
2019

Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Julien Jean Denis Nicolas LECOEUR

Présentée le 14 juin 2019

Thèse N° 9316

Insect-Inspired Visual Perception for Flight Control and Collision 
Avoidance

Dr J. Skaloud, président du jury
Prof. D. Floreano, Dr. E. Baird, directeurs de thèse
Prof. H. Krapp, rapporteur
Prof. S. Viollet, rapporteur
Prof. P. Ramdya, rapporteur

à la Faculté des sciences et techniques de l’ingénieur
Laboratoire de systèmes intelligents
Programme doctoral en robotique, contrôle et systèmes intelligents 





“they are not as intelligent as we who kill them;

although they are more noble and more able.”

—

Ernest Hemingway, Old Man and the Sea

To my son. . .





Acknowledgements

First and foremost, I would like to thank my two supervisors, Prof. Dario Floreano and Prof.

Emily Baird for their trust, support and guidance during my PhD. Dario provided me with an

active and stimulating research environment. He gave me a lot of freedom in my project, and

taught me how to best present my work. I am grateful to Emily for her constant flow of ideas

and always supportive feedback. She triggered my interest for insect behaviour modelling by

hosting me in the Lund Vision Group, which has been a wonderful experience. Working at the

boundary between robotics and biology is a fine art of balance and I am thankful to Dario and

Emily for making this possible.

I would like to thank the members of my jury: Dr. Jan Skaloud, Prof. Pavan Ramdya, Prof.

Holger Krapp and Prof. Stéphane Viollet for taking the time to read my thesis and for travelling

to Lausanne for my thesis defense.

I am grateful to EPFL for providing a great studying environment, to the Swiss National Science

Foundation and The Swedish Foundation for Strategic Research for funding this research, to

Corinne Lebet for her work at the EDRS doctoral school, and to Vivek Ramachandran for being

a caring student representative.

Thanks to Felix Schill, for starting what became the MAV’RIC autopilot. This project was for

me a fantastic opportunity to discover many aspects of autopilot design (from electronics,

to sensor drivers, communication, sensor fusion, and flight control) that I would have never

dared exploring without an initial push from Felix. Although this project was discontinued

in the lab, I am glad that it contributed to several research projects and publications, and

I am thankful to the people who contributed: Nicolas Dousse, Grégoire Heitz, Felix Schill,

Géraud L’Éplattenier, Basil Huber, Matthew Douglas, Alexandre Cherpillot, Jean-François

Burnier, Dylan Bourgeois, Ludovic Daler, Anand Baskaran, Pu Bai and Meysam Basiri. Thanks

to Przemyslaw Kornatowski and Ludovic Daler for their help in mechanical design. Thanks to

Géraud L’Éplattenier for his patience with the CurvACE prototypes.

During my years in LIS, I supervised 33 students during their semester or master projects.

v



Acknowledgements

They all contributed to this thesis in one way or another and I am grateful to all of them for

their hard work. Supervising students, as well as preparing and lecturing classes, came as a

humble confirmation for what my former maths teacher François Lachaux once told me: you

never truly understand something until you can teach it.

I would like to express my gratitude to the wonderful colleagues and friends with whom

I spent time outside the lab at the Lund Vision Group: Atticus, Aravin, Basil, Gavin, John,

Lana, Mindaugus, Nele, Nellie, Olivier, Therese, and others, as well as at the Laboratory of

Intelligent Systems: Adrien, Alice, Alice (the other one), Basil (aka Alex), Fabian, Géraud,

Grégoire, Ludovic, Nicolas, Olex, Przemek, Sebastian, Stefano, Vivek, and many others.

I also have a special thought for the bumblebees who contributed to this thesis in their own

way. They are lovely creatures who deserve respect. I did my best to give them good living

conditions with a peaceful environment and tasty flowers, and I do not hold any resentment

against the one angry bumblebee who stung my finger.

I reserve my final thanks to my loving family, and specially to Lucie for her love, for bearing

with me during difficult times, for carrying our child, and for making it all worthwhile.

Lausanne, 03 December 2018 J. L.

vi



Abstract

F
LYING ROBOTS are increasingly used for tasks such as aerial mapping, fast exploration,

video footage and monitoring of buildings. However, autonomous missions are usu-

ally constrained to high altitude flights above flat surfaces in order to avoid collisions.

Autonomous flight at low altitude in cluttered and unknown environments is an active research

topic because it poses challenging perception and control problems. Traditional methods for

collision-free navigation at low altitude require heavy resources to deal with the complexity of

natural environments, something that limits the autonomy and the payload of flying robots.

Flying insects, however, are able to navigate safely and efficiently using vision as the main

sensory modality. Flying insects rely on low resolution, high refresh rate, and wide-angle

compound eyes to extract angular image motion – optic flow – and move in unstructured envi-

ronments, rather than on overlapping, single-lens eyes and depth-from-stereo vision as many

other animals do. These strategies result in systems that are physically and computationally

lighter than those often found in high-definition stereovision.

Taking inspiration from insects offers great potential for building small flying robots capable

of navigating in cluttered environments using lightweight vision sensors. Robots can be

programmed to adopt insects strategies, but little is known about the way insects turn visual

stimuli into muscular actuation during flight, especially in the presence of obstacles. This

precludes a direct implementation of insect flight control into robots.

In this thesis, we investigate insect perception of visual motion and insect vision based flight

control in cluttered environments. We use the knowledge gained through the modelling of

neural circuits and behavioural experiments to develop flying robots with insect-inspired

control strategies for goal-oriented navigation in complex environments.

We start by exploring insect perception of visual motion. We present a study that reconciles an

apparent contradiction in the literature for insect visual control: current models developed

to explain insect flight behaviour rely on the measurement of optic flow, however the most

prominent neural model for visual motion extraction (the Elementary Motion Detector, or
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Abstract

EMD) does not measure optic flow. We propose a model for unbiased optic flow estimation

that relies on comparing the output of multiple EMDs pointed in varying viewing directions.

Our model is of interest of both engineers and biologists because it is computationally more

efficient than other optic flow estimation algorithms, and because it represents a biologically

plausible model for optic flow extraction in insect neural systems.

We then focus on insect flight control strategies in the presence of obstacles. We perform exper-

iments with bumblebees (Bombus terrestris) flying freely in specially designed environments

in order to model their control strategy and study how it is affected by different methods for

pooling visual motion across a panoramic field of view. By recording the trajectories of bum-

blebees, and by comparing them to simulated flights, we show that bumblebees rely primarily

on the frontal part of their field of view, and that they pool optic flow in two different manners

for the control of flight speed and of lateral position. For the control of lateral position, our

results suggest that bumblebees selectively react to the portions of the visual field where optic

flow is the highest, which correspond to the closest obstacles.

Finally, we tackle goal-oriented navigation with a novel algorithm that combines aspects of

insect perception and flight control presented in this thesis – like the detection of fastest

moving objects in the frontal visual field – with other aspects of insect flight known from

the literature such as saccadic flight pattern. We present the design of a lightweight flying

robot capable of producing lateral accelerations while limiting body rotations in order to

facilitate optic flow measurement during insect-like saccadic flights. Through simulations, we

demonstrate autonomous navigation in forest-like environments using only local optic flow

information and assuming knowledge about the direction to the navigation goal.

Keywords: Flying robots, flying insects, optic flow, visual motion sensing, elementary motion

detector, flight control, collision avoidance

viii



Résumé

L
ES ROBOTS VOLANTS sont utilisés de plus en plus fréquemment pour des tâches telles

que la cartographie aérienne, l’exploration rapide de zone difficiles d’accès, la prise

de vue cinématographique ou encore l’inspection de bâtiments. Néanmoins, les vols

automatiques sont généralement planifiés de façon à maintenir une altitude confortable au

dessus du sol afin de réduire les risques de collision. Le vol autonome à basse altitude dans des

environnements non cartographiés et encombrés par des obstacles est un sujet de recherche

actif parce qu’il représente un réel challenge tant en terme de perception que de contrôle du

vol. Les méthodes traditionnelles d’évitement de collision et de navigation à basse altitude

nécessitent de lourds équipements embarqués ainsi qu’une forte puissance de calcul, deux

éléments qui limitent le temps de vol et la charge utile des robots volants.

Les insectes volants, malgré leur poids plume et leur petite taille, sont capables de naviguer

efficacement et en toute sécurité en utilisant leur vision comme principale source d’informa-

tion. Les hommes et les robots traditionnels ont recours à une paire d’yeux à simple lentille,

ce qui les dote d’une très bonne résolution binoculaire pour estimer les distances, mais aussi

limite leur champ de vision ainsi que la vitesse d’acquisition des images. Au contraire, les

insectes volants voient le monde au travers de leurs yeux à facettes, dont la faible résolution

est compensée par une haute fréquence de rafraichissement et un champ de vision panora-

mique. Les insectes basent le contrôle de leur vol sur l’extraction de la vitesse de défilement

des images, appelé le flux optique. Cela permet d’obtenir des systèmes dont la masse et les

besoins en puissance de calcul sont plus faibles que ceux rencontrés dans les systèmes de

vision binoculaires à haute résolution.

S’inspirer des insectes représente une excellente opportunité pour la conception de robots

volants équippés de capteurs visuels miniatures et capables de naviguer de façon autonome

dans des environnements encombrés d’obstacles. Bien qu’un robot pourrait être programmé

afin de répliquer les stratégies employées par les insectes, il subsiste cependant de nombreuses

incertitudes concernant la façon dont les insectes volants convertissent l’afflux d’informations

visuelles en commandes motrices lors de vols en présence d’obstacles. À ce jour, cela empêche

ix



Résumé

de bénéficier de méthodes utilisées par les insectes dans une implémentation robotique de

contrôle du vol en environment complexe.

Dans cette thèse, nous étudions la perception du mouvement chez les insectes volants ainsi

que leur contrôle de vol basé sur la vision en présence d’obstacles. Nous utilisons les resultats

obtenus par le biais de modélisations de circuits neuronaux et d’expériences comportemen-

tales afin de développer des robots volants qui utilisent des stratégies de contrôle inspirées

par les insectes pour naviguer dans des environments encombrés par des obstacles.

Nous commençons par explorer la perception du mouvement visuel chez les insectes. Nous

présentons une étude qui réconcilie une apparente contradiction dans la littérature liée au

contrôle visuel du vol des insectes : ce dernier est expliqué par des modèles basés sur la mesure

du flux optique, or le principal modèle neuronal pour l’extraction du mouvement visuel (le

Elementary Motion Detector, ou EMD) ne mesure pas le flux optique. Nous proposons un

modèle pour l’estimation du flux optique qui se base sur la comparaison des signaux de sortie

d’une serie d’EMDs pointés vers différentes directions dans le champ visuel. Notre modèle

est intéressant non seulement pour les ingénieurs mais aussi pour les biologistes car en plus

d’être plus efficace en termes de temps de calcul comparé aux autres algorithmes d’estimation

du flux optique, il représente une hypothèse biologiquement plausible pour l’estimation du

flux optique dans le système nerveux des insectes.

Nous nous concentrons ensuite sur le contrôle du vol en présence d’obstacles. Grâce à des

expériences menées avec des bourdons (Bombus terrestris) volant librement dans des environ-

nemens spécialements conçus, nous modélisons leurs stratégies de contrôle et étudions la

façon dont elle est affectée par différentes méthodes d’aggrégation du flux optique mesuré

dans leur champ de vision panoramique. En mesurant les trajectoires des bourdons, et en

les comparant avec des simulations de vol, nous montrons que les bourdons utilisent prin-

cipalement la partie frontale de leur champ de vision, et qu’il aggrégent le flux optique de

deux façons différentes pour le contrôle de leur vitesse de vol et celui de leur position latérale.

Pour le contrôle de la position latérale, nos résultats suggèrent que les bourdons réagissent

de façon sélective aux portions du champ de vision où le flux optique est le plus fort, ce qui

correspond aux obstacles les plus proches.

Enfin, nous nous intéressons à la navigation autonome pour laquelle nous proposons un

algorithme qui combine plusieurs aspects de la perception et du contrôle chez les insectes

présentés dans cette thèse, notamment la détection des objets se déplaçant le plus rapidement

dans le champ de vision frontal, ainsi que d’autres aspects issus de la littérature tels que le

vol par saccades. Nous présentons le design d’un robot volant miniature capable de produire

des accélerations latérales tout en minimisant les rotations de la caméra afin de faciliter la

x
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mesure du flux optique pendant des vols en saccade inspirés par les insectes. Par le biais de

simulations, nous démontrons la navigation autonome dans un environment de type forestier

en utilisant une information de flux optique mesurée localement.

Mots clefs : Robots volants, insectes volants, flux optique, perception visuelle du mouvement,

elementary motion detector, contrôle du vol, évitement de collision
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1 Introduction

T
HE GOAL of this thesis is to contribute to the fields of flying insect vision and bio-

inspired autonomous flying robotics. We aim at proposing models for the visual

perception of flying insects and its application to flight control in cluttered environ-

ments in order to implement autonomous navigation strategies that require lightweight visual

sensors and low computational power. In this introductory chapter, the motivation behind

this work is presented, followed by the state of the art. The main contributions of this thesis

are then presented and its organization outlined.

1



Chapter 1. Introduction

1.1 Motivation

Autonomous flying robots are becoming increasingly popular for tasks such as aerial cartog-

raphy, monitoring of buildings, video footage, or even automated delivery of small packages

[46, 29]. In spite of the ever-increasing reliability of commercially available products as well

as hobbyist projects, autonomous flying robots are usually constrained to flights at relatively

high altitude over flat terrains in order to avoid collisions with obstacles on the ground. Au-

tonomous navigation in complex, unstructured and unknown environments such as urban,

forest and indoor environments is an active field of research because it seemingly requires

robots with incompatible attributes: low weight, agile flight, advanced sensing and fast com-

putation.

When flying in the sky, away from obstacles, the flying robot can rely on GPS positioning in

order to navigate between predefined waypoints. While GPS signal is effective at high altitude,

it becomes unreliable when flying at low altitude, in cluttered environments or in urban

canyons, where it suffers from occluded satellites and from signal reflection on buildings. A

more effective approach that does not require the knowledge of absolute position in a map

consists in continuously monitoring the 3D layout of the surrounding environments in order

to detect the presence of obstacles and to steer around them. Traditionally, autonomous

navigation in unknown environments requires a real-time mapping of the surroundings (with

methods such as SLAM [112, 25, 69]) and associated path-planning algorithms [44] to guaranty

that the robot does not collide with obstacles. This safety usually comes at the cost of increased

complexity, weight and limited flight speed due to the time needed to update the internal map

and to compute a collision-free path.

If we take a look at Nature, we can appreciate the smart and efficient flight of insects in

complex natural environments. Flying insects possess limited computational resources [41]

and eyes with low spatial resolution [68]. Yet they are able to use vision to navigate effortlessly

in cluttered and unknown environments [40, 124]. To achieve this, flying insects extract the

pattern of visual motion generated in their panoramic field of view as they move (known

as optic flow [53, 64]). They use this visual information with computationally efficient and

reactive strategies to control their speed [123, 4, 7, 62, 100, 1], avoid obstacles [122, 62, 79],

control their height above the ground [99, 101, 119], and to land [21, 41, 132, 125, 132, 133].

These highly efficient vision-based flight control strategies have attracted considerable interest

among the community of scientists working in autonomous robotics over the last decade.

Roboticists successfully took inspiration from flying insects to implement computationally

efficient and lightweight solutions for autonomous flight stabilisation [94, 92], altitude regula-
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Figure 1.1 – Artistic view of a bumblebee (Bombus terrestris) navigating through a forest,
dodging tree trunks and encountering conspecifics on its path.

tion [109, 15, 47], landing [130, 15], obstacle avoidance [138, 15, 63] and speed estimation [67,

24, 126].

To date, however, most of the biological studies on optic flow based control were performed

within environments made of flat surfaces that are far from the topology of natural environ-

ments, so it is not clear if the principles described in the literature stand true in more complex

environments. Insects were presented with cubic rooms [128, 132] or corridors [4, 122, 62,

117] with varying width and height, but little is known about which part of their visual field

they use [7, 80], or whether they are able to selectively extract information about specific

areas. Moreover, it is still unclear how insects measure optic flow because the most prominent

neuronal model for motion sensing suffers from imperfections [135].

In this thesis, we aim to address these limitations and to enable autonomous flight in complex

and unknown environments while refining our knowledge on insect flight control. For this

purpose, we study insects flying in complex environments and model their behaviour with a

formalism suitable for both animals and robots.
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1.2 State of the art

1.2.1 Optic flow estimation in insect

Optic flow is defined as the visual motion perceived by an observer as it moves through a

scene. It consists of a 2D vector on the image plane, and its magnitude depends on both the

relative speed of motion between the observer and surrounding objects, and on the structure

of the environment, i.e. the shape and layout of the surrounding objects and their distance

to the observer. In static environments, optic flow solely depends on the self motion of the

observer and its distance to obstacles, which makes it suitable for ego-motion estimation and

collision avoidance.

When it is computed in several locations in the visual field, optic flow forms a 2D vectors field

that should not be confused with the 2D vector field of image angular velocity (Fig. 1.3). While

the optic flow field is computed from the time variation of pixel intensities, the image angular

velocity can be derived geometrically from the position and speed of the observer and of the

distance to objects [64]. The optic flow field is ideally equal to the image angular velocity

field, but this is not always the case. Discrepancies may occur when the image does not have

sufficient contrast, or when a narrow field of view combined with unidirectional features lead

to the aperture problem.

The general formula for the optic flow in the ideal case is the following (adapted from [64]):

~OF (~u) =−
~V − (~V ·~u)~u

D(~u)
−~Ω×~u (1.1)

where ~OF (~u) is the vector of optic flow in the viewing direction defined by the unit vector ~u;

~V and ~Ω are the translation and rotation speed of the observer, respectively; and D(~u) is the

distance to the object in the viewing direction ~u. In the case of pure translational motion, this

expression can be simplified as:

|| ~OF trans(~u)|| = ||~V ||
D(~u)

sin(α) (1.2)

whereα is the angle between the direction of motion and the viewing direction~u. Translational

optic flow is thus proportional to flight speed and inversely proportional to distance. In other

words it is inversely proportional to the time to contact, and a high value of translational optic

flow value indicates an imminent collision.

In the part of the insect neural system that is involved in visual processing, Elementary motion

detectors (EMDs) are responsible for the extraction of image motion between neighbouring
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(a) (b)

Figure 1.2 – Insect eye and optic flow.
(a): Insect compound eye. Each ommatidia composing an insect eye contains a miniature
lens and has a relatively small field of view, but the compound eyes achieve a very wide field of
view. (b): Illustration of optic flow field during translational flight. Note that its magnitude
is null in the direction of flight, and that it increases towards the lateral, ventral and dorsal
regions of the field of view.

ommatidia. Originally introduced by Hassenstein and Reichardt [56], this model is believed to

be present in insect neural systems across the whole visual field and to be used in the early

processing steps of the visual input [48, 89]. Their output is spatially integrated by a group of

wide field motion sensitive neurons, each one applying a specific weighting function to its

elementary motion inputs [49, 83, 67, 61]. These pooling neurons act like a series of motion

sensors, each one with a different orientation and field of view. The Elementary Motion

Detector, however, does not provide a perfect estimation of optic flow or image velocity. The

EMD output is indeed highly correlated with image brightness and with the frequency content

of the image [135].

1.2.2 Field of view and sensor orientation in insects and robots

Bumblebees regulate flight speed based on the image motion gathered in the lateral field of

view, between 17° forward and 132° backward [7]. This result demonstrates that speed control

is not performed based on information sensed in one unique direction, but rather based on

the pooling of information coming from a large field of view. However, little is known regarding

the relative importance of visual regions contained within these boundaries. In blowfly, flight

speed is regulated by the fronto-lateral and moderately ventral eye region [62]. Optic flow

vector fields were reconstructed in simulation from recorded flights trajectories. The visual

areas with the lowest variation in optic flow amplitude during flights were designated as the
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(a) (b) (c)

Figure 1.3 – Elementary Motion Detector.
(a): Original study by Hassenstein and Reichardt in 1956 which led to the EMD model [56,
17]. The beetle was observed turning left or right according to the presented visual stimulus.
(b): Schematic view of the EMD model. It provides a motion estimate from two consecutive
photoreceptors using only two low pass filters, two multiplications and a subtraction. (c): EMD
response as function of the image angular speed. The response is maximum at a velocity that
depends on the frequency of the visual stimulus. It thus cannot be used to measure angular
velocity.

ones used for speed control. The limitation of such an approach is that no link was made

between visual input and flight actuation output, nor any closed loop simulation performed,

so nothing ensures that the fronto-lateral eye region was actively kept with a low variation of

image motion by the animal. Indeed, in the hypothesis that suggests spatial pooling across

the whole visual field, the average optic flow amplitude can be kept constant while local

amplitudes are varying. It should instead be investigated whether there exists areas whose

optic flow amplitude is highly correlated with changes in flight speed, denoting an active

speed control.

In robotics, conflicting solutions for sensor placement can also be found. Optic flow sensors

are often oriented at 90° to the side of the platform (for example [102]) because this is the

orientation in which the optic flow amplitude is the highest when moving along a corridor. On

the contrary, an orientation of 45° forward is a trade-off between the low optic flow amplitudes

at angles near 0° and the already-past obstacles seen at angles above 90° (see [15]). Optic flow

sensors oriented at 45° from the direction of motion also ensure that the measured optic flow

is the maximum when flying toward a wall [139]. However, simulations with more complex

environments found an optimum around 30° from the direction of motion [15].
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(a) (b)

(c) (d)

Figure 1.4 – Placement of optic flow sensors in flying insects and robots.
(a): Experiment showing that bumblebees use optic flow flexibly in the visual field, they react
to a reduced corridor width by slowing down well before reaching the narrow section [7].
(b): Model on honeybee using two motion sensors oriented at 90° on the left and right sides
and two motion sensors oriented at 90° upward and downward [98]. (c): Microflyer equipped
with two lateral optic flow sensors oriented at 45° on the side, and one ventral optic flow sensor
oriented at 45° downward [139]. (d): Hovercraft equipped with optic flow sensors oriented at
90° on the sides [116].
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1.2.3 Insect-inspired autonomous flight in complex environments

A few attempts have been made to model insect flight control. The approach in [92, 93, 85,

33] is a bottom-up approach, which means that it attempts to build a simulated fly based on

the current knowledge in insect neurology and aerodynamics. The main limitation of such

method is that, in spite of the precision of neural recording on tethered flies, these results only

apply to low level, reactive computations as the behaviour of the tethered animal is arguably

different from that of a freely flying animal.

When the goal is to understand insect behaviour and to design a flying robot, rather than

building or simulating a perfect copy of insect neural circuits and observing the resulting

behaviour, an alternative method consists in proceeding the other way round: model animal

behaviour and then infer and study the associated perception and control strategies (see for

example [48, 41, 124, 119]).

The method presented in [22, 21] consists in representing each point of a flight trajectory as a

vector in a space of dimension respectively six and four (three linear velocity plus respectively

one and three angular velocities). Clustering algorithms are then used to identify prototypical

motion patterns and objectively describe a trajectory. The same kind of approach is used

in [52], the behaviour of the insect over time is modelled with a markov chain, each state

corresponding to a prototypical motion. The transition probabilities between each state are

estimated and the flight behaviour is predicted with fairly good accuracy. However, the proba-

bilities to transition between states do not take into account the visual motion experienced by

the insect, although insects are known to react according to the visual motion they perceive.

Vision-based autonomous indoor flight of a 30 grams microflyer was demonstrated using a

control method inspired by insects [139]. Two controllers for altitude and lateral steering were

used while flight speed was regulated with an anemometer. However, this demonstration

was limited to a simple cubic environment with flat walls, ground and ceiling, and was highly

dependant upon the texture used on the walls. Similarly, a fixed wing optic flow based con-

troller, called OptiPilot, was developed for attitude stabilization, altitude regulation, obstacle

avoidance, take-off and landing [15]. The controller consisted of two sets of weighted sums,

for pitch and roll control, applied to the signal of seven optic flow sensors. The platform was

able to avoid groups of trees in an open field. However, the platform was limited to flights

at relatively high altitude at which the ground can be considered as a flat surface, and to

large obstacles relative to the size of the robot). Results in simulation showed that it was not

suited for small obstacle avoidance, and that it was subject to crashes in case of symmetric

input, like when facing a wall. More sensors and a more refined strategy would be needed to

detect smaller obstacles and deal with symmetric cases. It should also be noted that biological
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studies tend to show that separate controllers for different tasks coexist in neural system of

insects [121, 2]. Two cameras equipped with fish-eye lenses are used to extract optic flow from

panoramic images in [127, 130]. The papers demonstrates vision-based stabilization and au-

tonomous flight capabilities. Optic flow disparities are used in conjunction with usual image

processing algorithms to detect moving objects. The presented methods, although effective,

require flight at relatively high altitude over flat terrain. Finally, the resolution of the cameras

and the multiple image processing tasks executed in parallel have a high computational cost

and the method could not be miniaturized with the current performance of micro-controllers.

A ground robot controller derived from the optic flow sensitivity maps of lobula plate tangential

cells [61] was shown to be robust to the presence of obstacles although it was not specifically

designed to avoid obstacles. Environmental uncertainty was included in [63] to account for the

unknown position of obstacles during the design of a quadcopter controller. This resulted in

more robust tracking of an obstacle-symmetric trajectory, i.e. a trajectory with equal distance

to the obstacles on the left and right sides. However this method does not allow to navigate

towards a goal without breaking the obstacle symmetry of the trajectory. Combined navigation

and obstacle avoidance was achieved with a simulated agent flying through a field of obstacles

in [14]. The agent performs saccadic flight, i.e. a series a straight path segments and sharp

yaw turns, similar to what is observed in flying insects. During the straight path segments,

EMDs are used to gather relative nearness information around the agent and to take a decision

regarding the amplitude of the next saccade. Saccades are performed in order to align the

heading in a direction resulting from a weighted sum between the direction to the goal and the

direction where obstacles are the closest on average around the agent. Because the proximity

to obstacles is averaged all around the agent, however, there is no guaranty that this weighted

sum will not result in the a saccade towards a small obstacle located in the direction opposite

to that of average maximum proximity.

1.3 General approach

Throughout this thesis, we orient our research toward questions that are relevant for both

biologists and roboticists. We concurrently explore flight control in complex environments

through behavioural experiments with bumblebees and simulations and experiments on

flying robots. Bumblebees (Bombus terrestris) were chosen as our model species because

they are readily available and fly year round in the animal facilities of Lund University, and

can be easily trained to fly in controlled environments between their hive and a food source.

Finally, compared to smaller insects studied more extensively –like Drosophila melanogaster–

bumblebees have a higher inertia, leading to flight dynamics closer to that of flying robots.
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The simulation tools developed for this thesis keep an abstraction layer between real insects

and simulated ones, as well as between real robots and simulated ones. Indeed, the first

simulations computes idealized optic flow, and are thus not affected by optics quality, sensor

resolution or image contrast. This way, experimental data can be analysed and modelled

regardless of sensing modalities. For the final steps of the project, more realistic visualization

are added. Although a significant part of this thesis is done through simulation, several robotic

platform were specifically designed to be capable of the manoeuvres observed in insects in

order to ease the transfer of controllers from insects to robots.

1.4 Main contributions and organization of the thesis

This thesis contributes to both biology and robotics. We perform behavioural experiments on

flying insect to model and understand their flight control strategies in cluttered environments.

We perform computer simulations of autonomous agents in order to validate our biological

models and to present them in a readily implementable fashion. We design and test flying

robots in order to assess the applicability of the proposed strategies on real hardware.

The main novelty of this thesis is the use of the location of fastest image motion for perception

and control. The presented work is articulated around the notion that locating a maximum

response in a panoramic visual field provides additional information about the environment

and about self motion, and that this information can be used to estimate the state of an agent

or control its trajectory. This notion is applied to the estimation of optic flow, to the control of

flight speed and lateral position, and to the navigation in the presence of obstacles.

The thesis is organized as follows:

• In chapter 2, we tackle insect-inspired estimation of optic flow. We present a study on

Elementary Motion Detectors (EMDs) and propose a novel method for the estimation

of optic flow using a series of EMDs. We show that optic flow is spatially encoded in the

visual field of flying insects by the location of the maximum EMD response. By relying

on the location of maximum EMD response – rather than on the numeric value of this

response – we propose an optic flow estimation method that does not suffer from the

speed tuning of the EMD, nor from its dependency to image contrast. The method is

studied through theoretical results, tested in simulation, and is implemented on a flying

robot.

• In chapter 3, we tackle insect control of flight speed and lateral position in the presence

of obstacles. We present the behavioural study and modelling of bumblebee flight in
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the presence of obstacles. The study focuses on the effect of the pooling function used

to combine optic flow measured across a panoramic visual field into control commands.

We demonstrate that, to control their lateral position, bumblebees selectively react to

the closest obstacles in front of them by locating the maximum image motion in the

frontal visual field. This departs from existing models that either consider that optic

flow is sampled at fixed locations in the visual field, or pooled through fixed weighted

sums.

• In chapter 4, we tackle insect-inspired navigation in cluttered environments. We present

an algorithm for joint navigation and obstacle avoidance in a forest-like environment.

Our method uses the location of the fastest moving objects around a flying agent in

order to generate yaw saccades towards a flight direction that is free of obstacles and

that leads to the desired navigation goal. The method is tested in simulation, and we

present the design of a flying robot that allows saccadic flight without parasitic body

rotation.

• In chapter 5, we summarize and conclude the thesis before discussing potential im-

provements and opportunities for future work.

11





2 Insect-inspired estimation of optic

flow

E
LEMENTARY MOTION DETECTORS (EMD) are well-established models of visual motion

estimation in insects. The response of EMDs are tuned to specific temporal and

spatial frequencies of the input stimuli, which matches the behavioural response

of insects to wide-field image rotation, called the optomotor response. However, other be-

haviours, such as speed and position control, cannot be fully accounted for by EMDs because

these behaviours are largely unaffected by image properties and appear to be controlled by the

ratio between the flight speed and the distance to an object, defined here as relative nearness.

We present a method that resolves this inconsistency by extracting an unambiguous estimate

of relative nearness from the output of an EMD array. Our method is suitable for estimation

of relative nearness in planar scenes such as when flying above the ground or beside large

flat objects. We demonstrate closed loop control of the lateral position and forward velocity

of a simulated agent flying in a corridor. This finding may explain how insects can measure

relative nearness and control their flight despite the frequency tuning of EMDs. Our method

also provides engineers with a relative nearness estimation technique that benefits from the

low computational cost of EMDs.
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This chapter is adapted from the journal publication:

[72] Lecoeur, J., Baird, E. & Floreano, D. Spatial Encoding of Translational Optic Flow in

Planar Scenes by Elementary Motion Detector Arrays. Scientific Reports 8, 5821 (2018).
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2.1 Introduction

Flying insects like flies, bees, moths and dragonflies are well known for their exquisite flight

control capabilities. Despite their tiny brains and relatively crude visual systems, they rou-

tinely fly through cluttered environments, navigating over large distances and deftly avoiding

obstacles in their path. To control their flight, insects use optic flow, defined as the pattern

of apparent motion generated on their retina as they move through a scene [53]. Granted

sufficient image texture, optic flow measures the apparent angular velocity of surrounding

objects. For purely translational motion, translational optic flow (TOF) becomes proportional

to the relative nearness — noted η — defined here as the ratio between the flight speed and

the distance to an object [64]. Many complex behaviours exhibited by flying insects, such as

visual odometry, landing, position, speed and height control are regulated using information

extracted from optic flow (for reviews see [123, 124, 40]). Similar optic flow based strategies

have also been successfully used to generate autonomous behaviour in miniature flying robots

[15, 24, 110, 97, 45, 43], and even bio-hybrid robots [60]. Optic flow based strategies are

interesting for the development of control systems in miniature flying vehicles because they

have low computational cost and can be implemented on small platforms where constraints

in weight and computational power are important.

The Elementary Motion Detector (EMD), introduced by Hassenstein and Reichardt [56, 9], is

a well-established biological model for visual motion estimation. The model was originally

developed to account for the turning responses made by walking beetles – known as the

optomotor response – when presented with wide field yaw image motion [56] and has since

been shown to match the optomotor responses of a wide range of insects [18]. The EMD

performs spatio-temporal correlation of the signals from two adjacent photoreceptors and

requires only two low-pass filters, two subtractions and one multiplication to provide an

estimate of visual motion. This organisation is thought to exist in the early processing stages

of the insect visual system in the form of hundreds of EMD units, each taking input from

neighbouring photoreceptors around the panoramic field of view of insect eyes.

Neurophysiological studies [42, 3, 89, 50, 58, 66] have provided good evidence for the EMD

as a candidate model for motion detection in insect brains, although recent literature shows

evidence for both Barlow-Levick [10] and Hassenstein-Reichardt models [56, 9], suggesting a

hybrid implementation (for reviews see [18, 19]). Indeed, models integrating the output of

EMD arrays from a wide field of view – mimicking the tangential cells in the lobula plate of

flies [89] – have been shown to detect the direction and amplitude of ego-rotations [20, 97],

and to perform control of translational motion with simulated agents [94, 83, 33, 84, 14] and

robotic agents [48, 105, 110, 118].
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One of the key features of the EMD model is its dependency on the spatial structure of the

scene [135, 38, 39, 11, 36]. Both the angular image speed tuning and the temporal frequency

tuning of the EMD form a bell shape, with a maximum response at a frequency defined

by its characteristics – namely, its integration time and interommatidial angle. While the

frequency tuning of the EMD model mimics that observed in the optomotor response to

rotational motion, strong support for the model as a basis for translational motion detection

is lacking. Behavioural experiments suggest that insects are able to use translational optic

flow to correctly estimate relative nearness independently of the spatial structure of the visual

input [123, 125, 4, 81]. This is something that cannot be derived unambiguously from the

raw EMD signals because of its bell-shaped tuning to angular speed that is not a monotonic

function. Limitations in EMD-based control of translational motion due to the drop in EMD

response at low distance from a surface, causing collisions into the surface, have also been

reported [84, 14].

Here, we present a novel approach that suggests how the output of EMD arrays could indeed

provide the basis for translational motion control in both insects and robotic agents. We

show that, although the response of a single EMD does not provide a reliable measurement of

angular image speed, comparing responses across an array of EMDs can provide an unam-

biguous estimate of relative nearness. We study analytically the response of an azimuthally

distributed array of EMDs when moving along an planar surface covered by a pattern with a

natural distribution of spatial frequencies [131, 8, 137, 115]. This surface models either large

objects on the sides of the agent, or the ground bellow the agent. We show that, when the ratio

between the speed of the agent and its distance to the surface is higher than a threshold we

call ηmin, the angular location of the EMD with maximum response provides an unambiguous

estimate of relative nearness. Our estimator performs best at low distance from the surface – in

cases where the raw EMD output provides ambiguous estimates of relative nearness. We then

discuss how this finding could be used for flight control, and how the model parameters could

be dynamically adapted to enhance the relative nearness estimation. Finally, the proposed

EMD-based relative nearness estimator is validated in closed-loop control of a simulated

agent.

2.2 Model

Let us consider an agent — be it biological or artificial — flying in an environment composed

of a flat surface (Fig. 2.1a). This surface could represent the ground below a flying agent, or

one of the two vertical walls of the corridors commonly used for behavioural studies of insects

and birds (for example [123, 117, 16, 80, 81, 7]).
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The flying agent moves at speed V and distance d to the surface (Fig. 2.1a). Let us define the

azimuth angleΦ as the angle between the front of the agent and a viewing direction. We will

refer to the viewing directionΦ= 90◦ as the "lateral region" of the field of view, but this could

equally be the "ventral region" of the field of view if the surface was below the agent.

In order to mimic the properties of a real world environment, the flat surface is covered with a

pattern that contains a natural distribution of spatial frequencies [131, 8, 137, 114, 115], i.e. its

power spectrum follows a distribution of frequencies in 1/ f 2 (Fig. 2.1-inset).

The eye of the flying agent is composed of a planar array of photoreceptors (Fig. 2.1b). This

plane is orthogonal to the patterned surface and it contains the agent velocity vector
−→
V .

Each photoreceptor points to a different azimuth angle Φ and has an acceptance angle ∆ρ.

Consecutive photoreceptors are separated by an angle ∆Φ. The receptivity function of an

photoreceptor is approximated by a Gaussian window centered onΦwith standard deviation

σ as in previous studies [120, 83, 33, 134, 95]. The acceptance angle of a photoreceptor —

noted ∆ρ — is defined as the full width at half maximum of the Gaussian window [68].

A series of EMDs [9, 38, 39] takes input from the photoreceptor array. The output RΦi of

the EMD circuit pointed at the direction Φi is given by the difference of the results of two

multiplications (Fig. 2.1b). The first multiplication is the product of the low-pass filtered

signal of the photoreceptor pointed atΦi − ∆Φ
2 and the unfiltered signal of the photoreceptor

pointed at Φi + ∆Φ
2 . The second multiplication is the product of the unfiltered signal from

the photoreceptor pointed at Φi − ∆Φ
2 and the low-pass filtered signal of the photoreceptor

pointed atΦi + ∆Φ
2 .

2.2.1 Predicted steady-state EMD response

In this section we derive the expression of the EMD output value R as a function of five

parameters: the azimuth angleΦ, the agent speed V , the distance between the agent and the

surface d , the inter-ommatidial angle ∆Φ, and the time constant τ of the EMD low-pass filter

blocks.

The EMD used in this study is a balanced correlator [9] composed of two linear low pass filters,

one multiplication and one subtraction. The mean EMD response to a moving broadband

image can be expressed as the sum of its responses to the individual sinusoidal components

of the image, weighted by the power spectrum of the image [36]. For a pattern containing

a naturalistic distribution of frequencies – i.e. a power spectrum in 1/ f 2 – the mean EMD
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Figure 2.1 – Geometry of the model.
(a): Top view of the model. The flying agent — here represented as a bee — moves along a
linear trajectory shown as a mixed dashed line. It flies at a speed V and at distance d from a flat
surface, which is covered with a pattern that represents natural spatial frequencies. The agent
sees the surface on its right. Viewing directions are defined by the angleΦ, withΦ= 0◦ for the
frontal viewing direction,Φ= 90◦ for the viewing direction pointing to the right, andΦ= 180◦

for the backward viewing direction. Overlaid on top of the agent is represented the array of
photoreceptors and the array EMD networks considered in this study. The photoreceptors
are aligned on a plane that is orthogonal to the patterned surface. (a-inset): Perspective view
of the model. (b): Model of the eye and array of EMDs. The eye of the agent is composed of
a planar array of independent photoreceptors here represented by five lens-like units. The
network of EMDs is retinoptically organized with each EMD taking input from two consecutive
photoreceptors. Each one of the four EMDs represented here is composed of two temporal
low-pass filter blocks (square blocks labeled τ), two multiplication blocks (circular blocks
labeled ×) and one subtraction block (square blocks labeled −).
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response is thus given in equation (2.1).

RΦ =
∫ fmax

fmi n

1

f 2 R f
Φ d f (2.1)

where R f
Φ is the response of the EMD pointed at the viewing direction Φ for a surface cov-

ered with a pattern that contains only one spatial frequency f , i.e. a sinusoidal grating. In

equation (2.1) the integral computes summation across a range of frequencies. Note that

this does not imply that frequency summation is implemented in insect nervous system and

thus does not require additional neural computation. The frequency summation is however

needed in this study to predict the EMD response to a signal that is itself the sum of sinusoidal

components of varying frequencies.

The response Rsi n of one EMD to a sinusoidal stimulus was derived in a previous study [39]

for the case of a rotating drum patterned on its inner surface, and is shown in equation (2.2).

Rsi n =∆I 2 sin

(
2π
∆Φ

λ

)
τω

1+τ2ω2 (2.2)

where ∆I is the amplitude of the sinusoidal stimulus, ω is the frequency of the stimulus, λ is

its angular period, ∆Φ is the inter-ommatidial angle, and τ is the time constant of the low pass

filter.

While Rsi n was derived with the assumption that ∆I , λ and ω were constant across the field

of view [39], in our case (Fig. 2.1a) they vary depending on the azimuth angle as well as

on the position and speed of the agent. Let us introduce the apparent signal amplitude

∆̂I = ∆I ( f ,∆Φ,Φ,d), the apparent angular period λ̂ = λ( f ,Φ,d), and the apparent angular

frequency ω̂=ω( f ,V ). For example, the apparent angular period will decrease for increasing

distance to the wall, the apparent angular period will also be maximum forΦ= 90◦ and tend

to 0 forΦ→ 0◦ andΦ→ 180◦. The expressions of ∆̂I , λ̂, and ω̂ are given below.

Apparent angular period The apparent angular period λ̂ is defined, for a given linear period

Λ, as the angular size occupied by a complete cycle on the retina of the agent as shown

on Fig. 2.2a. It is dependent on the distance to the surface d , the linear period Λ and the

viewing directionΦ. By posing x+ = d tan(θ)+ Λ
2 , x− = d tan(θ)− Λ

2 , and θ = π
2 −Φ, we obtain

geometrically from Fig. 2.2:

λ̂= arctan

(
x+

d

)
−arctan

(
x−

d

)
(2.3)
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1
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a b

Figure 2.2 – Apparent angular period for varying viewing directionΦ and ratio between linear
periodΛ and distance d .
ForΛ<< d , the small angle approximation holds true and the apparent angular period follows
a squared sinus as is expected in the case of a lateral infinite wall. However whenΛ> d , the
apparent angular period is shorter on the side (Φ≈ 90◦), and longer in front and in the back
(Φ→ 0◦ andΦ→ 180◦).

Thus the expression for the apparent angular period is given by equation (2.4). The variation

of the apparent angular period across the visual field can be seen on Fig. 2.2b.

λ̂= arctan(tan(
π

2
−Φ)+ Λ

2d
)−arctan(tan(

π

2
−Φ)− Λ

2d
) (2.4)

Apparent temporal and linear frequency Linear frequencies, linear periods and angular

periods are respectively noted f , Λ and λ, and are respectively expressed in m-1, m, and

radians. The relation between f andΛ is given by equation (2.5).

f = 1

Λ
(2.5)

Temporal frequency ω is expressed in radians per second. In the case presented in Fig. 2.2a,

the temporal frequency does not depend on the viewing directionΦ and is only function of
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2.2. Model

the speed of the agent and the linear period as given in equation (2.6).

ω̂= 2π
V

Λ
(2.6)

Apparent signal amplitude In a viewing direction Φ, a sinusoidal pattern is seen with an

apparent angular period λ through photoreceptors with Gaussian acceptance windows of

standard deviation σ= ∆ρ

2
p

2ln(2)
. The apparent signal amplitude is the result of the convolution

of the input signal with this Gaussian window as in equation (2.7).

∆̂I = exp

(
−2π2σ

2

λ2

)
(2.7)

According to [68], in most diurnal insect species the ratio between acceptance angle and

inter-ommatidial angle is given by equation (2.8):

∆ρ

∆Φ
≈ 1.07 (2.8)

From equation (2.7) and equation (2.8), we can express the apparent signal amplitude as a

function of the inter-ommatidial angle and the apparent angular period, as given in equa-

tion (2.9).

∆̂I ≈ exp

(
−2π2 (0.45 ∆Φ)2

λ2

)
(2.9)

Complete formulation and simplification We can thus reformulate equation (2.2) for our

case as equation (2.10).

R f
Φ = ∆̂I

2
sin

(
2π
∆Φ

λ̂

)
τω̂

1+τ2ω̂2 (2.10)
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By substituting equations (2.4, 2.5, 2.9) in equation (2.10), we obtain equation (2.11).

R f
Φ = 2τπV f

1+τ2(2πV f )2 .exp

(−2π2 (0.45∆Φ)2

(A−B)2

)
. sin

(
2π∆Φ

A−B

)
(2.11)

, where


A = arctan(tan(π2 −Φ)+ 2πV f

2d )

B = arctan(tan(π2 −Φ)− 2πV f
2d )

The complete EMD output given by the integral in equation (2.1) and equation (2.11) is

approximated as a discrete sum by considering a finite number N f >> 1 of spatial frequencies

fk , as shown in equation (2.12).

RΦ ≈
N f −1∑
k = 0

1

f 2
k

R fk

Φ
, where fk = fmi n +k. fmax− fmi n

N f −1 (2.12)

2.2.2 Values of parameters

The model was evaluated with N f = 2000, fmi n = 1, and fmax = 1000. The five parameters

τ, ∆Φ, d , V , andΦwere linearly sampled according to the values presented in the following

table.

minimum maximum Number of values
f 1 m-1 1000 m-1 2000
τ 1 ms 10 ms 28
∆Φ 0.5° 5° 28
d 0.05 m 0.2 m 49
V 0.1 m/s 0.8 m/s 49
Φ π/24 rad π/2 rad 200

Table 2.1 – Parameters values used during simulations.

The speed of the agent V was sampled with 49 different values between 0.1m/s and 0.8m/s.

The distance d between the agent and the surface was sampled with 49 different values

between 5cm and 20cm. The inter-ommatidial angle ∆Φwas sampled with 28 different values

between 0.5° and 5°. The time constant τ was sampled with 28 different values between 1 ms

and 10 ms The azimuth angleΦwas sampled with 200 different values between π/24 and π/2.
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2.3. Theoretical Results

The range of spatial frequencies fmin and fmax was chosen so that they do not interfere with

the results of the study. The maximum spatial period is several orders of magnitude larger

than the length covered by the agent flying at the maximum speed during an EMD integration

time (Table 2.2). The minimum spatial period is small compared to the length covered by one

acceptance angle ρ at the smallest considered distance to the wall, and is thus filtered by the

gaussian acceptance angle convolution, which also avoids potential issues of spatial aliasing

[26].

λ 90 (°) dmi n dmax

fmi n 168.58 136.40
fmax 1.15 0.29

ν= ω
2π (cycles/s) Vmi n Vmax

fmi n 0.1 0.8
fmax 100.0 800.0

Table 2.2 – Apparent angular period and temporal frequency for extreme parameter values.
(left): Apparent angular period λ measured at Φ= 90◦ for extreme values of distance d and
linear frequency f . (right): Temporal frequency ν at the maximum and minimum values of
speed V and spatial frequency f .

2.3 Theoretical Results

In this section, we analyse theoretical predictions of the response of an EMD array to an planar

surface covered with a natural pattern. We evaluated equation (2.12) for varying values of the

five parametersΦ, V , d , ∆Φ and τ (see Supplementary Table S1). These results are analysed in

the following paragraphs.

We first show that the value of the EMD output is not a reliable estimation of relative nearness

(i.e. V /d) in that a single value of EMD output can not be unambiguously associated to a

single value of the V /d ratio. Then, we introduce the angle Ψ, which is obtained from the

azimuthal location of maximum output in the EMD array. We show that the angleΨ covaries

monotonically – though non-linearly – with V /d , and thus provides an unambiguous estimate

of relative nearness.

2.3.1 EMD Response Across the Visual Field

When a flying agent is moving in straight line at constant speed, in a purely translational

motion (Fig. 2.1a), translational optic flow is proportional to flight speed V and inversely

proportional to the distance to an object in the scene [64, 140]: TOF(Φ) = V
DΦ

sin(Φ). For the

planar surface shown in Fig. 2.1, which is aligned with the velocity vector and at a distance

d from the agent, the distance to the surface in the viewing direction Φ is DΦ = d/sin(Φ).

Translational optic flow can then be obtained geometrically with equation (2.13) which is
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positively correlated to flight speed V and inversely correlated to distance d . Note that

translational optic flow at viewing angleΦ= 90◦ yields a maximum value — noted TOF90 —

that is equal to the relative nearness η=V /d .

TOF(Φ) = V

d
sin2(Φ) (2.13)

For a planar EMD array, the absolute value of the EMD response R increases at all azimuth

angles with increasing flight speed in the range of flight speeds considered in our study

(Fig. 2.3a). At higher flight speeds, the EMD response reaches a maximum then decreases with

increasing flight speed (see Supplementary Figure S3). However, R does not always increase

with decreasing distance to the surface (Fig. 2.3c), contrary to optic flow which increases with

decreasing distance. For example, with the EMD parameters used for Fig. 2.3, R increases

for decreasing values of d only in the extreme frontal and rear parts of the field of view (in

the ranges Φ ∈ [0◦,30◦] and Φ ∈ [150◦,180◦]). In most of the field of view (Φ ∈ [45◦,135◦]), R

increases with increasing values of d , which is the opposite of a relative nearness estimator.

Let us define R90 as the EMD response atΦ= 90◦, and Rmax as the maximum EMD response

which is located at Φ = Φmax (Fig. 2.3a). Neither R90 or Rmax provide a correct estimate of

relative nearness. While they both depend on flight speed and distance to the surface (Fig. 2.4b

and Fig. 2.4c), the isocurves of R90 and Rmax are not at a constant V /d ratio, as is the case for

relative nearness (Fig. 2.4a). This means that, unlike relative nearness, a single V /d ratio can

correspond to different R90 or Rmax values. An agent flying at speed V and distance d to the

surface should measure the same relative nearness when flying at double speed and double

distance because the ratio V /d is the same in both cases. However this is not the case for R90

and Rmax which yield two different values when the agent is flying at speed V at distance d ,

and at speed 2V at distance 2d .

Conversely, a single value of R90 or Rmax can correspond to different V /d ratios. The ambiguity

of the estimate provided by R90 and Rmax is clearly visible when they are displayed as function

of V /d , i.e. the relative nearness (Fig. 2.4f and Fig. 2.4g). A single value of R90 or Rmax can

correspond to a wide range of relative nearness. For instance, for R90 = 0.06 on Fig. 2.4f, the

relative nearness can be anywhere between 2 rad.s-1 and 16 rad.s-1. Similarly, for Rmax = 0.06

on Fig. 2.4g, the relative nearness can be anywhere between 2 rad.s-1 and 10 rad.s-1.
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2.3. Theoretical Results

Figure 2.3 – Distribution of EMD output R across the visual field for varying speed and varying
distance.
(a) and (c): The EMD output R is shown as a function of the azimuth angle Φ. Each black
curve represents R for a specific value of V and d . The red dots represent, for each curve, the
maximum EMD output across the visual field. The azimuth angle where R is maximum is
notedΦmax and the maximum value of R is noted Rmax. The red arrows represent the angleΨ
(defined asΨ= |Φmax −90◦|) i.e. the angular deviation of the maximum EMD response from
the side of the field of view (Φ= 90◦). For both graphs, the inter-ommatidial angle and time
constant of the low pass filter are kept constant at ∆Φ = 3◦ and τ = 10 ms. (a) and (b): The
distance to the surface d is kept constant at 10 cm for flight speeds 0.15 m/s, 0.30 m/s and
0.60 m/s. (c) and (d): The flight speed V is kept constant at 30 cm/s, for distances to surface of
5 cm, 10 cm and 20 cm. (b) and (d): Schematic representation of the agent flying alongside the
vertical surface for the different values of V and d . The location of maximum EMD response
is represented by red dots at the location they would project on the patterned surface. The
angleΨ is equal to 0 for the lower value of the ratio V /d (thick solid lines), and it increases
with increasing V /d ratios (solid lines and dashed lines). 25
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Figure 2.4 – Comparison of raw EMD response andΨ angle as estimators of relative nearness.
(a) and (e): Relative nearness, computed geometrically as η=V /d . The unit is rad/s because
this is equivalent to the angular image speed. (b) and (f): The EMD response at 90° is defined
as R90 = R(Φ=90◦). (c) and (g): The maximum EMD response is defined as Rmax = R(Φ=Φmax).
(d) and (h): Deviation of the location of maximum EMD response Ψ= |Φmax −90◦|. Left (a-
d): Values given as functions of flight speed V and distance d . Right (e-h): Values given
as functions of the relative nearness η which is equivalent to the translational optic flow at
viewing angle 90 degrees η= TOF90 =V /d . (i): Graphical representation of R90, Rmax andΨ
on EMD response R shown as function of viewing angleΦ. (j-k): Relative difference between
Rmax and R90 (given in percents), it indicates the maximum level of noise allowing the two
maxima to be detected. In all plots, the inter-ommatidial angle and time constant of the low
pass filter are kept constant at ∆Φ= 3◦ and τ= 10 ms.
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2.3.2 Deviation of Maximum EMD ResponseΨas Estimation of Relative Nearness

It is interesting to note that the maximum EMD response (noted Rmax and indicated by red dots

in Fig. 2.3) is not always located where the translational optic flow (defined in equation 2.13 as

the image angular velocity) is the highest, ie. atΦ= 90◦. The location of the maximum EMD

response (noted Φmax) is thus not equivalent to the location of the maximum translational

optic flow. Let us defineΨ, the deviation of the maximum EMD response from the side of the

field of view as

Ψ= |Φmax −90◦| (2.14)

The fact that EMD response is not highest atΦ= 90◦ can be explained by two facts. First, the

bell-shaped speed tuning of EMDs when presented to broadband images [36] has a maximum

at a specific angular speed (see Supplementary Figure S3). Second, the apparent image speed is

lower in the frontal and rear parts of the visual field than atΦ= 90◦ as shown in equation (2.13).

Thus, at high relative nearness, the EMD may respond with a larger value to the lower angular

image speed atΦ= 90±Ψ, than to the larger angular image speed atΦ= 90◦.

With fixed distance to the surface, Ψ increases with increasing flight speed (Fig. 2.3a and

Fig. 2.3b). With fixed flight speed,Ψ increases with decreasing distance (Fig. 2.3c and Fig. 2.3d).

Thus,Ψ is increasing for increasing values of the ratio V /d , which is the relative nearness. As

a consequence, we propose to useΨ— rather than R — to estimate relative nearness.

Contrary to R90 and Rmax, the isocurves ofΨ are at a constant V /d ratio (Fig. 2.4d), which is

also the case for the relative nearness (Fig. 2.4a). Moreover a single value ofΨ corresponds to

a single V /d ratio (Fig. 2.4h), like relative nearness (Fig. 2.4e).

The function η 7→ Ψ is monotonically increasing (Fig. 2.4h). However this function is not

strictly increasing for the lower values of η whereΨ= 0◦ (left region of Fig. 2.4h). This means

thatΨ can be used to compare relative nearness in different regions of the field of view (as

described later in the experimental section) only when relative nearness is higher than a

threshold value.

2.3.3 Threshold for an unambiguous estimation of relative nearness

The deviation of maximum EMD responseΨ is equal to zero (i.e. Φmax = 90◦) for all values of η

below a threshold ηmin (lower right corner of Fig. 2.4d and left region of Fig. 2.4h). If η< ηmin,

thenΨ is null and provides no useful information on relative nearness. However if η> ηmin,

then Ψ is greater than zero and can be used to estimate relative nearness. In other words,
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Figure 2.5 – Effect of eye resolution and EMD integration time on ηmin threshold and Ψ
angle.
(a): The threshold ηmin is defined as the minimum V /d ratio above whichΨ can be used to
estimate relative nearness (i.e. Ψ> 0◦). It is presented as a function of the inter-ommatidial
angle ∆Φ and the time constant τ of the EMD low pass filter blocks. ηmin increases for
increasing ∆Φ and it decreases for increasing τ. (b) and (c): The Ψ angle is presented as a
function of relative nearness computed geometrically as η= TOF90 =V /d . Ψ is null for low
relative nearness values (η< ηmin in left portion of the graphs). When η> ηmin (right portion
of the graphs),Ψ is monotonically increasing with increasing relative nearness, and it can be
used as an estimate of relative nearness. The shape of the curve η 7→Ψ is preserved for varying
values of time constant τ and inter-ommatidial angle ∆Φ. (b): For increasing value of ∆Φ, the
curve is shifted to the right, i.e. to larger relative nearness. (c): For increasing value of τ, the
curve is shifted to the left, i.e. to lower relative nearness.

the agent needs to fly sufficiently fast and/or close to the surface to get a relative nearness

estimate fromΨ.

For Ψ to be measureable in a practical implementation, the maxima of the EMD response

have to be sufficiently separated (Fig. 2.4i). The higher the relative nearness, the easier it is to

detect the maxima, as shown by the relative difference between the maximum EMD response

Rmax and the EMD response between the maxima R90 (Fig. 2.4j). For example, for a relative

nearness of η= 5 rad.s-1, our model predicts approximately 8% difference between Rmax and

R90. This value increases to approximately 22% for η= 10 rad.s-1 (Fig. 2.4k).

The threshold ηmin depends on the time constant τ of the EMD low pass filters and on the

inter-ommatidial angle ∆Φ (Fig. 2.5). ηmin decreases with increasing time constant τ and
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Figure 2.6 – EMD velocity response curve for a broadband signal and sinusoidal signal
(left): The input signal has a 1/ f 2 distribution of spatial frequencies. The time constant and
the interommatidial angle of the EMD are set respectively to τ= 6 ms and∆Φ= 3◦ (solid curve),
and τ= 30 ms and ∆Φ= 1◦ (dashed curve). The data is computed at viewing angleΦ= 90◦ by
varying flight speed V at fixed distance d = 0.1 m from the pattern considered in the chapter.
(right): The sinusoidal signals have apparent angular frequencies of 1/λ= 0.2 cycles/◦ and
1/λ= 1.0 cycles/◦. The time constant of the EMD is set to τ= 6 ms and the interommatidial
angle to ∆Φ= 3◦. The data is computed by varying flight speed V at fixed distance d = 0.1 m
from sinusoidal gratings with spatial periodΛ chosen in order to obtain the desired apparent
angular periods λ at viewing angleΦ= 90◦.

increases with increasing inter-ommatidial angle ∆Φ. For example, an agent with an inter-

ommatidial angle of ∆Φ = 3.0◦ and an EMD low pass filter constant τ = 10 ms will have a

threshold ηmin = 2 rad.s-1 (Fig. 2.5). To estimate relative nearness from Ψ (i.e. Ψ> 0◦), this

agent must fly at a speed of V > 2 m/s when it is at a distance d = 1 m from the surface.

Similarly, it must remain at a distance of d < 0.5 m when flying at a speed of V = 1 m/s.

2.3.4 Robustness to single-frequency pattern

The data shown here should be compared to that shown in the main text (Fig. 3, titled "Com-

parison of raw EMD response andΨ angle as estimators of relative nearness"). The main text

considers broadband images consisting as a sum of sinusoidal components with spatial fre-

quencies in the range [ fmin, fmax]. Here we reproduced the same study for a single-frequency

image, i.e. a sinusoidal grating. The spatial period of the sinusoidal grating isΛ= 5 cm, which

is in the range of spatial periods used in the main text. We can see thatΨ no longer encodes

relative nearness (h). Also it is noteable that contrary to the broadband case, Rmax is mostly

independent from the distance (c), andΨ is mostly independent from the flight speed (d).
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Figure 2.7 – EMD response and Ψ angle for single-frequency pattern. (a) and (e): Relative
nearness, computed geometrically as η=V /d . The unit is rad/s because this is equivalent to
the angular image speed. (b) and (f): The EMD response at 90° is defined as R90 = R(Φ=90◦).
(c) and (g): The maximum EMD response is defined as Rmax = R(Φ=Φmax). (d) and (h): Deviation
of the location of maximum EMD response Ψ = |Φmax − 90◦|. Left (a-d): Values given as
functions of flight speed V and distance d . Right (e-h): Values given as functions of the relative
nearness η which is equivalent to the translational optic flow at viewing angle 90 degrees
η= TOF90 =V /d . In all plots, the inter-ommatidial angle and time constant of the low pass
filter are kept constant at ∆Φ= 3◦ and τ= 10 ms. (i): Graphical representation of R90, Rmax

andΨ on EMD response R shown as function of viewing angle Φ. (j-k): Relative difference
between Rmax and R90 (given in percents), it indicates the maximum level of noise allowing
the two maxima to be detected.
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2.4 Simulation results

The proposed relative nearness estimator based on EMD is validated with closed-loop control

of the lateral position and forward velocity of a simulated agent flying in a corridor with walls

patterned by the surface shown in Fig. 2.1a. The agent can increase and decrease its forward

velocity and lateral velocity. We will use the terms "forward command" and "lateral command"

to refer to the velocity increments added to the forward and lateral velocity, respectively, in

order to stay at equal distance to the two walls and to stabilize forward velocity at a constant

value.

It is important to note that, in this section, we do not rely on the theoretical predictions of the

EMD response presented in the previous section. We implemented the EMD model shown in

Fig. 2.1b and computed its response to simulated images. The theoretical predictions only

considered the steady-state EMD response to a signal with known power spectrum, while

the results of this section use the actual response of the EMD model to computer-generated

images.

2.4.1 Control strategy for lateral position and forward velocity

The control strategy is similar to those presented in previous studies [15, 98, 92, 61]. As the

agent moves forward, translational optic flow (TOF) is computed on its left and right sides.

The difference between translational optic flow on each side is used to control the lateral

position of the agent. For example, a higher translational optic flow on the right side of the

agent will result in a leftward command. For speed control, the average translational optic flow

on the left and right sides is compared to a reference value TOF ref. The agent will accelerate

when the measured average translational optic flow is lower than the reference value, and

decelerate otherwise. This control strategy can be summarised as

ulat = Klat
(
TOF left −TOF right

)
ufor = Kfor

(
TOF ref −

(
TOF left +TOF right

)
2

)
(2.15)

where ulat is the lateral command, ufor is the forward command, Klat and Kfor are proportional

gains, TOF left and TOF right are respectively the translational optic flow measured on the

left and right sides of the agent, and TOF ref is a reference value. As the forward velocity is

controlled using a reference translational optic flow value, the resulting forward velocity is

expected to increase with increasing width of the corridor to compensate for the decreasing

optic flow on the left and right sides.
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Figure 2.8 – Block diagram of the simulation.
(a): An array of N EMD units take input from consecutive pixels in the central row of a
panoramic image with 360° horizontal field of view. The EMD output is spatially filtered
using a gaussian kernel (with sigma σEMD) to remove spikes and ease the detection of local
maxima. Four EMD output maxima are located (PL) on each quadrant (FQS), which yields
Ψ values for the rear-left, front-left, front-right and rear-right quadrants. Ψleft and Ψright

are obtained by taking the mean ofΨ values in the left and right hemispheres. (b): Forward
command ufor and lateral command ulat are computed according to equation (2.16). The agent
is pushed towards the right (ulat > 0) whenΨleft is greater thanΨright. The agent accelerates
(ufor > 0) when the reference valueΨref is greater than (Ψleft +Ψright)/2. (c): Agent dynamics
are simulated as a point-mass system, where the forward velocity ẋ and lateral velocity ẏ
are incremented using the forward and lateral commands ufor and ulat. (d): Four cameras
(CFC) capture images that can be mapped on the faces of a cube surrounding the agent. The
cameras have a field of view of 45°x45°, are located at the agent position and are pointed
at headings 0°, 90°, 180° and 270°. The cylindrical projection block (CP) converts the four
cube-face images to a single image covering a field of view of 360°x30° with all pixels on a
row spanning a constant horizontal field of view. Spatial gaussian blur and sub-sampling are
applied on the panoramic image to account for insect optics. The gaussian window has a
sigma σoptics defined by the acceptance angle ∆ρ of ommatidia. The image is down-sampled
so that pixels point at directions separated by an angle equal to the inter-ommatidial angle
∆Φ. (a-d): In our experiments we used a simulation time-step ∆t = 5 ms, cube-face images
with resolution 1024x1024 pixels and inter-ommatidial angle ∆Φ= 1◦, leading to a panoramic
image with a resolution of 360x30 pixels and N = 360 EMD units. The time constant of the
EMD low pass filters is τ= 10 ms.
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Figure 2.9 – Simulation environment.
A1 and A2: Images generated by a camera with cylindrical projection used by our simulated
agent. The cylindrical projection camera has a lateral field of view of 360 degrees and vertical
field of view of 30 degrees. A1 is an view from the center of the corridor. A2 is a view with the
agent flying closer to the right wall. B1 and B2: Images generated using a forward looking
fish eye camera used for reference only. The simulated agent does not use these images. The
image B1 is taken from the same location as the image A1, similarly the image B2 is taken from
the same location as the image A2.

In our experiments, the translational optic flow values TOF in equation (2.15) are replaced

with the measuredΨ values:

ulat = Klat
(
Ψleft −Ψright

)
ufor = Kfor

(
Ψref −

(
Ψleft +Ψright

)
2

)
(2.16)

whereΨleft andΨright are the deviation angles of the maximum EMD response on the left and

right sides, andΨref is a reference value (Fig. 2.8b).

2.4.2 Simulation environment

The simulated environment consists of two vertical walls covered with a "dead leaves" pattern

[137, 77] (Fig. 2.10), which contains a naturalistic distribution of spatial frequencies. The

simulation can be divided in four main steps: Image processing, Control Law, Agent Dynamics

and Image Generation (Fig. 2.8). At each simulation time step, a new panoramic image with

360° field of view and inter-pixel angle ∆Φ is generated (Fig. 2.8d). The array of N EMD

units takes input from consecutive pixels of the panoramic image, i.e. with constant inter-
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ommatidial angle, like our eye model (Fig. 2.1a). The EMD units are updated and spatially

filtered, thenΨ values are computed on left and right sides from the output of the EMD units

(Fig. 2.8a). Control commands for lateral and forward acceleration are then computed fromΨ

values (Fig. 2.8b). Finally, the position and velocity of the simulated agent are updated based

on its current state and applied control commands (Fig. 2.8c). The four simulation steps are

repeated until the agent converges to stable flight speed and lateral position.

2.4.3 Simulation results

Simulated flights were performed with different initial lateral position, initial forward speed,

tunnel width and reference commandΨref. The agent state was measured after it stabilised its

velocity and lateral position (Fig. 2.11).

The agent converges towards the center of the corridor (lateral position equal zero) for each

initial lateral position and forward velocity tested (Fig. 2.11a-b-c-d). The final forward speed

increases with increasing tunnel width (Fig. 2.11g). This is an expected behaviour and matches

the optic flow-based centering and speed control behaviour observed on flying insects. Indeed,

this increase in speed allows the agent to maintain a constant optic flow for all tunnel widths

(Fig. 2.11o). TheΨ angle converges toΨref (Fig. 2.11i-j-k-l), although it does so less reliably for

lower Ψref values (Fig. 2.11l-left). Similarly, there is higher standard deviation of the lateral

position for lowerΨref (Fig. 2.11d-left). The relationship betweenΨref and relative nearness

(Fig. 2.11p) is similar to the one predicted by our analytical model (Fig. 2.4h). This confirms

thatΨ is a correct estimate – though non-linear – of relative nearness.

An example of the EMD response during a simulation is shown in Fig. 2.10. At the beginning

of this experiment (Fig. 2.10a), the agent is closer to the right wall and is flying at low speed.

TheΨ angles are, on average, lower than the commandΨref = 60◦, which will push the agent

to accelerate. AlsoΨ angles are larger on the right side than on the left side, which will push

the agent towards the left, i.e. closer to the center of the corridor. This is expected because the

distance to the right wall is smaller than the distance to the left wall, so the relative nearness is

higher on the right wall. Note that the raw EMD response has the inverse property: the EMD

response atΦ=+90◦ (right) is smaller than the EMD reponse atΦ=−90◦ (left). Thus, if our

controller had used EMD response R90 to compute the lateral command instead of Ψ, the

agent would have been pushed even more to the right and would have eventually collided into

the surface. At the end of this experiment (Fig. 2.10b), the agent is flying closer to the center of

the corridor with an increased speed. TheΨ angles are all close to the commandΨref = 60◦.

The agent has converged to stable lateral position and speed.
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Figure 2.10 – EMD Response to Simulated Images.
The reponse of the array of EMDs to computer-generated images are shown at the begining
of an experiment (a), and at the end of the experiment after the agent’s speed and position
converged (b). The input image is shown at the top of the graph. The image is panoramic and
extends from azimuth angles -180° to 180°, with the center of the image (azimuth 0°) being the
front of the agent. The raw response of the array of EMDs to simulated images is represented
in light grey as a function of the azimuth angle. The thick grey curve represents the signal
after spatial filtering with a gaussian kernel with σEMD = 60°. The maximum EMD response in
each of the four quadrants are shown as red dots. The deviation of the maximum EMD output
in each quadrant (Ψrear

left ,Ψfront
left ,Ψfront

right andΨrear
right) is measured between the maximum EMD

output (red dots) and the side marks at azimuth -90° and +90° (grey vertical dashed lines). The
drawings on the right side show the corridor seen from the top, with the position of the agent,
its current speed vector and the position of the EMD maxima.

35



Chapter 2. Insect-inspired estimation of optic flow

Figure 2.11 – State of simulated agent after convergence.
The boxplots are generated from the last 5 seconds of 10 second long flights. The first row
(a-b-c-d) shows the final lateral position of the agent, 0 being the center of the corridor. The
second row (e-f-g-h) shows its final forward velocity. The third row (i-j-k-l) is the measured
averaged deviation of maximum EMD response (Ψleft +Ψright)/2. The fourth row (m-n-o-p)
is the relative nearness computed as η = V /D, where V is the forward speed and D is the
distance to the closest wall. In the first column (a-e-i-m), the initial lateral position of the
agent is varied from 20 cm on the left to 20 cm on the right. The second column (b-f-j-n)
shows results for varying initial forward speed. In the third column (c-g-k-o) the tunnel width
is varied. In the fourth column (d-h-l-p) the commanded reference deviation of maximum
EMD response Ψref is varied. When not explicitly listed on the horizontal axis, the default
initial lateral position is 0.1 m, the initial forward velocity 1 m/s, the tunnel width 0.5 m and
the referenceΨ value is 60 degrees.
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2.4.4 Robustness to non-planar scenes

Our theoretical model is derived for the case of straight flights parallel to a flat surface, hence

it cannot predict Ψ values in non-planar scenes. However the robustness of our proposed

relative nearness estimation technique and associated control method can be tested in more

realistic scenarios. To this effect, we run the same simulation as in section 2.4.3, with the

addition of obstacles on the path of the agent. The obstacles occupy 30% of the corridor width.

The initial lateral position is 0.0 m, the initial forward velocity 1.5 m/s, the corridor width is

0.75 m and the referenceΨref value is 60 degrees (Fig. 2.12).

When obstacles are placed on both sides (Fig. 2.12-bottom left), the agent stays in the center of

the corridor. Approximately 1 meter before reaching the obstacles (i.e at longitudinal position

of 2 meters), the agent starts to slow down. Its speed then stabilises at a value slighlty above

0.5 m/s, which is coherent with the 60% reduction in corridor width. Approximately 0.5 meter

before reaching the end of the narrow section, the agent starts to increase its speed until it

recovers its original speed.

As it approches an obstacle placed on the left side of the corridor (Fig. 2.12-top right), the

agent slows down and moves towards the right the corridor in order to regulateΨ values on

left and right sides toΨref.

When six obstacles are placed alternatively on the left and right sides of the corridor (Fig. 2.12-

bottom right), the agent slows down when approaching the obstacles, and it steers left and

right in order to stay away from the obstacles and avoid collisions.

2.4.5 Robustness to single-frequency patterns

In order to complement the theoretical predictions made in 2.3.4, we evaluate the robustness

of our control method to varying pattern properties. We reproduce the experiment presented

in Fig 2.9 and Fig 2.11 that consider broadband images consisting as a sum of sinusoidal com-

ponents with spatial frequencies in the range
[

fmin, fmax
]
. Here, we replaced the broadband

images by a single-frequency image, i.e. a sinusoidal grating (Fig. 2.13). The initial lateral

position is 0.1 m, the initial forward velocity 0.5 m/s, the corridor width is 0.4 m and the

referenceΨref value is 60 degrees.

In the single-frequency case, our proposed control method allows the agent to stabilise its

lateral position in the center of the corridor (Fig. 2.13-top left). This is expected from the

prediction (showed in Supplementary Figure S5) that Ψ decreases with the distance to the

walls.
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Figure 2.12 – Simulated trajectories in non-planar scenes.
(top left): No obstacle. This is the case presented in the main text. The agent flies at constant
speed of 1.5 m/s in the center of the corridor. (bottom left): Two obstacles are placed on
both sides of the corridor. (top right): One obstacle is placed on the left side of the corridor.
(bottom right): Six obstacles are placed alternatively on the left and right sides of the corridor
in order to form a slalom.

Figure 2.13 – Simulated trajectory with single-frequency pattern.
(right): The walls of the corridor are covered with a sinusoidal grating with linear period
Λ= 33 cm. (top left): Lateral position of the simulated agent along the corridor. (bottom left):
Flight speed of the simulated agent along the corridor.
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However, the agent is not able to stabilise its flight speed, it varies erratically between 0.5 m/s

and 1.0 m/s (Fig. 2.13-bottom left). This is expected from the prediction (showed in Supple-

mentary Figure S5) thatΨ is independent from the flight speed.

It should be noted that a natural setting would realistically not include single-frequency

patterns. Furthermore insects are likely to control flight speed using additional regions of

the visual field (like the ventral and dorsal regions) that may contain patterns with richer

frequency content.

2.5 Robotic implementation

The proposed algorithm for estimation of relative nearness is validated in real world conditions

on a flying robot (Fig. 2.14a).

2.5.1 Hardware setup

The algorithm is implemented on a smart camera, the PX4Flow [59], which contains on a

single board a global shutter CMOS sensor and an STM32F4 microcontroller to perform

signal processing. The camera was adapted with a fish-eye lens in order to provide a field

of view of 180° with 620 pixels laterally. The vertical field of view was limited to 30°, i.e. the

camera samples elongated panoramic images. The camera is calibrated and ommatidias with

acceptance angle ρ = 1◦ and an inter-ommatidial angle ∆Φ= 1◦ are emulated by applying a

gaussian blur and by sub-sampling the image, as described for the simulated experiments

(Fig. 2.8).

The microcontroller of the smart camera computes EMDs outputs at 200 frames per second,

with time constant τ= 10 ms locates the maximum response, and transmits this information

to the main autopilot over a serial connection. With this architecture, only high level informa-

tion is transfered from the camera module to the autopilot, which is offloaded from image

processing operations.

The flying robot is a fixed wing equipped with a MAV’RIC autopilot (see Appendix B) for

attitude stabilization, and with a GPS and a pitot tube in order to obtain maintain constant

flight speed. The camera is mounted below the fixed wing drone, pointed down, so that the

rightmost part of the image points forward and the leftmost part of the image point backward

(Fig. 2.14b). The robot is flown at speed V ≈ 15 m/s and altitude above ground d varying

between 0.5 meter and 5 meters. The EMD output, measuredΨ angle, and the ratio between

flight speed and altitude above ground are logged on an SD card.
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Figure 2.14 – EMD response and relative nearness estimation onboard fixed wing drone.
(a): Fixed wing robot used for the experiment. The robot has a wingspan of 0.8m and a weight
of 0.6kg. It is equipped with a MAV’RIC autopilot for state estimation, flight control and data
logging. (b): A customized PX4Flow camera module is mounted below the fixed wing drone
and equipped with a fisheye camera providing a wide field of view of 180° oriented front to
back on the aircraft. (c): EMD response as a function of the location in the visual field. Given
the orientation of the camera, the location is expressed using the elevation angleΘwhich is
equal to 0° in the forward direction, -90° in the viewing direction pointed vertically downward,
and -180°in the backward direction. Colored solid lines represent the mean EMD responses
in 10 segments of the visual field. The color shaded areas represent the standard deviation.
Similarly to the theoretical and simulated results, the EMD response presents two maxima for
higher values of relative nearness. (d): Relative nearness as function of the measuredΨ angle.
The relative nearness is computed from the logged flight speed and altitude above ground.
This graph shows similar trend to the theoretical study (Fig. 2.4h), and to the simulation
(Fig. 2.11p).
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2.5.2 Flight results

The response of the EMD array recorded during flight displays the same trend as the theoretical

response (Fig. 2.3a) and the simulated response (Fig. 2.9b), i.e. it has either a single maximum

located at 90° from the direction of motion when flying, or two maxima depending on the

relative nearness η=V /d (Fig. 2.14c).

The angular separation between the two maxima varies with the relative nearness in a similar

fashion to the theoretical results (Fig. 2.4h) and the simulated results (Fig. 2.8p). The angle

Ψ is close to 0 for values of relative nearness below a threshold ηmin which is around 5 rad/s

with the selected EMD parameters (Fig. 2.14d, left), and it increases with increasing values of

the relative nearness. Due to the noisy signal, denoted by the large standard deviation of the

relative nearness, the relative nearness estimated byΨ does not evolve for lowΨ values, and

becomes useable forΨ values above approximately 45° (Fig. 2.14d, right).

2.6 Discussion

The EMD is a biological model for motion estimation that has received strong experimental

support as the foundation of motion detection in insects. Due to its relative simplicity, the

EMD model also has good potential as a computationally fast motion estimator for engineering

applications. Indeed, an EMD requires two multiplications for each pixel, one subtraction

and two time delays while the Lucas Kanade algorithm [88] requires 11 multiplications and 6

subtractions. However, the EMD model output does not provide a perfect estimation of relative

nearness as it cannot be unambiguously expressed in angular speed. The response of EMDs

for varying angular velocity indeed has a bell shape with a maximum at an angular image

velocity that is function of the EMD parameters as well as the spatial frequency of the input

signal. This is problematic for biologists because insects appear to rely on relative nearness for

flight control [124, 40] independently of image properties. The ambiguous nature of the EMD

output is also problematic for engineers who require measures of angular speed (expressed in

pixels or radians per second) for tasks such as ego-motion estimation or mapping. Also, for

larger angular velocities, the EMD response decreases in a way that cannot be discriminated

from a decrease in angular velocity. For example, as an agent approaches a surface – and

thus as the angular image velocity increases – the response of an EMD may start decreasing.

This leads to a crash into the surface when the EMD response is used to compute a repulsive

force [84, 14]. This case is shown in Fig. 2.10a where the absolute value of R90 is larger on the

left side of the agent than on the right side even though the agent is offset to the right of the

corridor – i.e. the angular image speed is smaller on the left side of the agent. Our simulated

agent would have crashed into the wall on its right if the EMD response was used instead ofΨ
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to compute its lateral command.

In other words, there is an apparent incompatibility between the main neurophysiological

model for motion estimation (EMD) and the main behavioural model for insect flight control

(optic flow). Several studies have proposed modifications to the EMD in order to correct its

output (for example [135, 57, 23, 78]). Although they demonstrate improved robustness to

varying contrast and spatial frequency, these models often require additional computational

blocks. Most importantly, these models are less well-supported by electrophysiological record-

ings from the insect visual system. Here, we have shown that it is indeed possible to use a

simple Hassenstein Reichardt EMD output for estimation of relative nearness with limited

additional computational blocks – namely a spatial blurring and maximum location. These

blocks integrate EMD responses across the visual field without modifying the structure of the

correlator [56]. Because our method relies on spatial integration accross wide field of view, it

is especially suited to estimation of relative nearness to a large obstacles around the agent, or

to the ground below the agent.

We introduced the angleΨ, which is the angle between the viewing direction pointing directly

at the patterned surface and the viewing directions with maximal EMD response and showed

that this angle is closely related to relative nearness (Fig. 2.4) and is therefore suitable for

controlling flight (Fig. 2.10). Our model predictsΨ in the limited case of straight flights parallel

to a planar surface. However, we demonstrated successful flight control based on Ψ in a

simulation environment that does not constrain the agent to fly along straight paths (Fig. 2.10-

right), and also for non-planar scenes (see Supplementary Figure S7). The main novelty of the

angleΨ is that it relies on the relative response of several EMD detectors instead of relying on

the absolute value of their output. In other words, we suggest that relative nearness is spatially

encoded by the relative response of EMDs rather than by the magnitude of their responses,

something that has strong biological plausibility. Indeed, computing Ψ consists mostly in

detecting the maximum response in an array, which is easily implemented in neural systems

using a Winner-Take-All network [111] or using differentiation and zero-crossing [97].

2.6.1 Biological relevance of ηmin

While there has been much behavioural evidence that honeybees use relative nearness to

control their flight [4, 124], two recent studies have shown that flight control in bumblebees

does indeed exhibit some dependency on the spatio-temporal properties of sinusiodal gratings

[37, 28]. These apparently conflicting results can nonetheless be explained by the method we

propose here because the maximum output of an array of EMDs would exhibit spatio-temporal

dependencies when presented with patterns containing single frequencies (see Supplementary
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Figures S5 and S8) but not when presented with more complex patterns containing multiple

frequencies, such as checkerboards that contain a series of discrete frequencies that are

harmonics of a fundamental spatial frequency related to the size of the checkerboard squares.

To avoid the ambiguities created by sinusoidal and checkerboard patterns and to make our

study more relevant to the natural behaviour of insects, we considered the output of the

EMD model in response to the dead-leaves pattern [137, 77], which has a spectral content

that matches that of natural scenes [131, 8] with a distribution of frequency of 1/ f 2. The

method we propose in this chapter for extracting relative nearness from EMD output is a

consequence of EMD dependency on spatial frequency, coupled with the geometry of the

environment. The response of EMD is tuned to a specific ratio between image speed and

angular period [135]. When insects fly above the ground or beside large flat objects, visual

features of the environment are seen from a greater distance in the forward and rearward

regions of their field of view. Hence, these features would subtend a smaller angle in the

field of view, that is, they would appear to have a smaller angular period, i.e. a higher spatial

frequency. As a consequence, the ratio of image speed to angular period at which the EMD

output is maximal is achieved only at specific viewing angles, which then provides an estimate

for relative nearness. Our scheme of using the angle Ψ to estimate relative nearness thus

explains both the results that find spatio-temporal dependency of flight control behaviour

and those that find optic flow dependency. Our scheme also highlights the importance of the

structure of the pattern being used on the results of behavioural experiments on flight control.

Locating the maximum EMD response provides an estimate of relative nearness only above

a threshold value ηmin. This means that Ψ is a valuable measure only if the agent is flying

fast enough and/or close enough to the surface. Our model predicts the value of the relative

nearness threshold ηmin from the inter-ommatidial angle ∆Φ and the time constant τ of the

EMD low pass filters (Fig. 2.5). We can investigate whetherΨ is a candidate for relative nearness

information in an insect species from the speed over distance ratio V /d at which it flies and

testing whether it is higher than the value of ηmin that is predicted from its interommatidial

angle and time constant. For an insect such as a bee, with an inter-ommatidial angle∆Φ= 3.0◦

measured [120] at an azimuth angleΦ= 90◦ and an estimated time constant [55] τ= 10 ms,

the predicted threshold is ηmin = 2.0 rad.s-1 (Fig. 2.5a). This threshold is indeed lower than

the flight speed to distance ratio at which bees flew in previous experiments: lateral relative

nearness was recorded between 3.0 rad/s and 3.8 rad/s in Bombus terrestris [7, 81], and it

was recorded between 3.75 rad/s and 4.96 rad/s in Apis mellifera [4, 117]. This supports the

hypothesis that these species may be using the visual angle at which maximal EMD output

occurs to estimate relative nearness in order to control their flight speed. The same test can be

replicated for other species using experimental measurements of ∆Φ, τ, and V /d .
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Several studies have shown that ventral relative nearness may also be used by insects for flight

control [7, 81, 82, 100], in addition to lateral relative nearness. Bumblebees rely primarily on

lateral relative nearness cues for speed control when navigating narrow corridors, but ventral

relative nearness cues are preferred over lateral relative nearness cues in wider corridors [81].

However, the lateral relative nearness in narrower tunnels (approx. 3.5 rad/s) is much smaller

than the ventral relative nearness in wider tunnels (approx. 5.7 rad/s). Can this be explained

by our model? Insect eyes tend to have reduced resolution in the ventral region [68], thus,Ψ

values are expected to be lower in the ventral region than in the lateral region (Fig. 2.5b). For

the narrow corridor case (∆Φlateral = 3.0◦, τ = 10 ms, ηlateral = 3.5 rad/s) our model predicts

Ψlateral = 40◦ (Fig. 2.5b). Within our control strategy (Fig. 2.8b), this corresponds to the

bee maintaining Ψ equal to the reference value Ψref = 40◦. Assuming that τ is uniform

across the eye, and that bees use the same referenceΨref to control flight speed when using

lateral motion cues and when using ventral motion cues, we can predict the ventral inter-

ommatidial angle that matches the higher relative nearness in the ventral region. For the

wide corridor case where ηventral = 5.7 rad/s,Ψventral = 40◦ is obtained with inter-ommatidial

angle ∆Φventral = 4.0◦ (Fig. 2.5b), which is indeed larger than ∆Φlateral. In other words, with

equal Ψref and τ in ventral and lateral regions, but with a larger ventral inter-ommatidial

angle ∆Φventral = 4.0◦ than lateral inter-ommatidial angle ∆Φlateral = 3.0◦, our model correctly

predicts the lateral and ventral relative nearness measured in bumblebees [81].

2.6.2 Dynamic adaptation of the visual system

The relative nearness estimate provided byΨ is most precise for η values slightly superior to

the threshold ηmin. Indeed the slope of the function η 7→Ψ is maximum for η values just above

the ηmin threshold, i.e. a small variation in relative nearness would lead to a large variation of

Ψ (Fig. 2.4h and Fig. 2.5b-c). Below values of ηmin, however,Ψ provides no information as the

slope of the function η 7→Ψ is null for η< ηmin (Fig. 2.4h and Fig. 2.5b-c). As a consequence, a

flying agent should control its flight in order to maintain V /d values close to the threshold

ηmin, but not below that threshold.

Conversely, adapting ηmin to a value just below the currently experienced relative nearness

value maximizes the precision of the Ψ estimate. Our results show that the value of the

threshold can be adapted by varying the inter-ommatidial angle and the EMD time constant

(Fig. 2.5a). A reduced inter-ommatidial angle leads to a reduced threshold (Fig. 2.5b) which

would enable relative nearness estimates at low flight speed and/or faster reactions to obstacles

that are approaching in the direction of flight. Inter-ommatidial angles are fixed by the

anatomy of the compound eye and thus cannot be modified during flight. Nonetheless, the
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distribution of inter-ommatidial angles across the eye in different insect species may reflect

adaptations that better enableΨ estimates in relevant parts of the visual field. Another way

in which the EMD output can be adapted is by modifying the time constant τ, which can be

dynamically varied during flight [86]. An increased time constant would lead to a decreased

threshold which is desirable at low flight speed, while a decreased time constant would lead

to an increased threshold which is desirable at high flight speed (Fig. 2.5c). We suggest that

a flying agent using Ψ for flight control can improve the precision of its relative nearness

estimate by increasing the value of the time constant τ at low speed, and decreasing its value

during fast forward flight. Biological evidence for dynamic changes in τ comes from [104],

who showed that the decreased flight speed in bumblebees that is observed in response to

decreased light intensity is accompanied by an increased time constant in the photoreceptors.

2.6.3 Coping with EMD measurement noise

The response of the EMD array to moving images contains spikes resulting from transient

responses (Fig. 2.10 light grey). Transient EMD responses are present in our simulation but not

in our model that considers only the steady-state EMD response [39]. Nonetheless, transient

EMD response spikes represent measurement noise which have to be dealt with. For example,

spatial differentiation and zero-crossing, which is a potential neuronal implementation for

maximum detection [97], would be strongly affected by such spikes. In simulation experiments,

Ψ angles in the front and rear of the visual field were averaged (Fig. 2.8a), which lowers

measurement noise. In addition, spatial integration of the EMD response was performed

font-to-back with a spatial gaussian filter in order to remove spikes and facilitate the detection

of maxima (Fig. 2.8a). However, the gaussian filter also flattens peaks around EMD maxima,

which makes peaks difficult to disambiguate when maxima are close to each other (Fig. 2.10a-

left), and may result in the detection of a single maxima (Ψ≈ 0◦). This is a potential explanation

for the lowΨ outlier values that appear at lowΨref angles, i.e. when EMD maxima are close

to each other (Fig. 2.11l-left). Whether the EMD maxima can be detected and located in

the presence of noise is a fundamental requirement for the applicability of our method in

a real world scenario. Our model predicts the difference between the peak EMD reponse

and the EMD response at Φ = 90◦, i.e. the EMD response in the "well" between the two

maxima (Fig. 2.4i-k). We showed that for low relative nearness values above the threshold

ηmin, the EMD maxima are not only close form each other (smallΨ on the left of Fig. 2.4h),

but also separated by a well of similar amplitude (R90 close to Rmax on the left of Fig. 2.4k).

Figure 2.4k shows the maximum level of measurement noise that allows the EMD maxima

to be distinguished from the EMD response at 90 degrees. To obtain a reliable estimate of

relative nearness using the EMD output, it is not only necessary to keep the V /d value above
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the ηmin threshold, but it is also necessary to keep a margin above ηmin in order to have clearly

separated peaks in the EMD response (Fig. 2.10b). Biological data discussed previously [81,

7, 117, 4] suggest that bees fly with Ψref = 40◦, which means that EMD maxima would be

separated by a comfortable angle of 80◦.

2.6.4 Bi-dimensional field of view

How does our method for estimation of relative nearness generalize to a two dimensional

field of view? With a 2D spherical field of view, a viewing direction is defined by its elevation

angle Θ in addition to the azimuth angle Φ. The present study assumes an elevation angle

equal to zero. In equation (2.11), the apparent temporal frequency ω̂ is not be affected by

varying elevation angle, the same way it is not affected by varying azimuth angle. The geometry

of the environment is axially symmetric about the viewing direction with azimuth Φ = 90◦

and elevationΘ= 0◦ (Fig. 2.1a) and so is the apparent angular period λ̂ and apparent signal

amplitude ∆̂I . As a consequence, the EMD output R is constant over circles centered on the

viewing direction
[
Φ
Θ

] = [
90
0

]
. In other words, with a 2D EMD array, there are not only two

maxima in the EMD response. Instead, there is a circle where the EMD response is maximal.

This circle is centered on viewing direction
[
Φ
Θ

]= [
90
0

]
, and the radiusΨ of the circle can be used

as an estimate of realtive nearness. Note that this circle contains the two viewing directions

with maximum EMD response presented in this study (
[
Φ
Θ

]= [
90−Ψ

0

]
and

[
Φ
Θ

]= [
90+Ψ

0

]
) and is

thus an extension of the 1D case. The immediate benefit of using two dimensional field of view

is the reduction of measurement noise by spatial integration. Instead of performing spatial

integration front-to-back (Fig. 2.8a), it could be performed using the second dimension of the

image — along circular paths — in order to measure the average radiusΨ of the circle where

EMD response is maximum. We expect that with this method, maxima would be easier to

distinguish even at lowΨ angles, while still filtering transient EMD response spikes. Whether

this two dimensional spatial integration is used by insects could be tested by checking whether

the output of motion detecting neurons are spatially pooled across regions with circular shape.

2.7 Conclusion

In this chapter, we modeled the response of an array of EMDs in the case of an agent flying

along a flat patterned surface and showed that the raw value of the EMD response is poorly

correlated to relative nearness. We showed that the location of the maximum response in

the EMD array provides appropriate estimation of relative nearness when the agent is flying

sufficiently fast and/or close to the surface. We introduced the notion of relative nearness

threshold to provide bounds on speed and distance, and showed that they are consistent
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with data from flight control experiments on Bombus terrestris and Apis mellifera. Finally, we

proposed a flight control strategy that uses the location of maximum EMD response as control

input instead of optic flow and tested it in a 3D simulation where we successfully controlled

the forward velocity and lateral position of a simulated agent flying in a corridor. Similar to

what is observed in insects, and as expected with optic flow based control, the agent’s forward

velocity is dependent on the corridor width: the broader the corridor, the faster the agent

advances.

The method of extracting relative nearness from EMD output that is described here relies on a

standard form [9] and requires few additional computational steps: namely, spatial filtering

and detection of maximum EMD response, with both being easily modeled as neuronal

networks. Further studies are needed in order to investigate if this scheme is indeed used

in biological systems and to identify its neural underpinnings. Nevertheless, our method

provides an algorithm for estimation of relative nearness that has low computational cost and

that could be readily used in robotics applications.
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3 The role of optic flow pooling in in-

sect visual flight control

F
LIGHT through cluttered environments, such as forests, poses great challenges for

animals and machines alike because even small changes in flight path may lead to

collisions with nearby obstacles. When flying along narrow corridors, insects use the

magnitude of visual motion experienced in each eye to control their position, height, and

speed but it is unclear how this strategy would work when the environment contains nearby

obstacles against a distant background. To minimise the risk of collisions, we would expect

animals to rely on the visual motion generated by only the nearby obstacles but is this the

case? To answer this, we combine behavioural experiments with numerical simulations and

provide the first evidence that bumblebees extract the maximum rate of image motion in the

frontal visual field to steer away from obstacles. Our findings also suggest that bumblebees

use different optic flow calculations to control lateral position, speed, and height.
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This chapter is adapted from the journal publication:

[74] Lecoeur, J., Dacke, M., Floreano, D. & Baird, E. The role of optic flow pooling in insect

flight control in cluttered environments. Scientific Reports in review (2018).
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3.1 Introduction

By rapidly processing visual information into motor commands, insects are able to navi-

gate safely in cluttered environments with a level of miniaturisation and refinement that is

unmatched by man-made systems. Collision avoidance in clutter is poorly understood in bio-

logical systems and is an active field of research for the development of miniature aerial robots

[46] where standard computer vision guidance algorithms require high camera resolution and

computing power, which heavily restrict flight time. Understanding and taking inspiration

from the simpler – yet effective – techniques employed by insects may help engineers in their

quest for miniaturisation and autonomous operation of miniature aerial robots.

Flying insects use the pattern of wide-field image motion on their retina – called optic flow

to control their flight. Optic flow is measured across the panoramic field of view of their

compound eyes [41, 18] from the output of arrays of visual motion detection units that extract

a motion estimate from neighbouring ommatidia [56] over a small portion of the visual field.

The outputs of these units are then pooled across larger parts of the visual field by integrating

neurons [49, 61, 63, 14], which results in a wide-field representation of optic flow that can then

be used to guide various aspects of flight behaviour such as lateral position, flight speed, and

vertical position. What remains unclear is exactly how the pooling calculation that is being

used to control flight is being performed and whether this is done across the entire visual field

or in only select parts of it.

When flying through experimental corridors, bees appear to control their lateral position by

balancing the magnitude of translational optic flow experienced in the lateral visual field of

each eye [122]. Because translational optic flow varies with the inverse of distance [53, 64],

this strategy minimises the risk of collision by ensuring that they maintain an equal distance

to each wall. Similarly, flying insects also control their flight speed using optic flow – the

magnitude of translational optic flow in the lateral, ventral or dorsal visual field [100, 82, 103]

is maintained at a set-point such that, in experimental corridors, flight speed decreases with

the distance between the walls [31, 123, 4, 7]. It appears that flight speed is regulated by

optic flow in the lateral, ventral and dorsal visual fields [100, 6, 82]. Altitude control in flying

insects is much more poorly understood. Bumblebees appear to use optic flow in both the

ventral and lateral visual field for vertical position control [81] but evidence from honeybees

suggests that they control altitude by maintaining ventral or dorsal optic flow at a set-point,

as for speed control [99, 101]. However, without additional input, this control scheme would

suffer from a scaling issue – the rate of ventral flow will remain constant if the animal makes

equally proportional changes in both speed and altitude. Thus, exactly how insects control

their vertical position and where they measure the optic flow used for this remains unclear.
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Figure 3.1 – Experimental setting.
(a): Schematic top view of the experimental corridor. The corridor has the following dimen-
sions: D is the half tunnel width, d is the lateral position of obstacles, l is the obstacle length,
L is the period at which obstacles are spread along the corridor. The condition shown here
is C0|16, with no obstacles on the left (l/L = 0%), and the obstacles occupy 16% on the right
side (l/L = 16%). The state of the agent is modelled by its longitudinal position x, its lateral
position y , its flight speed V and its vertical position z (z is not shown in this schematic). The
viewing angles are defined by the angle Ψ between the x axis and a viewing direction. The
projection on the y axis of the distance between the agent and obstacles is noted∆ and is used
for the computation of optic flow in equation [3.1]. (b): Picture of the experimental setting.
(c): One of the two high speed cameras used to track bumblebee flight in three dimensions at
200 images per second. (d): A bumblebee with a unique marker on its back.

52



3.2. Materials and Methods

Bees routinely forage in cluttered natural environments, such as around bushes or in forests,

where the risk of colliding with obstacles is high. The obstacles that pose the greatest collision

risk in clutter are those in front and would generate higher magnitudes of optic flow than the

more distant background, but these would subtend only a minor portion of the visual field. If

the value for the magnitude of optic flow that is used for flight control is averaged across the

output of motion detectors across a broad visual field, then information about the proximity

of obstacles in front of the agent will be lost. Thus, how and where in the visual field optic

flow is calculated will severely affect the performance of any vision-based flight control and

collision avoidance strategies. Previous work on insect flight control provides little insight into

how insects measure optic flow for flight control because the pattern of optic flow generated in

the experimental corridors that are typically used in these studies is qualitatively independent

of viewing angle and the nearest obstacles (the walls) occur only in the lateral visual field.

To investigate how insects control flight in cluttered environments and to identify the optic

flow pooling strategies they use to do so, we recorded the trajectories of bumblebees flying

through corridors in which the density and placement of obstacles were varied. We then

calculated the response of different optic flow pooling methods to our different experimental

environments and compare this to the measured data. We find that lateral position and speed

control are being regulated by an optic flow pooling strategy that extracts optic flow from

nearby obstacles in the frontal visual field but that height control is being regulated by a value

of optic flow derived by averaging optic flow across a wide lateral field of view. Overall, our

findings suggest that rather than calculating optic flow only across a wide visual field, bees

selectively react to nearby obstacles for centring and speed control and that optic flow for

different flight control behaviours may be mediated by parallel processing streams in the

insect visual system.

3.2 Materials and Methods

3.2.1 Experimental setting

Bumblebees (Bombus terrestris) were trained to fly along an experimental corridor between

their nest and a food source. Bumblebees accessed the corridor through small holes and

neither the nest nor the food source were visible from the inside. The experimental corridor

was 3 m long, 0.6 m wide with 0.6 m high walls (Fig. 3.1). Each row of obstacles was located

d = 0.1 m off the center-line of the experimental tunnel. The obstacles consisted of 0.03 m ×
0.004 m × 0.6 m vertical plates and were equally distributed along the tunnel. The spacing

between the obstacles was varied between infinity (no obstacles), 0.15 m, 0.06 m, and 0 m (a

53



Chapter 3. The role of optic flow pooling in insect visual flight control

wall without gap).

The walls, floor, and obstacles were covered with a red and white pattern (to improve detection

of the bee in the camera images) providing visual contrast in all orientations and thus enabling

the insects to measure image motion around them [Lecoeur2018, 137, 27, 82]. This pattern

– called dead leaves – has the same frequency content as natural images and is rotation and

scale invariant. The scale invariance of the dead leaves pattern implies that nearby obstacles

appear with the same frequency content as the more distant background. This setting ensures

that the only way to distinguish the obstacles from the background is the difference of their

relative motion. Obstacles can thus be distinguished from the background based on dynamic

cues but not based on static cues.

The foraging flights were filmed with two high-speed cameras at 200 fps and the 3D trajectories

reconstructed. The flight trajectories were mostly rectilinear along the x axis, with a constant

speed V and altitude z, and minor oscillations along the lateral y axis. We therefore model

bee trajectories as straight trajectories at a constant speed, parallel to the x axis.

3.2.2 Geometrical expression of translational optic flow

The magnitude of optic flow perceived by an agent when moving along an experimental

corridor can be predicted geometrically [53, 64] according to equation [3.1].

‖OF(x, y, z,V ,Ψ)‖ = V sin2(Ψ)

∆
(3.1)

where x, y and z are the longitudinal, lateral, and vertical positions of the agent in the corridor,

respectively. The lateral position is equal to 0 when the agent is in the center of the corridor

and y > 0 when the agent is offset towards the left side of the corridor. The vertical position

z is equal to zero when the agent touches the ground and z > 0 when the agent is above the

ground. V is the forward velocity. Ψ is the viewing angle at which optic flow is measured. The

angle Ψ is equal to zero for the viewing direction pointed straight ahead, and Ψ > 0 when

looking on the left side of the agent. ∆ is the projection onto the y axis of the distance between

the agent and the closest object (see Fig. 3.1). In our experimental corridors (conditions C0|0
to C33|33), the distance ∆ can be the distance from the agent to the left wall, right wall, left line

of obstacles, or right line of obstacles (Fig. 3.1).
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3.2.3 Optic flow pooling

We define optic flow pooling as the operation P that consists in computing an optic flow value

OFP (x, y, z,V ) that does not depend on the viewing directionΨ from a panoramic optic flow

field OF(x, y, z,V ,Ψ). We consider four pooling methods, noted Pavg, Pavgf, Pmax and Pmaxf,

that differ in the extent of the field of view (either complete or frontal field of view) and in their

pooling function (either average or maximum pooling) as described below.

The average optic flow pooling used in this chapter is noted Pavg and computed according to

equation [3.2] for viewing anglesΨ ∈ [0,π] andΨ ∈ [−π,0].

OF
Pavg

left (x, y, z,V ) = 2

π

∫ π

0
‖OF(x, y, z,V ,Ψ)‖.dΨ

OF
Pavg

right(x, y, z,V ) = 2

π

∫ 0

−π
‖OF(x, y, z,V ,Ψ)‖.dΨ

(3.2)

The average optic flow pooling in the frontal visual field is notedPavgf and computed according

to equation (3.3) for viewing anglesΨ ∈ [0,π/2] andΨ ∈ [−π/2,0].

OF
Pavgf

left (x, y, z,V ) = 4

π

∫ π/2

0
‖OF(x, y, z,V ,Ψ)‖.dΨ

OF
Pavgf

right(x, y, z,V ) = 4

π

∫ 0

−π/2
‖OF(x, y, z,V ,Ψ)‖.dΨ

(3.3)

The maximum optic flow pooling is noted Pmax and computed according to equation (3.4) for

viewing anglesΨ ∈ [0,π] andΨ ∈ [−π,0].

OFPmax

left (x, y, z,V ) = max
Ψ∈[0,π]

‖OF(x, y, z,V ,Ψ)‖

OFPmax

right (x, y, z,V ) = max
Ψ∈[−π,0]

‖OF(x, y, z,V ,Ψ)‖
(3.4)

The maximum optic flow pooling in the frontal field of view is noted Pmaxf and computed

according to equation (3.5) for viewing anglesΨ ∈ [0,π/2] andΨ ∈ [−π/2,0].

OFPmaxf

left (x, y, z,V ) = max
Ψ∈[0,π/2]

‖OF(x, y, z,V ,Ψ)‖

OFPmaxf

right (x, y, z,V ) = max
Ψ∈[−π/2,0]

‖OF(x, y, z,V ,Ψ)‖
(3.5)

Ventral optic flow is modelled as the ratio between flight speed and vertical position:

OFdown(x, y, z,V ) = V

z
(3.6)
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3.2.4 Force field for flight control

The optic flow balancing behaviour of bees is here modelled as a force field. The force field

f :R4 →R3 defines three forces fx , fy and fz for every agent state (x, y , z, V ).

~f (x, y, z,V ) =


fx (x, y, z,V )

fy (x, y, z,V )

fz (x, y, z,V )

 (3.7)

The forces fx , fy and fz respectively drive the agent along the x axis (i.e. controls flight speed),

the y axis (i.e. controls the lateral position), and the z axis (i.e. controls the vertical position).

Force field for predictions of lateral position, vertical position, and flight speed. The pre-

dictions with uncoupled forward and vertical control (Fig. 3.4 and Fig. 3.5) are made using the

force field presented in equation [3.8].

fx = OF ref −
OFPx

left +OFPx

right

2

fy = OF
Py

right −OF
Py

left

fz = OFdown −OF ref

(3.8)

where Px and Py are the optic flow pooling methods used for lateral control and speed control,

OFP
left and OFP

right are the optic flow pooled using the pooling method P on the left and right

side, according to equations (3.2, 3.3, 3.4, 3.5), OFdown is the ventral optic flow computed

according to equation [3.6], and OF ref is a constant reference value. Note that this commonly

accepted control scheme – although valid in a constrained environment like the one used in

this study – would suffer from a scaling issue in an open, flat environment. Indeed, without

objects on the sides, the lateral optic flow would be null and the agent would accelerate

forward and upward infinitely, trying to match the reference OF ref. In order to solve this

inconsistency, our study may be extended to include viewing directions pointed slightly above

and below the horizontal plane into the calculations of the lateral optic flow, in which case

the ground would remain visible in a portion of the lateral visual field when flying in an open

environment. Furthermore, bumblebees are likely to rely on a additional control mechanism

involving the measurement of airspeed; this is, however, outside of the scope of our study.
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Force field for predictions with coupled vertical and forward control. The predictions

with coupled forward and vertical control (Fig. 3.7 and Fig. 3.6) are made using the force

field presented in equation [3.9].

fx = OF ref −
OFPx

left +OFPx

right

2

fy = OF
Py

right −OF
Py

left

f ∗
z = OFdown −

OFPz

left +OFPz

right

2

(3.9)

where Px , Py and Pz are the optic flow pooling methods used for lateral control, speed control,

and vertical control, OFP
left and OFP

right are the optic flow pooled using the pooling method

P on the left and right side, according to equations (3.2, 3.3, 3.4, 3.5), OFdown is the ventral

optic flow computed according to equation [3.6], and OF ref is a constant reference value. For

vertical control – unlike in the uncoupled case (equation [3.8]) – the ventral flow is compared

to a non-constant reference value computed from lateral optic flow.

3.2.5 Prediction method

Lateral position ypred, vertical position zpred, and speed Vpred are predicted using an iterative

gradient descent approach. As a first step, (y , z, V ) are given initial values (y0, z0, V0). The

initial values are found using a grid search with rough resolution in order to avoid local minima

later in the gradient descent algorithm. The initial values are those where the average force

applied to an agent while it is flying along the longitudinal axis of the corridor is the lowest.


V0

y0

z0

= argminy,z,V

(
‖
∫ xmax

xmin

~f (x, y, z,V ).d x‖
)

(3.10)

At the k-th iteration, the current lateral position, vertical position and flight speed (yk , zk , Vk )

define a straight trajectory flown at constant speed along the longitudinal axis x of the corridor.

In order to know whether this trajectory is an equilibrium point – the predicted trajectory – or

whether the agent will be pushed away from this trajectory by the applied forces, the force
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Figure 3.2 – Illustration of the prediction method for maxf optic flow pooling.
(a and b): Optic flow amplitude on the left side OFPmaxf

left and on the right side OFPmaxf
right , computed

according to equation [3.5]. Blue represents low optic flow amplitude, yellow represents
large optic flow amplitude. (c): Forward force fx used to control flight speed and computed
according to equation [3.8]. Blue represents negative fx values (deceleration) and red represent
positive fx values (acceleration). (d): Lateral force fy used to control lateral position and
computed according to equation [3.8]. Blue represents negative fy values (rightward force)

and red represent positive fy values (leftward force). (e): Combined force field ~f . The white
arrows represent the trajectories of an agent driven by the force field. The prediction is found
by following the white arrow by gradient descent (see equation [3.12]).
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field is evaluated and summed along the trajectory.


dVk

d yk

d zk

=
∫ xmax

xmin

~f (x, yk , zk ,Vk ).d x (3.11)

The result of this operation is an increment in flight speed dV , an increment in lateral position

d y , and an increment in vertical position d z, that are used to iteratively update the predicted

positions and speed by gradient descent.


Vk+1

yk+1

zk+1

=


Vk

yk

zk

+


dVk

d yk

d zk

 (3.12)

The iterative process described in equation [3.11] and equation [3.12] is repeated until a

minimum number of iterations are performed and the increments dV , d y and d z are below a

small threshold (10−6 in our case).

3.2.6 Prediction error

The predictions are evaluated by comparing them to the recorded bee trajectories to obtain

the prediction error e

e =
√

e2
x +e2

y +e2
z (3.13)

which is computed from the error on flight speed ex , lateral position ey and vertical position

ez

ex = ∑
C×|×

1

NC

Vpred −µV

σV

ey =
∑
C×|×

1

NC

ypred −µy

σy

ez =
∑
C×|×

1

NC

zpred −µz

σz

(3.14)

where C×|× indicates each one of the NC tested conditions. Vpred, ypred, and zpred are the

predicted flight speed, lateral position and vertical position. µV , µy and µz are the mean of

the measured flight speed, lateral position and vertical position for each condition. σV , σy

and σz are the standard deviations of the measured flight speed, lateral position and vertical
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position for each condition.

In equation [3.14], the error between predicted values and mean of the measured values

is divided by the standard deviation of the measured values. This allows comparing errors

on different axis even though they have different scales and units. In addition, dividing the

prediction errors by the standard deviation of the measured data puts more emphasis on

predictions in cases where bees behaved in a consistent manner (i.e. low standard deviation)

compared to the cases where bees had more variable behaviour (i.e. large standard deviation).

3.3 Results and discussion

First, we recorded the three-dimensional position of bumblebees flying along an experimental

corridor in which we varied the density of obstacles placed along two lines parallel to the main

axis of the corridor at a distance of 0.2 m from each wall. The experimental conditions are

named according to the format Cα|β where α and β represent the percentage of the corridor

length occupied by obstacles on the left and right side, respectively, of a bee flying towards a

feeder. For example, the corridor C0|16 has no obstacles on the left side, and obstacles covering

16% of the tunnel length on the right side (Fig. 3.1), while in the corridor C33|33 obstacles

occupy 33% of the corridor length on both sides (Fig. 3.3a).

3.3.1 The effect of obstacle density on lateral position

In the conditions without obstacles, C0|0 and C0|100 (Fig. 3.3a), bumblebees maintain an equal

distance to both walls. With obstacles on one side (conditions C0|16 and C0|33, Table 3.1) they

instead fly between the obstacles and the wall, close to the safest position of y = 0.1 m (dashed

grey line, Fig. 3.3) but as obstacle density decreases, they fly slightly closer to the obstacles

(Fig. 3.3c).

Flights were also centred in corridors with symmetrically distributed obstacles (C16|16 and

C33|33), with the lateral position being less variable (lower standard deviations) than in the

corridor without obstacles C0|0. This is likely due to the factor of 3 reduction in effective

corridor width (0.2 m between the obstacles for C16|16 and C33|33, compared to 0.6 m between

the walls in C0|0), although the standard deviation decreased by a factor of 3.8 to 4.75 (Table 3.1).

Similarly, even though the maximum width is higher in C16|16 and C33|33 than in C0|100 (0.6 m

compared to 0.4 m), the standard deviation of the lateral position is lower in conditions C16|16

and C33|33 than in conditions C0|100. This result suggests that bumblebees respond to the

presence of obstacles by increasing the precision with which they control lateral position.
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Figure 3.3 – Effect of obstacle density on flight control in bumblebees.
In condition C0|0, there are no obstacles. In conditions C0|16 and C0|33, the obstacles are only
on one side of the corridor and cover 16% and 33% of its length, respectively. In C0|100, the
obstacles and the wall on the opposite side form a narrower corridor centred on lateral position
y = 0.1 m. In conditions C16|16 and C33|33, the obstacles are on both sides and cover 16% and
33% of the corridor length, respectively. (a): Top view of the experimental corridors and
recorded trajectories for all conditions. (b): Front view of the experimental corridors and
recorded trajectories for all conditions. (c): Measured lateral positions y , expressed in m.
(d): Measured flight speeds V , expressed in m/s. (e): Measured vertical positions z, expressed
in m. (f): Ventral flow OFdown, expressed in rad/s, and computed as OFdown =V /z from the
measured vertical positions and flight speeds. (c, d, e, f): Measurements are displayed as
coloured open circles. The horizontal lines on the error bars denote the standard error of the
mean. The uncapped bars denote the standard deviation. The statistical significance of the
difference between measured data across two corridor conditions is tested using post-hoc
Tukey HSD tests, with the null hypothesis that the mean recorded data is equal for both
conditions. The horizontal grey lines indicate the p-value of the post-hoc Tukey HSD tests
(∗∗∗ when p ≤ 0.001, ∗∗ when 0.001 < p ≤ 0.01, ∗ when 0.01 < p ≤ 0.05 and n.s. when
0.05 < p).
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Measurements Tukey HSD test

µ σ N n C0|0 C0|16 C0|33 C0|100 C16|16 C33|33

La
te

ra
lP

o
si

ti
o

n C0|0 -0.012 0.036 46 26 ∗∗∗ ∗∗∗ ∗∗∗ n.s. n.s.

C0|16 0.076 0.018 87 35 0.001 ∗∗ ∗∗∗ ∗∗∗ ∗∗∗
C0|33 0.088 0.020 73 31 0.001 0.002 ∗∗∗ ∗∗∗ ∗∗∗
C0|100 0.107 0.017 50 16 0.001 0.001 0.001 ∗∗∗ ∗∗∗
C16|16 -0.002 0.012 49 25 0.163 0.001 0.001 0.001 n.s.

C33|33 -0.006 0.011 32 19 0.805 0.001 0.001 0.001 0.900

Fl
ig

h
tS

p
ee

d

C0|0 1.337 0.235 46 26 ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗∗
C0|16 1.164 0.171 87 35 0.001 n.s. n.s. ∗∗∗ ∗∗∗
C0|33 1.212 0.189 73 31 0.010 0.605 ∗∗ ∗∗∗ ∗∗∗
C0|100 1.091 0.147 50 16 0.001 0.286 0.010 n.s. ∗∗∗
C16|16 1.013 0.249 49 25 0.001 0.001 0.001 0.364 ∗∗
C33|33 0.836 0.181 32 19 0.001 0.001 0.001 0.001 0.001

Ve
rt

ic
al

Po
si

ti
o

n C0|0 0.289 0.098 46 26 ∗∗ n.s. ∗∗∗ n.s. n.s.

C0|16 0.226 0.088 87 35 0.002 n.s. n.s. n.s. ∗∗
C0|33 0.247 0.099 73 31 0.136 0.670 n.s. n.s. n.s.

C0|100 0.211 0.076 50 16 0.001 0.900 0.251 n.s. ∗∗∗
C16|16 0.245 0.075 49 25 0.177 0.827 0.900 0.412 n.s.

C33|33 0.297 0.106 32 19 0.900 0.003 0.097 0.001 0.124

Table 3.1 – Summary of the experimental measurements and statistical significance of the
differences measured between pairs of conditions.
(Measurements): For each corridor condition (C0|0, C0|16, C0|33, C0|100, C16|16 and C33|33), n
bees were recorded while they performed N flights across the corridors. For each flight, the
lateral position (in m), vertical position (in m), and flight speed (in m/s) are averaged. µ
and σ are respectively the mean and standard deviation across the N flights. (Tukey HSD
test): The p-values of post-hoc Tukey HSD tests between values measured in each pair of
corridor conditions. The p-values are shown in the entries below the diagonal, and their
significance levels are indicated in the corresponding above-diagonal entries. Cases where
the null-hypothesis that lateral position, vertical position, or flight speed have equal means
cannot be rejected are indicated by "n.s.". The symbols indicate the p-value of the tests: ∗∗∗
when p ≤ 0.001, ∗∗ when 0.001 < p ≤ 0.01, ∗ when 0.01 < p ≤ 0.05 and n.s. when 0.05 < p.
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In C0|16 and C0|33, bumblebees do not fly at an equal distance between the obstacles and

the opposite wall, but slightly closer to the obstacles (p ≤ 0.001, Table 3.1). As the density

of obstacles increases on one side (0% in C0|0, 16% in C0|16, and 33% in C0|33), bumblebees

increase their distance from them (p ≤ 0.01, Table 3.1).

3.3.2 The effect of obstacle density on flight speed

In the conditions without obstacles (C0|0 and C0|100), bumblebees adjust their flight speed to

the corridor width (Fig. 3.3d). Indeed, speed control in flying insects is often modelled as

maintaining the magnitude of optic flow – that is, the ratio between flight speed (V ) and the

distance to nearby surfaces (D) – at a predefined value (for a review see [124]), which has been

found experimentally to lie between 3.0 rad/s and 6.0 rad/s [81, 7, 4, 117] for honeybees and

bumblebees. In the 0.4 m wide corridor (C0|100), the average flight speed was 1.1 m/s, which

would generate a lateral optic flow of magnitude 5.5 rad/s. In the 0.6 m wide corridor (C0|0), the

average flight speed increased to 1.3 m/s, generating a lateral optic flow of magnitude 4.3 rad/s.

This represents a speed increase of 20% but this does not match the proportional increase

of corridor width, which was 50% and suggests that lateral optic flow is not the only source

of information used for flight speed control and is consistent with the findings of previous

studies in both bumblebees [82] and honeybees [4, 100].

In the presence of obstacles, bumblebees decrease their flight speed from 1.3 m/s in C0|0,

which is an empty corridor, to 1.0 m/s in C16|16, where obstacles cover 16% of the corridor

length on each side (p ≤ 0.001, Table 3.1). Flight speed decreases further to 0.84 m/s when the

density of obstacles increases to 33% on each side in C33|33 (p ≤ 0.01, Table 3.1). With obstacles

on only one side of the corridor, speed decreases from 1.3 m/s in C0|0 to 1.16 m/s in C0|16

(p ≤ 0.001, Table 3.1). Flight speed tends to increase with increasing obstacle density from

C0|16 to C0|33, although not significantly so (p = 0.605, Table 3.1). Finally, speed decreases from

1.21 m/s in C0|33, where obstacles cover 33% of the corridor length on one side, to 1.09 m/s in

C0|100, where the obstacles form a complete wall on one side (p ≤ 0.01, Table 3.1).

Interestingly, bumblebees fly slower when obstacles are present on both sides than when

obstacles are present on only one side. They decrease their flight speed from 1.16 m/s in

C0|16 to 1.01 m/s in C16|16 (p ≤ 0.001, Table 3.1) and from 1.21 m/s in C0|33 to 0.84 m/s in C33|33

(p ≤ 0.001, Table 3.1). This indicates that flight speed is controlled using optic flow on both

sides and that it is affected by the presence and density of obstacles.
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3.3.3 The effect of obstacle density on vertical position

In the absence of obstacles, bumblebees maintain the same distance from the floor as they do

from the wall: when the half-width of the corridor is 0.3 m (C0|0) the average vertical position is

0.29 m and, similarly, when the half-width of the corridor is 0.2 m, the average vertical position

is 0.21 m. In other words, in corridors that do not contain obstacles, the magnitude of the

lateral optic flow is held equal to the magnitude of the ventral flow.

In all conditions, the vertical position is quite variable with relatively high standard devia-

tions (Fig. 3.3e) and there are few cases where the differences between the conditions were

significant (Table 3.1). Interestingly, ventral optic flow (calculated by dividing the measured

flight speed by the measured vertical position, Fig. 3.3f) does not vary between conditions

C0|0, C0|16, C0|33, and C0|100, but decreases significantly in C16|16 and C33|33. This is a surprising

result because the optic flow profile generated in the ventral visual field is the same for all

conditions, so ventral flow should not be affected by the density of obstacles in the lateral

visual field. We would expect bumblebees to fly significantly lower in C16|16 and C33|33 in order

to compensate for the reduced flight speed and to maintain the ventral optic flow at a constant

value. However, this is not what we observe (Fig. 3.3e-f) and suggests that vertical control

might not be driven only by ventral optic flow, as previously modelled [125, 102, 99, 5] but that

it might be mediated by a combination of ventral and lateral optic flow.

3.3.4 Predicting the effect of obstacle density and optic flow pooling on flight con-

trol

The change in lateral position, flight speed, and vertical position in response to the density of

nearby obstacles is likely a reflection of the way in which bumblebees pool optic flow from

their panoramic field of view to control flight. Are they using a fixed spatial integration of optic

flow across their entire visual field or are they selectively reacting to the nearby obstacles?

To answer this question, we predict the lateral position, flight speed and vertical position

in each of our experimental corridors for different methods of optic flow integration from

different parts of the visual field. We then assess how well the results of each method agree

with the experimental data from bumblebees to determine which method best explains the

bees’ responses.

3.3.5 Predicted lateral position

Our predictions of the lateral position are based on the optic flow balancing control strategy

in which a sideways force is applied based on the difference between the optic flow on the left
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Figure 3.4 – Predicted lateral position, flight speed and vertical position.
The experimental measurements of bumblebee lateral position (y), flight speed (V ), and
vertical position (z) are compared to predicted values. Predictions are made according to
the control method described in equation [3.8], with the same optic flow pooling P on all
axes (P = Px = Py ). Predictions are made for four optic flow pooling methods avg, avgf,
max, and maxf described in equations (3.2, 3.3, 3.4, 3.5). The best prediction for lateral po-
sition and flight speed are made with maxf pooling, while the best predictions for vertical
position are made with avg and avgf pooling. (a): Measured lateral position and predicted
lateral position for each experimental condition. (b): Average prediction error for lateral posi-
tion. (c): Measured flight speed and predicted flight speed for each experimental condition.
(d): Average prediction error for flight speed. (e): Measured vertical position and predicted
vertical position for each experimental condition. (f): Average prediction error for vertical
position. (a, c, e): Measurements are displayed as grey open circles. The horizontal lines on
the error bars denote standard error of the mean, the uncapped bars denote the standard
deviation. Predictions are displayed as solid coloured circles. Note that predictions are shifted
horizontally for clarity. (b, d, f): Each prediction is compared with experimental data as shown
in equation [3.14]. The prediction errors are averaged over conditions C0|0, C0|16, C0|33,C0|100,
C16|16, and C33|33.

65



Chapter 3. The role of optic flow pooling in insect visual flight control

Figure 3.5 – Prediction errors of lateral position, vertical position and speed.
Average prediction errors for different optic flow pooling Px and Py . The predictions of flight
speed and lateral position are made using different pooling Px and P y respectively for the
control of flight speed and lateral position. The predictions are made according to the control
method shown in equation (3.8). Each prediction is compared with experimental data. The
resulting error is scaled according to the standard deviation of the experimental data as shown
in equation (3.14) to allow comparison between values predicted on different axes and units.
The scaled errors are then averaged over conditions C0|0, C0|16, C0|33,C0|100, C16|16, and C33|33.
computed according to equation (3.13). (a): Average prediction error on all axes. (b): Average
prediction error for flight speed. (c): Average prediction error for lateral position. (d): Average
prediction error for vertical position.
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Figure 3.6 – Prediction error when combining multiple optic flow pooling methods, with
coupled forward and vertical control.
Average prediction errors when different optic flow pooling methods are used to control
different aspects of flight. All combinations of optic flow pooling avg, avgf, max, and maxf
are tested for the control of lateral position, flight speed and vertical position. For each
combination, the prediction error on each axis is computed according to equation [3.14], then
combined into a single error according to equation [3.13]. The predictions are made according
to the control method shown in equation [3.9], where the reference optic flow used for vertical
control is not constant but is computed from the lateral optic flow. The predictions are made
using different pooling Px , P y , and Pz for the control of flight speed, lateral position, and
vertical position, respectively. Contrary to the uncoupled case (see Fig. 3.5), the best prediction
is achieved when combining different optic flow pooling methods. With maximum optic flow
pooling in the frontal visual field for forward and lateral control (Px =Py = maxf) and average
optic flow pooling in the frontal visual field for vertical control (Pz = avgf), the prediction
error is the lowest, and is 50% smaller than with Px =Py =Py = maxf. (a): Average prediction
error on all axes. (b): Average prediction error for flight speed. (c): Average prediction error for
lateral position. (d): Average prediction error for vertical position.
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Figure 3.7 – Predicted lateral position, flight speed and vertical position with coupled forward
and vertical control. The experimental measurements of bumblebee lateral position (y),
flight speed (V ), and vertical position (z) are compared to predicted values. Predictions are
made according to the control method described in equation [3.9], where the control of flight
speed and vertical position are coupled, and different pooling methods can be combined.
For more clarity, all the combinations of optic flow pooling are not presented here. The
same pooling is used on all control axes for all presented predictions except one (shown in
dashed purple), which yields the lowest prediction error. (a): Measured lateral position and
predicted lateral position for each tested conditions. (b): Average prediction error for lateral
position. (c): Measured flight speed and predicted flight speed for each tested conditions.
(d): Average prediction error for flight speed. (e): Measured vertical position and predicted
vertical position for each tested conditions. (f): Average prediction error for vertical position.
(a, c, e): Measurements are displayed as grey open circles. Similarly to Fig. 3.3, the horizontal
lines on the error bars denote standard error of the mean. The uncapped bars denote the
standard deviation. Predictions are displayed as solid coloured circles. Note that predictions
are shifted horizontally for better presentation. (b, d, f): Each prediction is compared with
experimental data as shown in equation [3.14].
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and right sides [124] (for details, see equation [3.8]). Optic flow on the left and right side are

pooled according to four of the most biologically plausible methods: average optic flow across

lateral and fronto-lateral visual field (noted respectively avg and avgf), and maximum optic

flow in lateral and fronto-lateral visual field (noted respectively max and maxf).

In the symmetric conditions (C0|0, C0|100, C16|16 and C33|33), all predictions match the measured

lateral positions (Fig. 3.4a), because the predicted lateral position for these conditions does

not depend on the optic flow pooling method and reveals little about the specific optic flow

pooling strategy being used. In the asymmetric conditions that have obstacles only on one

side (C0|16 and C0|33), the predicted lateral position does vary with the optic flow integration

method. It is interesting to note that the predicted lateral positions for average optic flow (avg

and avgf) do not vary with changes in the field of view (Fig. 3.4a). Also, the predictions made

using maximum rate of optic flow (max and maxf) have a greater distance to obstacles than

those made using averaged optic flow (avg and avgf). This is not surprising because with

the maximum optic flow the agent selectively reacts to the nearby obstacles, while averaging

causes the optic flow from the nearby obstacles to ’blend’ into the background, reducing their

influence on lateral position. The predictions made using the maximum optic flow in the

frontal visual field lie the closest to the safest position (at y = 0.1 m, i.e. the lateral position at

equal distance from the line of obstacles and the opposite wall), and yield lower error than the

predictions made using average optic flow when compared to the bumblebee data (Fig. 3.4b).

Optic flow pooling avg and avgf generate lateral positions much closer to the obstacles –

and thus much less safe trajectories – than those performed by insects. This suggests that

bumblebees use the maximum optic flow in the frontal visual field to control their lateral

position, which is the optimal approach because i) the frontal visual field is where incoming

obstacles are the most likely to occur and ii) selecting the maximum optic flow will ensure that

the bees selectively react to the closest obstacles in the visual field.

3.3.6 Predicted flight speed

Our predictions of flight speed are based on an optic flow regulation strategy in which a

longitudinal force derived from the difference between lateral optic flow and a reference optic

flow value is applied [124, 81] (for details, see equation [3.8]). The agent accelerates if the

lateral optic flow is lower than the reference optic flow, it decelerates if the lateral optic flow is

higher than the reference optic flow, and remains at a constant speed when they are equal.

The lateral optic flow is calculated by pooling optic flow on the left and right sides, then taking

the mean of the two resulting signals. For the reference optic flow, we use a value of 5.5 rad/s,

which is close to the values obtained in previous studies [81, 7, 4, 117], and is close to the
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magnitude of lateral optic flow experienced by bumblebees in C0|100 (Fig. 3.3d, Table 3.1).

In conditions that do not contain obstacles (C0|0 and C0|100), the same speed is predicted

with all pooling methods (Fig. 3.4c) and explains why data from simple corridors alone is

insufficient for testing hypotheses about how insects pool optic flow for flight control. The

predicted speed in C0|100 (1.10 m/s) is close to the measured speed (1.09 m/s), which is not

surprising given that the reference optic flow value lies close to the optic flow value known to be

used by bumblebees. However, the predicted speed for C0|0 is 1.65 m/s, which is significantly

higher than the measured value of 1.34 m/s (p ≤ 0.001). This discrepancy between measured

and predicted flight speed in C0|0 may be explained by additional sensory feedback – such as

airspeed – which is likely combined with optic flow for speed control [129]. However, there is

currently no existing model for how airspeed and optic flow are combined to control flight

speed in freely-flying insects.

The most interesting conditions for studying the effect of optic flow pooling on flight speed are

those in which obstacles are present: C0|16, C0|33, C16|16, and C33|33. In these conditions, average

pooling avg and avgf generates the highest predicted speeds because maximum pooling max

and maxf (Fig. 3.4c) selects optic flow generated by the closest objects, leading to a reduced

flight speed.

The variation of predicted flight speed with varying obstacle density suggests that, as with

lateral position control, flight speed is regulated using maximum optic flow pooling. The

flight speed predicted using maximum optic flow shows very little variation between C0|16

and C0|33 (Fig. 3.4c), which is also the case for the measured flight speeds (Table 3.1). On the

contrary, the flight speed predicted using average optic flow shows a steeper decrease with

increasing obstacle density in C0|16 and C0|33. Furthermore, the predicted flight speed with

average pooling is higher in C16|16 than in C0|100, unlike measured flight speeds which show

a non-significant decrease in flight speed (Table 3.1). The proximity of obstacles in C16|16 is

higher than in C0|100 and it would thus be more sensible to reduce flight speed in this condition,

as predicted by maximum pooling.

The predicted speeds lie closer to the measured speeds with maximum pooling than with

average pooling (Fig. 3.4c). The error with maxf pooling is the lowest and is more than 4 times

lower than with avgf pooling (Fig. 3.4d). These results suggest that – similar to lateral control –

bees use maximum optic flow pooling in the frontal visual field to control their speed. This

makes sense from a biological point of view because it selects the visual motion generated by

the closest obstacles, which represent the main collision threats. Also, incoming obstacles are

more likely to occur in the frontal visual field, which is coherent with the fact that predictions

are more accurate with maxf pooling than with max pooling (Fig. 3.4d).
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3.3.7 Predicted vertical position

Our predictions of vertical position are based on an optic flow regulation strategy in which a

vertical force is applied based on the difference between the ventral optic flow and a reference

optic flow value obtained from honeybees [99] (similar data does not exist for bumblebees; for

details, see equation [3.8]). Note that honeybees use the dorsal flow for controlling vertical

position when they are closer to the ceiling than to the ground and ventral flow when flying

closer to the ground [101], we thus consider only the ventral flow in our predictions because

the ceiling is located approximately 2 m above the 0.6 m high experimental tunnel. In our test

environments, there are no obstacles between the agent and the floor; the ventral optic flow is

thus independent of the elevation angle and all optic flow pooling methods provide the same

result. We, therefore, modelled ventral optic flow as the ratio between the flight speed and the

vertical position: OFdown =V /z, and do not apply pooling.

In the conditions that do not contain obstacles (C0|0 and C0|100), the predicted vertical positions

match the measurements (Fig. 3.4e) and are equal to the corridor half-widths (0.2 m in C0|100

and 0.3 m in C0|0). This is because flight speed is regulated so that the mean of the pooled

optic flow on left and right sides is equal to the reference optic flow value. In obstacle-free

corridors, the agent tends to fly at an equal distance from both walls, meaning that pooled

optic flow on the left and right sides take the same value, equal to the reference value. Finally,

as the vertical position is regulated so that ventral optic flow is equal to the same reference

value, the vertical position is equal to the distance between the agent and the walls.

Although no pooling is performed on ventral flow, the predicted vertical position is affected by

flight speed, which in turn is affected by the presence of obstacles and thus also the pooling

method used. The predicted vertical position is lower when maximum pooling is used on the

lateral optic flow than when average pooling is used (Fig. 3.4e) because the agent flies slower

and must reduce its height to maintain ventral optic flow at the reference value.

It is interesting to note that in C16|16 and C33|33 – i.e. with obstacles on both sides – the predicted

vertical positions with max pooling are close to 0.1 m, which is half the distance between the

rows of obstacles. Similarly, in C0|16 and C0|33 – i.e. with obstacles on one side only – the

predicted vertical positions with max pooling are close to 0.2 m. Thus, when it comes to

vertical control with maximum pooling, the agent acts as if the row of obstacles were a wall,

which is not consistent with the behaviour of bumblebees (Fig. 3.3d-e).

The predictions that best match the experimental data are with average pooling, which yield

prediction errors (Fig. 3.4f) that are approximately 5 times lower than with maximum pooling,

suggesting that bees use average pooling of lateral optic flow to control their vertical position.
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3.3.8 Combining multiple optic flow pooling methods for different aspects of flight

control

Our model predictions suggest that bumblebees use maximum optic flow pooling in the frontal

visual field to control both their lateral position and flight speed but that vertical position is

controlled by average optic flow pooling in the lateral visual field. An agent using only maxf

would correctly replicate bumblebee lateral position and flight speed, but would not fly at

the same vertical position and an agent using only average pooling would correctly replicate

bumblebee vertical position, but would not fly at the same lateral position and flight speed.

How can we reconcile this contradiction?

Given the parallel nature of neural systems, the same piece of information can be processed

by several circuits in the brain, each circuit implementing a different function. For example,

the optomotor response and centring behaviour are known to be mediated by two distinct

movement detecting pathways in the honeybee visual system [121]. Thus, optic flow from a

wide field of view may be processed (or pooled) several times in parallel according to different

functions – like average and maximum pooling – and across different visual fields before it is

used to control different aspects of flight.

To test this hypothesis, we generated predictions using different optic flow pooling methods in

parallel. Namely, in the formulation of the three forces driving the control of lateral position,

flight speed and vertical position (equation [3.8]), we allowed different pooling methods to be

used for each axis. While we applied the same control strategies for lateral position and flight

speed as before, we modified the control strategy for vertical position. Instead of regulating

the ventral optic flow so that it is equal to a fixed reference value, we regulate it according

to a value generated from the lateral optic flow (and therefore coupled to flight speed, see

equation [3.9]).

We tested all combinations of optic flow pooling (Px , Py , Pz ) and compared the prediction

accuracy. While using multiple optic flow pooling methods did not improve the accuracy

of our predictions when the control of speed and vertical position were uncoupled (equa-

tion [3.8] and Fig. 3.5), the predictions were more accurate when the control of flight speed and

vertical position were coupled (equation [3.9] and Fig. 3.6). Interestingly, the best prediction

is achieved with maximum optic flow pooling in the frontal visual field for speed and lateral

control (Px =Py = maxf) and average optic flow pooling in the frontal visual field for vertical

control (Pz = avgf), see the dashed purple bars on Fig. 3.6 and Fig. 3.7.

With Px =Py = maxf and Pz = avgf, the predicted lateral position is the same as when maxf

pooling is used on all axes (purple and blue dots on Fig. 3.7a). The predicted flight speed is
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the same as when maxf pooling is used on all axes (purple and blue dots on Fig. 3.7c). The

predicted vertical position is the same as when avgf pooling is used on all axes (purple and

red dots on Fig. 3.7e). Furthermore, the contradiction described earlier is solved because the

prediction made with Px =Py = maxf and Pz = avgf achieves the lowest prediction error on

all axes.

3.4 Conclusion

In this study, we investigate the effect of clutter on flight control in bumblebees and use

mathematical models to understand how and where optic flow is being measured for this. We

find that lateral position is controlled by balancing the maximum optic flow in the frontal

visual field. This would ensure that even small obstacles in the flight path will be detected

and used to control position, enabling rapid and effective collision avoidance responses.

For speed control, the same pooling method is used to calculate the optic flow value that is

then compared to a reference value, presumably set by the optimum sensitivity of specific

speed-regulating neurons. Detecting the maximum optic flow output across an array of

motion detectors is a biologically plausible operation which could easily be implemented

in neural systems using a Winner-Take-All network [111] or using differentiation and zero-

crossing [97], and is supported by previous behavioural [80] and analytical [Lecoeur2018]

studies. Interestingly, we find that bees are most likely using a different pooling method for

controlling vertical position. Instead of adjusting their height to maintain the ventral optic

flow at a fixed reference value, as suggested for honeybees [99], we find that bumblebees

regulate the ventral flow to a non-constant reference value equal to the average optic flow

in the fronto-lateral visual field. It is possible that this finding is specifically related to our

specific experimental situation which contained vertical obstacles that could not be avoided

by changing vertical position. It would, therefore, be interesting for future investigations

to examine the responses to horizontally-oriented obstacles and to model the pooling of

lateral and ventral optic flow across varying azimuth and elevation angles. Taken together,

our results suggest that bumblebees pool optic flow from the frontal visual field using two

methods in parallel – averaging and maximum pooling – to control different aspects of flight.

This has important implications for the design of flying robots because our findings suggest

that a single forward pointed camera covering the frontal visual field is sufficient to replicate

bumblebee behaviour.
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4 Joint obstacle avoidance and visual

navigation in cluttered environments

T
HIS CHAPTER presents a lightweight and reactive method for vision based navigation

in cluttered environments designed by taking inspiration from previous findings on

insect motion extraction and flight control in cluttered scenes. The method relies

only on the local information extracted from panoramic images, and does not require prior

knowledge about the position of the obstacles that the agent encounters on its path towards its

navigation goal. By varying a single parameter that encodes the relative importance given to

the angular size of gaps and their angular proximity to the navigation goal, a trade-off between

flight safety and the directness of the generated trajectory can be found.
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4.1 Introduction

Hymenopterans, such as bees, travel repeatedly during the course of the day between their

nests and different food sites. They navigate in a wide variety of environments, ranging from

relatively plain deserts to spatially cluttered forests, and on very different spatial scales, ranging

from a few meters when pinpointing the nest entrance, to several kilometers on foraging flights

[106].

During their trips, bees rely primarily on vision to control their flight and steer away from

obstacles. Bees are known to extract the rate of apparent motion - optic flow - across the

panoramic field of view of their low-resolution compound eyes. Several experiments demon-

strated that optic flow is used to control lateral position, speed and height in corridors [41,

124, 1]. However, visually guided flights were never observed in controlled spatially cluttered

environments.

In order to reach destination, bees steer toward their goal by combining egocentric cues,

for example from an odometer, and allocentric information, for example from the visual

panorama. If obstacles are on their paths, goal directed behavior needs to interact with

collision avoidance. The interaction between goal and collision avoidance directions affects

the flight strategy. Most existing flight control methods inspired by insects are designed to

tackle collision avoidance but do not account for a navigation goal [102, 61, 63]. Goal oriented

flight in cluttered environment is achieved by generating saccades which amplitude depend on

the optic flow computed around the flying agent and on the goal direction [14]. The amplitude

of the yaw saccades are computed so that the agent points in a direction that is the weighted

sum of two direction: the goal direction, and the direction opposite to where obstacles are

the closest on average. Because the proximity to obstacles is averaged all around the agent,

however, there is no guaranty that this weighted sum will not result in the a saccade towards a

small obstacle located in the direction opposite to that of average maximum proximity. Here,

following the results of Chapter 3, we do not perform an averaging across the visual field, but

instead rely on the location of the maximum rate of optic flow.

A lightweight and reactive method for vision based navigation in cluttered environments

is presented. It takes inspiration from previous findings on insect motion extraction and

flight control in cluttered scenes. The method relies only on the local information extracted

from panoramic images, and does not require prior knowledge about the position of obstacles

between the agent and its navigation goal. It is only assumed that the agent knows the direction

to its navigation goal, which is achieved by insects through odometry [123] or polarized light

sensing [65].
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The method generates saccadic trajectories – i.e. succession of straight flight segments and

fast yaw turns (the saccades) – similar to the trajectories performed by flying insects. During

the straight flight segments, the agent does not perform body rotations, hence the perceived

optic flow is inversely proportional to the distance to the surrounding obstacles. By locating

the regions of its visual field were the optic flow amplitude is the highest, the agent locates the

nearby obstacles. This is supported by a previous study where we showed that bumblebees

selectively react to nearby obstacles by selecting the high rate of optic flow in the frontal visual

field. The regions with lower optic flow amplitude between the detected obstacles form a set

of gaps, whose centers are potential heading setpoints for the next saccade.

The amplitude of the saccades is chosen by rating each gap according to its apparent angular

size and its angular proximity to the navigation goal. Because it relies on the maximum rate of

optic flow, the method generates trajectories that are equidistant to the two closest obstacles,

and are thus locally optimum in terms of safety. By varying a single parameter that encodes

the relative importance given to the angular size of gaps and their angular proximity to the

navigation goal, a trade-off between flight safety and the directness of the generated trajectory

can be found.

4.2 Method

Let’s consider a flying agent whose task is to navigate across a forest-like environment while

avoiding collisions. We consider in this study that the agent flies on a two dimensional plane

at constant altitude. The agent can control its flight in terms of its flight speed on the 2D plane

V , and its heading angleΦ defined as the angle between north and the main axis of its body.

At any time, the agent knows the goal headingΦgoal that points to its destination. The way this

information is obtained is outside the scope of this study, but it can be for example computed

from visual odometry [123] or using polarized light cues [65].

We model a forest environment as a set of vertical "trees" with cylindrical shape. The trees are

randomly distributed across the environment, and their position in unknown to the agent. We

will refer to these trees as the obstacles that have to be avoided while navigating.

4.2.1 Safe paths in forest environments

In order to navigate safely through such environment, a flying agent should maximize the

distance to obstacles. Considering n obstacles, the environment can be partitioned into n cells

using Voronoi partitioning. Each cell of the resulting Voronoi diagram is defined as the set of

points that are closer to one obstacle than to any other obstacle. The edges of the Voronoi cells
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Figure 4.1 – Illustration of the navigation algorithm
The flying agent is here represented by a bumblebee. It flies along a saccadic trajectory made
of straight segments and sharp yaw turns (dashed black line). Obstacles are represented
by grey circles. (1): During a straight flight segment, the agent flies at constant speed and
evaluates obstacle proximity around itself. (2): The field of obstacle proximity is displayed
as the blue curve around the agent. Each pair of consecutive detected obstacles forms a gap
(indicated by red regions). Each gap is defined by its center (red segments) and its angular
width. Gaps are rated based on their relative widths, and on the angular distance between
their centers and the desired navigation direction according to equation (4.5). (3): Among the
five gaps present in this example, and thus the five potential headings, the agent has selected
one and has performed a saccadic yaw turn. It then repeats the process and estimates obstacle
proximity around itself.
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of a forest environment are thus the points that are equidistant to the two closest obstacles.

Consequently, Voronoi edges maximize the distance to the closest obstacles, and are locally

the safest paths.

Voronoi partitioning is a classic tool for robot navigation in known environment. However our

agent does not know the location of the obstacles and cannot build the voronoi diagram of

the environment. Here we propose a navigation method that takes inspiration from Voronoi

diagrams to follow safe paths, while not requiring a map of the environment.

4.2.2 Insect saccadic flight

Flying insects often exhibit a flight pattern called saccadic flight. A saccadic flight is a succes-

sion of straight segments and sharp turns called saccades. During straight flight segments, the

heading and flight speed are held constant, with aligned heading and velocity vector. During a

saccade, the insect performs a quick rotation on the yaw axis in order to modify its heading. It

also generates lateral thrust in order to align its velocity vector to the next heading.

It is striking to note that an agent flying along a succession of Voronoi edges would perform

saccadic flight. The edges of a Voronoi diagram are equivalent to the straight flight segments

of an insect flight. The transition between two consecutive Voronoi edges is equivalent to a

saccadic yaw turn. However it is unlikely that insects compute Voronoi diagrams to navigate.

Most models of insect flight control strategies are simple reactive models based on optic flow.

Saccadic flight is beneficial for flight control strategies that rely on optic flow. Indeed optic

flow can be decomposed into two components: the translational optic flow and the rotational

optic flow [53, 64]. Translational optic flow is proportional to the ratio V /d between flight

speed V and distance d to an obstacle. Thus it provides an estimate of the relative proximity

of the environment. On the contrary, rotational optic flow is only function of the rotation rate

of the observer, and does not contain information about the structure of the environment.

Saccadic flight minimizes the time spent performing rotations, when optic flow cannot be

used for navigation. Saccadic flight however maximizes the time spent in purely translational

flight. It is believed that insects gather information about their surrounding environment

during the straight flight segment, and modulate the amplitude of the saccade turn based on

this information.
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4.2.3 Obstacle detection

For a given flight speed and distance to an obstacle, the amplitude of optic flow depends on

the location of the obstacle in the visual field.

|| ~OF trans(α)|| = V

d
sin(α) (4.1)

where V is the flight speed, d is the distance to the obstacle, and α is the angle between the

current direction of motion and a viewing direction. The translational optic flow is maximum

for α=π/2 and α=−π/2, but is null for α= 0 and α=π. In other words, these regions of the

visual field do not contain information on the proximity of obstacles and thus cannot be used.

The relative proximity of obstacles is estimated by correcting the measurement of translational

optic flow:

p(α) = 1

V

|| ~OF trans(α)||
max(ε, |sin(α)|) (4.2)

An obstacle is detected in the viewing direction α if the proximity in this direction is higher

than a threshold set relative to the fastest moving object in the field of view:

α ∈O if p(α) ≥ prel
thres max

[0,2π]
(p) (4.3)

Conversely, gaps are defined as the regions between obstacles:

α ∈G if p(α) < prel
thres max

[0,2π]
(p) (4.4)

where O is the set of viewing directions where an obstacle is detected, G is the set of viewing

directions where obstacles are not detected, and prel
thres is a relative proximity threshold. In our

experiments, we use the value prel
thres = 1/2, which corresponds to selecting all obstacles that

are at most twice as far as the closest obstacle. We define individual gaps Gi as the connected

regions of G (Fig. 4.1). Each gap is defined by its center αG
i and its angular width wG

i , both

expressed in radians.

4.2.4 Gap selection and saccade generation

We propose an approach where saccades are triggered periodically. During straight flight seg-

ment lasting ∆tsac seconds, optic flow is measured across the field of view, obstacle proximity

is computed, obstacles and gaps are detected. At the end of the straight flight segment, the NG

detected gaps with centers αG
i and width wG

i are evaluated and given a rating rGi according to
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equation (4.5).

rGi =
(
kgoal

∣∣∣(Φ+αG
i )−Φgoal

∣∣∣)+(
kwidth

∣∣∣∣∣ wG
i

π

∣∣∣∣∣
)

(4.5)

where kgoal and kwidth are two gains that determine the relative importance of the direction of

navigation and the width of the gap.

The gap with the highest rating is selected and the next heading setpoint is

Φk+1 =Φk +αG
sel (4.6)

whereΦk andΦk+1 are the previous and next heading sepoints respectively; and αG
sel defines

the center of the gap that received the highest rating.

4.3 Simulation Results

A simulated agent was flown in the same simulation environment as in Chapter 2, with the

addition of vertical obstacles that are randomly located in a 6m×6m arena. The goal direction

Φgoal is set so as to let the agent navigate between four waypoints (WP1, WP2, WP3 and WP4

on Fig. 4.2a). Once the agent has reached a waypoint – which is defined by an acceptance

radius of 1 meter – the goal direction is updated to point to the next waypoint. The trajectories

of the simulated agent are recorded as it passes several times through the four waypoints.

The agent loosely follows the edges of the Voronoi graph of the environment, even though it

does not have knowledge of the position of the obstacles and does not constructs the Voronoi

graph (Fig. 4.2a). As the gain kwidth is increased, the mission time, defined as the time required

to pass through the four waypoints, increases (Fig. 4.2b). This means that this gain can be

used to affect the directness of the flight path. With larger values of kwidth, and thus more

emphasis on gap width, the trajectories will favor wide gaps, at the expense of mission time.

An example can be seen with the purple curve on Fig. 4.2a, at location (x = 0, y = 4), where

the agent chose a longer path than with lower values of kwidth in order to navigate through

wider gaps. As the gain kwidth is increased, the minimum distance to obstacles during the

mission increases (Fig. 4.2c). This means that this gain can be used to select the level of flight

safety. When kwidth = 0, i.e. when gap width is not taken into account, the minimum distance

to obstacles is very small, and collisions are more likely to occur. See for example the blue

curve on Fig. 4.2 for a near miss at location (x = 1, y = 0).
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Figure 4.2 – Navigation results in simulation
(a): Top view of the forest-like environment. The obstacles are represented by grey circles.
The edges of the Voronoi cells are displayed as grey segments with a thickness proportional
to the distance between the edge and the two closest obstacles. In this example, all agents
are initialized at location (x = 0, y = 1) and headingΦ= 180◦. They navigate towards the first
waypoint (WP1) which is located at location (x = 2, y =−2), until they reach an acceptance
radius of 1 m around the waypoint, when they navigate towards the second waypoint (WP2),
then the third waypoint (WP3), until they reach the fourth waypoint (WP4) and continue
towards the first waypoint again. The gain kgoal is kept constant at a value of 1, the gain
kwidth is varied between 0 and 1. (b): Time required to reach the fourth waypoint (WP4) as a
function of the weight kwidth. The mission time increases with kwidth, which denotes less direct
flight paths. (c): Minimum distance between the agent and obstacles during the mission as
a function of the weight kwidth. The minimum distance increases with kwidth, which denotes
safer flight paths.
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4.4 Hardware implementation

4.4.1 Design of a multirotor robot for saccadic flight

As stated before, saccadic flight allows to separate the phases of pure translational flight from

the phases of fast heading change, called saccades. During translational flight phases, infor-

mation about the proximity of the surrounding obstacles is easily obtained from translational

optic flow (equation 4.2). During saccades, however, fast body rotations may blur images and

the measured rotational optic flow does not depend on the proximity to the obstacles.

Most multirotor robots are under-actuated. They are equipped with a set of rotors laid out

on a plane which, when actuated together, are capable of producing moments around the

three body axes (roll, pitch and yaw), as well as a thrust force along the z body axis. However,

most multirotor robots cannot produce thrust forces along their x and y body axes. As a

consequence, in order to accelerate forward or sideways, they are required perform body

rotations to align their z body axis with the desired thrust vector.

With such robot, a saccade requires three steps. First, the robot rotates in order produce a

combination of vertical and lateral forces. Second, it accelerates sideways until the desired

flight direction is achieved. Third, the robot rotates back to its original tilt angle in order to

stop the saccade. While the second phase may be performed in a purely translational fashion,

the tilt of the robot body has to be compensated for by the vision system (either by software

of by a gimbal system) and it is not obvious that the field of view along the horizontal plane

remains unobstructed during the manoeuver. Furthermore, the fact that the robot has to

perform two body rotations for a single saccade is suboptimal because rotation phases do not

allow to measure the proximity of obstacles.

In order to limit the amount of body rotations during saccadic flight and thus maximize the

time spent in pure translation, we propose to design a fully actuated multirotor robot that is

capable of producing thrust forces along its x and y body axes without tilting its body. With a

fully actuated robot, a saccade may be composed of two phases only. First, the robot rotates

about its yaw axis in order to align its x body axis with the desired velocity vector. Second, the

robot generates lateral forces until its velocity vector matches the desired velocity vector.

We designed a robot with eight tilted rotors (Fig. 4.3). While six rotors would have been

sufficient to control the six degrees of freedom of the robot, the two additional rotors make it

more robust against actuator saturation and motor failure. The rotors are arranged on two

layers. The rotors on the top layer are tilted inwards, while the rotors on the bottom layer are

tilted outwards. This layout provides the fish eye camera that is mounted in the center with an
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Figure 4.3 – BumbleBot: A lightweight flying robot for optic flow based navigation. The robot
is equipped with 8 brushless motors tilted at 35°, either towards the center of the robot or
away from it, which allows the generate horizontal thrust, and thus full controllability of
the 6 degrees of freedom (roll, pitch, yaw, X, Y, Z). The robot is equipped with a downward
facing optic flow camera (PX4Flow), associated to an ultrasonic range sensor, which provides
a velocity estimate to the robot. In the front, a modified PX4Flow camera is mounted with a
fish-eye lens, for a wide field of view of 180◦×30◦. The total weight of the platform, battery
included, is 169 grams.

unobstructed panoramic field of view at all time. Furthermore, the eight arms that connect

the motors to the central body protect the propellers, cameras and other pieces of electronics

in case of contact with obstacles.

4.4.2 Velocity control with level attitude

A schematic view of the implemented controller is presented on Figure 4.4. The optic flow

computation is performed onboard the front-facing PX4Flow camera as described in previous

chapters. The detection of obstacles is also performed onboard the front-facing camera, and

the angular position of the obstacles is transmitted to the main autopilot board via a serial

connection.

The saccade generator, velocity controller, attitude controller, control allocation, and estimator

blocks are all running on the main PX4 flight controller (Fig. 4.4). The attitude controller, rate

controller and estimator blocks are reusing the existing PX4 multirotor attitude controller

and extended Kalman filter which are largely untouched. The saccade generator is imple-

mented as a custom PX4 module as described in the methods section. The existing multirotor
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Figure 4.4 – Schematic view of the controller. The saccade generator receives the location
of the surrounding obstacles from the camera. It generates a heading setpoint according to
equation 4.5 which is converted into a velocity vector setpoint vc and an attitude quaternion
setpoint qc . The 3D thrust setpoint tc is computed by a PID controllers that regulates the
robot’s estimated velocity ṽ to the velocity setpoint vc . The 3D moment vector mc is computed
by two cascaded PID controllers that perform attitude and rate control. The 3D thrust setpoint
and 3D moment setpoint are converted into actuator commands u in the control allocation
step.

velocity controller is customized to provide level attitude setpoints and 3D thrust setpoints

instead of tilted attitude setpoints and 1D thrust setpoints. The existing control allocation was

customized to handle the control of six degrees of freedom.

At each saccade, the saccade generator increments the heading setpoint Φc . An attitude

quaternion setpoint qc with zero tilt angle (null roll and pitch angles) and a velocity setpoint

~vc are computed as:

qc =


cos(Φc /2)

0

0

sin(Φc /2)

 and ~vc =


vcruise

(
1− |Φc−Φ̃|

π

)
cos(Φc )

vcruise

(
1− |Φc−Φ̃|

π

)
sin(Φc )

kz
(
pc z − p̃z

)
 (4.7)

where qc is the attitude quaternion setpoint,Φc is the heading setpoint computed from the

detected location of obstacles, Φ̃ is the current heading, vcruise is a reference cruise speed,

which is scaled according to the heading error by a factor
(
1− |Φc−Φ̃|

π

)
in order to slow down

before performing sharp turns, kz is a proportional gain used to control the altitude, pc z is the

altitude setpoint, and p̃z is the current altitude.

The 3D thrust setpoint~tc is the output of a velocity PID controller. The 3D moment setpoint

~mc is the output of two cascaded attitude and rate PID controllers. The thrust and moment
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setpoints are combined into motor commands u in the control allocation block (Fig. 4.4).

4.4.3 Six degrees of freedom control allocation

We formulate the control allocation as a linear function from the six dimensional command

space (3D moment and 3D force setpoints) to the n-dimensional actuator command space

(one per rotor) represented by the control allocation matrix B .

~u = B ·
[
~m

~t

]
(4.8)

where~t is the (3×1) thrust setpoint vector, ~m is the (3×1) moment setpoint vector, and ~u is

the (n ×1) actuator command vector.

The thrust and moment generated by the i-th rotor can be computed as

~ti = ktρD4ω2
i~vi

~mi = (~pi −~pcg )× (ktρD4ω2
i~vi )−di kmρD5ω2

i~vi

(4.9)

where~ti is the thrust generated by the i-th rotor, ~mi is the moment generated by the i-th rotor,

~vi is the main axis of the rotor (unit vector), ~pi is the position of the center of the rotor, ~pcg

is the position of the center of mass of the robot, kt is the thrust coefficient of the propeller,

km is the moment coefficient of the propeller (usually km ≈ kt
10 ), ωi is the rotation speed, ρ

is the fluid density, D is the diameter of the propeller, and di is the rotation direction (-1 for

clockwise rotation or +1 for counter clockwise rotation).

The thrust and moment generated by the i-th rotor can be approximated as

~ti ≈Ct ui~vi

~mi ≈
(
Ct (~pi −~pcg )×~vi

)
ui − (di Cm~vi )ui

(4.10)

where Ct is the approximated thrust coefficient of the motor-propeller unit, Cm is the approxi-

mated moment coefficient of the motor-propeller unit, and ui is the motor command.

We define the actuator effectiveness matrix A as the (6×n) matrix that allows to compute the

thrust and moment generated by a set of n rotors as a function of the actuator command of

each rotor.[
~m

~t

]
= A ·~u (4.11)

87



Chapter 4. Joint obstacle avoidance and visual navigation in cluttered environments

The matrix A can be found by concatenating the moment and thrust vectors generated by the

n rotors:

mx

my

mz

tx

ty

tz


=



m0
x . . . mi

x . . . mn−1
x

m0
y . . . mi

y . . . mn−1
y

m0
z . . . mi

z . . . mn−1
z

t 0
x . . . t i

x . . . t n−1
x

t 0
y . . . t i

y . . . t n−1
y

t 0
z . . . t i

z . . . t n−1
z


·



u0
...

ui
...

un−1


(4.12)

Finally, the control allocation matrix B is computed as the Moore-Penrose pseudo-inverse of

matrix A:

B = A+ (4.13)

The singular value decomposition (SVD) of A gives A = U ·σ ·V T , where σ is a diagonal

matrix. If A has a rank r , then the first r elements of σ are non-nul. B can be computed as

B =V ·σ+ ·U T , where σ+ is a diagonal matrix that contains the inverse of the non-nul terms

of the diagonal of σ.

For robots where the position and orientation of the rotors are known, and where the thrust and

moment constants can be measured, B can be pre-computed offline. An automatic generator

was implemented and is now used by default in the PX4 autopilot [90]. The generator takes

as input a text file that describes the geometry of the robot, i.e. the list of rotors with their

respective location, orientation and constants. Then, the generator pre-computes the control

allocation matrix and generates C++ code to be used by the PX4 multirotor mixer.

4.4.4 Results and limitations

The navigation strategy was tested on the flying robot in an experimental arena of dimension

11m×12m containing 8 obstacles of dimension 0.35m×0.35m×1.6m (Fig. 4.5). The robot

was flown manually to several starting locations, then was flown autonomously using the

proposed navigation algorithm. Each trial was stopped manually either when the robot flew

towards the limits of the experimental arena, or when a collision with an obstacle occurred.

For this experiment, goal-oriented navigation was disabled (kgoal = 0) due to the relatively

small dimension of the experimental room. Thus, the robot only relies on the gap width

(kwidth = 1) to navigate. The robot was flown at a cruise speed vcruise = 0.5m/s, an altitude

setpoint pc z = 0.6m, and a minimum inter-saccade time ∆tsac = 1s.
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4.4. Hardware implementation

Figure 4.5 – Sample trajectories recorded during hardware experiments
(a and b): State of the robot against time during two autonomous flights. The horizontal
position of the robot (top graphs) varies as the robots navigates around obstacles. Note
that the robot attitude remains level (bottom graphs, dashed line), while the yaw angle in
incremented by steps at each saccade (bottom graphs, solid line). (c): Top view of the flight
arena with the obstacles depicted as black squares and trajectories shown as colored curves.
The colored dots indicate the starting position of the robot and the white triangles represent
the position and orientation of the robot each time a saccade was performed.

89



Chapter 4. Joint obstacle avoidance and visual navigation in cluttered environments

It appears that –similar to the simulated paths– the robot followed several times the same

paths during different trials. For example, the blue and orange tracks are almost entirely

superimposed, and the purple track follows a portion of the the brown track before it diverges

(Fig. 4.5c).

It was also noted that when an experiment was started with the robot facing an obstacle,

the robot would collide frontally into the obstacle most of the times. On the contrary, when

an experiment was started with the robot facing a gap between two obstacles, the flights

were much longer, usually ending with the robot flying towards one of the white walls in

the experimental room. We believe that frontal collisions are due to the fact that the frontal

region is effectively a blind spot for optic flow based methods. Indeed, as can be seen in

equation (4.2), as the robot always aligns its heading with the velocity setpoint, the angle α

between viewing direction and flight direction is very small in the frontal region, and it is thus

impossible to obtain a proximity estimate. A potential solution to alleviate this limitation is

to introduce lateral oscillations during the inter-saccadic flight phases. This would allow to

measure non zero optic flow in the frontal visual field and hence remove the blind spot and

allow the robot to avoid frontal collisions.

4.5 Conclusion

In this chapter, we tackled insect-inspired navigation in cluttered environments with a novel

navigation algorithm based on the detection of the fastest moving objects in the visual field.

Our method uses the location of the fastest moving objects around a flying agent in order to

generate yaw saccades towards a flight direction that is free of obstacles and that leads to the

desired navigation goal. The algorithm was validated with a simulated agent navigating in a

cluttered environment. Future work will involve further validation on real hardware (Fig. 4.3).

Initial hardware experiments were performed and showed that the method can be applied

to real world indoor scenarios with well-contrasted obstacles. Further tests on the flying

robot will include the testing and characterization of the obstacle detection and the effect

of algorithm parameters in natural environments such as forests. It will also be interesting

to study how lateral oscillation without body rotation –which are feasible with the design

presented on Fig. 4.3– can improve the estimation of proximity in the forward direction, which

is now a blind area because of the lack of optic flow. By adding lateral oscillations, the focus

of optic flow expansion is shifted laterally and a proximity estimate can be obtained in the

forward direction.
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5 Concluding remarks

T
HIS chapter summarizes the main contributions of this thesis in the topic of insect

inspired visual perception, flight control, and collision avoidance. Novel algorithms

for optic flow estimation, visual flight control and navigation were proposed and

validated with behavioural studies, computer simulations, and robotic experiments. The main

accomplishments of this thesis are summarized in Section 5.1. Potential direction for future

work are given in Section 5.2.
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5.1 Main accomplishments

The goal of this thesis was to study the behaviour of flying insects in cluttered environment

in order to enhance our knowledge on insect visual perception and control, and to allow the

design of efficient and lightweight flying robots. This section summarizes the three main

contributions that can be extracted from this work. The first contribution was the research

done on the Elementary Motion Detector model and the development of an optic flow esti-

mation algorithm that builds on top of the EMD. The second contribution was the modelling

of bumblebee flight control in cluttered environment, which highlighted the importance of

optic flow pooling and showed that maximum pooling is likely used by flying insects to avoid

obstacles. Finally, the last contribution was a novel algorithm that models how insects may

navigate in cluttered environments by using optic flow to locate the surrounding obstacles

and perform saccadic manoeuvres. Each contributed model and algorithm was validated in

simulation or on autonomous flying robots.

Insect-inspired estimation of optic flow

The Elementary Motion Detector is a visual motion estimator that, although likely present

in insect neural system, is poorly correlated to optic flow. We showed that the location of the

maximum response in an EMD array provides appropriate estimation of optic flow when the

agent is flying sufficiently fast and/or close to the surface. We proposed a flight control strategy

that uses the location of maximum EMD response as control input instead of optic flow and

tested it in a 3D simulation and on a flying robot. Our strategy is both a good candidate for the

neuronal circuitry used in insect brain for visual flight control, and a lightweight alternative to

existing algorithms for optic flow estimation.

The role of optic flow pooling in insect flight control

Insect visual flight control has been extensively tested in numerous experimental environ-

ments with varying sizes, shapes, and wall texture, but much less was known about insect

visual flight control in cluttered environments. We investigated the effect of clutter on flight

control in bumblebees and used mathematical models to understand how and where optic

flow is being measured. Our results suggest that lateral position is controlled by balancing

the maximum optic flow in the frontal visual field. In other words, unlike current models that

consider static optic flow pooling, bumblebees appear to be selectively reacting to the fastest

moving objects in their frontal visual field.
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Joint obstacle avoidance and navigation in cluttered environments

Foraging insects like bees routinely traverse cluttered environments on their way between the

hive and a food source. It is still unclear how they are able to navigate and avoid collision in

unknown and cluttered environments. Building on the findings of this thesis in experimental

corridor, we proposed a novel navigation algorithm based on the detection of the fastest mov-

ing objects in the visual field. The algorithm was validated with a simulated agent navigating

in a cluttered environment.

5.2 Future work and outlook

5.2.1 Combining deep learning methods with bio-inspired models

Reinforcement learning is used in [108] to train a vision-based controller and to guide a

quadcopter safely through a forest. Input from a human is used to iteratively refine a con-

troller linking predefined image descriptors to lateral steering commands. The method shows

promising results and performs well even in environments where it received no training. The

major limitation of this method comes from the fact that all the visual processing is performed

on a computer on the ground and would be difficult to embed on a smaller platform.

Recent years have seen tremendous progress in the field of computer vision with the increas-

ing performance of deep convolutional neural networks [76]. Deep neural networks were

successfully employed to learn vision based controllers. A dataset of images gathered by

humans during hikes allowed to learn whether the track was located on the right or left side

of the camera and thus let a multirotor follow a forest trail autonomously [54]. By repeatedly

letting a drone crashing and by recording the last video frames before the collision, a deep

neural network was trained to predict collisions, which enabled collision avoidance in complex

indoor environments [51]. Finally, videos from cars were used to train a neural network to

navigate in urban environments [87].

With the miniaturization of single board computers, deep learning has become accessible

to small flying robots. However, deep learning require very large amount of training data,

which is often not convenient to obtain with flying robots. On the contrary, it is relatively

easy to obtain data from flying insects, and insects are systems that are the result of million

years of evolutionary optimization. Surely one could explore how to take advantage from deep

learning techniques to model insect flight.
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Figure 5.1 – Experimental setup for bumblebee navigation in cluttered environment
(a): Picture of the experimental setup. Vertical cylinders are randomly located in the arena. The
floor and cylinders are covered with a dead leave pattern similar to the one used throughout
this thesis. The walls are covered with mirrors, which give the illusion that the environment
is very large, thus simulating an infinite forest and avoiding border effects. (b): Top view of
the experimental setup. The bumblebee nest and the feeder are located at two opposite ends
of the arena and are connected to the inside of the arena via tubes where the bumblebees
can crawl. On this tube is mounted a camera system to identify the bumblebees as they enter
and leave the arena. (c): Sample trajectories recorded using a motion capture system and
reflective markers mounted on the back of the bumblebees. The trajectories presented here
are the equivalent of half a day of experiment. (d): Picture taken by the automated bumblebee
identification system at the tube leading to the nest. A visual tag is visible on the back the
bumblebee, as well as an infrared reflective marker. The visual tag is used to identify the
bumblebee, while the reflective marker is used for trajectory tracking using a motion capture
system.
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5.2.2 Behavioural study of insect goal-oriented flight in cluttered environments

This thesis provided the first behavioural study of bumblebees flight control in corridors

containing obstacles (Chapter 3). The main finding of this study was that bumblebee use

the maximum optic flow in the frontal visual field to control their flight laterally. Based on

this finding, we extrapolated a method for optic flow based navigation in forest-like cluttered

environments (Chapter 4). However, wether bees actually use such method in real life should

be tested experimentally.

In order to do this, an experimental setup was designed in collaboration with Dr. Olivier

Bertrand, Prof. Martin Egelhaaf, and the Lund Vision Group (Fig. 5.1a). The setup allowed

to record the 3D trajectories of bumblebees traversing an artificial forest-like environments

between their nest and a food source (Fig. 5.1c). The goal was to reconstruct the flow field

perceived by the bumblebees during the flights and study how the visual motion information

was converted into flight commands, in a similar fashion to Chapter 3.

A potential solution to process the experimental data might be machine learning techniques.

These techniques usually require a large amount of data that can be obtained with an auto-

mated setup such as the one presented on Fig. 5.1b. For example, one may formulate the

problem as a regression problem like in [113]. The goal would be to use the data gathered from

real bumblebee flights to train a deep neural network to predict a heading command based on

high dimensional optic flow input. This solution would however introduce new challenges in

the interpretability of the learned network [136].
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Manuscripts published in peer-reviewed scientific journals and conferences:

[72] Lecoeur, J., Baird, E. & Floreano, D. Spatial Encoding of Translational Optic Flow in

Planar Scenes by Elementary Motion Detector Arrays. Scientific Reports 8, 5821 (2018).

[70] Lecoeur, J., Baid, E. & Floreano, D. A Bee in the Mirror: A Bio-Inspired Model for Vision

Based Mid-Air Collision Avoidance (poster) in RIN13 Bionav -The application of animal

navigation techniques in autonomous vehicles, Royal Holloway College (2013).

[96] Pericet-Camara, R., Bahi-Vila, G., Lecoeur, J. & Floreano, D. Miniature artificial com-

pound eyes for optic-flow-based robotic navigation in 2014 13th Workshop on Information

Optics, WIO 2014 (2014).

[30] Daler, L., Lecoeur, J., Hahlen, P. B. & Floreano, D. A flying robot with adaptive morphol-

ogy for multi-modal locomotion. IEEE International Conference on Intelligent Robots

and Systems, 1361–1366 (2013).

Manuscripts under review in peer-reviewed scientific journals:

[74] Lecoeur, J., Dacke, M., Floreano, D. & Baird, E. The role of optic flow pooling in insect

flight control in cluttered environments. Scientific Reports in review (2018).

Manuscripts in preparation for future publication:

[73] Lecoeur, J., Baird, E. & Floreano, D. Visual acuity requirements for mid-air head-on

collision avoidance: a scaling law study. (in preparation).
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Appendix A. Publications

[71] Lecoeur, J., Baird, E. & Floreano, D. Insect inspired algorithm for joint obstacle avoidance

and navigation in forest-like environment. (in preparation).

[113] Schilling, F., Lecoeur, J., Schiano, F. & Floreano, D. Learning Vision-based Cohesive

Flight in Drone Swarms. arXiv: 1809.00543 (2018).

[75] Lecoeur, J., Dousse, N., Heitz, G., Schill, F., L’Éplattenier, G. & Huber, B. MAV’RIC: Open

source software library to build drone autopilots. (in preparation).
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B MAV’RIC: Open source software li-

brary for the development of drones

(a) LEQuad: a swarm of
10 quadrotors using the
MAV’RIC framework in an
outdoor environment.

(b) LEWing: a fixed wing using
the MAV’RIC framework.

(c) PackDrone: a foldable
drone inspired by origami.
The volume of the folded
robot is reduced by 92%.

(d) DALER: a multi-modal
robot capable of flying, hover-
ing and crawling using a min-
imal set of actuators.

(e) LEQuad equiped with two
fisheye cameras, it avoids col-
lisions using optic flow com-
puted across its 360 degrees
field of view

(f) YWing: a tailsitter VTOL ca-
pable of insect-like saccadic
flight.

Figure B.1 – Research platforms built using the MAV’RIC software library.

MAV’RIC is an open-source software library to build autopilots for small drones that was

developed during this thesis [75]. MAV’RIC framework is designed with a focus on modularity,

flexibility and explicitness. It is aimed for researchers requiring a large freedom to meet the

specific requirements of their research projects. Even if MAV’RIC is primarily a software library,

it provides ready-to-use sample projects. The library code is shared between research projects,

and project code is specific to a particular application. As a consequence, the researcher

can write his or her own application by importing parts of the library in the project code
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without interfering with other researchers. In addition, he or she can develop new features and

incorporate them into the library such that the whole group benefits from the development.

MAV’RIC [75] was used in several research projects in the Laboratory of Intelligent Systems

and contributed to the following publications:

[30] Daler, L., Lecoeur, J., Hahlen, P. B. & Floreano, D. A flying robot with adaptive morphol-

ogy for multi-modal locomotion. IEEE International Conference on Intelligent Robots

and Systems, 1361–1366 (2013).

[35] Dousse, N., Heitz, G. & Floreano, D. Extension of a ground control interface for swarms

of Small Drones. Artificial Life And Robotics 21, 9. 308–316 (2016).

[34] Dousse, N., Heitz, G. H. M., Schill, F. S. & Floreano, D. Human-Comfortable Collision

Free Navigation for Personal Aerial Vehicles. IEEE Robotics and Automation Letter 2, 8.

358–365 (2017).

[32] di Luca, M., Mintchev, S., Heitz, G. H. M., Noca, F. & Floreano, D. Bioinspired morphing

wings for extended flight envelope and roll control of small drones. Interface Focus 7, 11.

20160092 (2017).

[91] Miehlbradt, J. C., Cherpillod, A. T., Mintchev, S., Coscia, M., Artoni, F., Floreano, D., et al.

Data-driven body–machine interface for the accurate control of drones. Proceedings of

the National Academy of Sciences, 201718648 (2018).

[107] Rognon, C., Mintchev, S., Dell’Agnola, F. I. T., Cherpillod, A. T., Atienza Alonso, D. &

Floreano, D. FlyJacket: An Upper Body Soft Exoskeleton for Immersive Drone Control.

IEEE Robotics and Automation Letters 3, 2362–2369 (2018).

[12] Basiri, M., Schill, F. S., Lima, P. & Floreano, D. On-Board Relative Bearing Estimation for

Teams of Drones Using Sound. IEEE Robotics and Automation Letters 1, 820–827 (2016).

[13] Basiri, M., Schill, F., Lima, P. & Floreano, D. Localization of emergency acoustic sources

by micro aerial vehicles. Journal of Field Robotics (2017).

The source code1, documentation2, user guide3 and associated hardware and electronic

designs4 are available online.

1https://github/lis-epfl/MAVRIC_Library
2http://lis-epfl.github.io/MAVRIC_Library/doxygen/classes.html
3http://lis-epfl.github.io/MAVRIC_Library/
4https://github.com/lis-epfl/MAVRIC
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