+k,B = x̂+k as claimed.

57



Chapter 4. Real-Time Estimation of the Grid State by a Sequential Kalman Filter

4.5 Computational Complexity of the Considered Kalman Filters

4.5.1 Performance Limitations due to Matrix Inversions

Recall that both the standard KF and the SKF involve matrix inversions. Let S be the size of xk

(i.e., the number of states), M the size of yk (i.e., the number of measurements), and Mi the

size of yk,i . The following inverses need to be calculated (see Lemma 3 and Theorem 3):

• KF, version (4.69)–(4.71):
(
Ck P−

k CT
k +Rk

)−1
(M ×M), calculated once.

• KF, version (4.72)–(4.74):
(
P+

k

)−1
/
(
P−

k

)−1 (S ×S) and R−1
k (M ×M), calculated once.

• SKF, version (4.83)–(4.85):
(
Ck,i P+

k,i−1CT
k,i +Rk,i

)−1
(Mi ×Mi ), calculated B times.

• SKF, version (4.86)–(4.88):
(
P+

k,i

)−1
(S ×S) and

(
Rk,i

)−1 (Mi ×Mi ), calculated B times.

The majority of the aforestated matrices are dense (i.e., they have few nonzero elements),

and hence inefficient w.r.t. storage and treatment. Matrix inversion is known to scale poorly,

because the computational complexity is high, and the memory access pattern is irregular.

Indeed, the performance of the standard KF is limited by the calculation of the inverses [132].

Version (4.86)–(4.88) of the SKF is even more impractical, because P+
k,i , which has the same size

as P+
k , needs to be inverted in every iteration. By contrast, the terms Ck,i P+

k,i−1CT
k,i +Rk,i have

the same size as the Rk,i , which are usually smaller than Rk , because only few measurement

noise variables are correlated (i.e., Mi ¿ M). For this reason, the calculation of the inverse is

less critical for version (4.83)–(4.85) of the SKF. In case the measurement noise variables are

uncorrelated, the matrix inversion even simplifies to a division. In light of these observations,

the standard KF is clearly unsuitable for implementation in dedicated hardware (e.g., FPGAs).

By contrast, the SKF is suitable if the measurement noise variables are largely uncorrelated.

4.5.2 Assumption of Uncorrelated Measurement Noise Variables

In [121], it is investigated how state estimators perform when the correlations are considered

(i.e., if Rk is block-diagonal) or not (i.e., if Rk is diagonal). Traditional measurement units as

well as PMUs are examined. In both cases, it is found that the inclusion of the correlation

into the measurement model yields virtually no improvement in terms of estimation accuracy.

Even in a hypothetical case study with high correlation factors and large measurement errors,

no significant improvement is achieved. Hence, the correlation between measurement noise

variables can be neglected in practice So, the SKF processes the elements yk,i of yk sequentially

yk,i = yk,i := (
yk

)
i (4.111)

Ck,i = rowi

(
Ck,i

)
(4.112)

Rk,i = Rk,i := (
Rk

)
ii (4.113)
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Table 4.1 – Computational complexity of the prediction step.

Operation +|− ×|÷
P−

k = P+
k−1 +Qk−1 S2 0

x̂−k = x̂+k−1 0 0

4.5.3 Analysis of the Computational Complexity

The computational complexity is quantified by the number of scalar additions/subtractions

(+|−) and scalar multiplications/divisions (×|÷).

Prediction Step

First, recall the prediction step (4.67)–(4.68), which is the same for the standard KF and SKF.

Its computational complexity is illustrated in Table 4.1.

Estimation Step of the Standard Kalman Filter

Now, recall the estimation step (4.69)–(4.71) of the standard KF:

Kk = P−
k CT

k

(
Ck P−

k CT
k +Rk

)−1
P+

k = (
I−Kk Ck

)
P−

k

x̂+k = x̂−k +Kk

(
yk −Ck x̂−k

)
For ease of understanding, the calculations are divided into sequences of simple operations.

Operands which have been calculated in a previous step are marked with rectangular brackets.

To give an example, AB+CD can be calculated as follows: 1) AB, 2) CD, and 3) [AB]+ [CD].

The results for the above-stated equations are given in Table 4.2. The complexity of the inverse

is indicated as O (M 3), because the exact numbers depend on the algorithm.

Estimation Step of the Sequential Kalman Filter

For uncorrelated measurement noise, the estimation step (4.83)–(4.85) of the SKF becomes

Kk,i = P+
k,i−1CT

k,i

(
Ck,i P+

k,i−1CT
k,i +Rk,i

)−1
P+

k,i =
(
I−Kk,i Ck,i

)
P+

k,i−1

x̂+k,i = x̂+k,i−1 +Kk,i

(
yk,i −Ck,i x̂+k,i−1

)
Observe that the term Ck,i P+

k,i−1CT
k,i +Rk,i is a scalar, so the inversion is actually a division.

The number of scalar operations required for one iteration are provided in Table 4.3.

59



Chapter 4. Real-Time Estimation of the Grid State by a Sequential Kalman Filter

Table 4.2 – Computational complexity of the estimation step of the standard KF.

Variable Operation +|− ×|÷
– Ck P−

k S(S −1)M S2

Kk

[
Ck P−

k

]
CT

k (S −1)M 2 SM 2

dito
[

Ck P−
k CT

k

]
+Rk M 2 0

dito
[

Ck P−
k CT

k +Rk

]−1
O

(
M 3

)
O

(
M 3

)
dito

[
(Ck P−

k )T
][

(Ck P−
k CT

k +Rk )−1
]

SM(M −1) SM 2

P+
k

[
Kk

][
Ck P−

k

]
S2(M −1) S2M

dito P−
k − [

Kk Ck P−
k

]
S2 0

x̂+k Ck x̂−k (S −1)M SM

dito yk −
[
Ck x̂−k

]
M 0

dito
[
Kk

][
yk −Ck x̂−k

]
S(M −1) SM

dito x̂−k + [
Kk (yk −Ck x̂−k )

]
S 0

Table 4.3 – Computational complexity of one iteration of the estimation step of the SKF.

Variable Operation +|− ×|÷
– Ck,i P+

k,i−1 S(S −1) S2

Kk,i

[
Ck,i P+

k,i−1

]
CT

k,i S −1 S

dito
[

Ck,i P+
k,i−1CT

k,i

]
+Rk,i 1 0

dito
[

Ck,i P+
k,i−1CT

k,i +Rk,i

]−1
0 1

dito
[

(Ck,i P+
k,i−1)T

][
(Ck,i P+

k,i−1CT
k,i +Rk,i )−1

]
0 S

P+
k,i

[
Kk,i

][
Ck,i P+

k,i−1

]
0 S2

dito P+
k,i−1 −

[
Kk,i Ck,i P−

k,i−1

]
S2 0

x̂+k,i Ck,i x̂+k,i−1 S −1 S

dito yk,i −
[
Ck,i x̂+k,i−1

]
1 0

dito
[
Kk,i

][
yk,i −Ck,i x̂+k,i−1

]
0 S

dito x̂+k,i−1 +
[
Kk,i (yk,i −Ck,i x̂+k,i−1)

]
S 0
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Table 4.4 – Comparison of the computational complexity of the standard KF and the SKF.

KF +|− ×|÷
P−

k S2 0

x̂−k 0 0

Ck P−
k S(S −1)M S2M

Kk SM(2M −1)+O
(
M 3

)
2SM 2 +O

(
M 3

)
P+

k S2M S2M

x̂+k 2SM 2SM

SKF
(∑

i

) +|− ×|÷
P−

k S2 0

x̂−k 0 0

Ck,i P+
k,i−1 S(S −1)M S2M

Kk,i SM (2S +1)M

P+
k,i S2M S2M

x̂+k,i 2SM 2SM

Comparison of the Computational Complexity

For ease of comparison, the detailed results from Tables 4.1–4.3 are summarized in Table 4.4.

Note that only the number of operations needed to calculate Kk and Kk,i (∀i ) are different.

Moreover, the SKF requires fewer scalar operations than the standard KF:

(+|−) SM < SM(2M −1)+O
(
M 3

)
(4.114)

(×|÷) (2S +1)M < 2SM 2 +O
(
M 3

)
(4.115)

According to Hypothesis 6, the output matrix Ck must have full rank in order for the grid to

be observable. Since Ck has size M ×S, full rank implies that M > S. For security reasons,

operators ensure ample redundancy of the measurements, so in practice M À S. As a result,

the cubic terms constitute the lion’s share of the computational burden of the standard KF [132].

In summary, the SKF is computationally more efficient than the standard KF.

Furthermore, since the measurement noise variables are uncorrelated, the SKF only requires

elementary matrix operations plus divisions. In contrast to matrix inversions, these operations

are easy to implement in dedicated hardware. Notably, they can be parallelized and pipelined

to ensure fast execution and high throughput (these nontrivial implementation aspects are

discussed next in Section 4.6). In that sense, the SKF facilitates the implementation of a

real-time state estimator for power grids into an FPGA.
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Bridge

Computation

Operations

Mux Demux

Memory

Operands

Mux Demux

Buffers

Send Receive

Control

Figure 4.1 – Architecture of the FPGA prototype of the SKF. Dedicated modules take care of
communication, computation, memory, and control (i.e., of the first three modules).

4.6 Implementation of the Sequential Filter into an FPGA

The SKF is implemented into a NI cRIO-9033 microcontroller. This device is equipped with an

FPGA (Xilinx Kintex-7 7K160T) and a CPU (Intel Atom E3825) [133]. Thus, it can host both the

prototype implementation (see Section 4.6.1) and the test infrastructure (see Section 4.6.2).

4.6.1 Prototype Implementation

The architecture of the FPGA prototype of the SKF is shown in Figure 4.1. The functionality is

divided into communication, computation, memory, and control.

Communication Module

The communication module handles the transfer of data between the CPU and the FPGA.

More precisely, First-In/First-Out (FIFO) buffers hosted in the Random Access Memory (RAM)

of the FPGA are used. The low-level coordination of the data transfer is managed by a Direct

Memory Access (DMA) controller, and the high-level coordination by a handshake protocol.

Computation Module

The computation module provides the mathematical operations. Namely:

1. Matrix addition/subtraction: M1 ±M2.

2. Vector addition/subtraction: v1 ±v2.

3. Outer product: v1vT2 .

4. Inner product: vT1 v2.

5. Matrix-vector product: Mv.

6. Scalar-vector product: s ·v.
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Figure 4.2 – Parallelized implementation of the inner product.

In order to achieve fast execution and high throughput, these operations are parallelized and

pipelined. As parallel data processing requires parallel data access, the operands need to be

partitioned into blocks, which are stored in separate memories. More precisely, since the

SKF treats the measurements sequentially, the parallelization is done w.r.t. the states. Note

that the Degree Of Parallelism (DOP) is a design parameter of the FPGA architecture. The

matrix operands (i.e., P−
k and P+

k,i ) are split into 2D arrays of DOP ×DOP blocks, and the vector

operands (i.e.,
[
Ck,i P+

k,i

]
, Ck,i , Kk,i , x̂−k , and x̂+k ) into 1D arrays of DOP ×1 blocks. Accordingly,

the operations 1, 3, and 5 are accelerated by a factor of DOP2, whereas the operations 2,

4, and 6 are accelerated by a factor of DOP. The matrix addition/subtraction, the vector

addition/subtraction, and the scalar-vector product are implemented of arrays of adders or

multipliers, respectively. The inner product is built from an array of multipliers, a tree of

adders, and one accumulator as shown in Figure 4.2. The matrix-vector product is constructed

from DOP replicas of the inner product.

For the synthesis of the fundamental arithmetic blocks (i.e., adders/subtractors, multipliers,

accumulators, and dividers), optimized libraries for Single-Precision Floating-Point (SGL)

operations, which utilize the Digital Signal Processor (DSP) slices of the FPGA, are used [134].

When the fundamental arithmetic blocks are configured, a trade-off has to be made w.r.t.

throughput, latency, and resource consumption. In this particular case, high throughput and

low resource consumption are crucial. The resulting specifications are listed in Table 4.5. Note

that the resource consumption is quantified by the number of DSPs, Look-Up Tables (LUTs),

and Flip-Flops (FFs).
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Table 4.5 – Specifications of the fundamental arithmetic blocks.

Operation Throughput Latency DSPs LUTs FFs

± 1/cycle 5 cycles 2 228 224

× 1/cycle 2 cycles 3 81 49∑
1/cycle 20 cycles 9 − −

÷ 1/cycle 20 cylces 8 − −

Table 4.6 – Occupation of FPGA resources for DOP = 4.

Resource Available Occupied Percentage

DSPs 600 357 59.5

RAMs 325 262 80.6

LUTs 101’400 43’166 42.6

FFs 202’800 49’088 24.2

Memory Module

The memory module consists of the storage for the operands. As a rule of thumb, it is advisable

to use block memory (i.e., RAMs) for large operands like matrices and vectors, and registers

(i.e., FFs) for small operands like scalars. In order to increase the performance, some of the

calculation steps in Table 4.3 are contracted in the FPGA implementation. For this reason, not

all intermediate results need to be stored. Thanks to the said simplifications, it suffices to store

Qk , Rk , Ck , yk , [Ck,i P+
k,i ], Kk , x̂−k /x̂+k,i , P−

k /P+
k,i , (Ck,i P+

k,i CT
k,i +Rk,i )−1, and [Ck,i x̂+k,i ]. Recall that

some of these operands need to be partitioned into blocks, and stored in separate memories

to allow for parallel data processing. Therefore, both the capacity and the organization of the

available RAMs impose restrictions on the DOP. Firstly, the total capacity of the RAM slices

needs to be large enough to store the operands. Secondly, there need to be sufficiently many

RAM slices for parallel read/write access (i.e., DOP ×DOP or DOP ×1 accesses in parallel).

Resource Occupation of the Entire Architecture

With the resources available in the FPGA of the NI cRIO-9033, DOP = 4 can be achieved.

Table 4.6. lists the FPGA resources occupied by the SKF prototype. Clearly, the DSPs and the

RAMs are most critical. Indeed, these resources limit the DOP to 4 (i.e., the architecture for

DOP =5 does not fit on the FPGA). The large number of DSPs is mainly due to the operations

which consist of DOP ×DOP arrays of arithmetic blocks (i.e., matrix addition/subtraction,

outer product, and matrix-vector product). The large amount of RAMs is mostly due to the

operands P−
k /P+

k and Ck , which consist of S ×S and M ×S elements, respectively. The LUTs

and FFs are principally used as shift registers for the pipeline stages. Obviously, the occupation

of these resources is not critical.
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Figure 4.3 – Architecture of the TB setup.

4.6.2 Test Bench

The architecture of the Test Bench (TB) is shown in Figure 4.3. It is composed of two parts,

which correspond to the Model Under Test (MUT) and the Golden Model (GM), respectively.

Note that, since the stimuli and responses are stored in files, the MUT and the GM can be run

independently. So, the analysis of the results can be performed offline.

The MUT part consists of the FPGA prototype plus some CPU software. This part is located

on the cRIO-9033, which runs NI Linux Real-Time and NI LabVIEW. The purpose of the

CPU software is twofold. Firstly, it provides input/output routines for reading the stimuli for

the MUT and writing the responses of the MUT. These processes are facilitated by protocol

adapters, which abstract the interface between the high-level data on the CPU and the low-

level data on the FPGA. Secondly, it coordinates the communication between the CPU and the

FPGA for the application of the stimuli and the acquisition of the responses.

The GM part consists of a MATLAB code of the standard KF. This part is located on a desktop

machine, which runs Mac OSX.
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Figure 4.4 – Schematic of the benchmark power grid. Note that the 24.9 kV subsystem is a
modified version of the IEEE 34-node distribution feeder.

4.7 Validation of the Hardware Prototype

The validation of the FPGA prototype of the SKF is done in two parts. Firstly, the functionality

of the state estimator needs to be verified (see Section 4.7.1). To this end, the FPGA prototype

of the SKF is compared with a CPU implementation of the standard KF. The test data are

obtained through simulation of a benchmark power grid. Secondly, the scalability of the

hardware architecture has to be analyzed (see Section 4.7.2). For this purpose, the FPGA

prototype is fed with estimation problems of different sizes. These test data are produced

using a random number generator.

4.7.1 Verification of the Functionality

Description of the Benchmark Power Grid

The schematic of the benchmark power grid is depicted in Figure 4.4. As shown, the benchmark

power grid consists of two subsystems, which are interfaced through a transformer:

1. Upper-level subsystem (nodes 1–5) with nominal voltage 69.0 kV (phase-to-phase).

2. Lower-level subsystem (nodes 6–25) with nominal voltage 24.9 kV (phase-to-phase).

The former is a linear feeder built of transposed overhead lines. The latter is a modified

version of the IEEE 34-node distribution feeder, which consists of untransposed overhead

lines and Line Voltage Regulators (LVRs) [135]. The specifications of the grid are provided in

Appendix A.5. For the sake of simplicity, it is assumed that the tap ratios of the LVRs are equal

to 1.0, and that the topology of the grid does not change. By consequence, the compound

admittance matrix is constant: Yk = Y.
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(a)

(b)

(c)

Figure 4.5 – Power profiles used for the validation of the SKF prototype: (4.5a) aggregate
generation, (4.5b) aggregate load, and (4.5c) power balance of the benchmark power grid.
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The primary substation, which acts as slack node, is in node 1. It has a short-circuit power

of 100 MVA. Its Thévenin Equivalent (TE) consists of a positive-sequence voltage source,

which is rated at nominal voltage, and a diagonal compound impedance matrix with equal

diagonal entries, for which R/X = 0.1. In the lower-level subsystem, there are three nodes with

distributed generation (i.e., 6, 12, and 16) and six nodes with distributed load (i.e., 9, 14, 17, 20,

23, and 25). All the other nodes of the power grid are zero-injection nodes. Accordingly

Z = {2−5,7−8,10−11,13,15,18−19,21−22,24}

Z{ = {1,6,9,12,14,16,17,20,23,25}

It is assumed that both the distributed generators and the distributed loads are of constant-

power type. The profiles of the aggregate generation, aggregate load, and power balance are

shown in Figure 4.5. They correspond to a window of 70 seconds at 50 frames per second (i.e.,

3500 samples per profile). The profiles are derived from power measurements recorded in the

medium-voltage grid of the EPFL campus in Lausanne, Switzerland [136]. More precisely, the

load is a mixture of offices and workshops, and the generation is photovoltaic.

Recall from Section 4.1 that the zero-injection nodes Z are reduced via KR. The corresponding

nodal phase-to-ground voltages can be reconstructed as follows:

VZ =−Y−1
Z×Z YZ×Z{

VZ{

The non-zero-injection nodes Z{ are equipped with PMUs, which measure the nodal phase-

to-ground voltages and nodal injected currents in all phases. In this case, the grid is observable.

The PMUs are equipped with voltage/current sensors of class 0.1, which results in a maximum

magnitude error of 10−3 pu and a maximum phase error of 1.5 ·10−3 rad [137–139].

As common in power-system analysis, all electrical quantities are expressed in per unit (pu).

The base power is chosen as 10 MVA. The base voltage is set to 69.0/
p

3 kV (phase-to-ground)

for the upper-level system, and 24.9/
p

3 kV (phase-to-ground) for the lower-level subsystem.

Preparation of the Test Data

The admittance matrix Y and the profiles of the nodal injected powers Sk define power-flow

problems, whose solution yields the profiles of the true nodal phase-to-ground voltages Vk .

The measurements yk are created by corrupting the true values with noise, whose statistical

properties correspond to the metrological properties of the PMUs and their sensors. More pre-

cisely, the standard deviations are set to 1/3 of the assumed maximum errors: 1/3 ·10−3 pu for

the magnitude and 0.5 ·10−3 rad for the phase. Recall from Section 4.1 that the measurement

model is formulated in rectangular coordinates, whereas the characteristics of the measure-

ment noise are given in polar coordinates. The measurement noise covariance matrix Rk is
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obtained using the projection from Appendix A.3. To this end, it is assumed that

Vn,1,k = 1∠0pu, Vn,2,k = 1∠− 2π

3
pu, Vn,3,k = 1∠

2π

3
pu

The process noise covariance matrix Qk is assumed to be a constant diagonal matrix with all

entries equal to 10−6 pu. Lastly, the state estimator requires initial values. One can use P+
0 = Q,

and set x̂+0 to a flat voltage profile.

Finally, the responses x̂+k
∣∣
MUT and x̂+k

∣∣
GM of the MUT and the GM are produced with the TB.

Thus, the estimated nodal phase-to-ground voltages V̂k

∣∣
MUT and V̂k

∣∣
GM are obtained (recall

that this process involves inverse KR for the zero-injection nodes).

Discussion of the Results

The key performance indicators for the are estimation error of the SKF (i.e., the difference

between the estimated and the true state), and the numerical mismatch between the SKF and

the standard KF (i.e., the difference between the responses of the MUT and the GM). Moreover,

the normalized residuals of the measurements are investigated to perform a sanity check of

the measurement model (i.e., the change from polar to rectangular coordinates).

Figure 4.6 shows the statistical distribution of the estimation error in magnitude and phase.

The results are shown for selected nodes (i.e, 1, 12, and 20), the non-zero-injection nodes Z{,

whose voltages are estimated by the SKF, and the zero-injection nodes Z , whose voltages are

reconstructed via inverse KR. Evidently, the estimation error is low in magnitude and phase:

roughly half of the samples are within ±1.0 ·10−4 pu and ±1.0 ·10−4 rad, respectively. Notably,

the estimation errors are substantially lower than the voltage measurement noise of the PMUs.

Moreover, the error distributions comparable for the selected nodes and the sets Z{ and Z .

This demonstrates that the SKF is tracking the state correctly, and that the inverse KR used to

reconstruct VZ from VZ{
does not introduce any noticeable errors.

Figure 4.7 illustrates the statistical distribution of the normalized measurement residuals.

With the exception of a few outliers, the residuals are within ±3 standard deviations, and

more than half of them are within ±1 standard deviation. As a rule of thumb, the normalized

residuals should be within ±3 to ±4 standard deviations if there are no bad data or model

errors (see [16]). The fact that these limits are well respected indicates that the change of

coordinates does not introduce noticeable errors to the measurement model.

Figure 4.8 depicts the statistical distribution of the numerical mismatch between the SKF (i.e.,

the MUT) and the standard KF (i.e., the GM). Except for outliers, the mismatches are within

±1 ·10−6 pu for x̂+k and ±1 ·10−7 pu for P+
k . Recall that the SKF works with SGL precision (on

the FPGA), and the KF with DBL precision (on the CPU). As known, SGL and DBL precision

give 6–9 and 15–17 significant digits, respectively. Thus, the observed mismatches confirm

that the FPGA SKF is equivalent to the CPU KF within the available numerical accuracy.
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(a)

(b)

Figure 4.6 – Statistical distribution of the estimation error: (4.6a) magnitude and (4.6b) phase.
The distributions are shown for selected nodes (i.e., 1, 12, and 20), and for the sets Z{ and Z .
The edges of the boxes correspond to the 25th and 75th percentile, respectively.

Figure 4.7 – Statistical distribution of the normalized residuals of selected measurements in yk .
The edges of the boxes correspond to the 25th and 75th percentile, respectively.
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(a)

(b)

Figure 4.8 – Statistical distribution of the numerical mismatch between SKF and standard KF:
(4.8a) x̂+k and (4.8b) P+

k . The distributions are shown for selected elements, and for the entire
vector/matrix. The edges of the boxes correspond to the 25th and 75th percentile, respectively.
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Figure 4.9 – Execution time of the SKF prototype for S < 256 and M = S. The quadratic fit and
the cubic fit are calculated from the measurements for which S 6 80.

4.7.2 Analysis of the Scalability

Description of the Test Procedure

The scalability of the hardware architecture is analyzed by measuring the execution time of

the SKF prototype for estimation problems of different size. As benchmark power grids of

arbitrary size are not readily available, the test data are produced using a random number

generator, while ensuring that the working hypotheses of the SKF hold (e.g., Ck has full rank).

For the sake of simplicity, it is assumed that M = S in this test (i.e., a physical system would

be observable with no redundancy). The problem size which the SKF prototype can handle

is limited by the amount of RAM available on the FPGA. If M = S as assumed, estimation

problems with S < 256 states can be treated. For a three-phase grid, this would correspond

to b255/(3 ·2)c = 42 non-zero-injection nodes (recall from Section 4.1 that the zero-injection

nodes are reduced using KR).

The execution time of the SKF is defined as the time which passes between reading the inputs

and writing the outputs on the FPGA. This time is measured using an on-chip counter, which

is driven by the master clock of the FPGA. Since the frequency of the master clock is known

precisely, the execution time can be inferred from the state of the counter.

Discussion of the Results

The evolution of the execution time over the problem size is plotted in Figure 4.9. To visualize

the computational complexity, a quadratic and a cubic curve are fit to the portion S 6 80.

Note that the cubic fit is virtually congruent with the measurements, which means that the

computational complexity is of third order. This is in accordance with the analysis performed

in Section 4.5. Moreover, note that the cubic fit does not differ much from the quadratic one,

which implies that the cubic term is not dominant. This is due to the fact that the operations
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are heavily parallelized and pipelined on the FPGA. That is, the execution time is dominated

by the filling of the pipeline rather than the processing of the elements. Finally, note that the

execution time is below 20 ms for S 6 200 (i.e., b200/(3 ·2)c = 33 non-zero-injection nodes)

and equal to 35 ms for S = 256 (i.e., 42 non-zero-injection nodes). That is, the state estimator

is fast enough to support real-time applications like fault detection and location [112].

73





5 Real-Time Assessment of the Voltage
Stability by a Voltage Stability Index

Contributions: It is known that voltage stability can be a concern in the operation of power

distribution systems. Notably, it has been documented that voltage instability can occur

while the thermal ratings of lines and transformers are respected [11]. Therefore, real-time

control methods for power distribution systems require real-time situation awareness w.r.t.

the system stability. To this end, computationally efficient Voltage Stability Assessment (VSA)

methods are needed. In particular, such VSA methods have to account for the particular

characteristics of power distribution systems (e.g., unbalances of the grid components and

power injections), and be capable of real-time operation (i.e., refresh rates of tens of frames

per second). Classical Continuation Power Flow (CPF) methods and conventional Voltage

Stability Indices (VSIs) do not comply with these requirements. The former work with detailed

system models, but are computationally intensive. The latter are computationally efficient,

but work with simplistic system models, such as positive-sequence equivalent circuits. In this

chapter, a novel VSI, which is suitable for generic unbalanced polyphase power systems, is

proposed. More precisely, the proposed VSI is a generalized formulation of the well-known

L-index [18]. The grid is described by a compound hybrid matrix. In this respect, the theorems

discussed in Chapter 3 are leveraged to substantiate the existence of the said compound

hybrid matrix. Slack nodes and resource nodes are represented by Thévenin Equivalents (TEs)

and Polynomial Models (PMs), respectively. In this way, the polyphase nature of the grid and

the aggregate behavior of common types of nodes can be adequately modeled. The proposed

VSI is obtained by incorporating these models into the classical formulation of the L-index.

By comparison with CPF study, it is verified that the proposed VSI is able to correctly detect

voltage instability. This analysis is performed on a test grid that is based on the IEEE 34-node

distribution feeder.

Keywords: voltage stability assessment, voltage stability index, polyphase power systems,

unbalanced power systems, L-index, Thévenin equivalent, polynomial load model.

75



Chapter 5. Real-Time Assessment of the Voltage Stability by a Voltage Stability Index

Publications:

[140] A. M. Kettner and M. Paolone, “A generalized index for static voltage stability of un-

balanced polyphase power systems including Thévenin equivalents and polynomial

models”, accepted for publication in IEEE Trans. Power Syst.

[115] A. M. Kettner and M. Paolone, “Performance assessment of Kron reduction in the nu-

merical analysis of polyphase power systems”, accepted for presentation in IEEE PES

PowerTech Conf., Milano, LOM, IT, Jun. 2019.

76



5.1. The System Model

VTE,s
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Figure 5.1 – Representation of the aggregate behavior of the nodes: (5.1a) Thévenin equivalent
of a slack node s ∈S , (5.1b) polynomial model of phase p ∈P in a resource node r ∈R.

5.1 The System Model

5.1.1 Electrical Grid

As explained in Chapter 3, the grid is represented by a polyphase equivalent circuit, which

consists of polyphase branches and polyphase shunts. Recall that the the polyphase branches

connect pairs of polyphase nodes, and that the polyphase shunts connect the polyphase nodes

with the ground node. The grid can be described by a compound admittance matrix or a

compound hybrid matrix (i.e., provided that the respective hypotheses hold).

5.1.2 Aggregate Behavior of the Polyphase Nodes

The nodes N are divided into three sets based on their generic behavior. Namely

N =S ∪R∪Z (5.1)

where Z stands for zero-injection nodes, S for slack nodes, and R for resource nodes.

Slack Nodes

At the slack nodes s ∈S , voltage and frequency are imposed, for instance by a synchronous

machine [103], a power electronic converter [141], or a connection to the bulk grid. That is, the

slack nodes correspond to V δ buses in classical power system analysis. These nodes behave

like finite-power voltage sources, and are thus modeled by TE[s]:

Vs = VTE,s −ZTE,s Is (5.2)

where VTE,s and ZTE,s are the TE voltage sources and impedances, respectively (see Fig. 5.1a).

In this respect, it it assumed that these quantities can be either computed or measured.
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Resource Nodes

At the resource nodes r ∈R, non-zero power is injected, but the voltage is not imposed. That

is, resource nodes correspond to PQ buses in classical power systems analysis. In general,

these nodes behave like voltage-dependent power sources, which can be approximated by

PMs (e.g., [142–144]). Assuming that these equivalent sources have no coupling among the

phases, the active power Pr,p and reactive power Qr,p injected into phase p ∈P of resource

node r ∈R are given by

Pr,p =λr,p P0,r,p

(
αℜ,r,p

∣∣∣∣∣ Vr,p

V0,r,p

∣∣∣∣∣
2

+βℜ,r,p

∣∣∣∣∣ Vr,p

V0,r,p

∣∣∣∣∣+γℜ,r,p

)
(5.3)

Qr,p =λr,pQ0,r,p

(
αℑ,r,p

∣∣∣∣∣ Vr,p

V0,r,p

∣∣∣∣∣
2

+βℑ,r,p

∣∣∣∣∣ Vr,p

V0,r,p

∣∣∣∣∣+γℑ,r,p

)
(5.4)

where λ is the loading factor, αℜ/ℑ, βℜ/ℑ, and γℜ/ℑ are normalized polynomial coefficients

(i.e., αℜ/ℑ+βℜ/ℑ+γℜ/ℑ = 1), V0 is a reference voltage, and P0 and Q0 are the reference powers

for λ= 1 and |V | =V0. P0 and Q0 follow the generator sign convention. That is, a positive sign

indicates injection of power, whereas a negative sign indicates absorption of power.

For a given loading factor, the nodal injected power Sr,p = Pr,p + jQr,p can be rewritten as

Sr,p ≈−Y ∗
PM,r,p

∣∣∣Vr,p

∣∣∣2 +Vr,p I∗PM,r,p +SPM,r,p (5.5)

where YPM, IPM, and SPM are Constant Impedance (CZ), Constant Current (CI), and Constant

Power (CP) terms, respectively (see Figure 5.1b). Hence, PMs are also known as ZIP models.

Note that, in case white-box models of the connected devices are available, the TE and PM

parameters can be computed numerically or analytically. Otherwise, they can be estimated

from measurements, for example through least-squares regression (e.g., [145]). In this thesis,

it is assumed that these parameters are known, irrespective of how they have been obtained.

Zero-Injection Nodes

The zero-injection nodes z ∈Z have zero nodal injected current (as the name suggests):

Iz = 0 (5.6)
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5.2 Recall of the Continuation Power Flow Approach

As mentioned before, traditional VSA relies on CPF methods. The essentials of this approach

are recalled below.

5.2.1 Parametrization of the Power-Flow Equations

Mismatch Equations in Complex Space

The admittance equations I = YV, TEs (5.2), PMs (5.3)–(5.4), and zero-injection nodes (5.6)

define the power-flow equations. The nodal injected powers S are given by

S(V) := V◦ (YV)∗ (5.7)

where ◦ is the Hadamard product.

The nodal injected powers can also be be expressed using the models of the aggregate behavior

of the nodes. For the slack nodes s ∈S , define

STE(VS ) := cols∈S

(
STE,s(Vs)

)
(5.8)

STE,s(Vs) := Vs ◦
(
YTE,s

(
VTE,s −Vs

))∗ (5.9)

As the TEs represent finite-power voltage sources, it is supposed that the equivalent admittance

matrices YTE,s := Z−1
TE,s do exist. Similarly, for the resource nodes r ∈R, define

SPM(VR ,λ) := colr∈R

(
SPM,r (Vr ,λr )

)
(5.10)

SPM,r (Vr ,λr ) := colp∈P

(
SPM,r,p (Vr,p ,λr,p )

)
(5.11)

SPM,r,p (Vr,p ,λr,p ) :=λr,p


P0,r,p

(
αℜ,r,p

∣∣∣∣∣ Vr,p

V0,r,p

∣∣∣∣∣
2

+βℜ,r,p

∣∣∣∣∣ Vr,p

V0,r,p

∣∣∣∣∣+γℜ,r,p

)

+ jQ0,r,p

(
αℑ,r,p

∣∣∣∣∣ Vr,p

V0,r,p

∣∣∣∣∣
2

+βℑ,r,p

∣∣∣∣∣ Vr,p

V0,r,p

∣∣∣∣∣+γℑ,r,p

) (5.12)

For the zero-injection nodes z ∈Z , the nodal injected powers are zero.

An equilibrium point (if it exists) is characterized by zero mismatch ∆S between the nodal

injected powers calculated using the grid model and the node models, respectively:

∆S(V,λ) := S(V)−

 STE(VS )

0

SPM(VR ,λ)

= 0 (5.13)

These are the mismatch equations of the power system. Note that (5.13) is directly derived by

applying the law of conservation of energy to the grid under study.
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Transformation into Real Space

Observe that (5.13) is a system of complex-valued functions in complex-valued variables.

Express ∆S in rectangular coordinates and V in polar coordinates:

∆S(V,λ) :=∆P(V,λ)+ j∆Q(V,λ) (5.14)

V := E∠θ (5.15)

Thus, (5.13) can be restated as a system of real-valued functions in real-valued variables:[
∆P(E,θ,λ)

∆Q(E,θ,λ)

]
= 0 (5.16)

Furthermore, define

f (E,θ,λ) :=
[
∆P(E,θ,λ)

∆Q(E,θ,λ)

]
(5.17)

ξ :=
[

E

θ

]
(5.18)

and suppose that λ follows a trajectory which is parametrized as λ(ζ). Using these definitions,

(5.16) can be written compactly as

f (ξ,ζ) = 0 (5.19)

5.2.2 Determination of Loadability Limits via Numerical Continuation

The loadability limit ζmax along the trajectory λ(ζ) is the solution of the nonlinear program

max ζ

s.t. f (ξ,ζ) = 0
(5.20)

It can reasonably be supposed that f (ξ,ζ) is continuous and differentiable w.r.t. ξ and ζ [85].

That is, the derivatives Dξ f and Dζ f of f w.r.t. ξ and ζ, respectively, are defined. In this case,

the maximization problem can be solved via numerical continuation. Here, the CPF method

proposed in [79], which follows a predictor-corrector approach, is considered as benchmark.

For ease of reference, the pseudocode is provided in Algorithm 1.

The predictor extrapolates another solution from a known solution ξk ,ζk . To be more precise,

it takes a step of length σ tangent to the solution path. The tangent direction is defined by

Dξ f (ξk ,ζk )dξ+Dζ f (ξk ,ζk )dζ= 0 (5.21)

To obtain the unit tangent vector, set dζ= 1, solve for dξ, and normalize with
√

‖dξ‖2 +1.
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5.2. Recall of the Continuation Power Flow Approach

Algorithm 1 Continuation method.

procedure CONTINUATION( f (ξ,ζ), ξ0, ζ0) . Starting point ξ0,ζ0.
for k> 0 do

# Predictor
dξ← solve

(
Dξ f (ξk ,ζk )dξ=−Dζ f (ξk ,ζk ),dξ

)
.Determine tangent direction.[

ξ−k+1
ζ−k+1

]
=

[
ξk

ζk

]
+σ

(
1p

‖dξ‖2+1

[
dξ
1

])
. Take step of length σ.

# Corrector

g (ξ,ζ) :=
[

f (ξ,ζ)∥∥ξ−ξk

∥∥2 + (ζ−ζk )2 −σ2

]
[ξ+k+1,ζ+k+1] ← NEWTONRAPHSON

(
g (ξ,ζ),ξ−k+1,ζ−k+1

)
. Solve g (ξ,ζ) = 0.[

ξk+1

ζk+1

]
←

[
ξ+k+1
ζ+k+1

]
if sign(ζk+1 −ζk )6 0 then .Maximum of ζ found.

break
end if

end for
return {ξk ,ζk } . Continuum of solutions {ξk ,ζk }.

end procedure

The corrector finds an actual solution at distance σ from ξk ,ζk . To this end, it solves

g (ξ,ζ) :=
[

f (ξ,ζ)∥∥ξ−ξk

∥∥2 + (ζ−ζk )2 −σ2

]
= 0 (5.22)

using the Newton-Raphson method, taking the predicted solution ξ−k+1,ζ−k+1 as initial value.

Observe that both the continuation method and the Newton-Raphson method are iterative.

Every step of the continuation method requires the following calculations:

• The calculation of the Jacobian matrices Dξ f and Dζ f of f .

• The solution of the systems of linear equations (5.21). This process is direct.

• The solution of the system of nonlinear equations (5.22) using the Newton-Raphson

method. This process is iterative.

Every iteration of the Newton-Raphson method requires the following calculations:

• The calculation of the Jacobian matrices Dξ g and Dζ g of g .

• The solution of a system of nonlinear equations (i.e., to update equation).

This hints at why CPF methods are computationally intensive.
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Figure 5.2 – Schematic of the system model for the derivation of the voltage stability index.

5.3 The Generalized Formulation of the L-Index

5.3.1 Reformulation of the System Model

Augmentation of the Grid Model

Summarizing Section 5.1, the power system is described by

I = YV (5.23)

Vs = VTE,s −ZTE,s Is s ∈S (5.24)

Iz = 0 z ∈Z (5.25)

Ir,p =−YPM,r,pVr,p + IPM,r,p +
S∗

PM,r,p

V ∗
r,p

r ∈R, p ∈P (5.26)

Provided that the ZTE,s comply with Hypothesis 3, that is

Hypothesis 11 (TE). The TE impedance matrices ZTE,s are symmetric, invertible, and lossy:

∀s ∈S :


ZTE,s = ZT

TE,s

∃YTE,s = Z−1
TE,s

ℜ{
ZTE,s

}º 0

(5.27)

They can be interpreted as compound impedance matrices of additional polyphase branches.

This defines an augmented grid, which connects the TE voltage sources with the PMs (see

Figure 5.2).
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5.3. The Generalized Formulation of the L-Index

Write the admittance equations (5.23) in block form w.r.t. to S , Z , and R: IS

IZ

IR

=

 YS ×S YS ×Z YS ×R

YZ×S YZ×Z YZ×R

YR×S YR×Z YR×R


 VS

VZ

VR

 (5.28)

Moreover, define

VTE := cols∈S

(
VTE,s

)
(5.29)

YTE := diags∈S

(
YTE,s

)
(5.30)

where Hypothesis 11 ensures the existence of the YTE,s . Thus, the TE equations (5.24) can be

written compactly as

IS = YTE

(
VTE −VS

)
(5.31)

Through combination of (5.28), (5.31), and (5.25), one obtains the admittance equations of

the augmented grid:
IS

0

0

IR

=


YTE −YTE 0 0

−YTE YTE +YS ×S YS ×Z YS ×R

0 YZ×S YZ×Z YZ×R

0 YR×S YR×Z YR×R




VTE

VS

VZ

VR

 (5.32)

Note that the slack nodes S are zero-injection nodes in the augmented grid.

Kron Reduction and Hybrid Parameters

It can reasonably be assumed that the branch impedances and the TE impedances are lossy.

That is, the augmented grid model satisfies the conditions of Corollaries 1–2. By Corollary 1,

the slack nodes S and the zero-injection nodes Z can be eliminated from the model of the

augmented grid through Kron Reduction (KR). This yields[
IS

IR

]
=

[
ŶS ×S ŶS ×R

ŶR×S ŶR×R

][
VTE

VR

]
(5.33)

By Corollary 2, the aforestated equation can be rewritten in hybrid form:[
IS

VR

]
=

[
ĤS ×S ĤS ×R

ĤR×S ĤR×R

][
VTE

IR

]
(5.34)

Note that Ŷ and Ĥ are constant as long as the compound electrical parameters and the topology

of the augmented grid remain unchanged.
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5.3.2 Development of the Voltage Stability Index

Approximation of the Power-Flow Equations by Complex Quadratic Equations

For a given resource node r ∈R, the second row of (5.34) reads

Vr =
∑

i∈S

ĤriVTE,i +
∑
j∈R

ĤrjI j (5.35)

where Ĥr i (i ∈S ) and Ĥr j ( j ∈R) are blocks of ĤR×S and ĤR×R , respectively. Accordingly,

for a given phase p ∈P of node r , it holds that

Vr,p = ∑
i∈S

rowp (Ĥri)VTE,i +
∑
j∈R

rowp (Ĥrj)I j (5.36)

Recall that the elements I j ,q of I j ( j ∈R, q ∈P ) are given by the PMs (5.26). Namely

I j ,q =−YPM, j ,qV j ,q + IPM, j ,q +
S∗

PM, j ,q

V ∗
j ,q

(5.37)

This PM is a function of V j ,q . By introducing

ỸPM, j ,q :=
V j ,q

Vr,p
YPM, j ,q (5.38)

S̃PM, j ,q :=
Vr,p

V j ,q
SPM, j ,q (5.39)

I j ,q can be restated as a function of Vr,p instead:

I j ,q =−ỸPM, j ,qVr,p + IPM, j ,q +
S̃∗

PM, j ,q

V ∗
r,p

(5.40)

Analogously, define

ỸPM, j := colq∈P (ỸPM, j ,q ) (5.41)

IPM, j := colq∈P (IPM, j ,q ) (5.42)

S̃PM, j := colq∈P (S̃PM, j ,q ) (5.43)

and rewrite I j as a function of Vr,p :

I j = ỸPM, j Vr,p + Ir,p +
S̃
∗
PM, j

V ∗
r,p

(5.44)
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Substituting (5.44) into (5.36) yields

Vr,p =−ar,pVr,p +br,p +
cr,p

V ∗
r,p

(5.45)

ar,p := ∑
j∈R

rowp (Ĥrj)ỸPM, j (5.46)

br,p := ∑
i∈S

rowp (Ĥri)VTE,i +
∑
j∈R

rowp (Ĥrj)IPM, j (5.47)

cr,p := ∑
j∈R

rowp (Ĥrj)S̃
∗
PM, j (5.48)

Equation (5.45) can be rearranged as follows

∣∣∣Vr,p

∣∣∣2 −
br,p

1+ar,p
V ∗

r,p =
cr,p

1+ar,p
(5.49)

Thus, the power-flow equations can be locally approximated by complex quadratic equations.

Solvability of the Complex Quadratic Equations

As shown in [18], a complex quadratic equations of the form (5.49) is solvable if the index Lr,p ,

which is defined as

Lr,p :=
∣∣∣∣∣1− br,p

1+ar,p

1

Vr,p

∣∣∣∣∣=
∣∣∣∣∣ cr,p

1+ar,p

1

V 2
r,p

∣∣∣∣∣ (5.50)

lies in the range Lr,p 6 1. Namely, (5.49) has two solutions if Lr,p < 1 and one solution if

Lr,p = 1. In case there are two solutions, Lr,p < 1 for both of them (i.e., the VSI is defined both

on the high-voltage and the low-voltage branch of the nose curve). In that sense, the Lr,p are

local indicators for the solvability of the power-flow equations. A critical point is reached if at

least one of them is equal to 1. Hence

L := max
r∈R

max
p∈P

Lr,p (5.51)

is a VSI for the power system. Namely, L < 1 in the stable region and L = 1 on the stability

boundary.

Compared to the original L-index [18] and the existing extensions [103,104], the proposed

generalized formulation applies to more generic systems. Namely, it can handle unbalanced

polyphase systems, whose nodes are represented by TEs or PMs, respectively. In this context,

Hypotheses 1–11 and Corollaries 1–2 ensure the existence of the compound hybrid matrix Ĥ,

which is required for the calculation of the VSI.

85



Chapter 5. Real-Time Assessment of the Voltage Stability by a Voltage Stability Index

Computational Complexity

Suppose that the nodal voltages Vr,p , the compound admittance matrix Ŷ, the TE parameters

VTE,s and ZTE,s (s ∈S ), and the PM parameters YPM,r,p , IPM,r,p , and SPM,r,p (r ∈R) are known.

Then, the VSI requires the following calculations:

• A Schur complement for Ĥ.

• Multiplications and divisions for ỸPM,r,p and S̃PM,r,p .

• Inner products for ar,p , br,p , and cr,p .

• Additions, divisions, and absolute values for Lr,p .

• A maximum value for L.

Note that Ĥ does not need to be refreshed while the electrical parameters and the topology of

the augmented grid remain unchanged. Unlike the CPF method, the VSI does not involve any

iterative methods (i.e., which require the calculation of Jacobian matrices, and the solution of

the associated systems of linearized equations). Hence, the proposed VSI is computationally

less intensive than classical VSA methods, such as the CPF method discussed in Section 5.2.
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Figure 5.3 – Schematic of the benchmark power grid. Note that the 24.9 kV subsystem is a
modified version of the IEEE 34-node distribution feeder.

5.4 Validation of the Proposed Voltage Stability Index

5.4.1 Description of the Benchmark Power Grid

The VSI is validated using the same benchmark power grid already used in Chapter 4. For ease

of reference, the schematic is provided in Figure 5.3. Recall that the benchmark power grid

consists of two subsystems with nominal voltage of 69.0 kV phase-to-phase (nodes 1–5) and

24.9 kV phase-to-phase (nodes 6–25), respectively. The first subsystem is a linear feeder, which

is built of transposed overhead lines. The second subsystem is a modified version of the IEEE

34-node distribution feeder, which consists of untransposed overhead lines and Line Voltage

Regulators (LVRs) [135]. The detailed specifications of the grid are provided in Appendix A.5.

For the sake of simplicity, it is supposed that the tap ratios of the LVRs are fixed to 1.05, and

that the topology of the grid does not change (i.e., there are no disconnections of lines or

transformers). In case the tap ratios are changed (e.g., due to voltage control), one can simply

rebuild the compound admittance matrix and compound hybrid matrix, respectively.

The slack node is the primary substation in node 1. Its TE consists of a positive-sequence

voltage source, which is defined by the rated voltage, and a diagonal compound impedance

matrix with equal diagonal entries, which are defined by the short-circuit parameters. The

substation is characterized by the short-circuit power of 100 MVA at R/X = 0.1. The resource

nodes are located in the 24.9 kV subsystem, and host loads and compensators. Generators are

not considered, since voltage instability due to generation is unlikely in a lossy grid like this

one [82]. The PMs are specified in Tables 5.1–5.2. The load coefficients are taken from [142]

(i.e., the means of zones 11–16 and 21–26). These values are derived from real measurements.

The compensators are assumed to be Static Synchronous Compensators (STATCOMs), which

supply constant reactive power.

87



Chapter 5. Real-Time Assessment of the Voltage Stability by a Voltage Stability Index

Table 5.1 – Reference values of the utilized polynomial models.

Node V0 P0,A , P0,B , P0,C Q0,A , Q0,B , Q0,C Type

(kV) (kW) (kVAR)

9 14.4 −60, −50, −40 −30, −25, −20 Load

14 14.4 −75, −60, −45 −40, −30, −21 Load

17 14.4 −90, −70, −50 −50, −35, −22 Load

20 14.4 −105, −80, −55 −60, −40, − 23 Load

23 14.4 −120, −90, −60 −70, −45, −24 Load

25 14.4 −135, −100, −65 −80, −50, −25 Load

12 14.4 0, 0, 0 100, 100, 100 Compensator

19 14.4 0, 0, 0 100, 100, 100 Compensator

Table 5.2 – Normalized coefficients of utilized polynomial models.

Type αℜ, βℜ, γℜ αℑ, βℑ, γℑ
Load −0.067, 0.251, 0.816 1.064, −0.088, 0.025

Compensator 0.000, 0.000, 0.000 0.000, 0.000, 1.000

5.4.2 Validation Method

The VSI proposed in Section 5.3 is validated against the CPF method explained in Section 5.2.

Following common practice, the trajectory λ(ζ) is chosen as uniform load increase [83,85].

That is, λr,p = ζ for the PMs that represent loads, and λr,p = 1 for the PMs that represent

compensators. The VSI is evaluated along the continuum of solutions produced by the CPF

method. At the loadability limit (i.e., ζ= ζmax), the VSI at the critical phase of the critical node

is expected to be (approximately) equal 1.

Furthermore, the loadability limit is verified graphically and numerically. For the graphical

validation, the nose curves of the system and the characteristic curves of the loads are plotted.

These curves are tangent at a loadability limit. For the numerical validation, the singular values

of the Jacobian matrix of the power-flow equations are calculated. Recall from Section 2.3 that

the Jacobian matrix becomes singular when a loadability limit is approached. By consequence,

at least one of its singular values must tend to zero.

5.4.3 Discussion of the Results

The CPF method identifies the loadability limit as ζmax = 1.759. The maximum value of the

VSI occurs in phase A of node 25, that is L = L25,A = 1.017. In view of the radial topology

and the load distribution, this is plausible: node 25 is furthest away from the slack node (see

Figure 5.3), and phase A bears the highest load (see Table 5.1).
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Figure 5.4 – Evolution of the proposed voltage stability index at the critical node (i.e., node 25),
and comparison with the loadability limit computed with the continuation power flow method.

The evolution of the VSIs at this node is shown in Fig. 5.4. Clearly, only L25,A tends to 1 as ζ

increases, whereas L25,B and L25,C remain much lower. This behavior is consistent with what

has been observed for original L-index in [18]. The VSIs in the other nodes of the system

behave similarly. That is, the indices in phase A are higher than those in phases B and C , and

all of them are lower than those in node 25.

As mentioned before, the Jacobian matrix of the power-flow equations is expected to become

singular when a loadability limit reached. To confirm this, the evolution of the maximum,

minimum, and mean of the singular values of the Jacobian matrix is shown in Fig. 5.5. Evi-

dently, the maximum and mean singular value do not change much over the range [0,ζmax].

In contrast, the minimum singular value progressively diminishes as ζ increases, and finally

plummets as ζ reaches ζmax. Thus, it can be concluded that the Jacobian matrix of the power-

flow equations is indeed singular. This confirms the results obtained using the CPF method

and the VSI, respectively.

Moreover, the nose curves and the characteristic curves of the loads (i.e., for ζ = ζmax) are

expected to be tangent at the critical phase of the critical node. The nose curves are obtained

by evaluating the PMs on the continuum of solutions
{
ξk ,ζk

}
. The characteristic curves of

the loads are produced by evaluating the PMs for ζ= ζmax over a range of (fictitious) voltage

magnitudes. The results are shown in Figure 5.6. Clearly, the curves in phase A of node 25 are

tangent. This confirms that the CPF has identified a valid loadability limit, and that the VSI

correctly detects it. It is worth noting that the nose curves of phase A are bent downward (i.e.,

towards lower voltage), whereas those of phases B and C start bending upward (i.e., towards

higher voltage) as ζ→ ζmax. The change of curvature is clearly visible in phase B. This behavior

is in accordance with the CPF studies of unbalanced triphase systems in [83,84].
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Figure 5.5 – Evolution of the singular values of the Jacobian matrix of the power-flow equations.

Figure 5.6 – Nose curves and characteristic curves of the loads at the critical node (i.e., node 25).
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Table 5.3 – Magnitudes of the phase-to-ground voltages at the load nodes for ζ= ζmax.

Node VA (kV) VB (kV) VC (kV) Vnominal (kV)

9 12.1 14.1 14.4 14.4

14 9.9 14.1 14.5 14.4

17 8.8 13.9 14.3 14.4

20 8.1 14.3 14.8 14.4

23 7.9 14.3 14.8 14.4

25 7.8 14.3 14.8 14.4

Table 5.4 – Magnitudes of the conductor currents in selected lines for ζ= ζmax.

Line I A (A) IB (A) IC (A) Irated (A)

1−2 40.8 21.1 18.4 300

5−6 120.6 60.8 40.9 230

8−10 111.9 54.1 36.1 230

12−15 95.3 45.5 29.0 180

16−18 78.3 36.1 22.7 180

19−21 54.2 26.0 16.0 180

22−24 28.8 13.7 8.4 180

Finally, there are some comments to be made regarding the practicality of the obtained results.

As one can see in Figure 5.6, the voltage in phase A of node 25 is low: roughly 8 kV, which

corresponds to around 55% of the nominal voltage. This value lies outside the range desired

for regular operation. Table 5.3 lists the magnitudes of the phase-to-ground voltages at the

load nodes, which are observed at the loadability limit (i.e., for ζ= ζmax). Low voltages only

occur in phase A, which bears the highest load (recall Table 5.1). In phases B and C, on the

other hand, the voltages remain close to the nominal value. Table 5.4 lists the magnitudes of

the conductor currents in selected lines, which are observed at the loadability limit (i.e., for

ζ= ζmax). Moreover, the rated currents of the conductors are respected with ample margin

throughout the system. In view of these observations, the identified loadability limit is deemed

to be of practical interest. Lastly, it is worth noting that voltage instability may well occur at

close-to-nominal voltage in power distribution systems, as documented in [11]. As known, the

location of the critical point depends on the characteristics of the grid and the load [146].
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6 Practical Deployment into a Real-
Scale Microgrid

Contributions: In order to lower the operational cost and improve the service quality to the

customers, distribution system operators are expected to equip their grids with automation

technology. This automation effort implicates a large-scale deployment of measurement,

monitoring, and control devices. In this regard, embedded systems are a key technology,

because they are low-cost, which is crucial for minimizing the investment cost. However,

as compared to workstation computers or servers, embedded systems have very limited

processing power. Therefore, it is crucial to verify that applications like State Estimation (SE),

see Chapter 4, or Voltage Stability Assessment (VSA), see Chapter 5, do indeed run in real time

(i.e., at refresh rates of tens of frames per second) on such embedded platforms. Specifically,

the latency of these applications has to be quantified. To this end, the methods developed

in this thesis are deployed into the microgrid facility of the Distributed Electrical Systems

Laboratory (DESL) at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.

This microgrid is a real-scale implementation of the low-voltage benchmark grid defined by

the Conseil International des Grands Réseaux d’Électricité (CIGRÉ) [19]. To be more precise,

the Sequential Kalman Filter (SKF) presented in Chapter 4 and the Voltage Stability Index (VSI)

presented in Chapter 5 are deployed into an industrial real-time controller, and coupled with

a low-latency Phasor Data Concentrator (PDC) [15] and high-accuracy Phasor Measurement

Units (PMUs) [14].

Keywords: microgrids, real-time operation, latency assessment, COMMELEC framework.
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Figure 6.1 – Schematic diagram of the real-scale microgrid of DESL at EPFL.

6.1 Overview of the Microgrid Setup

The practical deployment is done in the microgrid facility of DESL at EPFL in Switzerland.

This microgrid is a real-scale implementation of the low-voltage benchmark grid given in [19],

which has been defined by the CIGRÉ. In the following, an overview of the experimental facility

is presented. For further information, the interested reader is referred to [17,147].

6.1.1 Architecture

Figure 6.1 shows the schematic diagram of the microgrid. The microgrid is a three-phase

low-voltage grid operated at 400 V (nominal phase-to-phase voltage), and connected to the

medium-voltage grid operated at 20 kV (nominal phase-to-phase voltage) of the EPFL campus

through a transformer (i.e., in node B01). The topology is radial, with 13 nodes (B01–13) and

12 lines (L01–12) in total.
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Resources

The following resources are connected to the microgrid:

• A controllable load (L) with 24 kW peak power. The load consists of three single-phase

power converters, which emulate the consumption of a residential building with an

electric heating system.

• A battery storage (B) with 25 kW rated power and 25 kWh storage capacity. The battery

consists of Lithium-Titanate cells, which are interfaced with a four-quadrant power

converter, which can operate in grid-forming and grid-following mode.

• A supercapacitor storage (SC) with 50 kW rated power and 0.8 kWh storage capacity. The

supercapacitor bank consists of six modules (3000 F capacitance each) connected in

series, and is interfaced through a four-quadrant power converter, which can operate in

grid-forming and grid-following mode (like the one of the battery storage).

• Three photovoltaic generators (PV1–3) with 13 kW (PV1), 20 kW (PV2), and 7 kW (PV3)

peak power, respectively. PV1–2 are installed on the roof, and PV3 on the facade of the

ELL building of EPFL (i.e., where DESL is located). PV1 is equipped with a four-quadrant

power converter (i.e., controllable), whereas PV2–3 are equipped with maximum-power-

point-tracking inverters (i.e., uncontrollable).

• A fuel cell (FC) with 15 kW rated power and an electrolyzer (EL) with 6 kW rated power.

These are coupled with a hydrogen/oxygen storage (HOS) operated at 30 bar pressure,

which has 0.8 MWh storage capacity (i.e., equivalent electrical energy). The fuell cell

and electrolyzer are based on proton-exchange-membrane technology.

• An air-to-water heat pump (HP) with 10 kW rated power. This is a controllable load.

Grid

The resources are interconnected through cables. Table 6.1 lists their lengths, ampacities,

and per-unit-length positive-sequence parameters. It is worth mentioning that the cables

are located under the raised floor of the laboratory. The cables are shielded (i.e., to avoid

electromagnetic interference), and connected such that there are no loops.
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Table 6.1 – Data of the cables installed in the microgrid.

Line Length (m) Ampacity (A) R ′
P (Ω/km) X ′

P (Ω/km)

L01 70 207 0.272 0.119

L02 30 44 3.300 0.141

L03 35 207 0.272 0.119

L04 30 108 0.780 0.126

L05 105 82 1.210 0.132

L06 30 82 1.210 0.132

L07 70 135 0.554 0.123

L08 30 207 0.272 0.119

L09 105 82 1.210 0.132

L10 30 44 3.300 0.141

L11 35 82 1.210 0.132

L12 30 82 1.210 0.132
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Figure 6.2 – Conceptual diagram of the metering system. The PMUs stream encapsulated
synchrophasor data, which are decapsulated and time-aligned by the PDC.

6.1.2 Metering System

The metering infrastructure consists of high-accuracy PMUs and a low-latency PDC, which

are described subsequently. The architecture of the metering system is shown in Figure 6.2.

Phasor Measurement Units

The PMUs are based on the interpolated discrete Fourier transform [14]. Specifically, the hard-

ware implementation presented in [149], which complies with the industry standards [123,124],

is used. The PMUs are implemented in NI cRIO-9068 real-time controllers, which are equipped

both with a Central Processing Unit (CPU) and a Field-Programmable Gate Array (FPGA) [150].

Data acquisition (i.e., sampling of voltage/current waveforms) and signal processing (i.e.,

synchrophasor estimation) are performed on the FPGA, whereas the communication (i.e.,

data encapsulation and streaming) are done on the CPU. For data acquisition, voltage trans-

ducers of type LEM CV 3-1000 (±0.2% accuracy) [151] and current transducers of type LEM LF

205-S/SP1 (±0.5% accuracy) [152] are used. For time synchronization of the PMUs, Trimble

Bullet III GPS antennas [153] are utilized. The synchrophasors are encapsulated into User

Datagram Protocol (UDP) datagrams according to [124] and broadcast over Ethernet. The

streaming rate is 50 frames per second.

Phasor Data Concentrator

The PDC decapsulates the UDP datagrams sent by the PMUs, and time-aligns them using a

timeout-based circular buffer [15]. Moreover, the PDC replaces missing measurements, in

order to provide complete and consistent sets of data at low latency. Specifically, the software

implementation presented in [154] is used. This application is implemented in the NI LabVIEW

programming environment.
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Figure 6.3 – Flow chart of the COMMELEC framework. The GA calculates requests based on
the advertisements of its follower RAs, measurements of the grid state, and the request of its
leader agent (in case there is one).

6.1.3 COMMELEC Framework

The resources are controlled using the so-called COMMELEC framework proposed in [155,156].

COMMELEC is a hierarchical, agent-based method for real-time control of active distribution

networks using explicit power setpoints. The work of this thesis was carried out within the

context of the COMMELEC project, which was supported by the Swiss National Science

Foundation through the National Research Programme NRP-70 “Energy Turnaround”.

Working Principles

The COMMELEC agents are divided into Resource Agents (RAs), which manage individual

resources, and Grid Agents (GAs), which handle an entire subsystem (i.e., a group of resources

and the grid they are connected to).

The agents are organized in a strict hierarchy (see Figure 6.3). RAs are followers of a GA, to

whom they send advertisements, and from whom they receive requests. A GA is a leader w.r.t.

its assigned RAs, and can be a follower w.r.t. to an upper-level GA. In this case, the follower GA

aggregates its subsystem, and acts like an RA toward the upper-level GA.

The agents communicate using an advertisement/request protocol. A request consists of an

active/reactive power setpoint. An advertisement is composed of a PQ profile, a belief function,

and a virtual cost function. The PQ profile is a subset of the (P,Q)-plane, which consists of all

setpoints that a resource can deploy. The belief function characterizes the uncertainty of the

deployment process More precisely, for every deployable setpoint (i.e, every point in the PQ

profile), it returns a set wherein the actually implemented setpoint will lie with overwhelming

probability. The virtual cost function quantifies the willingness of a resource to implement

the setpoints (i.e., lower cost indicates higher willingness). In this way, generic resources (i.e.,

generators, loads, or storage systems) can be represented. Indeed, this abstraction is one of

the main strengths of the COMMELEC framework.
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The GA determines the setpoints for the resources such that

1. The total virtual cost of the RAs is minimized.

2. The PQ profiles of the RAs are respected.

3. The setpoint requested by an upper-level GA is met (i.e., if there is an upper-level GA).

4. The grid is in a feasible and safe state of operation (i.e., line current ratings are respected,

and nodal voltages are within predefined bounds).

Within the limits imposed by the aforestated constraints, the GA can exploit the flexibility

advertised by the RAs in order to optimize the operation. Thanks to this generic approach, the

COMMELEC framework can support different modes of operation, such as safe and optimal

operation in grid-connected and islanded mode, real-time dispatch of an agreed-upon plan,

primary frequency support, as well as generic objectives defined by the user (see [147]).

The RAs are hosted on NI cRIO-9068 real-time controllers [150] (like the PMUs). Specifically,

low-level tasks like data acquisition or signal processing are executed by the FPGA, whereas

high-level tasks like data encapsulation, decapsulation, and streaming are done by the CPU.

The GA is hosted on a workstation computer that runs on Scientific Linux 7.2. More precisely,

the GA consists of three components. The core functionality of the COMMELEC framework

(i.e., the communication protocol and the control method) are provided by a C++ application.

The situation awareness w.r.t. the grid state is provided by the aforementioned low-latency

PDC [154], and a standard Kalman Filter (KF) [136]. Both the PDC and the KF are implemented

in the NI LabVIEW programming environment.

Application Example: Real-Time Dispatch

For illustration, one of the applications of the COMMELEC framework presented in [147],

namely real-time dispatch, is summarized here.

In this experiment, the controllable load L, the battery storage B, and the photovoltaic plant

PV1 are considered (see Figure 6.1). The objective of real-time dispatch is to follow a given

plan of active/reactive values at node B01 (i.e., the point of connection), because deviations

from this plan are penalized (i.e., since they require the activation of reserve). In order to

emulate grid congestion, the ampacity of line L01 is artificially lowered from 207 A to 30 A.

The results of this experiment are shown in Figure 6.4. Evidently, the COMMELEC framework

is able to track the external reference with high accuracy, except when the current in line L01

approaches the (virtual) ampacity. In these cases, the external reference is not tracked exactly,

because the penalty for approaching the ampacity limit outweighs the penalty for deviating

from the dispatch plan (see [147] and [155,156] for further details).
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(a)

(b)

(c)

Figure 6.4 – Real-time dispatch using the COMMELEC framework (as presented in [147]):
(6.4a) active powers, (6.4b) reactive powers, and (6.4c) current in line L01.

100



6.2. Experimental Validation of the Real-Time Capability

6.2 Experimental Validation of the Real-Time Capability

Subsequently, the real-time capability of the SKF presented in Chapter 4 and the VSI presented

in Chapter 5 is validated. To this end, these methods are deployed into the microgrid facility

described in Section 6.1.

6.2.1 Description of the Method

More precisely, the SKF and the VSI are deployed into an NI cRIO-9033 real-time controller,

which is equipped with a CPU and an FPGA [133] (recall that the SKF is implemented in FPGA

hardware). As explained in Section 6.1, a PDC is required to perform the time-alignment of the

PMU measurements. Specifically, the low-latency PDC discussed in [154] is used. Following

the modularity principle, the PDC, SKF, and VSI are embedded into separate applications.

Namely:

• PDC application. This module includes the low-latency PDC, plus a wrapper layer for

interfacing it with the other applications. The entire application is executed on the CPU.

• SE application. This module consists of the SKF and the associated circuit analysis

methods (i.e., construction of Y, and KR). The SKF is executed on the FPGA, the rest of

the application on the CPU.

• VSA application. This module consists of the VSI and the associated circuit analysis

methods (i.e., construction of Y and H, and KR). The entire application runs on the CPU.

The aforestated applications are implemented in the NI LabVIEW programming environment.

In order to validate the real-time capability of these applications, the latency of the processing

chain PDC-SE-VSA is assessed. To this end, the data are time-stamped at the following instants:

1. When the PDC application receives a PMU data frame.

2. When the PDC application releases a time-aligned set of synchrophasors.

3. When the SE application releases the results of the SKF calculation.

4. When the VSA application releases the results of the VSI calculation.

As suggested in [136], the latency is expressed w.r.t. to the center of the signal window used

for the synchrophasor extraction. For this purpose, the clock of the real-time controller that

hosts the PDC/SE/VSA applications is synchronized using the Precision Time Protocol (PTP)

with a TEKRON TTM 01-G master clock [157], which is equipped with a Trimble Bullet III GPS

antenna (like the PMUs).

101



Chapter 6. Practical Deployment into a Real-Scale Microgrid

6.2.2 Discussion of the Results

Figure 6.5 depicts the Cumulative Distribution Functions (CDFs) of the obtained latencies.

These CDFs are obtained from 20’000 samples each. The median latencies of the PMU, PDC,

SE, and VSA data are ca. 38.5 ms, 58.5 ms, 65.5 ms, and 67.5 ms, respectively. That is, the PDC,

SE, and VSA application have execution times of ca. 20 ms, 8 ms, and 2 ms, respectively. Note

that the CDFs of the latencies of the PDC, SE, and VSA data are very steep. More precisely, the

jitter is in the sub-millisecond range. This means that the execution time of these applications

is very deterministic. Notably, the applications can keep up with the streaming rate of the

PMUs (i.e., 50 frames per second). In conclusion, these results confirm that the proposed

methods are indeed real-time capable when deployed into an embedded system.

For comparison, the results of the latency assessment of the COMMELEC framework from [147]

are shown in Figure 6.6. These CDFs are obtained from 15’000 samples each. Note that these

values are calculated w.r.t. the beginning of the COMMELEC cycle (i.e., when the GA sends

new requests to the RAs), not w.r.t. the center of the PMU signal windows. Nevertheless, the

shape of the CDF of the SE latency illustrates the advantage of the real-time controller over

the workstation computer. Namely, the execution on the real-time controller is much more

deterministic (i.e., the CDF of the latency is much steeper). This is due to two reasons. Firstly,

the SKF is implemented mostly on the FPGA, whereas the standard KF used by COMMELEC is

implemented on the CPU. As known, the execution on FPGAs is deterministic, whereas the

execution on CPUs is not. Secondly, the real-time controller works with real-time operating

system, whereas the workstation computer works with a conventional one. Therefore, the

execution of programs on the CPU of the real-time controller is more deterministic than on

the CPU of the workstation computer.

The comparison of the results shown in Figure 6.5 versus those shown in Figure 6.6 clearly

demonstrates the effectiveness of the proposed methods and their implementation into

embedded hardware, both w.r.t. computational efficiency and time-determinism.

102



6.2. Experimental Validation of the Real-Time Capability

Figure 6.5 – Assessment of the latencies of the PDC/SE/VSA applications.

Figure 6.6 – Assessment of the latencies of the COMMELEC applications (as presented in [147]).
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7 Conclusions

7.1 Synopsis of the Main Findings

This thesis developed, validated, and deployed real-time methods for State Estimation (SE)

and Voltage Stability Assessment (VSA), which can support the automation of passive and

active power distribution systems.

Chapter 3 discusses fundamental properties of the compound admittance matrix of polyphase

power grids. First, it is shown that such grids can be represented by equivalent circuits built of

polyphase branch and shunt elements. Moreover, it is argued that the compound electrical

parameters of these elements are symmetric, invertible, and lossy. Based on these properties,

and the hypothesis that the branch graph is weakly connected, it is formally proven that the

compound admittance matrix has full rank if there is at least one shunt element, and that its

diagonal blocks always have full rank. Building upon these findings, it is formally proven that

Kron Reduction (KR) is feasibly for any set of zero-injection nodes, and that a compound hybrid

matrix exists for any partition of the nodes. These findings establish a rigorous theoretical

foundation for the methods developed in the rest of this thesis.

Chapter 4 presents a Field-Programmable Gate Array (FPGA) implementation of a real-time

state estimator for polyphase power grids, which is based on a Sequential Kalman Filter (SKF).

First, the essentials of SE in general and Kalman Filter (KF) theory in particular are recalled.

Specifically, the properties of the measurement and process model, as well as the derivation of

the standard KF are discussed. Then, the SKF is introduced, and it is formally proven that the

SKF and the standard KF produce identical estimates if the measurement noise variables are

uncorrelated. Afterwards, the computational complexity of the SKF and the standard KF are

analyzed and compared. Notably, it is demonstrated that the SKF has lower computational

complexity, and the SKF (as opposed to the standard KF) is suitable for implementation into

FPGAs, because it only requires elementary operations of linear algebra. Finally, the FPGA

implementation of the SKF is presented, and validated against a Central Processing Unit (CPU)

implementation of the standard KF. In particular, it is found that the results of the FPGA SKF

are in accordance with those of the CPU KF, except for negligible differences due to the lower

numerical precision available on the FPGA.

105



Chapter 7. Conclusions

Chapter 5 introduces a Voltage Stability Index (VSI) for assessing the voltage stability of

polyphase power systems. First, the system model for VSA is described. It is illustrated that the

non-zero-injection nodes can be classified into slack nodes, which behave like voltage sources

with finite output impedances, and resource nodes, which behave like voltage-dependent

power sources. The former are represented by Thévenin Equivalents (TEs), and and the latter

by Polynomial Models (PMs). Then, the classical Continuation Power Flow (CPF) approach to

VSA is recalled. In view of the computationally intensive iterative methods required for the

numerical continuation, it is concluded that CPF is not suitable for real-time applications.

The VSI is proposed as computationally efficient solution to the VSA problem. To this end,

the power-flow equations are locally approximated by complex quadratic equations using the

compound hybrid matrix of the grid. The proposed VSI is obtained through generalization of

the well-known L-index, which works with similar complex quadratic equations. Finally, the

VSI is validated against the classical CPF approach. The results of these methods are found to

be in good agreement. That is, the proposed VSI does correctly detect voltage instability in

polyphase power systems.

Chapter 6 illustrates the deployment of the proposed methods into a real-scale experimental

microgrid. To this end, an overview of the equipment available in the microgrid is given in

order to support the reader for a potential replication of the results. For the deployment, the

metering system, which consists of Phasor Measurement Units (PMUs) coupled with a Phasor

Data Concentrator (PDC), is of particular importance. The SKF and the VSI are embedded

into modular applications for SE and VSA, which are deployed into an industrial real-time

controller along with the PDC. To validate the real-time capability of this setup, the latencies of

the PDC–SE–VSA processing chain are measured w.r.t. the PMU timestamps. The results show

that the execution times of the SE and VSA applications are in the order of a few milliseconds,

and deterministic (i.e., with sub-millisecond jitter).
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7.2 Outlook on Future Work

In continuation of the work presented in this thesis, the following topics are suggested for

further investigation:

• The earthing systems could be included into the grid model, in order to account for

nonzero neutral-to-ground voltages. To this end, the neutral conductor and the ground

node need to be modeled as separate elements, and the impedance of the earthing

systems need to be considered.

• The SKF can be coupled with methods for the identification/correction of bad data and

the assessment of the process noise covariance matrix. These aspects are not considered

in this thesis, but solutions are available in the literature.

• The slack/resource nodes should be identified dynamically, and the TE/PM parameters

can be estimated online. In this thesis, the roles of the nodes and the parameters of their

models are assumed to be known, but this may not be the case in practice.

• The PDC, SE, and VSA applications can be integrated together into the FPGA, in order to

simplify the communication between them, and ensure fully deterministic execution.

As the PDC is essentially a circular buffer, and that the VSI only requires basic algebraic

operations, this appears well feasible.

• The developed methods can be used for real-time protection, monitoring, and control.

For instance, the SE functionality can support fault detection and location [112], and

the VSA functionality could be integrated into the COMMELEC framework [155,156].
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A Appendix

A.1 Essentials of Linear Algebra

A.1.1 Rank and Inverse

The so-called rank(M) of a matrix M is the number of its linearly independent rows or columns.

A square matrix A with full rank is invertible (or nonsingular) and has a unique inverse A−1.

The following properties hold (for proofs, see [158]):

Lemma 4. For any matrix M, it holds that rank
(
MTM

)
= rank(M).

Lemma 5. If M is arbitrary, and A, B are nonsingular (and of appropriate size), it holds that

rank(AM) = rank(M) = rank(MB).

Lemma 6 (Woodbury Matrix Identity). If A, B are invertible, and U, V are such that the terms

A+UBV and B−1+VA−1U are invertible, then it holds that

(A+UBV)−1 = A−1−A−1U
(
B−1+VA−1U

)
VA−1 (A.1)

A.1.2 Positive-Definite and Negative-Definite Matrices

The transpose MT is obtained by flipping M over its diagonal. If M = MT, then M is symmetric.

A symmetric real matrix M is positive definite (M Â 0) or negative definite (M ≺ 0) if

M Â 0 : xTMx > 0 ∀x 6= 0 (A.2)

M ≺ 0 : xTMx < 0 ∀x 6= 0 (A.3)

If 0 is included, M is positive semidefinite (M º 0) or negative semidefinite (M ¹ 0), respectively.

For positive definite matrices, the following property holds (see [159]):

Lemma 7. If A Â 0 and B is nonsingular (and of appropriate size), then BTAB Â 0.
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For complex symmetric matrices with positive-definite real or imaginary part, the following

properties hold (for proof, see [160] and [161] respectively):

Lemma 8. If M is complex symmetric and ℜ {M} Â 0, then M is nonsingular and ℜ
{

M−1}Â 0.

Lemma 9. If M is complex symmetric and ℑ {M} Â 0, then M is nonsingular and ℑ
{

M−1}≺ 0.

A.1.3 Unitary Matrices

A nonsingular complex matrix M is unitary if M−1 = (M∗)T. It holds that (for proof, see [162]):

Lemma 10 (Autonne-Takagi Factorization). If M is complex symmetric, it can be factorized as

M = UTDU, where U is unitary and D is nonnegative diagonal. Additionally, if M is nonsingular,

then D is positive diagonal.

A.1.4 Block Matrices

Let M be a block matrix of the form

M =
[

A B

C D

]
(A.4)

If D is invertible, the Schur complement M/D of D in M is defined as

M/D := A−BD−1C (A.5)

The following properties hold (for proof, see [163]):

Lemma 11. det(M) = det(M/D)det(D).

Lemma 12. If A is composed of blocks Aij, B of row blocks Bi , and C of column blocks C j (i.e.,

of compatible size), then the Schur complement can be computed blockwise:

(M/D)ij = Aij −Bi D−1C j =
[

Aij Bi

C j D

]
/ D (A.6)

The Kronecker product A⊗B of two matrices A and B is a block matrix, whose blocks (A⊗B)ij

are the products of the corresponding element Aij of A and B:

A⊗B : (A⊗B)ij = Aij ·B (A.7)

The following property holds (for proof, see [164]).

Lemma 13. rank(A⊗B) = rank(A) · rank(B).
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Figure A.1 – Schematic of a polyphase transmission line. The conductors are parallel to each
other and to the ground plane. The x-axis and the y-axis are perpendicular to the conductors,
and the z-axis is parallel to the conductors.

A.2 Modeling of Power System Components

A.2.1 Transmission Lines

Telegrapher’s Equations

Consider a polyphase transmission line, whose conductors are parallel to each other and the

ground plane, and have infinite length. Define the orthogonal coordinate axes x, y , and z s.t.

the z-axis is parallel to the conductors (see Figure A.1). Label the conductors as p ∈P , and

the ground plane as 0. Suppose the following:

Hypothesis 12 (Longitudinal Wave Propagation). The transverse dimensions of the conductors

(i.e., their diameters and distances) are substantially smaller than the wavelengths of interest,

so that only longitudinal propagation (i.e., along the z-axis) needs to be considered.

Hypothesis 13 (Transverse Electromagnetic Field). The electric field~E and magnetic field~B

outside of the conductors, which result from the charges and currents inside of the conductors,

are purely transverse (i.e., Ez = 0 and Bz = 0).

Hypothesis 14 (Linear, Homogeneous, Isotropic Materials). The conductors and the ambient

dielectric are linear, homogeneous, and isotropic. That is, the conductivity σ of the conductors,

as well as the permittivity ε and the permeability µ of the dielectric, are finite scalar constants.

Under these conditions, the phase-to-ground voltages vp (z, t ) are uniquely defined. Moreover,

the sum of the conductor currents ip (z, t ) plus the ground current i0(z, t ) equals zero:

i0(z, t ) =− ∑
p∈P

ip (z, t ) (A.8)
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Figure A.2 – Polyphase equivalent circuit of an infinitesimal line segment.

Define v(z, t ) and i(z, t ) as the vectors of all vp (z, t ) and ip (z, t ), respectively:

v(z, t ) := colp∈P

(
vp (z, t )

)
(A.9)

i(z, t ) := colp∈P

(
ip (z, t )

)
(A.10)

As known from transmission line theory (for proof, see [165,166]):

Lemma 14 (Telegrapher’s Equations). If Hypotheses 12–14 hold, Maxwell’s equations simplify

to the so-called telegrapher’s equations

∂

∂z
v(z, t ) :=−

(
R′+L′ ∂

∂t

)
i(z, t ) (A.11)

∂

∂z
i(z, t ) :=−

(
G′+C′ ∂

∂t

)
v(z, t ) (A.12)

R′/L′ are the per-unit-length resistance/inductance matrices of the conductors and the ground,

and G′/C′ per-unit-length conductance/capacitance matrices of the dielectric. These matrices

are symmetric: R′ = (
R′)T, L′ = (

L′)T, G′ = (
G′)T, and C′ = (

C′)T (see [165]).

Energy in the Fields and Losses in the Materials

The line can be thought to be composed of infinitesimal segments of length dz (see Figure A.2).

Let EL′(z, t ) and EC′(z, t ) be the energy stored in the magnetic and electric field, respectively, of

an infinitesimal segment located at position z. They are given by (see [165] and Figure A.2)

EL′(z, t ) = 1

2
i(z, t )TL′i(z, t )dz (A.13)

EC′(z, t ) = 1

2
v(z, t )TC′v(z, t )dz (A.14)
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The energy stored in the field is zero only if there is no field: EL′(z, t) = 0 iff~B(z, t) = 0, and

EC′(z, t ) = 0 iff~E(z, t ) = 0. Since~B(z, t ) = 0 requires i(z, t ) = 0, and~E(z, t ) = 0 implies v(z, t ) = 0,

it follows that EL′(z, t ) > 0 ∀i(z, t ) 6= 0 and EC′(z, t ) > 0 ∀v(z, t ) 6= 0. As L′ and C′ are symmetric,

they are thus positive definite: L′ Â 0 and L′ Â 0.

Let PR′(z, t ) and PG′(z, t ) be the losses dissipated in the conductors and dielectric, respectively,

of an infinitesimal segment located at position z. They are given by (see [165] and Figure A.2)

PR′(z, t ) = 1

2
i(z, t )TR′i(z, t )dz (A.15)

PG′(z, t ) = 1

2
v(z, t )TG′v(z, t )dz (A.16)

If the materials are lossy (i.e., R′ 6= 0 and G′ 6= 0), the losses are zero only if no currents flow.

That is, PR′(z, t) = 0 iff i(z, t) = 0, and PG′(z, t) = 0 iff v(z, t) = 0. As R′ and G′ are symmetric,

they are thus positive definite: R′ Â 0 and G′ Â 0.

Approximate Lumped-Element Model of a Short Line

Now, consider a line of finite length, which runs from zm to zn (i.e., m and n are polyphase

nodes of a grid). Let ∆z := ∣∣zm − zn

∣∣ denote the length of the line. For a given frequency ω,

define X′ and B′ as

X′ :=ωL′ (A.17)

B′ :=ωB′ (A.18)

Since L′ and C′ are positive definite, X′ and B′ are positive definite: X′ = (
X′)T and B′ = (

B′)T.

As known from transmission line theory (see [165]):

Lemma 15 (Electrically Short Line). If a line is electrically short (i.e., its length is substantially

shorter than the wavelengths of interest), it can be approximated by a Π-section equivalent

circuit, whose shunt and branch elements correspond to the transversal electrical parameters

G′ and B′ and the longitudindal electrical parameters R′ and X′, respectively (see Figure A.3).

The parameters of the polyphaseΠ-section equivalent circuit are given by (see Figure A.3)

ZΠ,(m,n) =
(
R′+ j X′)∆z (A.19)

YΠ,m|(m,n) =
1

2

(
G′+ j B′)∆z (A.20)

YΠ,n|(m,n) =
1

2

(
G′+ j B′)∆z (A.21)

Since R′, X′, G′, and B′ are positive definite, ZΠ,(m,n), YΠ,m|(m,n), and YΠ,n|(m,n) are symmetric

and have positive definite real parts. Therefore, according to Lemma 8, they are invertible.

This is in accordance with Hypothesis 3.
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(
R′+ j X′)∆z

Vm Vn
1
2

(
G′+ j B′)∆z 1

2

(
G′+ j B′)∆z

Figure A.3 – PolyphaseΠ-section equivalent circuit of a short line.
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A.2.2 Transformers

Lumped-Element Model of a Lossless Transformer

Consider a polyphase transformer, whose primary side P and secondary side S are configured

as grounded stars. Let vP(t ) and vS(t ) be the vectors of the phase-to-ground terminal voltages,

and iP(t ) and iS(t ) the vectors of the injected terminal currents. Suppose the following:

Hypothesis 15 (Linear, Homogeneous, Isotropic Materials). The windings and the core are

made from linear, homogeneous, isotropic materials (i.e., the conductivity σ of the windings

and the permeability µ of the core are finite scalar constants).

For the moment, neglect the losses in the windings and the core. Under these conditions, the

terminal voltages and currents on the primary and secondary side are related by (see [167]):[
vP(t )

vS(t )

]
=

[
LPP LPS

LSP LPP

]
∂

∂t

[
iP(t )

iS(t )

]
(A.22)

LPP and LSS are the matrices of self-inductances of the primary and secondary windings, and

LPS and LSP are the matrices of mutual inductances between them. The following symmetries

hold: LPP = LT
PP, LSS = LT

SS, and LPS = LT
SP.

Furthermore, assume the following:

Hypothesis 16 (Symmetric Core). The core is magnetically symmetric. That is, LPS = LSP = M.

Hypothesis 17 (Equal Turn Ratios). The turn ratios ηp of the primary and secondary windings

of all phases are equal: ηp = NS,p /NP,p = η ∀p ∈P .

In this case, LPP, LSS, and M are positive definite: LPP Â 0, LSS Â 0, and M Â 0 (see [168]).

Moreover, (A.22) can be represented by an equivalent circuit. Rewrite the first row of (A.22) as

vP(t ) = LPP

∂

∂t
iP(t )+M

∂

∂t
iS(t ) (A.23)

=
(

LPP−
1

η
M

)
∂

∂t
iP(t )+M

∂

∂t

(
1

η
iP(t )+ iS(t )

)
(A.24)

=
(

LPP−
1

η
M

)
∂

∂t
iP(t )+ 1

η
M
∂

∂t

(
iP(t )+ηiS(t )

)
(A.25)

Similarly, rewrite the second row of (A.22) as

vS(t ) = M
∂

∂t
iP(t )+LSS

∂

∂t
iS(t ) (A.26)

= M
∂

∂t

(
iP(t )+ηiS(t )

)+ (
LSS−ηM

) ∂
∂t

iS(t ) (A.27)

= η
(

1

η
M
∂

∂t

(
iP(t )+ηiS(t )

))+ (
LSS−ηM

) ∂
∂t

iS(t ) (A.28)
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1 : η

LM

ηiS(t )
LP

iP(t )

vP(t )

LS iS(t )

vS(t )

Figure A.4 – Polyphase equivalent circuit of a lossless transformer in absolute units.

Define the leakage inductances LP and LS and the magnetization inductance LM as

LP := LPP−
1

η
M (A.29)

LS := LSS−ηM (A.30)

LM := 1

η
M (A.31)

Since LPP, LSS, and M are positive definite, LP and LS are symmetric, and LM is positive definite:

LP = LT
P , LS = LT

S , and LM Â 0 (LP and LS need not be positive definite due to the subtraction).

Using these definitions, (A.25) and (A.28) simplify to

vP(t ) = LP

∂

∂t
iP(t )+LM

∂

∂t

(
1

η
iP(t )+ iS(t )

)
(A.32)

vS(t ) = η
(

LM

∂

∂t

(
iP(t )+ηiS(t )

))+LS

∂

∂t
iS(t ) (A.33)

This corresponds to the equivalent circuit shown in Figure A.4. The equivalent circuit consists

of the lumped elements LP, LS, and LM, as well as an ideal transformer with turn ratio 1 : η.

Per-Unit Model

The presence of the ideal transformer in the equivalent circuit in Figure A.4 is due to the fact

that vP(t ) and vS(t ) are expressed absolute units. If the voltages and currents are expressed in

relative units (i.e., w.r.t. to a per-unit basis), the ideal transformer can be eliminated from the

equivalent circuit. To this end, assuming that the same base power Pb is used for both sides,

the ratio of the secondary base voltage VS,b and the primary base voltage VP,b must be equal to

the turn ratio of the transformer (for proof, see [169]). That is

VS,b

VP,b
= η (A.34)
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j XP

j XMVP

j XS

VS

Figure A.5 – Polyphase T-section equivalent circuit of a lossless transformer in relative units.

Using the per-unit basis, define the per-unit phasors

VP ∼
vP(t )

VP,b
(A.35)

VS ∼
vS(t )

VS,b
(A.36)

and the per-unit reactances (i.e., for a given frequency ω)

XP := ωLP

ZP,b
(A.37)

XS := ωLS

ZS,b
(A.38)

XM := ωLM

ZP,b
(A.39)

where ZP,b and ZS,b are the absolute values of the base impedances. The equivalent circuit

shown in Figure A.4 can be transformed into the one shown in Figure A.5 (see [169]).

Note that, since LP and LS are symmetric, XP and XS are symmetric, too: XP = XT
P and XS = XT

S .

Moreover, since LM is positive definite, XM is positive definite, too: XM Â 0. Therefore, according

to Lemmata 8–9, j XM has the inverse − j BM, where BM Â 0 (i.e., the impedance parameters j XM

can be replaced by the admittance parameters − j BM).

Losses in the Windings and the Core

The winding losses are represented by compound resistance matrices RP and RS connected

in series with the compound reactance matrices XP and XS, see Figure A.6. The Ohmic losses

depend only on the current flowing in the respective conductor, so RP and RS are diagonal.

Furthermore, given that the conductors are lossy, the Ohmic losses are zero iff no current flows.

Accordingly, RP and RS are positive diagonal, and hence positive definite: RP Â 0 and RS Â 0.
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RP+ j XP

GM− j BMVP

RS+ j XS

VS

Figure A.6 – Polyphase T-section equivalent circuit of a lossy transformer in relative units.

The core losses are represented by a compound conductance matrix GM connected in parallel

with the compound susceptance matrix BM, see Figure A.6. As known GM can be derived from

the equivalent magnetic circuit of the transformer [170]. Since the magnetic flux in a leg of the

core is a superposition of contributions originating from all windings, GM is a dense matrix

(i.e., its off-diagonal elements are nonzero). Moreover, due to symmetry of the magnetic

interaction, GM is symmetric (this property is guaranteed by the manufacturers). Furthermore,

given that the core is lossy, the magnetization losses are zero iff the magnetic fluxes are zero.

By consequence, GM is positive definite: GM Â 0.

Following the notation in Figure 3.1b, label the primary side as m, the secondary side as n,

and the internal node as x (i.e., m and n are physical nodes, and x is a virtual node of a grid).

The parameters of the polyphase T-section equivalent circuit are given by

ZT,(m,x) = RP+ j XP (A.40)

ZT,(n,x) = RS+ j XS (A.41)

YT,x = GM− j XM (A.42)

Recall that RP and RS are positive definite, and XP and XS are symmetric. By consequence,

ZT,(m,x) and ZT,(n,x) are symmetric with positive definite real part. Thus, according to Lemma 8,

they are invertible. Further, recall that GM is positive definite, and BM is symmetric. Therefore,

YT,x is symmetric with positive definite real part. Hence, according to Lemma 8, it is invertible,

too. This is is in accordance with Hypothesis 3.
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A.2.3 Series Compensators and Shunt Compensatorss

There exist three categories of FACTS devices: series compensators, shunt compensators, and

combined series-and-shunt compensators [171]. Hereafter, the first two cases are discussed.

Recall from Appendix A.2.1 that a polyphase line is characterized by the following compound

electrical parameters:

ZΛ,(m,n) := (
R′+ j X′)∆z (A.43)

YΛ,m|(m,n) := 1

2

(
G′+ j B′)∆z (A.44)

YΛ,n|(m,n) := 1

2

(
G′+ j B′)∆z (A.45)

These parameters satisfy Hypothesis 3. If the line is equipped with a series compensator, its

branch impedance is modified. Let ZΓ,(m,n) denote the compound series impedance matrix of

the compensator. Then, as shown in Figure A.7

ZΠ,(m,n) = ZΛ,(m,n) +ZΓ,(m,n) (A.46)

Similarly, if the line is equipped with shunt compensators, its shunt admittances are modified.

Let YΓ,m and YΓ,n denote the compound shunt admittance matrices of these compensators.

Then, as shown in Figure A.8

ZΠ,m|(m,n) = ZΛ,m|(m,n) +ZΓ,m (A.47)

YΠ,n|(m,n) = YΛ,n|(m,n) +YΓ,n (A.48)

Usually, such compensators are built of banks of capacitors or inductors. Due to the symmetry

of electromagnetic interactions (which is a consequence of Maxwell’s equations), such devices

are symmetrical w.r.t. the phases. Moreover, they are lossy (like every physical system). Hence

series compensation :

[
ZΓ,(m,n) = ZT

Γ,(m,n)

ℜ{
ZΓ,(m,n)

}Â 0
(A.49)

shunt compensation :

[
YΓ,m/n = YT

Γ,m/n

ℜ{
YΓ,m/n

}Â 0
(A.50)

Since ZΓ,(m,n), YΓ,m and YΓ,n have positive definite real parts, by Lemma 8, they are invertible.

Therefore, they satisfy Hypothesis 3. The addition in (A.47)–(A.48) preserve the symmetry of

the matrices and the positive definiteness of the real part of ZΠ,(m,n), YΠ,m , and YΠ,n . Therefore,

by Lemma 8, they are invertible. So, the obtained parameters satisfy Hypothesis 3.
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ZΛ,(m,n) ZΓ,(m,n)

Vm Vn

series
compensator

YΛ,m|(m,n) YΛ,n|(m,n)

Figure A.7 – Equivalent circuit of a line equipped with a series compensator.

ZΛ,(m,n)

Vm VnYΛ,m|(m,n) YΓ,n YΛ,n|(m,n)
shunt

compensator

Figure A.8 – Equivalent circuit of a line equipped with shunt compensators. For the sake of
simplicity, only one compensator is shown.
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A.3 Measurement Noise in Different Coordinate Systems

In the following, voltage measurements are considered for illustration. Current measurements

can be treated analogously.

Let V be the true value of a voltage phasor, which is expressed in polar coordinates as V := E∠θ.

Suppose that the measurement process introduces a magnitude error Ẽ and a phase error θ̃

measurement of V : (E + Ẽ)∠(θ+ θ̃) (A.51)

where Ẽ and θ̃ are normally distributed with zero mean

Ẽ ∼ N
(
0,σ2

E

)
(A.52)

θ̃ ∼ N
(
0,σ2

θ

)
(A.53)

Alternatively, V can be expressed in rectangular coordinates as V :=Vre + jVim. Analogously

measurement of V : (Vre + Ṽre)+ j (Vim + Ṽim) (A.54)

According to Euler’s formula

Ṽre =
(
E + Ẽ

)
cos

(
θ+ θ̃)−E cosθ (A.55)

Ṽim = (
E + Ẽ

)
sin

(
θ+ θ̃)−E sinθ (A.56)

If Ẽ and θ̃ are independent, the standard deviations σVre
and σVim

of Ṽre and Ṽim, respectively,

are given by (for derivation, see [58])

σ2
Vre

=
 E 2 exp

(
−σ2

θ

)(
cos2θ

(
cosh

(
σ2
θ

)
−1

)
+ sin2θ sinh

(
σ2
θ

))
+σ2

E exp
(
−σ2

θ

)(
cos2θcosh

(
σ2
θ

)
+ sin2θ sinh

(
σ2
θ

)) (A.57)

σ2
Vim

=
 E 2 exp

(
−σ2

θ

)(
sin2θ

(
cosh

(
σ2
θ

)
−1

)
+cos2θ sinh

(
σ2
θ

))
+σ2

E exp
(
−σ2

θ

)(
sin2θcosh

(
σ2
θ

)
+cos2θ sinh

(
σ2
θ

)) (A.58)

Observe thatσVre
andσVre

depend onσE andσθ as well as E and θ (i.e., the true magnitude and

phase). In practice, the true values E and θ are unknown, but (A.57)–(A.58) can be evaluated

using estimates Ê and θ̂ of E and θ, or using assumed values.
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A.4 Properties of the Kalman Filter

A.4.1 Joseph’s Form of the Error Covariance Update

Lemma 16 (Joseph’s form). Recall the KF from Lemma 3. It holds that

P+
k = (

I−Kk Ck

)
P−

k

(
I−Kk Ck

)T+Kk Rk KT
k ⇐⇒ P+

k = (
I−Kk Ck

)
P−

k (A.59)

Proof. Recall from (4.69) that the Kalman gain Kk is given by

Kk = P−
k CT

k

(
Ck P−

k CT
k +Rk

)−1
(A.60)

Joseph’s form can be rewritten as follows

P+
k = (

I−Kk Ck

)
P−

k

(
I−Kk Ck

)T+Kk Rk KT
k (A.61)

= P−
k −Kk Ck P−

k −P−
k CT

k KT
k +Kk Ck P−

k CT
k KT

k +Kk Rk KT
k (A.62)

= P−
k −Kk Ck P−

k −P−
k CT

k KT
k +Kk

(
Ck P−

k CT
k +Rk

)
KT

k (A.63)

= P−
k −Kk Ck P−

k −P−
k CT

k KT
k +P−

k CT
k KT

k (A.64)

= P−
k −Kk Ck P−

k (A.65)

= (
I−Kk Ck

)
P−

k (A.66)

This proves the claim.

A.4.2 Positive Definiteness of the Estimation Error Covariance Matrix

In the following, the validity of Hypothesis 9 is substantiated. More precisely, it is proven that

the KF preserves the positive definiteness of the prediction error covariance matrix P−
k and of

the estimation error covariance matrix P+
k . Formally:

Lemma 17 (P+
k Â 0). Recall the KF from Lemma 3. If Rk Â 0 and P+

0 Â 0, then P+
k Â 0 for k > 0.

Proof. (Formulation (4.69)–(4.71)). Provided that P+
k−1 is positive definite, P−

k = P+
k−1 +Qk−1 is

positive definite, because Qk−1 positive semidefinite. The Kalman gain Kk is given by (4.69) as

Kk = P−
k CT

k

(
Ck P−

k CT
k +Rk

)−1
(A.67)

Since the system is observable, Ck has full rank. Hence, the term Ck P−
k CT

k is positive definite

(see Lemma 7, Appendix A.1.2). Moreover, the term Ck P−
k CT

k +Rk is positive definite, and thus

has full rank. Accordingly, Kk has full rank (see Lemma 5, Appendix A.1.1). The estimation

error covariance matrix P+
k is given by (4.70) as

P+
k = (

I−Kk Ck

)
P−

k

(
I−Kk Ck

)T+Kk Rk KT
k (A.68)
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The first summand is positive semidefinite, as P−
k is positive definite. The second summand is

positive definite, as Rk is positive definite and Ck has full rank (see Lemma 7, Appendix A.1.2).

In summary, P+
k−1 Â 0 implies P+

k Â 0. By induction, it follows that P+
k Â 0 for k > 0 if P+

0 Â 0.

This proves the claim.

Proof. (Formulation (4.72)–(4.74)). The procedure is analogous. By (4.72)(
P+

k

)−1 = (
P−

k

)−1+CT
k R−1

k Ck (A.69)

The inverse matrices on the right-hand side are positive definite, because the original matrices

are positive definite. Moreover, Ck has full rank. Therefore, the term CT
k R−1

k Ck is positive

definite (see Lemma 7, Appendix A.1.2). Accordingly,
(
P+

k

)−1
is positive definite, and so is P+

k .

By induction, it follows that P+
k Â 0 for k > 0 if P+

0 Â 0, which proves the claim.

A.4.3 Equivalent Formulations of the Estimation Step

Lemma 18. Consider the KF as stated in Lemma 3. If Hypothesis A.4.2 holds, then
Kk = P−

k CT
k

(
Ck P−

k CT
k +Rk

)−1
P+

k = (
I−Kk Ck

)
P−

k

x̂+k = x̂−k +Kk

(
yk −Ck x̂−k

) ⇐⇒


(
P+

k

)−1 = (
P−

k

)−1+CT
k R−1

k Ck

Kk = P+
k CT

k R−1
k

x̂+k = x̂−k +Kk

(
yk −Ck x̂−k

) (A.70)

The equivalence holds if the obtained P+
k and Kk are the same for both formulations.

Proof. (Part 1: P+
k ). Inverting the equation defining

(
P+

k

)−1
yields P+

k as

P+
k =

((
P−

k

)−1+CT
k R−1

k Ck

)−1
(A.71)

Hypothesis 9 ensures that Rk , P−
k ,

(
P−

k

)−1+CT
k R−1

k Ck , and Ck P−
k CT

k +Rk , are positive definite,

and hence invertible. Therefore, the Woodbury matrix identity (see Lemma 6, Appendix A.1.1)

can be applied using A := (
P−

k

)−1, B := R−1
k , U := Ck , and V := Ck :

P+
k =

((
P−

k

)−1+CT
k R−1

k Ck

)−1
(A.72)

= P−
k −P−

k CT
k

(
Ck P−

k CT
k +Rk

)−1
Ck P−

k (A.73)

= P−
k −Kk Ck P−

k (A.74)

= (
I−Kk Ck

)
P−

k (A.75)

This proves the equivalence for P+
k .
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Proof. (Part 2: Kk ). Reformulate the expression for Kk as follows

Kk = P+
k CT

k R−1
k (A.76)

= P−
k CT

k R−1
k

(
Ck P−

k CT
k +Rk

)(
Ck P−

k CT
k +Rk

)−1
(A.77)

= P+
k CT

k R−1
k

(
Ck P−

k CT
k R−1

k + I
)

Rk

((
Ck P−

k CT
k R−1

k + I
)

Rk

)−1
(A.78)

= P+
k CT

k R−1
k

(
Ck P−

k CT
k R−1

k + I
)(

Ck P−
k CT

k R−1
k + I

)−1
(A.79)

= P+
k

(
CT

k R−1
k Ck P−

k CT
k R−1

k +CT
k R−1

k

)(
Ck P−

k CT
k R−1

k + I
)−1

(A.80)

= P+
k

(
CT

k R−1
k Ck +

(
P−

k

)−1)P−
k CT

k R−1
k

(
Ck P−

k CT
k R−1

k + I
)−1

(A.81)

= P+
k

(
P+

k

)−1
P−

k CT
k R−1

k

(
Ck P−

k CT
k R−1

k + I
)−1

(A.82)

= P−
k CT

k

((
Ck P−

k CT
k R−1

k + I
)

Rk

)−1
(A.83)

= P−
k CT

k

(
Ck P−

k CT
k +Rk

)−1
(A.84)

This proves the equivalence for Kk .
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Figure A.9 – Schematic of the benchmark power grid.

A.5 Benchmark Power Grid

The same benchmark power grid is used for all simulation studies presented in this thesis. As

shown in Figure A.9, it consists of two subsystems:

1. Upper-level subsystem (nodes 1–5) with nominal voltage 69.0 kV (phase-to-phase).

2. Lower-level subsystem (nodes 6–25) with nominal voltage 24.9 kV (phase-to-phase).

The former is a linear feeder built of transposed overhead lines. The latter is a modified version

of the IEEE 34-node distribution feeder, which consists of untransposed overhead lines and

Line Voltage Regulators (LVRs) [135]. These subsystems are interfaced by a conventional

transformer (i.e., without a tap changer). Tables A.1–A.3 list the specifications of the nodes,

lines, and transformers, respectively.

The transposed overhead lines are characterized by the sequence parameters given in Table A.4.

These values are for aluminum/steel conductors with a cross-sectional area of 435 mm2 [172],

which translates to a rated current of 300 A . The untransposed overhead lines are speciied

in detail in [135]. They have rated currents of 230 A (IEEE-300) and 180 A (IEEE-301) per

conductor. The transformers are wye-connected and effectively grounded on both the primary

and secondary side. Therefore, the sequence impedances are equal. Here, typical values are

used: R = 5E−3 pu and X = 0.1 pu (w.r.t. the base impedance defined by the rated power and

the nominal voltage) [172].

125



Appendix A. Appendix

Table A.1 – Specification of the nodes.

Node Name (IEEE)

1–5 –

6 800

7 806

8 808

9 810

10 812

11 814

12 816

13 820

14 822

15 824

Node Name (IEEE)

16 854

17 856

18 852

19 832

20 890

21 858

22 834

23 848

24 836

25 838

Table A.2 – Specification of the lines.

Line Length (km) Parameters

1−2 25.000 Table A.4

2−3 25.000 Table A.4

3−4 25.000 Table A.4

4−5 25.000 Table A.4

6−7 1.314 IEEE-300

7−8 9.851 IEEE-300

8−9 1.769 IEEE-300

8−10 11.430 IEEE-300

10−11 9.062 IEEE-300

Line Length (km) Parameters

12−13 15.197 IEEE-301

13−14 4.188 IEEE-301

12−15 3.112 IEEE-301

15−16 6.645 IEEE-301

16−17 7.111 IEEE-301

16−18 11.226 IEEE-301

19−20 3.219 IEEE-301

19−21 1.494 IEEE-301

21−22 1.777 IEEE-301

22−23 1.768 IEEE-301

22−24 1.433 IEEE-301

24−25 1.567 IEEE-301

Table A.3 – Specification of the transformers.

Name Connection (I−II) Rated Power (MVA) Nominal Voltage (kV)

TF 5−6 12.0 69.0 (I), 24.9 (II)

LVR1 11−12 9.0 24.9 (I+II)

LVR2 18−19 9.0 24.9 (I+II)

Table A.4 – Sequence parameters of the transposed lines.

Sequence R ′ (Ω/km) X ′ (Ω/km) B ′ (µS/km)

Positive+Negative 0.071 0.379 3.038

Homopolar 0.202 0.884 1.740
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[117] G. Frigo, A. Derviškadić, A. Bach, and M. Paolone, “Statistical model of measurement

noise in real-world PMU-based acquisitions,” in IEEE Int. Conf. Smart Grid Synchron.

Meas. Analytics (SGSMA), Houston, TX, USA, May 2019, pp. 1–6, accepted for presenta-

tion.

[118] A. Mingotti, L. Peretto, and R. Tinarelli, “Low-power voltage transformer accuracy class

effects on the residual voltage measurement,” in IEEE Int. Instrum. Meas. Technol. Conf.

(I2MTC), Houston, TX, USA, May 2018, pp. 1–6.

[119] E. Caro Huertas, A. J. Conejo Navarro, and R. Mínguez Solana, “Power-system state

estimation considering measurement dependencies,” IEEE Trans. Power Syst., vol. 24,

no. 4, pp. 1875–1885, Nov. 2009.
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