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Abstract

A common challenge in person re-identification systems
is to differentiate people with very similar appearances. The
current learning frameworks based on cross-entropy mini-
mization are not suited for this challenge. To tackle this is-
sue, we propose to modify the cross-entropy loss and model
confidence in the representation learning framework using
three methods: label smoothing, confidence penalty, and
deep variational information bottleneck. A key property of
our approach is the fact that we do not make use of any
hand-crafted human characteristics but rather focus our
attention on the learning supervision. Although methods
modeling confidence did not show significant improvements
on other computer vision tasks such as object classification,
we are able to show their notable effect on the task of re-
identifying people outperforming state-of-the-art methods
on 3 publicly available datasets. Our analysis and exper-
iments not only offer insights into the problems that person
re-id suffers from, but also provide a simple and straightfor-
ward recipe to tackle this issue.

1. Introduction
According to the nineteenth-century physicist James

Clerk Maxwell, doubt, which he describes as ”thoroughly
conscious ignorance”, is the prelude to science. Doubt al-
lows us to question our decision and pushes us to thoroughly
find a detailed reason behind them. In many perception
tasks, state-of-the-art neural networks rarely include the no-
tion of doubt while training. They are trained to output a
high probability for the correct class. Thus, when dealing
with images of different classes but very similar character-
istics, they would focus on relatively unimportant variations
to distinguish the different inputs. This would lead to unrea-
sonable classification of the challenging images in an effort
to reduce its loss function. This describes an inherent prob-
lem in the popular person re-identification task. In the same
way humans can be doubtful of their own decisions, a model
should be allowed to have some doubt in its classification.

Person re-identification methods attempt to extract dis-

Figure 1: In person re-identification systems, visually simi-
lar individuals are difficult to discern thus forcing the model
to focus on unnecessary variations. We propose reducing
a model’s confidence as a solution for this problem. Our
model with penalized confidence correctly ranks the gallery
images (top-3, left to right). However, the baseline model
(top) focuses on the pose (first image) and the shirt (sec-
ond image) leading to incorrect identification. Red frame
indicates wrong ID while green frame indicates correct ID
compared to the query. Best viewed in color.

criminative features from two images and measure how
similar these extracted features are. In addition to the use of
different metric learning methods, a key milestone in per-
son re-identification is the use of cross-entropy to learn rep-
resentations that are distinct for different identities[35, 36].
Since then, an arms race of methods built on top of this
by making use of different human-specific characteristics
(e.g., human semantic segmentation, pose). A main pitfall
of learning a representation with cross-entropy supervision
is the fact that it separates the different inputs solely based
on the labels without taking into consideration the actual
similarity between the inputs. None of the recent methods
have tackled the problem where, even though two very sim-
ilar individuals are distinct, their similarity score should en-
code information about how similar they appear while also
distinguishing them. The network usually tries its best to
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find a boundary between the different classes even for in-
puts that are very close together. This leads the network
to find unreasonable explanations for the differences in la-
bels and thus would negatively affect its parameters. After
long enough training, the network would increasingly be-
come more confident about its decision. Since person re-id
also deals with the problem of having a small set of im-
ages per class, it would aggravate this issue. Controlling
the network’s confidence about its prediction would allevi-
ate this problem (Figure 1). Even though this concept has
been studied before, it has not been studied in the field of
person re-identification.

In this paper, we propose to model confidence when
learning representations appropriate for person re-id. By
inducing doubt while training a network, we are able to
tackle the inherent problem discussed previously when
cross-entropy is used in a distance metric and representa-
tion learning problem such as person re-identification. In-
spired by previous works that use uncertainty to regularize
the network, we study three alternatives that aim at reduc-
ing the confidence of the network and show a gain of 6-
7 % in mAP across 3 different datasets. Although these
methods haven shown only a small improvement on other
image classification tasks [28, 2, 18], they drastically im-
prove the performance of person re-id models due to its
innate problem (Section 3). By combining our methods
with advanced ranking methods, we outperform state-of-
the-art models without modeling characteristics specific to
humans. The software is open source and available online.1

2. Related Work
With the prevalence of deep neural networks in most

computer vision tasks, person re-id followed this success
when Li et al. [15] introduced a deep learning method for
re-id that tried to overcome the problems of bounding box
misalignment, photometric and geometric transforms while
also introducing a new bigger dataset specifically for this
task. This paved the way for new methods and datasets to
emerge, causing the person re-id performance of machines
to improve. Other work developed new methods that tackle
specific challenges in person re-id by introducing different
architectures and modules [14, 16, 26, 33].

Attention in Person reID. Recently, many methods have
tried to improve the representation of the input by train-
ing multiple networks that extract global and local features
and then combine these features to form the final represen-
tation. This is usually done by using either a determinis-
tic way of dividing the different parts of the representation
[41, 6, 31, 1] or making use of attention modules to sepa-
rate the different parts [16, 43, 38]. Other works extracted
intermediate representations to gain information about the

1Link will be revealed after review process

input at different levels arguing that this allows the network
to learn distinctive characteristics of the input at different
scales [3, 32, 33]. Even though these methods showed im-
provement over their predecessors, these methods usually
require separate networks to process each of the different
features, leading to a more complex architecture and train-
ing procedure.
Human Characteristics. Another direction other re-
searchers have taken is to make use of information and char-
acteristics related specifically to humans in order to improve
person re-id. The work by Xu et al. [37] aims at detect-
ing three different types of pose information such as key-
points, rigid body parts (e.g., torso), and non-rigid parts
(e.g., limbs). These information were extracted using an
off-the-shelf human pose estimator. Then, with the help
of these body parts, the features extracted by a feature ex-
tractor are refined and used to classify the different indi-
viduals. The use of third-party methods make their model
highly dependent on the performance of these methods. An-
other approach by Sarfraz et al [21] uses keypoint informa-
tion, in addition to the input image, to train a ResNet-50
model as well as another connected module that detects the
view (front, back or side). Kayaleh et al. [11] also made
use of features extracted from different body parts and con-
catenated them to form a global feature which in turn was
used to perform re-identification. The disadvantage of these
methods is their high dependence on other methods and
datasets that require annotation. Moreover, the fact that
these models depend on specific human characteristics pre-
vents them from being leveraged for other image-retrieval
and clustering tasks.
Re-Ranking. In addition to learning better features, many
works have tried to improve the ranking process of per-
son re-id by including information about how the differ-
ent galleries are related instead of just using the relation-
ship between the pairs of queries and galleries [46, 39, 24,
46, 8, 13, 39, 40]. Zhong et al [46] introduced a method
for refining the distances between the queries and galleries
by making use of the k-reciprocal nearest neighbors. This
is done as a post-processing step to improve the ranking
process. Shen et al. [24] argued that this does not help
in learning better features during training and introduced
a new learnable module that performs a random walk on
a graph connecting the different gallery images. By per-
forming a random walk operation, gallery-to-gallery (G2G)
information is taken into consideration while training the
network, thus resulting in a more complete representation
that provides a better ranking performance. Other methods
also tried to include G2G information by using Graph Neu-
ral Networks [23] and Conditional Random Fields [4]. We
will make use of G2G information by applying different re-
ranking methods.
Metric Learning. Several previous works have tried to
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Figure 2: Pairs of images of different IDs but very similar
appearance - Market1501.

tackle the problem of person re-id by introducing new met-
ric loss functions. Both contrastive [9] and binary loss
functions have been employed in order to push apart neg-
ative image pairs while pulling positive image pairs to-
gether [19, 1]. Taking into consideration both the pull and
push of contrastive loss, other methods[33, 17, 32] used
triplet loss that simultaneously tackles negative and positive
pairs leading to a less greedy method. Chen et al. [5] ex-
tended this loss to quadruplet inputs. The drawback of these
methods is their high sensitivity to the sampling technique
used. As a result, Yu et al.[42] introduced the HAP2S loss
to tackle this drawback and showed improvement in perfor-
mance. All the above methods try to encode metric infor-
mation in the embedding space compared to cross-entropy
which is considered as a representation learning method.

In this paper, we do not make use of human character-
istics or feature division and show the importance of con-
fidence when training a person re-id model with a cross-
entropy loss.

3. Problem Formulation
A person re-id model’s main task is to distinguish be-

tween people across frames. As previously stated, the per-
son re-identification task is a challenging task since it tries
to relate images of people across different cameras. The fact
that the images are captured by different cameras might lead
to subtle differences in hue and image color that can dras-
tically effect the performance of a re-id model. Moreover,
the illumination, background clutter, occlusion, observable
human body parts, and perceived posture of the person are
usually dramatically different which might easily fool the
network and render it unusable. Even images of people cap-
tured by the same camera can have many of these variations.

Due to the challenges explained above, there isn’t always
a clear margin of separation between individuals. People in
some cases have very subtle differences that separate them
from each other making the task of identifying them even
more challenging for a human observer. A good example is
shown in Figure 2 which introduces the inherent challenge
we are trying to tackle in this paper.

The people within the images in Figure 2 are very diffi-
cult discern from one another even for a human eye. Each

pair of images shows two different people who share very
similar appearances. When a model is trained to separate
these images, it might face difficulties doing so. In order to
reduce its loss in this case, the network will learn to focus on
pose or even the illumination of the image. These two varia-
tions are some of the many variations that previous methods
are trying to overcome. Current state-of-the art person re-id
systems train their own models by using the cross-entropy
loss function. The cross-entropy calculates the number of
bits needed for an event, which in this case is the label given
the input, using the estimated probability distribution in-
stead of the true distribution. In the case of training a neural
network, the cross-entropy is minimized so that the model
distribution is the same as that of the ground-truth, which
is a one-hot encoding in person-reid. This means minimiz-
ing this loss pushes the distribution of the model to output a
high probability for the correct label while outputting very
low probabilities for the others. The fact that cross-entropy
requires that the logits for the ground-truth label to be much
bigger than other labels pushes the network to take into con-
sideration certain destructive variations to separate the dif-
ferent classes and especially for images such as in Figure 2.

In order to modify the cross entropy in a way that solves
the problem described above, we add a missing term to the
loss function which allows it to not be confident about cer-
tain datapoints. Thus, the modified cross entropy loss func-
tion allows the network not to overfit on variations that are
destructive for the person re-id task and accept the fact that
people do sometimes look very similar. The idea of prevent-
ing the network from being very confident is not a new con-
cept. However, its evaluation on other computer vision tasks
only lead to slight improvements in performance. From the
reasoning based on Figure 2 as well as the characteristics of
person re-id datasets, we show in this paper that this con-
cept, if applied to a simple baseline, can improve the results
drastically and even outperform certain highly specialized
state-of-the-art methods.

4. Method

To reiterate, current person re-id models face difficulties
in distinguishing between different individuals who share
some visual similarities due to the model’s objective of
maximizing its confidence in its predictions. In this section,
we introduce three different methods that allow the network
to be less confident about the different labels. These meth-
ods usually show a small improvement when used during
training in other computer vision tasks [29, 18, 2]; how-
ever, we show that, because of the problems specified in
Section 3, these methods provide a drastic boost for the task
of person re-id.
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Figure 3: Network architecture including the three methods being studied: Label Smoothing (LS), Confidence Penalty (CP),
Variational Information Bottleneck (VIB). ε is the Gaussian noise needed for the reparametirization trick, µ and σ are the
mean and standard deviation respectively of the latent Z distribution.

4.1. Label Smoothing

Label smoothing is a form of model regularizer intro-
duced by Szegedy et al. [29] which aims at allowing a model
to be less confident about a certain prediction. It regularizes
a softmax classifier by assigning a small value to all ground-
truth labels. This is done by changing the ground-truth dis-
tribution (q(c|x)) that the model is trying to approximate to
a smoother distribution (qLS(c|x)):

qLS(c|x) =

{
1− (C−1)ε

C c = label(x),
ε
C otherwise.

(1)

This method makes sure that the label for the correct
class does not become much larger than all other classes
and thus prevents the network from overfitting. When label
smoothing was proposed and tested on ImageNet, it showed
a small improvement of around 0.2% for top-1 error. Even
though it did not show a huge improvement, we show in
Section 6 that this method has a bigger effect on the task
at hand based on the arguments stated in Section 3. As can
be observed in Figure 3, this method requires only a modifi-
cation to the cross-entropy loss function where the modified
ground-truth distribution is used and the resulting loss func-
tion would be:

LLS = αH(qLS(c|x); p(c|x)), (2)

where p(c|x) is the model’s output distribution.

4.2. Confidence Penalty

While the network trains, its predictions become more
and more confident, giving more probability to a specific
class compared to other classes. Having confident predic-
tions indicates that the output distribution p(c|x) over all

the classes c has low entropy since one label dominates the
prediction. Its entropy can be calculated by:

H(p(c|x)) = −
∑
i

p(ci|x) log(p(ci|x)).

This equation measures the uncertainty of a model in
preforming its prediction. In order to make the network
less certain, Pereyra et al. [18] suggested penalizing the en-
tropy of the output distribution. They showed that by do-
ing so, they got a smoother output distribution as well as
a small improvement on MNIST. This method however did
not show an improvement on a more difficult dataset such
as CIFAR-10. By penalizing the entropy, the loss function
becomes:

LCP = αLcross − βH(p(c|x)), (3)

where β controls how much to penalize the H(p(c|x)) and
α controls the strength of the cross-entropy loss (Lcross).
This method is similar to label smoothing in that it allows
the network to output a small probability to labels differ-
ent than the ground-truth. Similar to label smoothing, no
architecture modification is required except adding the con-
fidence penalty to the loss (Equation 3). This is shown in
Figure 3.

4.3. Deep Variational Information Bottleneck

The information bottleneck (IB) principle [30] is a tech-
nique that tries to find the best trade-off between accuracy
and complexity of latent variables. Latent variables are hid-
den variables that describe a specific input while maintain-
ing all the relevant information needed for a specific task.
The information bottleneck method tries to minimize this
objective:

min
p(z|x)

I(X;Z)− βI(Z;Y ), (4)
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where Z is the latent variable, X is the input, and Y is the
output. Based on the above equation, the objective is to
learn a representation Z that is very informative about Y
while compressive about X . In order to apply the IB ob-
jective to a neural network, Alemi et al. [2] approximated a
lower bound to the information bottleneck by using varia-
tional inference and the reparameterization trick introduced
by Kingma et al. [12] to introduce a new objective function
referred to as Variational Information Bottleneck (VIB).

When applying this method, the model is divided into
an encoder that takes the input X and maps it to a distri-
bution describing the latent space Z. The encoder outputs
both the mean µ and standard deviation σ that describe this
distribution. Then the predicted distribution is used to sam-
ple a specific latent representation. To force the first part of
equation 4 to be minimized, this distribution should not de-
pend on the input thus forcing the representation Z to forget
some information about it. This is done by minimizing the
divergence between the encoder’s distribution p(z|x) and
the prior r(z). The resulting objective function that is min-
imized:

LV IB = αLcross + βKL[p(Z|x), r(Z)]. (5)

In order to compute the KL divergence analytically and
backpropagate using its gradients, p(Z|x) is approximated
by a multivariate Gaussian distribution with a diagonal
covariance matrix while r(Z) is an isotropic multivariate
Gaussian. As can be seen in equation 5, if β → ∞, the
latent representation would follow a distribution indepen-
dent of the input and thus different classes will have similar
representations. This is somewhat similar to the effect of
both confidence penalty and label smoothing where a single
representation is forced to contain some information about
more than one label. However, VIB applies this restriction
directly to the latent space. Using this method while train-
ing, Alemi et al. [2] showed close results to state-of-the-art
models while using less information about the input which
is measured using mutual information I(X;Z). Compared
to previously mentioned methods, in order to use the VIB
loss, a fully connected layer is added at the output of the
ResNet-50 base model to compute the mean and standard
deviation as shown in Figure 3.

4.4. Methods Comparison

Analyzing all three methods reveals the similar effect
that they share together as well as their differences. These
methods aim at increasing uncertainty in the training pro-
cedure of the model. Label smoothing(LS) and confidence
penalty (CP) achieve this by making sure that the network is
less penalized on wrong classifications. VIB pushes the rep-
resentations to be more independent of the input and label.
Moreover, both confidence penalty and label smoothing can
be expressed by a KL divergence between the output and a

uniform distribution. The difference, however, is that label
smoothing can be expressed as KL[u||p(y|x)] while con-
fidence penalty can be expressed as KL[p(y|x)||u] where
u represents the uniform distribution. This difference has
a significant effect on the training and the representations
learned since in label smoothing, the error is weighted by
the uniform distribution ( 1

Nc
where Nc is the number of

classes). On the contrary, using confidence penalty weighs
the error by the output distribution itself. In other words,
when confidence penalty is used, the divergence between
the output distribution and the uniform u is affected by the
network’s current confidence about the input compared to
label smoothing, which is mainly affected by u. In sum-
mary, all three methods can be expressed as a KL diver-
gence where label smoothing and confidence penalty act on
the output while VIB acts directly on the representation.

5. Experiments
To evaluate our proposed method, we use three pub-

licly available person re-identification datasets which
are Market-1501 [44], the recently created dataset
MSMT17 [34], and DukeMTMC-reID [45].

Market1501: The Market dataset is a well-known per-
son re-identification dataset that contains 32,668 bounding
boxes of 1,501 individuals captured using 6 cameras. These
bounding boxes were obtained using the Deformable Part
Model (DPM) [7]. The training set is made up of 751 iden-
tities with 12,936 images while the test set has 750 identities
distinct from the one in the training set divided into query
and gallery images.
MSMT17: This is a very recent dataset which was carried
out over a long period of time. This benchmark contains
a total of 126,441 bounding boxes of 4,101 identities cap-
tured using 15 cameras. The images vary in terms of loca-
tion (outdoors, indoors), weather condition (over a month),
as well as different times of day (morning, noon, afternoon).
The bounding boxes were obtained using Faster RCNN and
corrected using labelers. Containing so much variations
makes this dataset challenging as well as a good benchmark
to use.
DukeMTMC-reID: The DukeMTMC-reID dataset is a
small part of the bigger DukeMTMC dataset that is usu-
ally used for multi-target multi-camera tracking. It is taken
from 8 different cameras, and the person bounding box is
manually labeled. It is made up of 1,404 different identities
with 702 identities used for training and 702 other identities
used for testing.

5.1. Evaluation Protocol

For evaluation, we use the cumulative matching charac-
teristic (CMC) and mean Average Precision (mAP). These
two metrics are the most popular evaluation metrics since
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Parameters Market-1501 DukeMTMC MSMT17
LRcross, α 5× 10−4, 2 2× 10−4, 1 3× 10−4, 4
LRLS , α 5× 10−4, 2 5× 10−4, 5 3× 10−4, 5
LRCP , α 6× 10−4, 3 6× 10−4, 3 4× 10−4, 5
LRV IB , α 4× 10−4, 6 6× 10−4, 3 5× 10−4, 6
βCP 0.085 0.085 0.085
βV IB 0.01 0.01 0.01

Table 1: Hyperparameters for the different datasets and
methods. LR: learning rate, β: pre-factors for loss con-
straint, α: pre-factor for cross-entropy

person re-identification systems should be able to output all
the correct matches (mAP) in addition to having high ac-
curacy at different ranks (CMC). During testing, for every
query there is a list of gallery images ordered in increasing
order according to their L2 distance from this query.

5.2. Implementation Details

The model was pre-trained using ImageNet. We do not
add any layer to ResNet-50 when training both using label
smoothing and confidence penalty except for a fully con-
nected layer that outputs the different labels. When train-
ing the VIB algorithm, a fully-connected layer was added
before the classification layer to output the mean and stan-
dard deviation which describe the distribution of the latent
representations. A latent variable is then sampled from the
predicted distribution. For all methods and datasets, hyper-
parameter tuning was performed for ResNet-50 in order to
get the best possible accuracy.

Data Augmentation. We follow methods of data augmen-
tations that are commonly used in the field of person re-
identification. Since Market1501 uses DPM to obtain the
bounding boxes, the images are initially randomly cropped.
For all datasets, the inputs are resized to 256x128. Be-
fore providing them to the network, a random rectangle,
with pixel values randomly assigned between [0, 255], is
erased [47] from the images, and the resulting images are
flipped horizontally with a probability of 0.5. This makes
the network more robust to the orientation of the people in
the image as well as occlusion. Each image is then normal-
ized and standardized using the mean and standard devia-
tion provided when using a model pretrained on ImageNet.
These transformations were applied only for the training set.
Hyperparameter Tuning. Since the hyperparameters
(e.g., learning rate, β,and α) we are trying to optimize have
multiplicative effects on the training procedure, the best
method is to perform a log-space search. This is due to two
reasons. The parameter is not too sensitive such that there
may not be too much difference with 10 and 15 compared
to 10 and 1000. The other reason is that using logarithmic

scales allows us to search over a bigger space quickly.
Training Procedure. The samples used to form the train-
ing batch are randomly sampled from the datasets. It does
not require any special sampling such as the PK Sampling
required by triplet loss[22], which randomly samples P
identities and then randomly K images for each identity to
form a batch. The mini-batch has a size of 32 images. The
model is trained for 300 epochs using the AMSGrad [20]
optimizer for all datasets with the learning rate decaying
by 10 at epoch 20 and 40. In order to make sure that all
models were trained with the best parameters, we perform
hyperparameter tuning, as discussed previously. The differ-
ent hyperparameters for the different datasets are shown in
Table 1.
Evaluation Procedure. For testing, the features that are
extracted just before the last classification layer are used for
the ranking process. The features for the queries and gal-
leries are extracted and then compared to rank the gallery
images relative to each query image. This is done when la-
bel smoothing or confidence penalty is used. When using
the VIB loss, the network has an additional fully connected
layer that outputs the mean and standard deviation for ev-
ery latent dimension and a reparameterization trick that de-
pends on a random Gaussian noise. For ranking, we use
the mean produced by the model as features for each im-
age since this represents the average of the distribution over
which the input image is mapped to. This is also due to the
fact that the standard deviations tend to 1. To the best of
our knowledge, using a latent representation, sampled from
a Gaussian parametrized by the predict mean and standard
deviation, has not been tackled before for the person re-id
task.

6. Results
In order to show both qualitative and quantitative results,

we split our results into three parts. In Sections 6.1 and 6.2,
we compare our proposed methods to published baseline
results and state-of-the-art methods respectively. In Sec-
tion 6.3, we investigate the effect of the three methods on
the ranking process of person re-id. Although these meth-
ods were tested on ResNet-50, other re-id models can ben-
efit from their positive effect on the performance especially
when dealing with visually similar individuals.

6.1. Properly Trained Baseline

We compare our baseline to previously reported results
of ResNet-50 on the Market-1501 and DukeMTMC-reID
datasets. The published results reported in Table 2 corre-
spond to pre-trained ResNet-50 that used the cross-entropy
loss similar to our method. As can be observed in Table 2,
there is a clear difference between our result and the re-
sults reported in published papers as well as amongst the
published results themselves. Our properly trained base-
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Market1501 DukeMTMC
Model mAP Rank1 mAP Rank1

ResNet-50 [17] 47.78 73.90 44.99 65.22
ResNet-50 [24] 59.8 81.4 55.5 75.3
ResNet-50 [21] 59.8 82.6 50.3 71.5
ResNet-50 [3] 66.0 84.3 48.6 71.6
ResNet-50 [10] 66.95 84.42 57.34 75.60
ResNet-50 [11] 66.32 85.10 54.77 73.70
Our ResNet-50 70.2 87.5 59.6 78.6

Table 2: Comparison with published ResNet-50 results on
the Market-1501 and DukeMTM-reID dataset.

line, which consists of a ResNet-50 model trained using a
normal cross-entropy loss, was able to outperform all previ-
ous baselines. This table represents one of the many pitfalls
that occurs when training a model. This is shown by the
fact that papers that make use of exactly the same baseline
have different results. This is usually due to the hyperpa-
rameters chosen. Another pitfall is that to compare differ-
ent baselines and losses, the same hyperparameters are set.
This is somewhat unfair since different baselines and losses
optimize different parameters and in different ways thus re-
quiring distinct hyperparameters. This is why we employ
different learning rates for different datasets and methods
as shown in Table 1. As a result, we were able to achieve,
using the baseline, around∼ 3% increase in mAP and rank-
1 for both datasets.

6.2. Comparison with State-of-the-art

We evaluate our proposed confidence-based methods
against recently published papers in person re-id. Each of
our methods are evaluated on three datasets: Market1501,
DukeMTMC-reID, and MSMT17. We are able to reach
state-of-the art performance without any human specific de-
sign and added complexity thus showing the importance of
penalizing the confidence of a network in person re-id. We
also do not make use of data augmentation during the eval-
uation stage like DuATM [25].

Evaluation on Market1501: As shown in Table 3, the
models were able to reach state-of-the-art results. In or-
der to better understand the importance of penalizing con-
fidence compared to other methods, it is important to note
some distinct differences. Confidence penalty was able to
outperform HAP2S [42] which tried to deal with hard sam-
ples by giving them higher weights. Moreover, Mancs[32],
which shows good performance, makes use of three dif-
ferent losses, attention layers, as well as a special sam-
pling scheme. To compare our results with methods that in-
clude gallery-to-gallery information during inference, such
as Deep Group RW [24] and SGGNN [23], we apply re-
ranking to our three methods. We were able to outperform

Market1501 DukeMTMC
Model mAP Rank1 mAP Rank1

CamStyle (R)[48] 71.55 89.49 57.61 78.32
HAP2S E+Xent(R)[42] 74.49 89.73 62.62 79.08

DuATM(!R)[25] 75.22 89.96 63.14 81.46
MLFN (!R)[3] 74.3 90.0 62.8 81.0

Shen et al.(R)[24] 75.3 90.1 63.2 80.3
PSE(R)[21] +ECN 84.0 90.3 79.8 85.2
DaRe(!R)[33] +RR 86.7 90.9 80.0 84.4

SPReIDw/fg(!R)[11]* 78.66 90.97 65.66 81.73
HA-CNN (!R) [16] 75.7 91.2 63.8 80.5
DuATM(!R)[25]** 76.62 91.42 64.58 81.82

SPReIDcomb(!R)[11]* 79.67 91.45 68.78 83.3
P-Aligned (!R)[27] 79.6 91.7 69.3 84.4

SGGNN(R)[23] 82.8 92.3 68.2 81.1
Deep Group RW(R)[24] 82.5 92.7 66.4 80.7

Mancs(R)[32] 82.3 93.1 71.8 84.9
DNN+CRF(R) [4] 81.6 93.5 69.5 84.9

P-Aligned (!R)[27]+RR 89.9 93.4 83.9 88.3
Our ResNet 70.7 87.2 59.6 78.6

Our ResNet(VIB) 76.1 90.2 62.4 80.7
Our ResNet(LS) 76.7 91.0 64.4 82.7
Our ResNet(CP) 78.2 91.4 66.8 83.9
Our ResNet+RR 85.7 89.7 78.5 83.4

Our ResNet(VIB)+RR 88.6 91.8 79.0 84.3
Our ResNet(LS)+RR 89.1 92.2 82.2 86.6
Our ResNet(CP)+RR 90.0 92.6 83.5 87.4

Our ResNet(VIB)+ECN 88.2 92.0 78.9 85.1
Our ResNet(LS)+ECN 89.4 92.7 83.2 86.9
Our ResNet(CP)+ECN 90.1 93.1 84.1 88.5

Table 3: Comparison with state-of-the-art methods on
Market-1501 and DukeMTMC-reID. (!R): uses model dif-
ferent than ResNet, (R): uses ResNet-50, ECN: Expanded
Cross Neighborhood Re-Ranking[21], ”RR”: k-reciprocal
re-ranking[46], Xent: Softmax, *: uses combination of 10
datasets for training, **: uses data augmentation during
evaluation stage.

these methods with a significant increase in mAP(∼ 7.5%).
As a result, we got state-of-the-art performance without the
added complexity of learning new layers and parameters
while tackling the problem stated in Section 3.
Evaluation on DukeMTMC-reID: Similar to the Market-
1501 dataset, we achieved competitive results in all pro-
posed methods with confidence penalty resulting in the best
improvement (Table 3). In addition to that, using Sarfraz et
al.’s [21] recent re-ranking method (ECN), we were able to
get better results than PSE [21] in both mAP and rank-1. It
is important to note that SPReID augments the training data
of both DukeMTMC-reID and Market1501 with 10 datasets
resulting in a large amount of training samples which would
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MSMT17
Model mAP Rank1 Rank10

GoogleNet[34] 23.0 47.6 71.8
PDC[34] 29.7 58.0 79.4

GLAD[34] 34.0 61.4 81.6
Our ResNet 31.8 59.3 80.2

ResNet-50(VIB) 35.1 66.2 84.1
ResNet-50(LS) 36.9 66.8 84.9
ResNet-50(CP) 39.3 68.6 85.3

Our ResNet + RR 49.8 65.7 79.8
Our ResNet(VIB) +RR 55.4 73.3 84.7
Our ResNet(LS) + RR 57.1 73.7 85.3
Our ResNet(CP) + RR 59.1 75.3 85.8

Table 4: Comparison with state-of-the art on the MSMT17
dataset.

improve the performance of the network.
Evaluation on MSMT17: Since this is a bigger dataset
with many variations, it proved to be a challenging
benchmark[34]. Nonetheless, we were able to show a no-
table improvement over previous methods as well as over
our own baseline (Table 4). Similarly, confidence penalty
performed the best by achieving 68.6% in rank-1 and 39.3%
in mAP. By applying re-ranking, both rank-1 and mAP are
further improved to 75.3% and 59.1% respectively.

6.3. Effect of Proposed Methods

In addition to achieving state-of-the art performance, it is
also important to understand the effect of these three meth-
ods on the ranking process. All three methods aim at allow-
ing the network to share some representation among differ-
ent classes. This prevents the network from focusing on un-
desirable information when separating very similar looking
individuals. To show this effect, we compare the confidence
penalty model against the baseline model since it resulted
in the best performance (Figure 4). As can be seen, the test
samples presented in Figure 4 are difficult to rank even for
a human observer. This confirms the intrinsic difficulty of
person re-id stated in Section 3. When confidence penalty
is not used for training, the network focuses on unimportant
variations between the images. For instance, in both sets of
samples, the incorrect gallery images are very similar to the
query image despite belonging to a different person. The
baseline links the query image to the gallery images by pos-
sibly focusing on the background, shirt color, posture, and
body rotation of the individual in question. These character-
istics are typically features that can confuse the model lead-
ing to wrong identification. Adding the confidence penalty
is observed to remedy this challenge, as can be seen for all
test samples provided. Adding the confidence penalty helps
the model capture the subtle differences between multiple

Figure 4: Qualitative comparison of using confidence
penalty on unseen test samples. The gallery images are
ranked according to L2 distance (top-5, left to right). Red
frame indicates wrong ID while green frame indicates cor-
rect ID compared to the query. Best viewed in color.

individuals that the baseline tends to misidentify. These are
ideal examples for why confidence penalty drastically im-
proved person re-id compared to less significant improve-
ments in other computer vision tasks.

7. Conclusions
We emphasize an intrinsic characteristic of person re-

identification that poses a problem to the network being
trained. The classes that person re-id tries to separate are not
as easy as separating cats and dogs. Different people with
different identities can have very similar appearances. We
have demonstrated that three methods, that reduce a model’s
confidence, are able to deal with this problem while achiev-
ing state-of-the-art results. Confidence penalty proved to be
the best performant and most lightweight amongst the dif-
ferent methods. In addition, it is interesting to note that VIB
is able to achieve similar results while using smaller repre-
sentations. Both label smoothing and confidence penalty
use a representation of 2048 while VIB uses a representa-
tion of size 1024. These three methods can be leveraged to
improve the performance of previous re-id methods as well.
It remains an exciting future work to study their effect on
other image retrieval and clustering tasks.
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