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ABSTRACT: A growing body of evidence identifies clothing
as an important mediator of human exposure to chemicals and
particles, which may have public health significance. This
paper reviews and critically assesses the state of knowledge
regarding how clothing, during wear, influences exposure to
molecular chemicals, abiotic particles, and biotic particles,
including microbes and allergens. The underlying processes
that govern the acquisition, retention, and transmission of
clothing-associated contaminants and the consequences of
these for subsequent exposures are explored. Chemicals of
concern have been identified in clothing, including byproducts
of their manufacture and chemicals that adhere to clothing
during use and care. Analogously, clothing acts as a reservoir
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for biotic and abiotic particles acquired from occupational and environmental sources. Evidence suggests that while clothing can
be protective by acting as a physical or chemical barrier, clothing-mediated exposures can be substantial in certain circumstances
and may have adverse health consequences. This complex process is influenced by the type and history of the clothing; the
nature of the contaminant; and by wear, care, and storage practices. Future research efforts are warranted to better quantify,

predict, and control clothing-related exposures.

1. INTRODUCTION

Diverse chemicals, particles, and microbes are found on
clothing. Some are present at the time clothing is purchased,
and some are acquired during the care, storage, and use of
garments. People spend most of their lives in intimate contact
with clothing. They are exposed to the species found on and in
their clothing via inhalation, ingestion, and dermal absorption
(Figure 1). More specifically, humans inhale species that
desorb or are released from their clothing, ingest clothing-
associated chemicals and particles when clothing materials
enter their mouths, and acquire species on their skin from the
clothing they wear. Once in the lungs, in the gastrointestinal
system, or on the skin, chemicals from clothing may be
absorbed into the body." As we show in this review, the
resulting exposures are influenced by factors inherent to
clothing such as fiber type, weave, morphology, dyeing process,
color, and chemical treatment (including incorporation of
flame retardants, stain repellants, and antiwrinkle agents).
Exposures are also influenced by external factors such as
washing, drying, storage, and usage patterns. Clothing-
mediated exposures can contribute to irritation, allergic
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reactions, and infections as well as risks for adverse health
effects as diverse as cancer, birth defects, and heavy-metal
poisoning.z_4

Studies related to clothing-mediated exposures have been
conducted by a diverse set of researchers in the textile industry,
government laboratories, and academia.>>>° While many
results have been summarized in reviews, government reports,
and books, the findings have yet to be summarized within a
framework that focuses on the ways in which clothing mediates
exposures to chemicals and particles. This review aims to
provide a critical summary from such a perspective. We present
the review in two main sections, considering clothing-mediated
exposures first to chemicals and second to biotic and abiotic
particles. Within these sections, we summarize evidence for the
influence of clothing on exposure to chemicals (Section 2.1)
and particles (Section 3.1). We review the occurrence and

Received: January 13, 2019
Revised:  April 24, 2019
Accepted: April 29, 2019
Published: April 29, 2019

5559 DOI: 10.1021/acs.est.9b00272

Environ. Sci. Technol. 2019, 53, 5559—5575


pubs.acs.org/est
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.9b00272
http://dx.doi.org/10.1021/acs.est.9b00272

Environmental Science & Technology

Critical Review

Inhalation

of particles
and gases

Ingestion
(non-dietary) of
/ﬁw[ contaminants

EXPOSURE CONSIDERATIONS

¢ Chemical and physical properties of
contaminant and substrate

« Concentration of contaminant

¢ Exposure duration

* Breathing flow rate

* Amount of substrate ingested or mouthed

* Exposed skin location and area

¢ Skin properties

Dermal uptake

Figure 1. Nondietary routes of human exposure for contaminants of concern: inhalation, ingestion, and dermal absorption.

persistence of chemicals in clothing (Section 2.2), outline a
framework for quantifying clothing-mediated particle expo-
sures (Section 3.2), discuss mechanisms of accumulation and
transfer of chemicals (Section 2.3), and review factors that
influence clothing-associated exposures to particles (Section
3.3). We discuss situations where the underlying factors
influencing chemical and particle exposures are similar while
also recording fundamental ways that they differ. Whereas the
potential influence on health risks is the key ultimate reason to
better understand clothing-mediated exposures, a detailed
examination to quantify clothing-associated health risks is
beyond the scope of this review. We conclude (Section 4) with
an examination of knowledge gaps that currently limit the
ability to predict or mitigate clothing-related exposures to
chemicals and particles. We suggest some research directions
that could reduce these limitations. Overall, we find that the
influence of clothing on environmental exposures is often
substantial, and so additional research efforts are warranted to
better understand how clothing influences human exposures
and ultimately human health and well-being.

2. CHEMICAL EXPOSURES

2.1. Evidence of Clothing-Associated Exposure to
Chemicals. 2.1.1. Clothing-Associated Chemicals in Skin,
Blood, and Urine. Human exposure and uptake of organic
compounds by means of transfer from treated fabrics has been
investigated for several decades. For example, in the late 1970s,
Blum et al.” reported finding metabolites of the flame retardant
tris(2,3-dibromopropyl)phosphate (tris) in the urine of
children who had worn clothing treated with this chemical.
Radiolabeled tris in treated and dried cloth was shown to
penetrate clipped skin of rabbits. Moistening the cloth with
simulated sweat did not increase absorption.” Earlier,
Armstrong et al.” and Brown'’ reported instances of infant
poisoning attributable to use of phenolic disinfectants in
improperly laundered hospital fabrics. Recently, forestry
workers wearing permethrin-treated, tick-proof pants were
shown to have significantly elevated levels of a permethrin
metabolite in their urine.'' Moreover, absorption of ethylene

5560

oxide (a fumigant), glyphosate (an herbicide), malathion (an
insecticide), and benzothiazole (used as dye, biocide,
herbicide, and fungicide) from fabric into skin or a skin-
mimicking membrane has been demonstrated in studies using
an in vitro diffusion cell.'*™"*

Measurements of polychlorinated dibenzo-p-dioxins and
dibenzofurans (PCDD/F) in the stratum corneum, epidermis,
and subcutis of eight volunteers as well as in a variety of new
fabric swatches showed that some textiles are contaminated
and can be an important source of exposure to these
chemicals.'”” The PCDD/F species were shown to diffuse
through the stratum corneum into the deeper layers of the
skin. Stratum corneum concentrations were substantially
higher after wearing contaminated shirts rather than
uncontaminated shirts. Skin contamination was heterogeneous,
both among individuals and among sites on the same
individual. However, when identical, homogeneously contami-
nated T-shirts were used in a companion study, relatively little
spatial and interpersonal variability was observed.'® Uptake
from polyester was found to be an order of magnitude lower
than from cotton. Wearing fabrics that were previously worn
enhanced transfer. Residual sweat and lipid compounds may
have served as transfer vehicles or possibly weakened the
binding interaction between the fabric and PCDD/F. Heavy
perspiration during intense physical activity also increased the
migration rate of a textile dye, Dianix, onto the skin of
volunteer subjects, while contact time was found to be less
important.17

Clothing can act as a means of transporting pollutants from
one environment to another. This phenomenon has been
studied in the context of health concerns related to
“paraoccupational” exposures. Certain hazardous chemicals
such as lead, beryllium, polychlorinated biphenyls (PCB), and
pesticides can be transferred from a work site to the worker’s
home via clothing and thereby contribute to elevated levels in
the blood and urine or even to direct adverse health
effects.'®*%° For example, women who laundered agricultural
work clothes had up to 42% higher serum levels of
dichlorodiphenyltrichloroethane (DDT) and hexachloroben-
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Figure 2. Dynamic urinary excretion rates due to dermal uptake for nicotine and two urinary metabolites (summed) after exposing participants,
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who were wearing breathing hoods, to airborne nicotine.”” (a) Freshly laundered clothing, unexposed to nicotine, is protective; this is analogous to

a tree at the beginning of a rainstorm that protects a person from getting wet. (b) Clothing that has been previously exposed to airborne nicotine

dramatically increases urinary excretion rate for days after wearing the clothing, just as a standing under tree after a long rainstorm is most certain to

get the person wet. This exposure occurs while wearing the clothes in the environment containing the contaminant (third tree from left) and can

continue after leaving this environment.

zene compared to women who did not.”"** Similarly, women
living in homes in which agricultural workers wore their work
clothes had higher levels of most of the organochlorine
pesticides that were being used.”> Multivariate analyses by Park
et al.”’ indicated an association between serum levels of
polybrominated diphenyl ethers in California firefighters and
the storage and cleaning practices used for protective gear. The
authors suggested that these flame retardants can be
transported to fire stations via fireborne dust on soiled turnout
gear and that good housekeeping practices can reduce
subsequent exposure (see also Section 3.1.4).

2.1.2. Influence of Clothing on Dermal Uptake of
Airborne Chemicals. Until recently, the influence of clothing
on dermal uptake of airborne organic compounds received
relatively little attention. Initial studies examined a few
chemicals, primarily volatile organic compounds in occupa-
tional settings. Piotrowski** found that clothing reduced
dermal uptake of airborne nitrobenzene by about 20—30%,
but that clothing had no observable effect on phenol
absorption.”® Recent efforts have addressed dermal exposures
to semivolatile organic compounds common in everyday
indoor settings. For example, Morrison et al.”® measured the
uptake of two airborne phthalates, diethyl phthalate (DEP)
and di-n-butyl phthalate (DnBP), by an individual wearing
either clean clothes or clothes previously air-exposed in a
chamber with elevated phthalate concentrations. When
compared with dermal uptake for bare-skinned individuals
under otherwise identical experimental conditions,”” clean
clothes decreased transdermal uptake by factors of 3—6,
whereas previously exposed clothes increased dermal uptake by
factors of 3 and 6 for DEP and DnBP, respectively. Analogous
results were obtained for nicotine.””*” This role of clothing as
either “protector” or “amplifier” of dermal uptake is illustrated
in Figure 2. In another study, three subjects exhibited elevated
urinary excretion rates of the UV filter benzophenone-3 (BP-3)
and its metabolite benzophenone-1 shortly after donning T-
shirts previously exposed to air with elevated BP-3 levels.*
The authors suggested that dermal uptake of BP-3 from
clothing could meaningfully contribute to overall body
burdens.
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The protective effect of uncontaminated clothing has also
been indicated by reduced phthalate and halogenated flame
retardant concentrations in skin wipe samples taken from body
parts covered with clothing compared to uncovered skin.”"**
However, clothing did not provide total protection in these
studies. In vitro experiments demonstrated reduced absorption
of organophosphates through a cotton shirt as compared to
unclothed skin.>®> However, common clothing is reported to
have little effect on dermal exposure to certain gases in
hazardous material incidents such as methyl bromide, sulfuryl
fluoride, chloropicrin, and ethylene oxide.”**’

2.1.3. Health Effects As Evidence of Exposure. Studies of
health effects related to hazardous substances in textiles further
suggest clothing-associated exposures. These works have
mainly focused on dermatitis caused by textile dyes and
finishing resins.’*™*' A limited literature also exists on
carcinogenic, mutagenic, and reprotoxic substances in textile
articles. These effects have been suggested for certain dyes,
especially azo dyes,””~* and for some antibacterial agents such
as triclosan.***” Brominated flame retardants, phthalates, and
degradation products of highly fluorinated polymeric water
repellents and stain repellents, which can be present in textile
articles, have been associated with reproductive and devel-
opmental toxicity.**™>” Evidence of direct health effects of
such clothing-related exposures is lacking. Comprehensive
reviews of textile-related health studies can be found in the
Swedish Chemicals Agency’s report’ and in the opinion
statement of the German Federal Institute for Risk Assess-
ment.”

2.2. Occurrence, Persistence, and Accumulation of
Chemicals in Clothing. The chemicals present in clothing
are a mix of those present at the time of purchase (possibly
attenuating with time) and those acquired postpurchase. This
mix changes with cleaning practices, storage, and wear.

2.2.1. Chemicals Present at Time of Purchase. Most of the
chemicals that have been measured in clothing at the time of
purchase are a consequence of manufacturing processes (e.g.,
dyeing, bleaching, finishing) or have been deliberately added
and are intended to be retained during the life of the garment.
The latter group, referred to as “auxiliaries”, includes
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antiwrinkling resins, flame retardants, antimicrobial agents,
pesticides, surfactants, and other coating chemicals. Dyeing
involves the largest range of chemicals with an estimated 800
dyes currently in use.” A move toward more environmentally
benign textile dyeing is altering the mix of chemicals used in
dyeing.*® Some chemicals in clothing fabrics are present as a
consequence of packaging, transport, storage, and other
processes that occur between manufacture and purchase.

Chemicals that have been identified on newly purchased
clothing include trace elements such as heavy metals;** ™%
residual aromatic amines associated with certain azo dyes;°
quinoline and substituted quinolines;*>~® alkylphenol ethox-
ylates, alkylphenols, bisphenols, and benzophenones;”*”"
benzothiazoles and benzotriazoles,ég’n_74 dioxins and fur-
ans;'> PCBs;'””> organo-phosphorus flame retardants and
pesticides;76 halogenated flame retardants;”®”” fluorinated
surfactants; *~®' phthalate ester plasticizers;*”"* %lycol sol-
vents;** formaldehyde from antiwrinkle resins; ***

5

8586 4
common petrochemical fuel constituents such as linear and
branched C;;—C,4 alkanes, C; alkylbenzenes, and straight-
chained C,—C,, aldehydes.®”

Relatively new chemical analysis techniques are being
applied to assess chemicals in clothing. Antal et al.** described
the use of direct analysis in real-time (DART) mass
spectrometry to measure more than 40 chemicals in clothing
items, including alkylphenol ethoxylates, phthalate esters, alkyl
amines, aniline, pyridine, quinoline, and substituted quinoline.
In a recent review, Rovira and Domingo4 reported on
chemicals that have a high probability of being detected on
clothing, with a focus of the health risks posed by these species.
Of special note are extensive government reports from
Denmark,®* The Netherlands,’ Germany,2 and Sweden® that
review and critically discuss chemicals found in clothing,
especially the chemicals that may be present at the time of
purchase.

2.2.2. Chemicals Acquired Postpurchase. Chemicals
present in air, especially indoor air, can also be present on
clothing exposed to that air.’”**~"> A commonly encountered
example of chemical uptake from air occurs when clothing is
exposed to environmental tobacco smoke (ETS). Up to a
milligram of nicotine can be sorbed by a square meter of
cotton fabric during just a few hours of exposure.”® Odors
derived from ETS constituents can linger on clothing for hours
to days. More generally, how much or how little of a chemical
is transferred from air to clothing depends on several factors.
One key factor is the partition coeflicient between clothing and
air (K_,) for the fabric in question. As a rule of thumb, the
more an airborne chemical resembles the chemical nature of
the fabric that constitutes the clothing, the larger is the value of
K., and consequently the greater is the sorptive partitioning of
that chemical to the clothing. The octanol/air partition
coefficient (K,,) is a good predictor of K, for cotton because
cotton is cellulosic, for which octanol is a reasonable
surrogate.”” """ Values of K, in relation to vapor pressure
for several different fiber types have been reported.”" Still
needed are systematic investigations of K for an array of
environmental chemicals to a range of clothing fibers, including
wool, polyester, nylon, rayon, and other synthetics as well as
blends to better estimate the sorption of airborne chemicals to
these fiber types.

Clothing can acquire chemicals while in closets, storage
containers, and chests. A well-known example is sorption of the
chemical agents used as moth repellants: naphthalene,
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camphor, and p-dichlorobenzene.”®” Similarly, one would
anticipate that phthalate esters or alternative plasticizers would
be sorbed to clothing stored in polyvinyl chloride (PVC)
storage boxes or bags.

Contact with surfaces can transfer chemicals to clothing.
Such chemicals can migrate through clothing becoming
available for dermal uptake. Personal care products and
fragrances applied to the skin or hair can also be transferred
to clothing via contact.'””'"" Clothing can retain certain
chemicals transferred from personal care products, exposing
the wearer and, in principle, those sharing indoor spaces to
such chemicals during storage and during repeat wearings until
the item is effectively cleaned.

Laundering and dry-cleaning removes certain chemicals
from clothing but can add others. The fraction of a chemical
that is removed from clothing during cleaning varies with the
nature of the chemical as well as with the cleaning practices,
including the detergent or dry-cleaning solvent that is
employed. Gong et al.’' found that the efficiency with which
machine washing removed phthalates from cotton jeans
increased with the octanol/water partition coefficient (K_,)
of the phthalate. During dry-cleaning, clothing can retain
chemicals from cleanin% solvents that subsequently contribute
to personal exposures.'””'* During laundering, clothing may
acquire scents (e.g, synthetic musks”) and other detergent
constituents (e.g., alkylphenol ethoxylates'®*). Following the
wash cycle, clothing is either air-dried or mechanically dried.
When air-dried, the clothing can sorb chemicals from the air in
which it is dried. When mechanically dried, some chemicals
can be thermally desorbed while other chemicals (e.g., fabric
softeners introduced using “dryer sheets”) may be sorbed by
the clothing. Laundering also results in chemicals being
transferred among the differing items that are washed or
dried together. Cross-contamination of fabrics during launder-
ing and storage has been reported for permethrin-treated
garments.105

Chemicals on clothing can be chemically transformed to
other species. Of longstanding concern are the abiotic and
microbial reduction of azo dyes to carcinogenic aromatic
amines such as aniline, benzidine, and 2-naphthylamine.'%°~""!
For example, analysis of 86 textile products purchased in Japan
detected aromatic amines at low concentrations in socks,
undershorts, pants, and other garments.64 Oxidants can also
degrade azo dyes, as shown by reactions initiated by the
hydroxy radical, generating benzene and substituted ben-
zenes.''> Photolytic debromination has been shown to produce
low levels of polybrominated dibenzofurans''® when clothing
containing the flame retardant hexabromocyclodecane
(HBCD) is dried in the sun.

During wear, clothing acquires skin oils, whose constituents
can be altered via microbial activity. Different fiber types
promote the growth of different microbes, influencing malodor
generation from microbial metabolism of apocrine and
sebaceous secretions.'' ™' Squalene, a major constituent of
skin oil,"'® has been shown to react with ozone on T-shirts
generating products with a range of volatilities.""”~""* The less
volatile products remain on the apparel item, exposing the
wearer to species such as Cy,-pentaenal, C,,-tetraenal, C,,-
trienal, and their carboxylic acid counterparts.'”’ Squalene also
reacts with HOCI, the active ingredient in chlorine bleach, to
generate chlorinated squalene products. Three to four chlorine
atoms become covalently incorporated into the squalene
molecule during a 1 h exposure to 1 ppb HOCL'*" Such
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species may not be fully removed from clothing during
washing. More generally, bleach oxidizes chemicals on
clothing, increasing the water solubility of the contaminants
but perhaps leaving behind oxidized and chlorinated residues.
Numerous low volatility oxidation products, starting with
primary carbonyls and carboxylic acids and evolving to
products with high O to C ratios, result when ozone reacts
with terpenes or sesquiterpenes transferred to clothing from
personal care products. Other examples of chemicals generated
via reactions that occur on clothing include nonylphenol, a
known endocrine disruptor, from the degradation of non-
ylphenol ethoxylate detergent residues” and formaldehyde
from urea—formaldehyde and melamine/formaldehyde resins
used as antiwrinkling ageznts.40’41’86 The potential for chemical
transformations to occur on clothing is commonly overlooked
during assessments of exposures to environmental chemicals.

2.3. Mechanisms, Quantification, and Prediction of
Exposure and Transfer of Chemicals. Clothing influences
chemical exposure by a variety of mechanisms, including some
that are complex and poorly characterized. Organizations such
as the US Environmental Protection Agency, the World Health
Organization, and the European Chemicals Agency provide
guidance on estimating exposure from consumer ar-
ticles;'**~*** however, such recommendations are based on a
far-from-complete understanding and are therefore of limited
utility in accurately characterizing complex chemical exposures
mediated by clothing. Notwithstanding their limitations, these
recommendations and models can be combined with
stochastic representations of exposure factors and behaviors
to estimate population distributions of exposure.'*’

2.3.1. Dermal Transfer and Absorption. Most exposure
models of skin contact transfer of chemicals from surfaces are
conservative by design, i.e. they account, realistically, for the
maximum potential exposure for risk assessment and risk
management purposes. Exposure is derived from factors
including the skin area in contact; the concentration of the
chemical in the material; the number, frequency, or duration of
contact events; the type of contact; and transfer effli-
ciency.'””'** The transfer efficiency is the fraction of the
chemical in the material that transfers during contact events.
Experimental measurements of the transfer of pesticides'*® and
fluorescent tracers'”’ from carpet and of permethrin from
military uniforms'”® have been used to quantify transfer
efficiency of residues from textiles. Some experimental results
used to derive residue transfer efficiency are based on low-
volatility chemicals directly applied to the side of the textile in
contact with the skin. Therefore, the residue transfer model
may inaccurately characterize exposure from clothing that has
volatile or semivolatile chemicals distributed throughout the
fabric. Recognizing that diffusive migration can occur within
consumer materials, it has been proposed that a transfer
efficiency can be derived from the amount that can diffuse
from a thin “contact layer” of the material. The thickness of
this layer can be specified for consumer products or estimated
if diffusion coefficients are known for specific chemical—
material combinations.'”” These models generally do not
account for the uptake resistance of skin itself."*

Models of sweat-mediated transfer of chemicals from
clothing also use a transfer efficiency approach. The leachable
fraction is derived from experiments using artificial sweat to
extract substances such as dyes'”* and trace elements’” (see
also Section 3.1.3). Often, the extracted fraction is assumed to
be entirely transferred to the skin. Such an approach is likely to
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overestimate exposures, since only a fraction of the sweat will
return to the skin from clothing. For example, Meinke et al.'”
extracted fluorescent dyes from a polyester/cotton blend shirt
using a sweat simulant and compared the predicted exposure
(based on 100% transfer) to that observed in volunteers
wearing the shirt during 30 min of exercise or for 12 h of
normal activity. In these experiments, less than 1% of the
estimated amount of a dye was transferred to volunteers during
normal wear or sweating.

Indirect (noncontact) exposure to environmental contami-
nants can also be influenced by clothing. Clothing has been
observed to reduce the transfer of airborne insecticides,'!
phthalate esters,”® and organophosphate flame retardants® to
skin. Some models of indirect dermal exposure to airborne
contaminants have assumed that clothing is fully permeable.'*
Other models assume that clothing is fully impermeable. For
example, in estimating dermal uptake of polycyclic aromatic
hydrocarbons from barbeque fumes to bare skin, Lao et al.*®
assumed that areas covered by clothing were fully protected.
Between these extremes, a mechanistic modeling approach has
been introduced that accounts for the history of clothing,
contaminant-transfer between clothing and the environment,
sorptive partitioning of chemicals to clothing, diffusive and
advective transfer through clothing and to skin lipids, as well as
resistance to uptake through skin."*»'** The clothing
component of these models is similar to that used to assess
clothing for chemical protection'** and can account for uptake
through clothing from air as well as exposure to contaminants
present in clothing when donned. Predictions using such
mechanistic models agree reasonably well with urinary
excretion rate measurements for the limited number of
human subject studies in which adequate information is
available to populate the model parameters.’”'**'3® These
models indicate that clothing can either reduce or increase
dermal uptake relative to bare-skin uptake (Figure 2). The
extent of exposure is predicted to be sensitive to a chemical’s
partition coefficient between clothing and air (K)o 73137138
the efficiency of chemical removal during leiunclering,3l'68’92’139
the air-gap between fabric and skin, laundering frequency, and
the history of the clothing items prior to wear.'”> A key
advantage of dynamic mechanistic models is that they can
predict how clothing accumulates chemicals under non-
equilibrium conditions. Such models can be used to derive
simpler exposure heuristics for classes of chemicals, types of
clothing, and exposure scenarios for risk assessment
purposes.

2.3.2. Inhalation. Inhalation exposures for clothing-
associated chemicals can be modeled using methods similar
to those used to estimate inhalation of chemicals emitted by
consumer products. For example, the emission rate of dry-
cleaning solvents from clothing hung in a closet can be
combined with building air-exchange rates to predict indoor air
concentrations,'®> which are then used to assess inhalation
exposures. Inhalation exposure from the emissions that are
generated while wearing an article of clothing may be
enhanced owing to the “personal cloud” effect, as described
for particles in Section 3.1.5. For gaseous pollutants, personal-
cloud-type alterations have been illustrated in climate chamber
experiments investigating transport and pollutant distribution
in the breathing zone'*" as well as using computational fluid
dynamics to predict breathing zone concentrations of volatile
products that result from ozone reactions with the surface of
the body and clothing."**'** For a seated person under typical
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indoor conditions, inhalation exposure to volatile ozone
reaction products with skin oils was predicted to be up to
2.5 times higher than the corresponding value for room-
average concentrations. Predicted exposure to ozone itself was
estimated to be 0.6—0.9 times the corresponding condition for
room-average concentrations.'*>  Simulations are currently
limited to simple scenarios such as stationary seated or
standing individuals. Experimental validation of personal cloud
effects for clothing-associated chemical exposures are lacking.

2.3.3. Ingestion. Ingestion by mouthing of fabrics can be a
significant exposure pathway, especially for young children.
Exposure estimation requires information on the extractability
of compounds in saliva, the frequency of mouthing clothing,
and the area of the fabric mouthed. Extractability can be
quantified using a broader set of in wvitro bioavailability
methods'** which have been applied to determine extract-
ability in saliva simulants of azo dyes'** and for silver from
nanoparticles.'*® For highly water-soluble species, upper
bounds on exposure can be established by assuming that the
chemical is completely extractable. In an evaluation of indirect
exposure to environmental airborne methamphetamine in
former residential methamphetamine laboratories, mouthing of
cotton fabric by toddlers was predicted to generate intakes
approximately 10 times greater than all other exposure
pathways combined.”

A diagrammatic summary of these exposure pathways as
influenced by physical—chemical properties is shown in Figure
3. Excepting particles and particle-associated chemicals,
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Figure 3. Relative importance of clothing-associated exposure
pathways based on a chemical’s volatility and water solubility.

inhalation requires a chemical to be volatile enough to become
airborne. Ingestion is important for more water-soluble
chemicals. Most species can be transferred to skin by contact
or transfer through the clothing—skin air gap. For both
ingestion and transfer to skin surface, the chemical must be of
lower volatility to be present in clothing at meaningful
concentrations. Transdermal uptake from the skin surface
tends to be highest for chemicals with intermediate volatilities
and relatively low water solubilities.

3. EXPOSURES TO PARTICLES

3.1. Clothing-Associated Exposures to Biotic and
Abiotic Particles. Ample evidence from environmental and
occupational exposure studies indicates that clothing can act as
an important source of particle-borne agents that contribute to
human exposures. Clothing-associated exposures have been
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observed for biotic and abiotic particles with varied acquisition,
retention, and release mechanisms; exposure routes; and
potential health outcomes. This section consolidates evidence
from relevant empirical and field studies in the context of
providing an overview of exposure to biotic and abiotic
particles associated with clothing,

3.1.1. Allergens. Exposure to allergenic biological particles
from clothing has been well-studied, including cat allergen (Fel
d 1), dog aller7gen (Can d 1), dust mite allergen, and pollens.
Tovey et al."*’ were among the first to identify clothing as a
significant source of inhalable allergens. They showed that
allergenic dust particles can become resuspended directly from
clothing by body movement and can travel to the wearer’s
breathing zone by means of the thermal plume, thus causing
increased allergenic exposures. Other studies found that
exposures to mite and cat allergens were closely related to
the quantity of particle-bound allergen found on wearer’s
clothing, suggesting that personal clothing could be an
important factor influencing both mite and cat allergen
exposure. **'*” Evidence of allergen exposure also has been
reported for people that are not in direct contact or proximity
to any allergenic source.' "' These studies identified clothing
as an important indirect exposure vector, transporting particle-
borne allergens from one space to another.

Much prior evidence concerning clothing-mediated expo-
sures to pet allergens has focused on school environ-
ments.">"">* Studies have found that allergens can be
transported on children’s clothing from homes to schools,
including both the cat allergen Fel d 1'**'>* and the dog
allergen Can f 1."°* Children without pets can also acquire
allergens while in school and subsequently bring them back to
their homes.">> A study focusing on exposure interventions
found that the level of airborne cat allergens in schools could
be effectively mitigated either by pet ownership prohibition or
by using school uniforms.'*® Additional evidence has shown
that clothing can be a transport vector for the mite allergens
Der f 1 and Der p 1'°*"*” and for allergenic pollen."**™'%
Taken together, this body of research persuasively documents
that clothing can be an important secondary source of
allergenic exposures in buildings, including environments that
are free of direct allergenic sources.

3.1.2. Pathogenic Microbes. A second category of clothing-
related biological particles is pathogenic microorganisms that
pose threats for the transmission of infectious diseases. Most
research about clothing-associated pathogens has focused on
health-care settings, owing to concern about hospital-acquired
infections.”'°""'** Studies have identified pathogenic bacteria
on physicians’ white coats, "> 1% npeckties, ' °'¢” gloves,168
nurses’ uniforms,'®”'’’ and on the coats of medical
students.'”"'”* A commonly detected pathogen on healthcare
apparel is methicillin-resistant Staphylococcus aureus
(MRSA). 0#165 1681701732176 - ther pathogenic bacteria
found on healthcare workers’ uniforms have included
Clostridium dl;f icile'”® and vancomycin-resistant Enterococcus
(VRE).'0>!19170176 1 addition to bacterial pathogens, analysis
of clothing samples worn by caregivers and visitors has
revealed the presence of respiratory syncytial virus, a major
cause of respiratory infections among premature infants.'”’

Other studies have provided evidence that links bacterial
occurrence in clothing with subsequent exposure. The direct
dispersal of Staphylococcus aureus and other bacteria from
clothing into air has been identified in operating theaters,'”*"””

isolation wards,'® and hospital storage rooms.'®' Early
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research indicates that pathogen liberation from clothing into
air can occur by human movement and by frictional
interactions between clothing fibers and skin.'’*'**7'%* A
seminal study by Duguid and Wallace'®” found that clothing
can liberate pathogenic microbes by promoting skin shedding.
That same study also showed that sterile, dust-proof fabrics can
act as a barrier to the release of skin-associated microbes.

3.1.3. Nanomaterials Associated with Clothing Additives.
During the past few decades, embedded nanomaterials have
emerged as a class of technological innovations for improving
certain features of clothing fabrics such as reducing microbial
growth and survival, protecting against ultraviolet radiation,
and improving water repellency. To achieve specific targeted
functions, prevalent nanostructured clothing additives have
included titanium dioxide (TiO,), silver, zinc oxide (ZnO),
gold, copper, carbon nanotubes, and nanoclays.'®> An
emerging consensus indicates that excessive exposure to
nanomaterials can contribute to detrimental health outcomes,
including pulmonary inflammation, carcinogenicity, genotox-
icity, and circulatory effects.'®® The effects of nanomaterial
additives in clothing on human exposure and consequent
health effects remain a subject of debate. Such materials have
the potential to be released from clothing fabrics and
contribute to exposures of their wearers and others. The
mechanisms of release from clothing are different for
nanomaterials as compared with biological particles. For
example, in addition to mechanical abrasion, nanoparticles
can potentially be released from clothing by migrating into
human sweat and saliva.'*°

To date, most exposure-related studies have focused on the
migration of silver nanoparticles from clothing into human
sweat, @157 158 their release during laundering,189’l9() and their
antimicrobial properties.'”’ Dermal exposure to clothing-
embedded nanoparticles has not been rigorously investigated.
One group of studies reported that TiO, and ZnO nano-
particles do not penetrate deeply into the skin.'”> To the
contrary, there is evidence of the increase of the **Zn isotope
in the blood of a healthy adult after exposure to ®ZnO
nanoparticles in a sunscreen formulation.'” One study
reported that healthy skin is a more effective barrier for silver
nanoparticles than damaged skin.'”*

Overall, there is a need for more research to characterize the
influence of antimicrobial agents, including nanoparticles, on
microbial diversity in clothing and on the development of
microbial resistance over time. Whether the presence of
nanomaterials on fabrics in contact with the skin could alter
the local skin microbiota remains a key open question.

3.1.4. Paraoccupational Exposures. Studies have reported
instances of paraoccupational (or “take-home”) exposures to
hazardous particles encountered in workplaces. Most such
studies have focused on asbestos. As reviewed by Donovan et
al.’”® and Goswami et al,'”® there is abundant evidence for
increased risks of mesothelioma and lung cancer owing to
paraoccupational exposure to asbestos fibers and asbestos-
containing dust on workers’ clothing. However, relatively little
research provides quantitative evidence that mechanistically
links workplace encounters with subsequent household
exposures. Sahmel et al.'”’ found that handling clothes
contaminated with chrysotile asbestos resuspends 0.2—1.4%
of the material. Sanon and Watkins'’® demonstrated that
healthcare uniforms can act as a vector for pathogen
transmission outside of hospitals. Overall, the take-home effect
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for particles and microbial exposure via clothing seems to be a
plausible route of transmission worthy of increased attention.

3.1.5. Personal Cloud. An enhancement of inhalation
exposure to particles beyond the room-average levels may
occur for clothing-associated particle releases. This feature,
termed the “personal cloud”, was introduced for clothing-
mediated chemical exposures in Section 2.3.2.

There are multiple dimensions to the clothing-associated
personal cloud effect. Key determinants involve size-dependent
emission rates of particles from clothing, proximity of clothing
to the breathing zone, and local air movement in relation to
personal activities. Several studies suggest that direct shedding
from clothing surfaces may be a noteworthy source of coarse-
mode particles and bioaerosols indoors,'”* ™" but none of
them quantified contributions to the personal cloud effect. A
recent study by Licina et al.’®® reported that clothing
movement can release coarse particles into the perihuman
space of a seated person, which can then be transported
upward by means of the metabolically induced thermal plume.
In that study, the contribution of such releases to the personal
cloud was substantial: from 2 to 13 ug/m’ in the particle
diameter range 1—10 pm. The contribution of clothing-
associated particle release to a personal cloud effect was
observed only for seated occupants and specifically not
observed during walking. The study suggests that the personal
cloud is contingent on physical activities and that manipulating
the metabolic thermal plume could alter exposure to clothing-
released particles. Additionally, during more intensive clothing
manipulations such as putting on and taking off a shirt or
folding and unfolding a shirt, sharp peaks in the breathing zone
PM,, mass concentration were detected, at times exceeding 40
ug/ m?>. Overall, the emerging evidence regarding the personal
cloud combined with evidence that clothing can harbor
allergens, potentially pathogenic microorganisms, and other
harmful substances suggest that clothing surfaces may be an
underappreciated factor influencing particle exposure, possibly
with public health relevance.

3.2. Toward Quantifying Clothing-Mediated Particle
Exposures. The previous section summarized evidence that
clothing-mediated exposures to particles are potentially
meaningful in diverse circumstances. It is important to
characterize exposures quantitatively and, in as far as it is
possible, mechanistically, so that one is able to extract
generalizable findings from limited experimental evidence. In
this section, we outline a framework that could guide and
support systematic knowledge acquisition for better under-
standing how clothing influences inhalation exposures to biotic
and abiotic particles.

The central element in this framework is the determination
of size-resolved and composition specific emission rates of
particles associated with clothing. Such emission rates can be
expressed in terms of particle mass per time or particle number
per time. Composition is key in relation to health outcomes of
concern: allergenic particles, infectious microbes, and abiotic
particles each contribute to increased yet distinct adverse
health risks.

For known clothing-associated particle emission rates,
contributions to exposures can be assessed. For example,
particle emission rates from clothing can be incorporated into
material balance models to estimate the component of
exposure associated with increased indoor air concentra-
tions.””® Alternatively, the intake fraction approach can be
applied to estimate mass or particle number inhalation
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Shedding - release of endogenous particles
including skin flakes and associated microbes, and
intrinsic fabric materials (clothing fragments and
particles from manufacturing), as the result of skin-
clothing frictional interactions

Resuspension - release and transport of

N exogenous particles that have previously settled
onto clothing surfaces as the result of physical
activity of a wearer or owing to a direct contact
between clothing and other surfaces

Migration - release of nanoparticles into human
sweat and saliva

Resuspension characteristics

Dominant particle size mode:
- 3-5 ym diameter

Emission rate (skin-clothing frictional interactions):
- 0.17 mg/h per sitting person (size range 1-10 pm)
- 0.45 mg/h per walking person (size range 1-10 um)

Clothing transport vector:
- 0.3-3% of previous deposit (size range 1-10 um)

Figure 4. Particle source categories associated with clothing (left) and mechanisms of size dependent particle release and resuspension
characteristics (right). Corresponding references: dominant particle size mode reported by Bhangar et al,'”” size-resolved emission rates from
sitting and walking person reported by Licina et al,,>”> and release of previously deposited particles from clothing (transport vector effect) reported

by Licina and Nazaroff.**®

increments directly from emission rate information.”’* Addi-
tional contributions to exposure from the personal cloud effect
can be assessed based on experimental’’> or numerical'*®
evidence.

It is reasonable to expect that particle exposures associated
with clothing occur mainly indoors. As with other indoor
particle sources, emission rates can be inferred from measuring
time- and size-resolved particle concentrations in chamber
experiments with controlled environmental conditions (e.g.,
known ventilation rate and low particle backgrounds) and
simulated activities.'””*°” It is also plausible to infer emission
rates from field observations; however, doing so for clothing-
associated particle emissions poses the challenge of separately
accounting for resuspension from flooring, commonly an
important source of coarse particles indoors.”"®

In assessing clothing-associated emissions, it is worthwhile
to differentiate broadly among three particle source categories
(see Figure 4). One category is skin flakes, known as squames,
generated through frictional interaction between clothing and
skin. These squames consist of skin fragments with associated
microbes, especially bacteria. A second category would be
particles intrinsic to the clothing fabric such as fabric fragments
and nanoparticle additives. A third category, the broadest, is
exogenous particles that become associated with clothing
articles by means of environmental transfer. The first category
has been studied most carefully in connection with concerns
about hospital-acquired infections. Concern about the second
category is increasing, in part due to the emerging use of
nanoparticle fabric treatments. The third category would be
relevant for concerns as diverse as allergen exposure,
paraoccupational exposure, and general enhancements of
airborne particles via the personal cloud.

For squame emissions associated with clothing, key factors
would include the state of the skin surface (dryness, for
example), the nature and intensity of frictional interaction
between fabric and skin, and the tightness of the weave.
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Variability in the emissions of skin-associated Staphyloccus
aureus among individuals has been demonstrated to be lar%e
and systematically higher for men than for women.'™
Notwithstanding a long history of studies, the issue of what
should be worn by medical staff in the operating theater to
minimize surgical site infections remains a subject of debate.”"”
For intrinsic particle emissions (e.g,, nanoparticle additives),
one expects that important factors affecting emissions would
include initial particle loading of the fabric, the nature of
bonding with fibers, the nature and intensity of movement
generating frictional forces, and the overall wear of the fabric.

For emissions of exogenous particles, one might envision
clothing articles as environmental reservoirs and aim to
account for the net movement of particles between these
reservoirs and the surroundings. Consider an article of clothing
such as a T-shirt passing through a cycle starting with
laundering. The washing cycle might effectively remove
previously deposited particles but could conceivably add
particles from dissolved salts in the wash water and from
detergent residue. A tumble-dry cycle could effectively add
some airborne exogenous particles filtered by the clothing
items from the drying air that passes through the drum. The
clothing article might then lose some of these particles and
contribute an increment of exposure during the postlaundry
handling of folding and placing in storage. When worn, the T-
shirt can acquire exogenous particles by deposition from the air
and by direct contact with particle-laden surfaces. Exogenous
particles may also be acquired during storage intervals,
especially if exposed in a manner that would be influenced
by settling dust. The accumulation of particles during these
processes could be quantified through deposition assessments,
for example through the multiplicative combination of
exposure concentrations of particles, a suitable deposition
velocity, and duration of exposure. Knowing the size-resolved
and composition-specific quantities of exogenous particles on a
clothing article, one could assess the emission rate through the
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use of loss-rate coefficients. An analogous approach has been
used to systematically investigate particle resuspension from
walking.**>

3.3. Factors Affecting Clothing-Mediated Particle
Exposures. The previous section outlined an approach that
could be used to systematically assess clothing-associated
exposures to particles. Specific information about relevant
factors and processes is sparse. This section describes what is
known from prior experimental investigations about the major
factors that influence the size-dependent emissions of particles
associated with clothing, emphasizing the relationship to
inhalation exposures.

Early studies revealed important findings about clothing—
skin surface interaction as a means of liberating bacteria-laden
skin flakes,'’®!791827184208=211 Rocent advances in DNA-
based measurements have enabled rapid progress in character-
izing the human microbiome, including detailed descriptions of
diverse communities of bacteria’'**'” and fungi*'* present on
human skin. Analyses of clothing surface samples or air
exposed to clothing have revealed populations of pathogenic
bacteria,'®*'7® respiratory syncytial virus,'”” fungi,”'**'® dust
mite and cat allergens, endotoxins,*”*'” and allergenic
pollen.'**7'%° Some quantitative evidence exists documenting
microbial transfer to clothing from skin*'® and by hand,'®*'
although more studies are needed to quantify this phenom-
enon and better characterize the process mechanistically.

Available evidence suggests that the rate of particle release
from clothing fibers is influenced by a combination of three
main factors: properties of clothing, environmental conditions,
and human factors. A dominant factor influencing release is the
intensity of movement. Up to an order of magnitude higher
emission rates have been observed during vigorous bodily
movement compared to slight activity, presumably owing to
increased frictional interactions between clothing fibers and
skin.'##'7729%220 Men have been found to release significantly
more particles compared to women.'***'"**'=*** Application
of skin lotion has been linked to reduced dispersal rate of biotic
particles.””"*** Some studies,”*"**>**° but not all,”****” have
found that the emission rate of biotic particles from clothing—
skin interactions increases within an hour after showering.
Transport of particles through clothing surfaces and sub-
sequent dispersal can be reduced by wearing tightly woven and
nonwoven fabrics,'”?*%**%

A few recent studies have applied a material-balance
approach to infer size-resolved biotic particle emission rates
associated with human occupancy. Qian et al.”*’ used
quantitative PCR to infer that a single university classroom
occupant contributes effective emissions of 37 million bacterial
genomes per hour with a modal aerodynamic diameter of 3—5
pum. However, that study could not differentiate between
emissions associated with clothing and those from other
sources such as resuspension from a carpeted floor. Bhangar et
al.>*® applied a laser-induced fluorescence technique to
quantify the per person emission rate of fluorescent biological
aerosol particles (FBAP) in the size range 1—1S5 ym diameter
in an uncarpeted university classroom. Their work, which again
did not isolate the contribution of clothing, yielded an average
emission rate of 2 million FBAP per hour with modal
diameters of 3—4 pm. In a subsequent chamber study, Bhangar
et al."”” found that at least 60—70% of occupancy-associated
FBAP emissions originated from the floor. However, they also
found that “clothing, or its frictional interaction with human
skin, was...a source of coarse particles, and especially of the
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highly fluorescent fraction.” That study also revealed a
dominant size mode for FBAP of 3—5 ym diameter.

When considering the specific issue of infectious disease
transmission in relation to clothing, the persistence and
survival of infectious agents on fabrics need to be considered.
Variation in building environmental conditions and properties
of clothing fabrics produces various effects on microbial
persistence and survival.”>"*** Longitudinal assessment of
bacteria survival across different studies showed a remarkably
high persistence from several days up to more than 90 days for
isolates of VRE and MRSA."”******* Survival and persistence
of viruses and fungi on clothing fabrics has similar days- to
months-long time scales.”' %> Among different factors
influencing survival and persistence, relative humidity and
fabric material have been explored. Increased relative humidity
(from 35 to 78%) has been linked to reduced stability of both
bacterial and viral strains in clothing;.235’236 Survival and
persistence of bacteria, viruses, and fungi is higher on
commonly used polyester and wool fabrics compared to
cotton materials.”'>**>7>%

Another common theme in the literature concerning
clothing-mediated exposure to pathogenic microbes considers
the effectiveness of laundering practices such as washing,
drying, and ironing. Mechanical removal includes fabric
agitation assisted by surfactant properties of detergents, while
inactivation processes can occur as a consequence of elevated
water temperature combined with laundry additives such as
sodium hypochlorite. Among relevant studies, Callewaert et
al.”** documented microbial exchan§es among clothing articles
during washing. Nordstrom et al.**” found that home-washed
hospital scrubs had increased prevalence of bacterial species
compared to those laundered in hospitals, presumably due to
low temperature washing. A 7-log reduction in bacterial load
can be achieved by 10 min of washing with 60 °C water.”*
Adding sodium hypochlorite to a detergent is an effective way
to eliminate bacteria and inactivate enteric and respiratory
viruses;**"*** however, it might also lead to increases in the
abundance of chlorinated organic compounds on clothing.'”’
Detergents free of bleach can reduce the prevalence of
Staphyloccus aureus,”** while adding bleach-enriched detergents
completely eliminates the same. Recent adjustments in
laundering procedures include addition of enzymes, reduced
water use, lower water temperature, and bleach-free
detergents.”** >

Both biotic and abiotic material can be deposited onto
clothing surfaces from various environmental sources, includ-
ing outdoor air, 98199247 grassland,160 residential air,** public
transport microenvironments,”*’ and from physical contact
with items such as furniture, storage surfaces, and car
seats.””""*>” The rate of deposition from air to clothing can
be described using the deposition velocity concept.”> Studies
have found that particle size and local air movement are
dominant influencing factors.”***>*

Research has clearly documented that previously deposited
material can be released into air from clothing.'®”***%>%5° For
example, using a controlled chamber study approach, Licina
and Nazaroff”” found that 0.3—3% of deposited particles (size
range 1—10 ym) deposited through settling could be released
via fabric motion. In that work, the release fraction
monotonically increased with particle size.

The degree of particle binding to clothing fibers and the rate
of resuspension may arise from a combined influence of
different forces acting upon the fibers. The forces governing
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the release of clothing-embedded particles are abrasive actions
between clothing surfaces—a consequence of physical activity
of a wearer.'*>'** Forces influencing release are strongly linked
to particle size. Because detachment forces increase more
strongly with particle diameter than do adhesion forces,
clothing-associated emissions are more discernible among
coarse-mode than fine-mode particles.'”” ">

Common clothing fibers are wool, cotton, and polyester.
Wool has been reported to have particle release rates up to 10
times higher than the other two materials;' ***”  cotton
exhibits higher emissions than polyester.”*’ The higher particle
emissions from wool garments could be linked to different
surface roughness and weave pattern®® but also to less
frequent laundering as compared to cotton and polyester
fabrics.”>” Other clothing conditions found to increase particle
release rate include increased clothing age”” and reduced
cleanliness.'*”**” While it is generally understood that
adhesion forces acting on particles increase with relative
humidity, we know of only two studies that have examined its
effect on clothing-associated emissions. Yoon and Brimble-
combe™” found an association between low relative humidity
and increased particle emission rate, whereas Zhou et al.”>'
reported an insignificant influence.

4. FUTURE OUTLOOK

There is ample evidence that clothing influences human
exposure to chemicals and particles. Yet, only a few studies
have quantified clothing-mediated exposure by means of direct
measurements.” /1524-26,2830,149,20

We know surprisingly little about the occurrence of
contaminants acquired by everyday clothing after purchase.
For a relatively low cost, we could learn a large amount from
simply assessing the occurrence, concentrations, and extract-
ability (e.g., by sweat and saliva) of chemicals and particles in
everyday clothing. Cross-sectional exposure studies would
greatly benefit from the addition of clothing analyses,
potentially identifying direct connections between clothing-
associated exposure and health.

The diversity of clothing, environmental, and human factors
make predicting exposures challenging. Therefore, it will be
important to reduce the many variables to those that are most
influential. Progress can be achieved through models and
laboratory and field investigations of human exposure and
uptake. In addition to chemical properties, important factors
affecting exposures may include textile materials, weave,
thickness, and permeability; wear, care, and storage practices;
environmental conditions; intensity and types of activities;
skin—oil transfer to clothing and its aging; human physiology
(skin integrity, lipid generation, sweating); and personal
hygiene habits. Simulated exposures with human subjects
also should consider pollutant transfer from textiles other than
clothing (e.g, pillows, quilts, bed linen). The sleeping
environment is potentially of great importance in this matter
given the large proportion of time spent in bed.

Predicting and controlling exposure rely on adequate
understanding of underlying mechanisms. A robust literature
describes transport mechanisms for chemicals among environ-
mental reservoirs. Reasonable approaches have been proposed
for assessing risk and exposure to chemicals in clothing.
However, we have limited in vivo evaluations of such
assessments. Compared with chemical transport, mechanisms
of particle uptake and subsequent release from clothing are
even less well understood. Further quantitative investigations

5568

of factors that drive acquisition, retention, and transmission of
biotic and abiotic particles in clothing are needed to better link
such processes to clothing associated exposures. We also need
to better understand the extent to which clothing plays a role
in the spread of infectious disease. Considerable research has
focused on textile innovations and personal protective clothing
designed to limit the spread of infectious agents in hospital
environments. Researchers could usefully build upon lessons
learned and consider the potential utility of incorporating such
innovations in everyday clothing.

One should anticipate that future changes in clothing will
influence exposure. The useful lifetime of some clothing has
become shorter. High turnover (short ownership time) might
yield greater exposure to chemicals that are present in newly
purchased clothing with proportionately less exposure to
environmental chemicals that require a long period to
equilibrate (e.g., high molecular weight phthalates). Similarly,
increased use of antimicrobial agents as coatings on clothing
articles may increase uptake of nanoparticles by the human
body and lead to altered toxicological effects. Worth noting is
that people in Western countries commonly have closets full of
clothes that are rarely worn. These articles may have sufficient
time to equilibrate with the chemicals present in their storage
environment. Worldwide, demand for synthetic fabrics is
increasing.”®” Synthetics have chemical partitioning behaviors
and moisture holding capacities that differ from those of
natural fibers, altering the capacity to be reservoirs of
contaminants. Advances in materials and adjustments in
laundering procedures may also influence how clothing is
cared for and how chemicals and particles are acquired and
retained in clothing. Increased recycling and reuse of clothing
can influence tertiary exposures.

People spend nearly their entire lives in intimate contact
with clothing and other textiles. The evidence reviewed in this
article supports a view that this environmental compartment
plays important roles in exposure and health risk. Con-
sequently, clothing as a mediator of chemical and particle
exposure deserves substantial attention from the environmental
science research and regulatory communities.
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