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Abstract—This paper proposes a Voltage Stability Index (VSI)
suitable for unbalanced polyphase power systems. To this end,
the grid is represented by a polyphase multiport network model
(i.e., compound hybrid parameters), and the aggregate behavior
of the devices in each node by Thévenin Equivalents (TEs) and
Polynomial Models (PMs), respectively. The proposed VSI is a
generalization of the known L-index, which is achieved through
the use of compound electrical parameters, and the incorporation
of TEs and PMs into its formal definition. Notably, the proposed
VSI can handle unbalanced polyphase power systems, explicitly
accounts for voltage-dependent behavior (represented by PMs),
and is computationally inexpensive. These features are valuable
for the operation of both transmission and distribution systems.
Specifically, the ability to handle the unbalanced polyphase case
is of particular value for distribution systems. In this context, it
is proven that the compound hybrid parameters required for the
calculation of the VSI do exist under practical conditions (i.e., for
lossy grids). The proposed VSI is validated against state-of-the-
art methods for voltage stability assessment using a benchmark
system which is based on the IEEE 34-node feeder.

Index Terms—hybrid parameters, multiport network model,
polynomial model, polyphase power systems, Thévenin equiva-
lent, unbalanced power systems, voltage stability index

I. INTRODUCTION

TRADITIONAL power system control centers use elabo-
rate tools for State Estimation (SE) and Voltage Stability

Assessment (VSA) [1]. As the numerical methods for solving
the system equations are computationally intensive, these
processes are slow. Typically, refresh times are in the order
of seconds for SE, and minutes for VSA. Hence, only a few
critical contingencies can be analyzed in each control cycle [1].
These operational practices suffice for bulk power transmission
systems, but not for power distribution systems.

Presently, the increasing penetration of distributed energy
resources is pushing the development of Active Distribution
Networks (ADNs). Specifically, in order to enable the real-
time operation of ADNs, advanced distribution management
systems are required [2]. This need has recently triggered new
advances in the field. For instance, the practical feasibility of
real-time SE has been demonstrated using phasor measurement
units [3], a phasor data concentrator [4], and a state estimator
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implemented in industrial hardware [5]. The knowledge of
the system state in real-time enabled the development of
various real-time control methods, including hierarchical [6],
distributed [7], and decentralized [8] approaches. To date,
such methods do not perform online VSA to guarantee static
voltage stability subsequent to controller actions. This practice
is potentially dangerous. Indeed, it has been documented that
static voltage stability, rather than (as usual) thermal ratings of
lines and transformers, can be the limiting operating constraint
of power distribution systems (e.g., [9]). For this reason, there
is a need for methods which are able to perform VSA of
power distribution systems in real-time. Notably, in order to
ensure an accurate analysis, such methods need to use realistic
models of the grid (i.e., a polyphase multiport model) and the
resources (i.e., incl. voltage-dependent behavior) [10,11].

This paper proposes a Voltage Stability Index (VSI) based
on the compound hybrid parameters of the grid, and Thévenin
Equivalents (TEs) and Polynomial Models (PMs) representing
the aggregate behavior of the nodes. The proposed VSI is
a generalization of the known L-index [12] for more generic
systems (i.e., unbalanced polyphase power systems with either
radial or meshed topologies). In this context, the contributions
of this paper are threefold. Firstly, a generalized formulation
of the L-index, which includes a polyphase multiport network
model and incorporates TEs and PMs, is developed. Secondly,
it is proven that the required compound hybrid parameters do
always exist under practical conditions (i.e., for lossy grids),
thereby establishing a rigorous theoretical foundation for the
L-index and its descendants. Thirdly, the practical relevance of
the proposed VSI is demonstrated by validating its ability to
assess the static voltage stability of a realistic power system.

The rest of this paper is organized as follows. First, a review
of the existing literature is presented in Sec II. Afterwards, the
system model is described in Sec. III. The VSI is developed
in Sec. IV, and validated in Sec. V. Finally, the conclusions
are drawn in Sec. VI.

II. LITERATURE REVIEW

In order to make it easier to follow, the literature review is
structured with respect to the following topics: (i) continuation
power flow, (ii) maximum loadability, (iii) maximum power
transfer, and (iv) power-flow solvability. Based on this review,
it is then motivated why further work is needed.
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A. Continuation Power Flow

Nose curves, which describe the link between active/reactive
power and voltage (a.k.a. PV /QV curves), are widely used for
VSA. These curves are obtained via Continuation Power Flow
(CPF) methods, which vary load or generation to produce a
continuum of power-flow solutions [13,14]. For lossy grids,
static voltage instability due to generation is of little practical
interest, as it occurs at excessive power injections [15]. That
is, thermal ratings of lines or transformers are reached prior
to instability. In contrast, excess load can cause instability
while respecting these ratings [9]. Generally, CPF methods are
computationally intensive, and too slow for real-time operation
[16], even if advanced predictors/correctors [17] or adaptive
stepsize control [18] are employed to accelerate the execution.
Usually, CPF methods work with positive-sequence equivalent
circuits of balanced three-phase systems, but the concept can
be extended to unbalanced three-phase systems [19,20].

B. Maximum Loadability

Unstable operating points are bifurcations of the nonlinear
system model w.r.t. nodal power absorptions or injections [21].
These points correspond to the loadability limits of the system,
which can be obtained by solving a Nonlinear Program (NLP),
namely maximization of the loading factor (in a bus, an area,
or the entire system) subject to the power-flow equations [22].
To solve this NLP, direct or indirect iterative methods can be
employed. Direct methods explicitly consider the constraints,
which means that intermediate solutions are feasible. For
example, interior-point methods [23] fall into this category.
Indirect methods instead solve a series of unconstrained op-
timization problems, which include penalties for constraint
violations. For example, augmented-Lagrangian methods [24]
and penalty methods [25] belong to this category.

C. Maximum Power Transfer

If the load is purely constant-power (CP), the critical point
is the tip of the nose curve (i.e., the point of maximum load).
According to the maximum-power-transfer theorem, the power
delivered by a source to a load reaches its maximum when the
source’s output impedance matches the load impedance (i.e.,
they are complex conjugate) [26]. Typically, this impedance-
matching criterion is applied to equivalent two-node systems,
each of which consists of a single CP load, plus a TE of the
respective external system [27]. The loads can also be rep-
resented by PMs, whose constant-current (CI) and constant-
impedance (CZ) components are included into the TEs [28].
Alternatively, the impedance-matching criterion can be used to
construct the loadability surfaces of the said equivalent two-
node systems in the PQ plane [29,30]. The aforementioned
approaches tacitly assume that TEs reasonably reproduce the
behavior of the external systems seen by the load nodes for the
whole range of operating conditions, which is a priori a coarse
approximation. Hence, some researchers advocate the use of
more elaborate models, which are based on so-called coupled
single-port circuits. For example, the TE can be extended by a
coupling term [31] or refined with sensitivity coefficients [32].
Finally, Ward equivalents can be used instead of TEs [33].

D. Power-Flow Solvability

The power-flow equations are borderline (un)solvable on the
loadability surface. It is possible to formulate conditions for
the solvability of the power-flow equations [34], or to construct
approximations of the loadability surface [35]–[37]. However,
these approaches tend to be computationally intricate. Hence,
most works instead exploit that Jacobian matrix of the power-
flow equations is singular on the loadability surface [38]. More
precisely, the determinant [9], eigenvalues [39], and singular
values [40] of the Jacobian are widely used as VSIs. Another
popular family of VSIs descends from the L-index [12], which
is derived from the hybrid parameters of the grid. The original
L-index [12] is based on idealized models of generators (i.e.,
constant-voltage sources) and loads (i.e., CP loads), but there
exist variants based on more generic models of generators (i.e.,
TEs) [41] or loads (i.e., PMs) [42]. Lastly, note that most VSIs
vary nonlinearly with the load. That is, there may not be a one-
to-one relation between VSI and loadability margin. However,
for special cases, such as CP loads [43] or PMs with constant
power factor [44], VSIs with more linear behavior do exist.

E. Motivation for Further Work

The evolution towards ADNs has sparked the development
of various methods for real-time control (e.g., [6]–[8]). Yet,
to date, such control methods do not perform online VSA to
ensure stable operation subsequent to a control decision. This
negligence is dangerous, since static voltage instability is a
proven threat in distribution systems (e.g., [9]). Moreover, the
unbalanced polyphase nature of the grid is normally ignored.
Therefore, there is a need for VSA tools which are capable of
real-time operation (unlike Sec. II-A/II-B), and able to handle
a detailed system model (unlike Sec. II-C/II-D). To this end,
this paper proposes a generalized formulation of the L-index,
which is based on the compound hybrid parameters of the grid,
and TEs and PMs of the nodes. These equivalents are suitable
for representing diverse distributed loads and generators, with
or without power electronic interfaces [45,46].

III. SYSTEM MODEL

A. Electrical Grid

Subsequently, the grid model developed in [47] is recalled.
Consider an unbalanced polyphase power system equipped

with a neutral conductor. The system is wired as follows:

Hypothesis 1. The neutral conductor is grounded through an
effective earthing system, which establishes a null voltage w.r.t.
the ground. Moreover, the reference points of all sources (i.e.,
voltage or current) are connected to the neutral conductor.

Under these conditions, the phase-to-neutral voltages are de
facto phase-to-ground voltages, and fully describe the system.
The phases are numbered as p P P – t1, ¨ ¨ ¨ , |P|u, and the
ground node as g P G – t0u. A polyphase node is a complete
set of phase terminals that belong together. The clamps of the
electrical components which the grid is built from (e.g., lines
and transformers) form the set of physical polyphase nodes
Nphysical. As to the grid, the following hypothesis is made
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Z`i

Yt

u P N n P N

g P G

`i “ pu, nq P L

t “ pn, gq P T

Z`j

v P N `j “ pn, vq P L

Vn,p

In,p

Fig. 1. Definition of the compound branch impedance matrices Z` (` P L),
compound shunt admittance matrices Yt (t P T), nodal voltage phasors Vn,p
(n P N, p P P), and injected current phasors In,p (n P N, p P P).

Hypothesis 2. The grid consists of linear passive components.
In a per-unit model, these components can be represented by
polyphase Π-section or T-section two-port equivalent circuits,
whose branch and shunt elements are described by compound
impedance and admittance matrices, respectively.

That is, only the electromagnetic coupling within components,
but not between them, is considered.

These equivalent circuits may introduce virtual polyphase
nodes Nvirtual. For instance, every T-section equivalent circuit
adds one virtual polyphase node. Let N – Nphysical Y Nvirtual
be the set of all polyphase nodes. The topology of the grid
model is described by the polyphase branches ` P L Ď NˆN

and the polyphase shunts t P T – N ˆ G. The branch graph
B – pN,Lq is described by the branch incidence matrix AB

AB : AB,kn –

$

&

%

`1 if `k “ pn, ¨q P L
´1 if `k “ p¨ , nq P L

0 otherwise
(1)

Note that AB exists for any topology (i.e., radial and meshed).
Every polyphase branch ` P L is associated with a compound
branch impedance matrix Z`, and every polyphase shunt t P T
with a compound branch admittance matrix Yt (see Fig. 1).
Regarding these parameters, the following hypothesis is made

Hypothesis 3. For all polyphase branches ` P L, it holds that

Z` “ ZT` , <tZ`u ľ 0, DY` – Z´1
` (2)

For all polyphase shunts t P T with Yt ‰ 0, it holds that

Yt “ YT
t , <tYtu ľ 0, DZt – Y´1

t (3)

Note that <tZ`u ľ 0 and <tYtu ľ 0 imply lossiness.
Let Vn,p and In,p denote the phasors of the phase-to-ground

voltage and injected current in phase p of node n, respectively
(see Fig. 1). Define

V :“ colnPNpVnq, Vn – colpPPpVn,pq (4)
I :“ colnPNpInq, In – colpPPpIn,pq (5)

VTE,s

Is

ZTE,s

Vs

(a)

Vr,p YPM,r,p

Ir,p
IPM,r,p

SPM,r,p

(b)

Fig. 2. Representation of the aggregate node behaviour: (2a) TE of a slack
node s P S, (2b) PM of phase p P P in a resource node r P R.

The compound admittance matrix Y describes Ohm’s law

I “ YV (6)

Define the polyphase incidence matrix AP
B and the primitive

compound admittance matrices YL and YT as

AP
B – AB b diagp1|P|ˆ1q (7)

YL – diag`PLpY`q (8)
YT – diagtPTpYtq (9)

where 1MˆN is a matrix of ones with size M ˆN , and b is
the Kronecker product. Then, Y is constructed as follows

Y “ pAP
Bq

TYLA
P
B `YT (10)

Let A,B Ĺ N so that AXB “ H. Define IA – colnPApInq,
VB – colnPBpVnq, and YAˆB as the block of Y that relates
IA and VB. The following properties hold (see [47] for proof).

Theorem 1. Let Z Ĺ N, s.t. Z ‰ H and IZ “ 0 (i.e., Z has
zero injected currents). Define ZA – NzZ. If Hypotheses 1–3
hold, B is weakly connected, and <tZ`u ą 0 @` P L, then
Ohm’s law (6) can be reduced to the following form

IZA
“ pYVZA

, pY “ Y{YZˆZ (11)

where Y{YZˆZ is the Schur complement of Y w.r.t. YZˆZ.
If Z is partitioned as tZk | k P Ku, the Zk can also be reduced
one after another (i.e., in sequence rather than in parallel).

Theorem 2. Let M Ĺ N s.t. M ‰ H. If Hypotheses 1–3 hold,
B is weakly connected, and <tZ`u ą 0 @` P L, then there
exists a compound hybrid matrix H so that

„

IMA

VM



“

„

HMAˆMA
HMAˆM

HMˆMA
HMˆM

 „

VMA

IM



(12)

whose blocks are given by

HMˆM “ Y´1
MˆM (13)

HMˆMA
“ ´Y´1

MˆMYMˆMA
(14)

HMAˆM “ YMAˆMY´1
MˆM (15)

HMAˆMA
“ Y{YMˆM (16)

This property holds both for unreduced and (partially) reduced
compound admittance matrices (i.e., Y and pY in Theorem 1).
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B. Aggregate Behavior of the Nodes

The nodes are divided into three sets based on their generic
behaviour. Namely, N “ ZY SYR, where Z stands for zero-
injection nodes, S for slack nodes, and R for resource nodes.

In zero-injection nodes, there are no devices. Hence

IZ “ 0 (17)

At the slack nodes, the voltage (and frequency) is regulated,
either by a device, for instance a synchronous machine [41]
or a power electronic device [48], or a link to the main grid.
Accordingly, the slack nodes s P S behave as non-ideal voltage
sources, which can be represented by TEs [41]:

Vs “ VTE,s ´ ZTE,sIs (18)

where VTE,s and ZTE,s are the TE voltages and impedances,
respectively (see Fig. 2a).

At the resource nodes, non-zero power is injected/absorbed,
but the voltage is not regulated. This behaviour corresponds to
voltage-dependent power sources, which can be approximated
by PMs [45,46]. Define the normalized voltage vr,p in phase
p P R of resource node r P R as

vr,p –
Vr,p
V0,r

(19)

where V0,r is a given reference voltage (e.g., nominal voltage).
Assuming that the equivalent power sources have no coupling
among the phases, the injected active powers Pr,p and reactive
powers Qr,p are given by quadratic polynomials of the vr,p:

Pr,p “ λr,pP0,r,ppα<,r,p|vr,p|
2
` β<,r,p|vr,p| ` γ<,r,pq (20)

Qr,p “ λr,pQ0,r,ppα=,r,p|vr,p|
2
` β=,r,p|vr,p| ` γ=,r,pq (21)

where α<{=, β<{=, and γ<{= are normalized coefficients (i.e.,
α<{=`β<{=`γ<{= “ 1), λ is a loading factor, and P0 and Q0

are reference powers which correspond to λ “ 1 and |v| “ 1.
In general, as indicated by the subscripts r and p in (20)–(21),
the aforestated quantities are functions of the node and phase.
For given λr,p, Sr,p “ Pr,p ` jQr,p can be written as

Sr,p « ´Y
˚

PM,r,p|Vr,p|
2
` Vr,pI

˚
PM,r,p ` SPM,r,p (22)

where YPM,r,p, IPM,r,p,, and SPM,r,p are CZ, CI, and CP terms,
respectively (see Fig. 2b). Recall from Sec. II-C that, provided
that the load is purely CP, the critical point lies at the tip of
the nose curve. If the load contains CI or CZ components, this
is not the case. Namely, injection or absorption terms shift the
critical point to the upper or lower portion of the nose curve,
respectively [11].

The parameters of the TEs and PMs can be derived formally
or numericall, if white-box models of the underlying devices
are available. In practice, it is often easier to estimate them
from measurements, for instance using weighted-least-squares
regression [49]. In this paper, it is assumed that the model
parameters are known – irrespective of how they are obtained.

Y

ZTE,s

Is

Ir,p

VTE,s Vs Vr,p

Augmented Electrical Grid

Thévenin Equivalents Polynomial Models

Fig. 3. Schematic of the system model with augmented electrical grid.

IV. VOLTAGE STABILITY INDEX

In the following, the generalized L-index is developed based
on the aforementioned models. To this end, a procedure similar
to the derivation of the original formulation of the L-index [12]
is followed. Namely, the equations describing the polyphase
network (6), the TEs (18), and the PMs (22) are combined to
yield a complex quadratic equation.

Summarizing Sec. III, the system is described by (see Fig. 3)

I “ YV (23)
IZ “ 0 (24)
Vs “ VTE,s ´ ZTE,sIs, @s P S (25)

Ir,p “ ´YPM,r,pVr,p ` IPM,r,p `
S˚PM,r,p

V ˚r,p
,
@r P R,
@p P P

(26)

If it holds that

Hypothesis 4. The impedances ZTE,s (s P S) satisfy

ZTE,s “ ZTTE,s, <tZTE,su ľ 0, DYTE,s – Z´1
TE,s (27)

which is the analogon of (2), the model can be reinterpreted.
Define I as the set of internal nodes of the TEs. The equivalent
voltage sources of the TEs and the PMs are connected through
the augmented electrical grid with nodes N

1
– IYN, which

is composed of the physical electrical grid and the equivalent
impedances of the TEs (see Fig. 3). The augmented electrical
grid can also be described by Ohm’s law, namely

I1 “ Y1V1 (28)

where I1 and V1 are the vectors of injected currents and
phase-to-ground voltages, and Y1 is the compound admittance
matrix of the augmented electrical grid. More precisely, (28)
is obtained by combining (23) with (25). Define

VTE – colsPSpVTE,sq (29)
YTE – diagsPSpYTE,sq (30)
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where Hypothesis 4 ensures the existence of the YTE,s @s P S.
Furthermore, let V1 and I1 be constructed as follows1

V1 “

»

—

—

–

V1I
V1S
V1Z
V1R

fi

ffi

ffi

fl

“

»

—

—

–

VTE
VS

VZ

VR

fi

ffi

ffi

fl

(31)

I1 “

»

—

—

–

I1I
I1S
I1Z
I1R

fi

ffi

ffi

fl

“

»

—

—

–

IS
0
0
IR

fi

ffi

ffi

fl

(32)

Observe that the slack nodes S are zero-injection nodes in the
augmented electrical grid (i.e., I1S “ 0). Through combination
of (23) and (25), Y1 is obtained as

Y1
“

»

—

—

–

YTE ´YTE 0 0
´YTE YTE `YSˆS YSˆZ YSˆR

0 YSˆZ YZˆZ YZˆR

0 YSˆR YRˆZ YRˆR

fi

ffi

ffi

fl

(33)

If Hypotheses 1–4 hold, then the augmented electrical grid
satisfies the conditions of Theorems 1–2. Thus, the nodes SYZ
can be eliminated via Kron reduction, which yields a reduced
electrical grid, which is described by (see Theorem 1)

„

IS
IR



“ pY
1
„

VTE
VR



, pY
1
“ Y1

{Y1
tSYZuˆtSYZu (34)

The above equation can be reformulated as (see Theorem 2)
„

IS
VR



“

«

pH
1

IˆI
pH
1

IˆR

pH
1

RˆI
pH
1

RˆR

ff

„

VTE
IR



(35)

From the second block row, it follows that

Vr,p “ rVTE,r,p `
ÿ

jPR

rowpp
pH
1

rj qIj ,
@r P R,
@p P P

(36)

rVTE,r,p –
ÿ

iPS

rowpp
pH
1

riqVTE,i (37)

Recall that the elements Ij,q of Ij (j P R, q P P) are given by
(26). Express Ij,q explicitly as a function of Vr,p. Namely

Ij,q “ ´rYPM,j,qVr,p ` IPM,j,q `
rS˚PM,j,q

V ˚r,p
(38)

rYPM,j,q –
Vj,q
Vr,p

YPM,j,q (39)

rSPM,j,q –
Vr,p
Vj,q

SPM,j,q (40)

For convenience, introduce

rYPM,j – colqPPprYPM,j,qq (41)
IPM,j – colqPPpIPM,j,qq (42)
rSPM,j – colqPPprSPM,j,qq (43)

1The elements of V1 and I
1 can be ordered arbitrarily. This particular order

is convenient, because it results in a well-arranged Y
1.

so that (36) can be expressed as

Vr,p “ ´ar,pVr,p ` br,p `
cr,p

V ˚r,p
,
@r P R,
@p P P

(44)

ar,p –
ÿ

jPR

rowpp
pH
1

rj q
rYPM,j (45)

br,p –
ÿ

jPR

rowpp
pH
1

rj qIPM,j `
rVTE,r,p (46)

cr,p –
ÿ

jPR

rowpp
pH
1

rj q
rS
˚

PM,j (47)

The above-stated equation (44) can be rearranged to

|Vr,p|
2
´

br,p
1` ar,p

V ˚r,p “
cr,p

1` ar,p
(48)

As shown in [12], a complex quadratic equation of this form
has a solution if the index Lr,p, which is defined as

Lr,p :“

ˇ

ˇ

ˇ

ˇ

1´
br,p

1` ar,p

1

Vr,p

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

cr,p
1` ar,p

1

V 2
r,p

ˇ

ˇ

ˇ

ˇ

ˇ

(49)

lies in the range
Lr,p ď 1 (50)

In that sense, the indices Lr,p are indicators for the solvability
of the power-flow equations (23)–(26). That is, the power-flow
equations are solvable if Lr,p ď 1 @r P R, @p P P. A critical
point is reached if one of these local indices equals 1. Hence,
a global index for static voltage stability is given by

L– max
rPR

max
pPP

Lr,p (51)

L ă 1 in the stable region and L “ 1 on the stability boundary.
It is worth noting that, if λr,p “ 0 @r P R and @p P R (i.e.,
IR “ 0), then L “ 0. If no short-circuit faults occur, which
means Vr,p ‰ 0 @r P R and @p P R, then the Lr,p and L vary
continuously in function of the resource parameters.

Suppose that the node voltages Vr,p and resource parameters
YPM,r,p, IPM,r,p, and SPM,r,p are known. Then, the calculation
of the VSI merely requires: i) a Schur complement for pH

1
(35),

ii) multiplications and divisions for rYPM,j,q and rSPM,j,q (38),
iii) inner products for ar,p, br,p, and cr,p (44), iv) additions,
divisions, and absolute values for Lr,p (49), and v) a maximum
value for L (51). Moreover, the calculation is non-iterative.
Therefore, the proposed VSI is computationally less intensive
than VSA methods based on CPF or NLPs (see Sec. II).

Finally, observe that the proposed definitions (49) & (51)
are analogous to (20) & (21) in [12]. In contrast to the original
L-index [12] and the existing extended formulations [41,42],
(49) & (51) apply to more generic systems, namely unbalanced
polyphase power systems with slack nodes represented by TEs
and voltage-dependent power injections represented by PMs.
Hypotheses 1–4 and Theorems 1–2 ensure the existence of the
compound hybrid parameters needed to compute the VSI.
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Fig. 4. Schematic of the benchmark system.

TABLE I
CONFIGURATION OF THE OVERHEAD LINES

Line Length Parameters Transposed?
(Nodes) (km) (Yes/No)

1´2 25.000 Tab. II Yes
2´3 25.000 Tab. II Yes
3´4 25.000 Tab. II Yes
4´5 25.000 Tab. II Yes
6´7 1.314 IEEE-300 No
7´8 9.851 IEEE-300 No
8´9 1.769 IEEE-300 No
8´10 11.430 IEEE-300 No

10´11 9.062 IEEE-300 No
12´13 15.197 IEEE-301 No
13´14 4.188 IEEE-301 No
12´15 3.112 IEEE-301 No
15´16 6.645 IEEE-301 No
16´17 7.111 IEEE-301 No
16´18 11.226 IEEE-301 No
19´20 3.219 IEEE-301 No
19´21 1.494 IEEE-301 No
21´22 1.777 IEEE-301 No
22´23 1.768 IEEE-301 No
22´24 1.433 IEEE-301 No
24´25 1.567 IEEE-301 No

V. VALIDATION

A. Benchmark System

The benchmark system used for the performance evaluation
is triphase, and consists of two parts: an upper-level subsystem
(nodes 1–5) with nominal voltage 69.0 kV phase-to-phase, and
a lower-level subsystem (nodes 6–25) with nominal voltage
24.9 kV phase-to-phase (see Fig. 4). The latter is adapted from
the IEEE 34-node feeder [50], which contains untransposed
overhead lines and Line Voltage Regulators (LVRs). This grid
has been chosen for the sake of reproducibility of the results
(i.e., because the parameters of this benchmark power system
are fully documented and publicly available).

The electrical grid is built of overhead lines (see Tabs. I–II),
both transposed and untransposed ones, and transformers (see
Tab. III), both regular ones and LVRs. All transformers are
wye-connected and effectively grounded both on the primary
and secondary side. Therefore, the sequence impedances are
equal. Here, typical values R « 5E´3 p.u. and X « 0.1 p.u.
(w.r.t. the base impedance defined by the rated power and the
nominal voltage) are used [51]. The tap ratios of the LVRs are

TABLE II
SEQUENCE PARAMETERS OF THE TRANSPOSED LINES

Sequence R
1 (Ω/km) X

1 (Ω/km) B
1 (µS/km)

Positive`Negative 0.071 0.379 3.038
Homopolar 0.202 0.884 1.740

TABLE III
CONFIGURATION OF THE TRANSFORMERS

Name Link Rated Power Nominal Voltage
(Nodes, I´II) (MVA) (kV, phase-to-phase)

TF 5´6 12.0 69.0 (I), 24.9 (II)
LVR1 11´12 9.0 24.9 (I`II)
LVR2 18´19 9.0 24.9 (I`II)

fixed to 1.05 for the sake of simplicity. If the tap positions are
changed (e.g., due to voltage control), one can simply rebuild
the compound admittance matrix and compound hybrid matrix,
respectively2.

The slack node is the primary substation (i.e., node 1).
Its TE consists of a positive-sequence voltage source, which
is defined by the rated voltage, and a diagonal compound
impedance matrix with equal diagonal entries, which are given
by the short-circuit parameters. The substation is characterized
by the short-circuit power Ssc “ 100 MVA and the resistance-
to-reactance ratio Rsc{Xsc “ 0.1. The resource nodes are in
the lower-level subsystem, and host loads and compensators.
Generators are not considered, as static voltage instability due
to generation is unlikely in a lossy grid (see Sec. II-A). The
PMs are specified in Tabs. IV–V. The load coefficients are
taken from [45] (i.e., the means of zones 11–16/21–26). These
values are derived from real measurements. The compensators
are Static Synchronous Compensators (STATCOMs), which
supply constant reactive power [52] (i.e., α “ β “ 0, γ “ 1).

2Note that transformers (e.g., LVRs or substation transformers with on-load
tap changers) are part of the equivalent circuit of the grid.

TABLE IV
REFERENCE VALUES OF THE POLYNOMIAL MODELS.

Node V0 P0,A, P0,B , P0,C Q0,A, Q0,B , Q0,C Type
(kV) (kW) (kVAR)

9 14.4 ´60, ´50, ´40 ´30, ´25, ´20 Load
14 14.4 ´75, ´60, ´45 ´40, ´30, ´21 Load
17 14.4 ´90, ´70, ´50 ´50, ´35, ´22 Load
20 14.4 ´105, ´80, ´55 ´60, ´40, ´ 23 Load
23 14.4 ´120, ´90, ´60 ´70, ´45, ´24 Load
25 14.4 ´135, ´100, ´65 ´80, ´50, ´25 Load
12 14.4 0, 0, 0 100, 100, 100 Comp.
19 14.4 0, 0, 0 100, 100, 100 Comp.

TABLE V
NORMALIZED COEFFICIENTS OF THE POLYNOMIAL MODELS.

Type α<, β<, γ< α=, β=, γ=
Load ´0.067, 0.251, 0.816 1.064, ´0.088, 0.025

Comp. 0.000, 0.000, 0.000 0.000, 0.000, 1.000
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Algorithm 1 Homotopy continuation method.
procedure HCM(fpx, ξq, x0, ξ0)

# Solve max ξ s.t. fpx, ξq “ 0, starting at x0, ξ0.
for kě 0 do

# Predictor (tangent method)
dxÐ solve

`

Dx fpxk, ξkqdx “ ´Dξ fpxk, ξkq, dx
˘

„

x´k`1

ξ´k`1



“

„

xk
ξk



` σ

ˆ

1?
‖dx‖2

`1

„

dx
1

˙

# Corrector (Newton-Raphson method)

gprx; ξsq :“

„

fpx, ξq

‖x´ xk‖
2
` pξ ´ ξkq

2
´ σ2



rx`k`1; ξ`k`1s Ð NRM
`

gprx; ξsq, rx´k`1; ξ´k`1s
˘

„

xk`1

ξk`1



Ð

„

x`k`1

ξ`k`1



if signpξk`1 ´ ξkq ď 0 then Ź max ξ found.
break

end if
end for
return txk, ξku Ź Continuum of solutions txk, ξku.

end procedure

B. Study Description

The proposed VSI is validated by a classical CPF method.
More precisely, it is verified that the VSI correctly identifies
the loadability limit along the trajectory of the CPF.

Let λ contain the loading factors. Merging Ohm’s law (6),
the zero injections (17), the TEs (18), and the PMs (20)–(21)
yields the power-flow equations as

∆SpV,λq “ 0 (52)

where ∆S is the mismatch between the nodal injected powers
calculated by the grid model and the node models, respectively.
Express ∆S in rectangular and V in polar coordinates:

∆SpV,λq :“ ∆PpV,λq ` j∆QpV,λq (53)
V :“ E=θ (54)

Thus, (52) can be restated as a system of real-valued equations
in real-valued variables, namely

„

∆PpE,θ,λq
∆QpE,θ,λq



“ 0 (55)

Furthermore, define

fpE,θ,λq :“

„

∆PpE,θ,λq
∆QpE,θ,λq



(56)

x :“

„

E
θ



(57)

and suppose that λ follows a trajectory parameterized as λpξq.
Then, (55) can be written compactly as

fpx, ξq “ 0 (58)

To find the loadability limit ξmax along the trajectory λpξq,
one needs to solve the optimization problem

max ξ s.t. fpx, ξq “ 0 (59)

Algorithm 2 Newton-Raphson method.
procedure NRM(gpxq, x0)

# NRM solves gpxq “ 0, with initial guess x0.
for i ě 0 do

∆gÐ gpxiq
if ‖∆g‖ ď ε then Ź Convergence.

break
else Ź Correction step.

JÐ Dx gpxiq
∆xÐ solve pJ∆x “ ∆g,∆xq
xi`1 Ð xi ´∆x

end if
end for
return xi Ź Solution xi.

end procedure

It can reasonably be supposed that fpx, ξq is continuous [22].
Therefore, this maximization problem can be solved using a
continuation method. In this paper, the homotopy continuation
method given in Alg. 1, which is based on [14], is employed.
The continuation step consists of a tangent predictor, which
extrapolates guesses x´k`1/ξ´k`1 of the next solutions in the
continuum, and the Newton-Raphson corrector given in Alg. 2,
which determines the actual values x`k`1/ξ`k`1. Dx and Dξ are
the differential operators3 w.r.t. x and ξ, and σ the length of the
continuation step. Following common practice in VSA, λpξq
is chosen as uniform load increase [19,22]. In other words,
λr,p “ ξ for the loads and λr,p “ 1 for the compensators.

At the loadability limit found by the CPF method, the VSI
at the critical phase of the critical node must (approximately)
equal 1. Moreover, the loadability limit is verified graphically
and numerically as a double-check. For the graphical analysis,
the nose curves of the system and the characteristic curves of
the loads are plotted. These curves are tangent at the critical
point. For the numerical analysis, the singular values of the
Jacobian matrix of the power-flow equations are computed. As
the system approaches the critical point, the Jacobian matrix
becomes closer to singular. Thus, at least one singular value
tends to zero.

C. Result Discussion

The loadability limit lies at ξmax « 1.759. The maximum
value of the VSI occurs in phase A of node 25: L25,A “ 1.017.
This point in the grid has the highest load (see Tab. IV), and
is furthest away from the slack (see Fig. 4). The evolution of
the VSIs at this node is shown in Fig. 5. Clearly, only L25,A

tends to 1 as ξ increases, whereas L25,B and L25,C remain
much lower. This behavior is consistent with what has been
observed for original L-index in [12]. The VSIs in the other
nodes of the system behave similarly. That is, the indices in
phase A are higher than those in phases B and C, and all of
them are lower than those in node 25.

The nose curves of the system (for ξ ď ξmax) and the
characteristic curves of the load (for ξ “ ξmax) at the critical

3Observe that, in view of the assumed continuity of the function fpx, ξq,
the derivatives Dx fpx, ξq and Dξ fpx, ξq exist.
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Fig. 5. Evolution of the VSIs at the critical node (i.e., node 25).

Fig. 6. Nose curves and load characteristics at the critical node (i.e., node 25).

node are depicted in Fig. 6. Evidently, these curves are tangent
for phase A. So, the graphical analysis confirms the results of
the CPF method and the VSI. Incidentally, it is worthwhile
mentioning that the nose curves of phase A are bent downward
(i.e., towards lower voltage), whereas those of phases B and
C start bending upwards as ξ approaches ξmax. In phase B,
the change of curvature is clearly visible. This behavior is
in accordance with the CPF analysis of unbalanced triphase
systems in [19,20].

The evolution of the maximum, minimum, and mean of the
singular values of the power-flow Jacobian is shown in Fig. 7.
Obviously, the maximum and mean value remain almost
constant over the entire range of ξ, whereas the minimum
value plummets as ξmax is approached. This means that the
power-flow Jacobian is virtually singular at ξmax. This is also
in agreement with the results obtained using the CPF method
and the VSI. So, the VSI detects the instability correctly.

Finally, there are some comments to be made regarding the
practicality of the obtained results. It can be seen in Fig. 6 that

Fig. 7. Evolution of the singular values of the Power-Flow Jacobian.

the voltage in phase A of node 25 is low: roughly 8 kV, or
around 55% of the nominal voltage. This value is outside the
range desired for regular operation. According to Tab. VI, low
voltages only occur in phase A of the load nodes, where the
load is higher (see Tab. IV). In phases B and C, in contrast, the
voltages are close to the nominal value. Moreover, according
to Tab. VII, the thermal line ratings are respected with ample
margin throughout the system. In view of the obtained results,
it can be concluded that the identified loadability limit is of
practical interest. Finally, it is worth noting that static voltage
instability may well occur at close-to-nominal voltage in power
distribution systems [9] (i.e., depending on the grid and load).
This confirms the need for an accurate assessment of the static
voltage stability.

TABLE VI
VOLTAGE MAGNITUDES AT THE LOAD NODES AT ξ “ ξmax .

Node VA (kV) VB (kV) VC (kV) Vnominal (kV)
9 12.1 14.1 14.4 14.4
14 9.9 14.1 14.5 14.4
17 8.8 13.9 14.3 14.4
20 8.1 14.3 14.8 14.4
23 7.9 14.3 14.8 14.4
25 7.8 14.3 14.8 14.4

TABLE VII
CONDUCTOR CURRENTS OF SELECTED LINES AT ξ “ ξmax .

Line IA (A) IB (A) IC (A) Irated (A)
1´2 40.8 21.1 18.4 300
5´6 120.6 60.8 40.9 230
8´10 111.9 54.1 36.1 230

12´15 95.3 45.5 29.0 180
16´18 78.3 36.1 22.7 180
19´21 54.2 26.0 16.0 180
22´24 28.8 13.7 8.4 180
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VI. CONCLUSION

This paper developed a VSI which is suitable for unbalanced
polyphase power systems. To this end, a system model consist-
ing of polyphase two-port equivalent circuits as well TEs and
PMs was formulated. Using this system model, the power-
flow equations were approximated by a system of complex
quadratic equations, whose coefficients are calculated from the
compound hybrid matrix of the grid and the parameters of the
TEs and PMs. The VSI was derived from the conditions for
the solvability of the aforementioned quadratic equations. In
this context, it was illlustrated that the computational burden
for the calculation of the VSI is low. Finally, the VSI was
validated using a benchmark system based on the IEEE 34-
node feeder. For this validation, the nose curves of the system
and the singular values of the power-flow Jacobian were used.
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[40] P.-A. Löf, G. Andersson, and D. J. Hill, “Voltage stability indices for
stressed power systems,” IEEE Trans. Power Syst., vol. 8, no. 1, pp.
326–335, Feb. 1993.

[41] Y. Wang, C. Wang, F. Lin, W. Li, L. Y. Wang, and J. Zhao, “Incorpo-
rating generator equivalent model into voltage stability analysis,” IEEE
Trans. Power Syst., vol. 28, no. 4, pp. 4857–4866, Jul. 2013.



10 IEEE TRANSACTIONS ON POWER SYSTEMS

[42] J. Hongjie, Y. Xiaodan, and Y. Yixin, “An improved voltage stability
index and its application,” Int. J. Elect. Power Energy Syst., vol. 27,
no. 8, pp. 567–574, Oct. 2005.

[43] M. El Kateb, S. Abdelkader, and M. Kandil, “Linear indicator for voltage
collapse in power systems,” IEE Proc.–Gener. Transm. Distrib., vol. 144,
no. 2, pp. 139–146, Mar. 1997.

[44] A. R. R. Matavalam and V. Ajjarapu, “Calculating the long-term voltage
stability margin using a linear index,” in Proc. IEEE PES General
Meeting, Denver, CO, USA, 2015, pp. 1–5.

[45] W. W. Price, K. A. Wirgau, A. Murdoch, J. V. Mitsche, E. Vaahedi,
and M. El-Kady, “Load modeling for power-flow and transient-stability
computer studies,” IEEE Trans. Power Syst., vol. 3, no. 1, pp. 180–187,
Feb. 1988.

[46] L. M. Hajagos and B. Danai, “Laboratory measurements and models of
modern loads and their effect on voltage stability studies,” IEEE Trans.
Power Syst., vol. 13, no. 2, pp. 584–592, May 1998.

[47] A. M. Kettner and M. Paolone, “On the properties of the compound
nodal admittance matrix of polyphase power systems,” IEEE Trans.
Power Syst., 2018, DOI: 10.1109/TPWRS.2018.2863671.

[48] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, “Control of power
converters in AC microgrids,” IEEE Trans. Power Electron., vol. 27,
no. 11, pp. 4734–4749, Nov. 2012.
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