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Abstract
The incremental deployment of decentralized renewable energy sources in the distribution

grid is triggering a paradigm change for the power sector. This shift from a centralized struc-

ture with big power plants to a decentralized scenario of distributed energy resources, such

as solar and wind, calls for a more active management of the distribution grid. Conventional

distribution grids were passive systems, in which the power was flowing unidirectionally

from upstream to downstream. Nowadays, and increasingly in the future, the penetration of

distributed generation (DG), with its stochastic nature and lack of controllability, represents

a major challenge for the stability of the network, especially at the distribution level. In par-

ticular, the power flow reversals produced by DG cause voltage excursions, which must be

compensated. This poses an obstacle to the energy transition towards a more sustainable

energy mix, which can however be mitigated by using a more active approach towards the con-

trol of the distribution networks. Demand side management (DSM) offers a possible solution

to the problem, allowing to actively control the balance between generation, consumption

and storage, close to the local point of generation. An active energy management implies not

only the capability to react promptly in case of disturbances, but also the ability to anticipate

future events and take control actions accordingly. This is usually achieved through model

predictive control (MPC), which requires a prediction of the future disturbances (in this case,

produced and consumed energy) acting on the system.

This thesis treats challenges of distributed DSM, with a particular focus on the case of a

high penetration of PV power plants. The first subject of the thesis is the evaluation of the

performance of models for forecasting and control with low computational requirements,

of distributed electrical batteries. The proposed methods are compared by means of closed

loop deterministic and stochastic MPC performance. The second subject of the thesis is

the development of model based forecasting for PV power plants, and methods to estimate

these models without the use of dedicated sensors. The third subject of the thesis concerns

strategies for increasing forecasting accuracy when dealing with multiple signals linked by

hierarchical relations. Hierarchical forecasting methods are introduced and a distributed

algorithm for reconciling base forecasters is presented. At the same time, a new methodology

for generating aggregate consistent probabilistic forecasts is proposed. This method can

be applied to distributed stochastic DSM, in the presence of high penetration of rooftop

installed PV systems. In this case, the forecasts’ errors become mutually dependent, raising

difficulties in the control problem due to the nontrivial summation of dependent random

variables. The benefits of considering dependent forecasting errors over considering them as
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independent and uncorrelated, are investigated. The last part of the thesis concerns models

for distributed energy markets, relying on hierarchical aggregators. To be effective, DSM

requires a considerable amount of flexible load and storage to be controllable. This generates

the need to be able to pool and coordinate several units, in order to reach a critical mass.

In a real case scenario, flexible units will have different owners, who will have different and

possibly conflicting interests. In order to recruit as much flexibility as possible, it is therefore

important to design incentive mechanisms that guarantee participants to benefit from their

participation, while at the same time achieving a technical optimum. Since I didn’t want

to include any users’ active decision nor belief in the formation of the market equilibrium

price, or to model users’ willingness to pay and their marginal utilities, I chose not to consider

auction mechanisms. I instead used the well known concept of Lagrangian relaxation from

optimization theory, and the interpretation of Lagrangian multipliers as marginal prices, as

a way to automatically identify prices for the grid’s constraints. I further avoided to model

users’ utility as intended in standard auction and game theory, and replaced it with costs and

users’ constraints sets. In fact, the latter can be interpreted as a binary and non differentiable

utility function, and prevent us from making any assumption on users’ marginal satisfaction

with respect to consumed energy. The focus is on two approaches, the first one relying on

distributed control theory, while the second one generates from non-cooperative games.

I show that for the class of problems of our interest, the so called sharing problems, the

two formulations are deeply linked, and can thus be treated using the same decomposition

techniques.
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Sinossi
La progressiva adozione di fonti energetiche rinnovabili decentralizzate nella rete di dis-

tribuzione sta innescando un cambiamento di paradigma per il settore energetico. Il passag-

gio da una struttura centralizzata a uno scenario di produzione di energia elettrica tramite

fonti distribuite, come il solare e l’eolico, richiede una gestione più attiva della rete di dis-

tribuzione. Le reti di distribuzione erano considerate sistemi passivi, in cui la potenza fluisce

unidirezionalmente dalla fonte di produzione al consumatore. Oggigiorno, e sempre più in

futuro, la penetrazione della generazione distribuita (GD), con la sua natura stocastica e la

mancanza di controllabilità, rappresenta una grande sfida per la stabilità della rete, soprattutto

a livello della rete di distribuzione. In particolare, le inversioni del flusso di potenza prodotte

da GD provocano escursioni di tensione, che devono essere compensate. Ciò rappresenta un

ostacolo alla transizione energetica verso un mix energetico più sostenibile, che può tuttavia

essere mitigato utilizzando un approccio più attivo verso il controllo delle reti di distribuzione.

Il Demand Side Management (DSM) offre una possibile soluzione al problema, consentendo

di controllare attivamente l’equilibrio tra generazione, consumo e stoccaggio. Una gestione

energetica attiva implica non solo la capacità di reagire prontamente in caso di disturbi, ma

anche la capacità di anticipare eventi futuri e intraprendere azioni di controllo di conseguenza.

Questo è solitamente ottenuto attraverso modelli di controllo predittivo, che richiedono una

previsione dei disturbi futuri che agiscono sul sistema. Questa tesi tratta le sfide del DSM

distribuito, con particolare attenzione al caso di un’ alta penetrazione di impianti fotovoltaici.

Il primo argomento della tesi è la valutazione delle performance di modelli con requisiti com-

putazionali limitati per il controllo di batterie elettriche distribuite. I metodi proposti sono

confrontati per mezzo delle loro prestazioni a ciclo chiuso, sia per un controllo deterministico

che stocasticho. Il secondo argomento della tesi è lo sviluppo di metodi per la previsione

della potenza generata da impianti fotovoltaici, basati su modelli fisici, e la stima degli stessi

senza l’uso di sensori dedicati. Il terzo argomento indagato nella tesi sono strategie per au-

mentare l’accuratezza della predizione della potenza e consumo elettrico in vari punti della

rete di distribuzione, avendo a disposizione dati storici collegati da relazioni gerarchiche. In

particolare, è presentato un metodo per calcolare in modo distribuito diverse techniche di

riconciliazione per predittori gerarchci. In concomitanza, è presentata una nuova metodologia

per l’aggregazione consistente delle distribuzioni di probabilità descriventi previsioni della

generazione di potenza. Questo metodo può essere applicato al DSM stocastico distribuito, in

presenza di elevata penetrazione di impianti fotovoltaici. In questo caso infatti, gli errori delle

previsioni diventano mutualmente dipendenti, inducendo difficoltà nel problema di controllo,
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dovute alla non trivialità della somma di distribuzioni di probabilità dipendenti. I vantaggi di

considerare gli errori di previsione come dipendenti, sono mostrati nella tesi. L’ultima parte

della tesi riguarda modelli per i mercati elettrici distribuiti, basati su aggregatori gerarchici.

Per essere efficace, il DSM richiede il controllo di un gran numero di utenti. Questo genera

la necessità di essere in grado di raggruppare e coordinare diversi consumatori e produtori

nella rete elettica, al fine di raggiungere una massa critica. In un caso reale, le risorse di

flessibilità avranno proprietari diversi, con interessi economici conflittuali. Al fine di reclutare

la massima flessibilità possibile, è quindi importante progettare meccanismi di incentivazione

che garantiscano ai partecipanti di beneficiare della loro partecipazione, ottenendo allo stesso

tempo un optimum tecnico. Poiché non volevo delegare nessun ruolo attivo agli utenti nella

determinazione del prezzo di equilibrio del mercato, né modellare la loro utilità marginale, ho

scelto di non considerare meccanismi d’asta. Ho invece usato concetti di ottimizzazione e in

particolare la teoria dei moltiplicatori di Lagrange per determinare il prezzo legato ai vincoli

di rete in modo automatico. Ho inoltre evitato di modellare l’utilità degli agenti, come intesa

nella teoria delle aste a dei giochi, sostituendola con costi e set di vincoli per gli utenti. Questi

ultimi possono infatti essere considerati come funzioni di utilità binarie non differenziabili,

e permettono di non fare nessun assunzione sulla soddisfazione marginale degli utenti nel

consumare energia. In particolare, ho concentrato l’attenzione su due approcci diversi: il

primo basato sulla teoria del controllo distribuito, il secondo basato sulla teoria dei giochi

non cooperativi. Nella tesi viene dimostrato che per la classe di problemi di nostro interesse, i

cosiddetti sharing problems, le due formulazioni sono profondamente collegate e possono

quindi essere trattate usando le stesse tecniche di decomposizione.
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Introduction

Motivations of the thesis

The incremental deployment of decentralized stochastic generators at the low and medium

voltage levels of the distribution grid introduces a number of new challenges for the safe

operation of the network, like for example voltage fluctuations and line congestions [1; 2; 3; 4].

Among the proposed solutions to this problem, an active control of distributed loads and

storage, also known as demand side management (DSM), has been widely suggested [5; 6; 7; 8].

For an effective management of the network through the actuation of distributed flexible

loads and storage systems, it is imperative to be able to coordinate their actions efficiently.

Substantial, authoritative work addresses the theme of DSM and demand response (DR) from

a theoretical standpoint [9; 10; 3; 11; 12], analyzing the best strategies for agent coordination

towards an optimal aggregate behaviour on single grid levels. But, as flexibility will be offered

at different levels and will provide a number of services, from voltage control for the distributed

system operator (DSO) to control energy for the transmission system operators (TSOs), it

is important to make sure that these services will not interfere with each other. It is clear

that offering services to a TSO or a balance responsible party (BRP) can very realistically

have an impact on power quality, both locally and at a distance. While TSOs objectives are

focused on the flawless operation of the bulk grid, (e.g. reserve scheduling and congestion

management in the transmission grid), DSOs and independent system operators (ISOs) are

more concerned with power quality in terms of bounded nodal voltages, line congestion,

islanding of local portions of the grid and local dispatch. The coordination needed for such

services implies substantial load correlation and openly challenges the traditional assumption

of “statistical smoothing”, under which DSOs have designed their grids; let alone the effects

of the ever-increasing penetration of photovoltaic (PV) systems at the low voltage level. At

the same time, the stochasticity and volatility of distributed energy resources (DERs) power

generation is pushing electricity markets towards smaller clearance times, with respect to

the day ahead planning used in the Day Ahead Market. Furthermore, as DSM and DR rely

on prosumers owned assets with small starting time compared to centralized power plants,

the solution paradigm is shifting from solving unit commitment (UC) problems to the one of

solving multistage stochastic problems, using a rolling horizon fashion. This paradigm shift
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in the modality of grid usage requires a certain degree of system overhaul. In particular, one

needs to ensure that DSM does not create congestions or voltage violations at any point of

the distribution grid. A comprehensive approach towards the actuation of flexibility, taking

into account its effects at different grid levels, is proposed in this thesis. In this work, I chose

to investigate distributed control techniques for the problem of coordinating the flexibilities

in the grid. Compared to centralized techniques, distributed control offers the advantage

of being more scalable and allowing to preserve partially the privacy of the agents. On the

other hand, distributed control presents a number of challenges, among which the need

to decompose the optimization problem and distribute it among the agents, who need to

solve parts of it locally, often on a hardware, which has limited computational power. To

successfully apply distributed control techniques for the coordination of a set of agents

represented by electrical loads or batteries, one needs to rely on the forecasts of each agents’

electrical consumption/production with relatively high time resolutions. Since both power

consumption and DERs power production profiles have a daily seasonality, a 24 hours ahead

planning is typically used. The high number of time steps, the frequency at which the problem

must be solved, the number of agents to be coordinated (in the range of hundreds) and the

limited computational power of the devices on which the distributed control problem is

solved (smart meters), require a careful selection of both optimization strategy and forecasting

algorithm. The efficient forecast of a high number of relatively small loads and generators

is particularly challenging. Part of this thesis is specifically dedicated to the design and

evaluation of forecasting techniques for production and consumption. Both the accuracy

and the computational requirements of the proposed techniques is evaluated. A particular

focus went on PV forecasting, since PV represents most of DERs. Another challenge when

forecasting relatively small loads and generators is the lack of monitoring equipment. Often,

PV production is not measured separately and it simply adds negatively to the aggregated

power consumption. In this work, disaggregation techniques that allow disaggregating PV

production from power consumption are proposed and evaluated. When multi objective

optimization techniques are applied to optimize for both a local (e.g. single household level)

and a global (aggregate power of a neighborhood) objective function, consistency in the

forecasted power profiles is required. This means that the forecasts of the single agents should

sum up to the forecast of their aggregate. This consistency is particularly challenging to obtain

when considering probabilistic forecasts. For this reason I propose a method to retrieve

probabilistic forecasts which are aggregate-consistent by construction, without the need of

empirically modeling a large number of probabilistic interdependencies between forecasters,

as the state of the art suggests.

Contributions and structure of the thesis

In what follows, the main contributions of the thesis are presented, referencing the chapters

in which they are treated, grouped by the four problematics introduced in the motivation.
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Low computational complexity methods for predictive control In chapter 2, control and

forecasting techniques with low computational requirements are compared to more sophis-

ticated and computational intensive methods. In particular, we investigated the loss of

performance of a deterministic model predictive controller (MPC) using forecasters of a

computationally cheap parametric forecaster, with respect to a tree based stochastic model

predictive controller (TBSMPC) exploiting conditional probability density functions provided

by a quantile random forest (QRF).

• In section 2.2, a nonuniform stepsize MPC formulation is presented. Logarithmically

spaced steps are used, and their number is systematically increased while evaluating

the controller performance using synthetically generated residential power profiles. The

aim of the control step reduction is twofold, lowering the controller computational time

and both the forecasters training dataset and training computational time . We show

that, when re-weighting the objective function for the length of the averaging bins, the

maximum relative increase in the objective function with respect of the full formulation

using 96 steps, is well below 1%, using only 10 steps.

• In section 2.3, two new forecasters with low training computational time and memory

requirement are presented: a detrended Holt-Winter (HW) forecaster and a bagging of

extreme learning machines. The HW provided strictly better a-priori performance for

the first step-ahead forecasts, with respect to all the other models. When evaluating the

forecasters a-posteriori, by means of closed loop performances of an MPC controller,

the Holt-Winter forecasters shows performances which are close to the one provided

by the best forecaster, with the advantage of being computationally cheaper. When the

a-posteriori evaluation is done using a TBSMPC controller, the tests shown that the

forecaster based on a QRF regressor consistently provide better performance, at the

price of a higher computational time for the model training and memory requirements.

Influence of PV modeling on forecasting As a growing number of roof-mounted PV system

is being installed, in section 3.2 we investigate the effect of exploiting physics-based PV models

in order to forecast their power production. Forecasting PV power is of great importance

for the future electrical grid, as more accurate power predictions allows to better handle

abrupt rump up in regional power flow, due to change in cloud configuration, and ultimately

permit to increase the number of PV plants which can be hosted in the distribution grid.

Estimating physical models of existing PV systems in an automatic and unsupervised way,

has the additional benefit of turning PV panels into irradiance sensors. In section 3.1.2 we

introduce a new method to reconstruct the G H I using only AC power from a PV power plant.

Chapter 2, treating these subjects, is partially based on the annexed papers:

[A] F. Sossan, L. Nespoli, V. Medici, and M. Paolone, “Unsupervised Disaggregation of Pho-

tovoltaic Production from Composite Power Flow Measurements of Heterogeneous Pro-

sumers,” IEEE Trans. Ind. Informatics, 2018.
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[B] L. Nespoli and V. Medici, “An unsupervised method for estimating the global horizontal

irradiance from photovoltaic power measurements,” Solar Energy, 2017.

The main outcomes of the thesis on this topic, contained in chapter 3, are the following:

• A methodology to blindly identify a physical model of PV power plants, starting from

composite power signals, are introduced in sec 3.1. The different methods are explained

in detail in paper A.

• In section 3.1.2, a new unsupervised method for estimating the GHI from AC photo-

voltaic power measurements is introduced. The detailed procedure is presented in paper

B, and its improved accuracy with respect to satellite-based irradiance estimations is

reported, for two case study.

• It is shown how, combining physical models and QRF, the accuracy of predicting PV

output from meteorological conditions increases significantly. Moreover, blindly identify

the PV model starting from composite power measurements does not significantly

decrease the prediction accuracy.

• It is shown how modeling PV does help to increase the forecast accuracy, only for steps

ahead between 30 minutes and 12 hours, period in which NWP are more reliable.

Hierarchical forecasting techniques When applying DSM, we are typically interested in

minimizing an objective function which depends on the aggregated power profiles of a group

of agents in the distribution grid, while respecting grid constraints. This requires to separately

forecast agents’ power profiles. In this case hierarchical forecasting techniques can be used to

improve the forecasts’ accuracy. When we are interested in probabilistic forecasts, the problem

becomes harder, requiring in general a multidimensional integral. The main contribution in

hierarchical forecasting of this thesis, contained in chapter 4, are the following:

• In section 4.1, a new distributed method to reconcile forecasters at different levels of a

hierarchical structure is presented. This method can be used to make forecasts done

by different entities aggregate-consistent, thus usable in distributed control. The main

advantage in redistributing the reconciliation is that private information which could be

used by the base forecasters, is not disclosed. Furthermore, informations at upper levels

of the hierarchical structure is only available by means of aggregate power profiles.

• In section 4.2, a new method to obtain aggregated consistent pdfs for hierarchical power

forecasts is presented. We show that nontrivial methods for summing the bottom level

forecasts’ pdf are needed especially in the case of high penetration of PV. In this case

forecasting errors becomes dependent, due to imperfect NWP.
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Distributed energy market Two of the challenges of distributed DSM are the ability of

providing multiple ancillary services at different voltage levels of the distribution grid, and

trustless coordination of agents. For example, an independent group of prosumers can

provide congestion management at the MV level and voltage control at LV level for a DSO,

sell its aggregated flexibility to BRPs to help them meeting previously committed power

profiles on the spot or intraday market, or sell provide secondary or tertiary control to the TSO.

Another interesting case is the one of self consumption community (SCC), in which a group of

prosumers connected to the main grid through a single point of coupling can pay its electricity

bill as a single entity. This means that SCCs are pushed to increase their self consumption in

order to low their total energy expenses. These thematics are briefly introduced in chapter

5. We propose a multilevel hierarchical distributed algorithm, which makes use of voltage

sensitivity coefficients in order to respect grid constraints. Since distributed control algorithm

based on problem decomposition are prone to malicious attacks and manipulations [13; 14;

15], in this chapter we analyze the proposed algorithm and show it can be easily turned into a

non-cooperative game with a unique Nash equilibrium. Moreover, we propose a method to

enforce individual rationality, which is, the condition for which the energy market participants

are always better off opting in.

The two subjects are separately treated in these two annexed papers:

[C] L. Nespoli and V. Medici, “Constrained hierarchical networked optimization for energy

markets,” IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe),

2018.

[D] L. Nespoli, M. Salani, and V. Medici, “A rational decentralized generalized Nash equi-

librium seeking for energy markets,” in 2018 International Conference on Smart Energy

Systems and Technologies, SEST 2018 - Proceedings, 2018.

List of related publications The following publications are related to, but not included in

this thesis.
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Dynamics Using only Smart Meter and Air Temperature Data,” 14th IBPSA Conf., 2015.
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1 Background and state of the art

Part of this thesis concerns the evaluation of different forecasting techniques by means of

optimal (stochastic) control performance. This evaluation requires the knowledge of a broad

variety of topics, which however, share the common mathematical background of optimiza-

tion. For instance, in chapter 2 we will use a quadratic cost function for the evaluation

of different probabilistic forecasters, which is justified by the common need of evaluating

proximal operators for different class of distributed control algorithms. Lagrangian duality

framework is used in chapter 4 to distribute the technique of hierarchical forecasting reconcil-

iation, as well as to obtain the distributed control algorithms in chapter 5. Monotone operator

theory, on which the alternating direction method of multipliers (ADMM) is based, is used

to demonstrate the uniqueness of Nash equilibrium for the class of non-cooperative games

generated by sharing problems in chapter 5. The concept of rooted trees is used in chapter

5 in order to formulate a multilevel hierarchical coordination algorithm spanning multiple

voltage level of the distribution grid, as well as in the tree based stochastic MPC framework to

have a compact description of the evolution of the control problem’s uncertainties. For this

reason, this chapter gives an overview on the interconnections between forecasting, stochastic

and distributed control, and aims at grouping the common mathematical tools which have

been used in different parts of the thesis.

1.1 General patterns - optimal power flow

One of the key problems faced by independent system operators (ISOs) when considering

intra day operation or day-ahead market clearing is the unit commitment problem (UC)

[16], in which the operations of a set of generators has to be planned in advance, and the

ISO commits to the optimal scheduling for the next day. Usually, the UC incorporates some

kind of optimal power flow problem (OPF) [17; 18; 19; 20]. Based on the specific constraint

which are considered, the OPF problem is known by different names, as network constrained,

security constrained, alternate current, direct current OPF. A review on the different kinds of

OPF formulations can be found in [21]. As the power generation get more decentralized and

uncertain, due to DERs and REs, ISOs and and distribution system operators (DSOs) have
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moved from the traditional deterministic OPF and UC formulation, to ones which incorporate

higher levels of uncertainty and to decentralized solution strategies. A comprehensive review

on the different state of the art methods to deal with uncertainty power system studies and

stochastic OPF (SOPF) can be found in [22; 23], while [24] present a more specific review on

stochastic formulations of UC problems. In [25] a partial survey on distributed approaches to

UC, OPF, optimization and approximated PF formulations is presented.

Several formulations of the OPF exist, based on the type of the considered grid (high or medium

voltage, radial or meshed, balanced or unbalaced) and control objective. In order to motivate

the modeling choice that I use in chapter 5, in the following I introduce the general formulation

of the OPF. Given an electrical grid composed by a set of n buses (or nodes), we refer to the

optimal power flow problem to the task of minimizing an objective f (Sc ), which is function

of the complex powers Sc ∈Cnc injected in the set of controllable buses Nc = 1,2..,nc ,nc < n,

subject to bus voltage consistency, power balance and operational constraints.

min
Sc⊂S

f (Sc )

s.t . I = Y V

S =V ¯ I∗

V ∈V , S ∈S , I ∈ I

(1.1)

where ¯ is the Hadamard product, Y is the admittance matrix, I∗ stands for the complex

conjugate of the currents’ vector and V ,S and I are operational constraint sets for the voltages,

complex power and currents. While the OPF described in (1.1) uses the so called bus injection

model, an equivalent formulation known as branch flow model can be found in the literature

[26]. The latter is especially useful for the formulation of convex relaxations of the OPF [27],

or for its distributed computation [28]. Unfortunately, while (1.1) can be reliably solved for

high and medium voltage grids, where the lines’ parameters needed to obtain the admittance

matrix Y are usually known, this is not the case for low voltage networks. Furthermore, solving

(1.1) requires the knowledge of current and voltage phasors for the controlled nodes in the

grid. In this thesis I assume that phasors’ measurements are not available, and that the OPF

can only be solved relying on magnitude measurements of V and I , provided by residential

smart meters. For these reasons, instead of solving the OPF directly, chapter 5 considers a

relaxed formulation of (1.1), in which the knowledge of phasors’ angles is not needed. The

relaxed formulation is based on the voltage sensitivity coefficients, which are the first order

approximation of the power flow equations. These are introduced in details in subsection

5.2.1, where limitations of this formulation are also discussed. Under these assumptions, the
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relaxed OPF becomes:

min
P,Q

f (Pc )

s.t . |V | =V0 +Kp∆P +Kq∆Q

|V | ∈V , P ∈P , Q ∈Q
(1.2)

where Kp and Kq are voltage sensitivity coefficients matrices associated with active (P ) and

reactive (Q) power, V0 is a reference voltage magnitude vector and ∆ is the first order discrete

time difference operator.

1.2 Mathematical preliminaries and notation

Through the thesis we will make use mathematical concepts for which different notations are

reported in the literature. For example, the nomenclature for probability spaces and vector

maps are often inconsistent through the literature. Here the mathematical notation used in

the rest of the thesis, which was made as consistent as possible, is reported.

Random variables x defined on a probability space (Ω,F ,P) where Ω is the sample space

F is a σ−field, andP is a probability measure, are reported without subscripts, whereas the

same variable with a subscript, xk , denotes a realization, which is, a random draw from the

probability density function (pdf) p (x). The cumulative density function (cdf) of a continuous

pdf is

F (z) =P(x < z) =
∫ z

0
p(x)dx (1.3)

while the empirical cdf is defined as

F̂ (z) = 1

1+nobs

nobs∑
k=1
I{xk<z} (1.4)

where I{·} is the indicator function and nobs is the number of observed realizations of x. The α

quantile of Fx is defined as the generalized inverse of F

qα = F−1(α) = i n f {z ∈R,F (z) ≥α} (1.5)

Given a multivariate random variable, F (x|y) and p(x|y) are the conditional cdf and pdf,

respectively, for which the Bayes’ theorem holds:

p(y |x)p(x) = p(x|y)p(y) (1.6)

9



Chapter 1. Background and state of the art

where p(x, y) is the joint pdf and p(x) is also known as the marginal pdf of x. The expectation

operator is denoted as E [·], and ED [·] denotes the expectation with respect to the dataset

D. The set of integers {k1,k2, ...kN } is denoted asN[k1:kN ], and [xk ]N
k=1 =

[
xT

1 , xT
2 ...xT

k

]T
is the

collection of xk from k = 1 to N . f :Rn →R indicates a real value function, while f :Rn ⇒
Rn indicates an operator, also known as a map, multi-valued function or correspondence,

mapping Rn onto itself. For example
[
∂kV (x, yk )

]N
k=1 indicates the subdifferential of the

map V (x, y) :Rn ⇒Rn . The scalar product is denoted as 〈x, y〉, or equivalently xT y for the

Euclidean space. The notation ‖x‖2
2 stands for the sum of squares of x, while ‖‖p indicates the

p norm.

1.3 Stochastic model predictive control formulations for power sys-

tems

As anticipated in the introduction, since DSM and DR rely on prosumers’ owned assets

with small start up and shot down times and costs compared to highly inertial traditional

power plants, in order to reliably control these assets in the LV or MV gird, there is no need

of committing to a certain scheduling of the latter [29]. For this reason in this thesis we

will focus on the optimization of intra-day operations, and we won’t solve the UC problem,

which is usually formulated as a two stage stochastic program and solved via L-shaped or

Bender decomposition method, but we will restrict the study to stochastic OPF formulations.

Considering multiple timesteps, both the previously introduced versions of the OPF, (1.1) ad

(1.2), can be expressed as:

x∗
k = argmin

x∈X

E

[
T∑

t=1
l (xt+k|k ,εt+k|k )

]
(1.7)

whereE is the expectation operator over the random variable ε, which is defined over the prob-

ability space (Ω,F ,P), x is the decision vector (containing both states and control actions),

X is a bounded set, representing (probabilistic) operational constraints, T is the number of

timesteps in the control horizon and l is a loss function to be minimized. We stress out that,

since the objective function (and possibly X ) depends on ε, the optimal decision variable

x∗
k will also depend on the disturbance ε. For intra-day optimization, (1.7) is intended to

be applied in a receding horizon fashion, thus that we can draw from the vast literature on

stochastic MPC (SMPC). In general, due to lack of knowledge and unboundedness of the sam-

ple space Ω, problem (1.7) is intractable, and must be therefore approximated. Three main

strategies to approximate the stochastic control problem (1.7) are present in the literature

and we briefly review them in the following. Namely, they are chance constraint (CC) analytic

approximation, scenario based (SB) SMPC and tree-based (TB) SMPC. It must be noted that

system operators are usually interested in solving a robust optimization problem rather than a

stochastic one. Indeed the distinction between robust and stochastic optimization rely on how

10



1.3. Stochastic model predictive control formulations for power systems

we define the disturbance ε and the constraint set X (as a function of ε). Robust optimization

usually considers an unknown distribution of ε, but a bounded sample space Ω, such that

ε ∈ [εmi n ,εmax ]. A solution is than found for which x ∈ X (ε) is satisfied for all the values of

ε ∈Ω. In other words, robust optimization find the optimal solution x∗ considering worst

case scenarios in terms of the disturbance, which is a wise optimization strategy in the case

in which a violation of the constraint set implies irreversible damage to the operated system,

as is usually the case in power grids. The CC approach tries to enlarge the feasible set of the

solution, allowing probabilistic violations of the constraint set, making some assumptions

on the pdf of ε. These assumptions are avoided in the SB approach, which uses a number of

scenarios to model ε. Basic SB optimization do not uses chance constraints, that is, all the

scenarios add hard constraints to the main problem. Anyway, is easy to see that a link exists

between the number of considered scenarios and the probability to respect the constraints in

the worst case. Indeed, as the number of scenarios increases, the solution under SB optimiza-

tion approaches the one obtained using robust optimization. For the three aforementioned

strategy, only one vector x∗ is retrieved, which contains the optimal actions to apply to the

controlled system up to time k +T . A third way of taking into account uncertainty is to encode

ε into a disturbance tree, spreading with increasing time. This technique, TBSMPC, allows

to represent the natural evolution of uncertainty, which typically increases as we consider

further points in time, and to retrieve a rooted tree of control actions, of which only the first

component is actually applied. In the following we briefly introduce them in order to motivate

the use of TBSMPC in the rest of the thesis.

Analytical approximations of chance constraints Instead of strictly requiring x ∈X for all

possible realizations of ε, we can relax this hard constraint and reformulate it in terms of

probabilistic constraints, also known as chance constraints:

x∗
k = argmin

x
E

[
T∑

t=1
l (xt+k|k ,εt+k|k )

]
s.t . : P [x ∈X ] > 1−δ

(1.8)

Unfortunately, also problem (1.8) is in general computationally intractable [30], especially

when X contains more than one constraint (e.g., it’s a polytopic), joint probabilistic con-

straints would require the computation of a multidimensional integral over an unbounded

probability space, and must be therefore approximated, for example, using convex analytic

approximations, as in [31]. A more straightforward result is available in the case of a polytopic

CC:

P
[
g T x ≤ h

]≥ 1−δ (1.9)

If the expected value and covariance matrix W of the disturbance are known, the Chebyshev -

Cantelli inequality can be used [32; 33], which guarantees that (1.9) is (conservatively) satisfied

11
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if

g T x ≤ h −
√

g T W g f (δ) (1.10)

where f (δ) = p
(1−δ)/δ. Condition (1.10) can be made less conservative under Gaussian

assumption of ε, using f (δ) =N −1(1−δ). Given the results in [34], under the assumption of

lognormal distribution, in [35] joint polytopic CC are conservatively reformulated as a set of

single deterministic constraints. Another notably approximation, given the results in [30], in

the case of disturbance generated by i.i.d. Gaussian random variables and SMPC with affine

disturbance feedback is presented in [36].

Scenario based stochastic optimization When no assumption on the disturbance ε can be

made, or the CC formulations result in a too conservative control problem, one can revert to

sampling based methods [31]. In scenario based SMPC, a number of scenarios is drawn from

a stochastic process, or obtained by sampling with the methods explained in section 1.4. In

scenario based SMPC, the probabilistic constraint in 1.8 is replaced with a set of deterministic

ones:

x∗
k = argmin

x
E

[
T∑

t=1
l (xt+k|k ,εi

t+k|k )

]
s.t . : x +εi

t+k|k ∈X ∀i ∈N[0,Ns ],∀t ∈N[0,T ]

(1.11)

where εi
t+k|k is the ith scenario of the disturbance at time t . It is easy to see that, as the number

of scenarios increases, if the scenarios are drawn from the exact pdf of the disturbance, x∗
k will

tend to the solution of a robust optimization problem. In order to loose the constraints, and

obtain a less conservative solution, the number of scenarios must be carefully evaluated. It can

be shown that the number of scenarios Ns which guarantees that the probabilistic constraints

in (1.8) is satisfied with reliability δ, can be found analytically [37; 38]. The authors in [39]

present a review on methods to encode chance constraints in SBMPC.

TBSMPC Instead of approximating problem (1.7) with a set of scenarios, we can describe

the temporal evolution of the disturbance εwith a rooted tree, denoted as τ. In this way we can

retrieve a tree of control actions, with the same structure of the disturbance characterization.

In other words, this method returns ns optimal control vectors x∗, where ns is the number

of leaves in the tree structure. Intuitively, this approach would result in a less conservative

control with respect to the SB approach, since we can optimize over a greater number of

control actions, each of which considers a branch in the evolution of the disturbance tree.

This allows to take less conservative actions as the number of considered scenarios (or tree

leaves) increases, as opposed to the SB approach. On the other hand, as in the SB approach,

constraints in each branch of the tree are treated as (hard) deterministic constraints, meaning

that increasing the number of leaves lead to consider extreme events as in robust optimization.

12



1.4. Multivariate probabilistic forecasting

This method originates from the multistage stochastic programming [40; 41] literature, which

is an extension of two-stage stochastic programming. When applied to MPC, this technique is

also known as TBSMPC, and has been successfully applied in the literature to a broad class

of problems, from intra-day energy management, to dynamic option hedging and drainage

water systems control [42; 43; 44; 45; 46]. In [47; 35] two comparisons with numerical results

of SBMPC and TBSMPC are presented. Different approaches can be adopted in order to

retrieve the scenario tree used to describe the disturbance of the problem. This is usually

obtained by clustering a high number of scenarios, which can be obtained with the method

described in 1.4. The problem of generating an optimal tree from a set of scenarios, in the

sense of minimizing the distance between distributions, is NP hard [48], and thus the scenario

reduction could result in a high computational time when the number of original scenarios Ns

and the length of the considered horizon H are high. In the rest of the thesis we have adopted

the backward reduction algorithm described in [49; 41], which uses a greedy strategy in order

to minimize the Kantorovich distance between the trees and the original sets of scenarios. The

probabilities of reaching each node from the root, πi , are found aggregating the probabilities

of the originally merged scenarios, which by construction guarantees that:

µk∑
i=1

πk, j = 1 (1.12)

where k is the step ahead, and µk is the number of nodes for the step k. In order to give a

flexible description of the resulting rooted tree, the algorithm has been rewritten in python

and coupled with the networkx package, which encodes the disturbance structure in a directed

acyclic graph (DAG), allowing to use high level graph searches queries (e.g. list the ancestors

of a given node). An example of scenario tree representation is shown in Fig. 1.1. The code is

freely available at https://gitlab.com/supsi-dacd-isaac/scenred.

1.4 Multivariate probabilistic forecasting

Conditional pdfs can then be used to create scenarios, which are used in scenario based

stochastic optimization, as explained in 1.3. Scenarios can be produced in different ways,

depending on the type of algorithm used for obtaining the posterior pdf. In chapter 2 we will

use three different techniques, which we introduce here. We don’t want to model the error

with a particular probability distribution, since this will require to introduce assumptions in

the analysis of the forecasters performance. We will only use non-parametric techniques for

the production of the scenarios.

Bootstrap Bootstrap [50] was introduced to perform non-parametric inference on inde-

pendent and identically distributed (iid) data, and lately become a very popular method

for assessing statistical accuracy and model fitting [51]. The bootstrap consist in repeatedly

drawing with replacement from a dataset D, in order to estimate some relevant statistical

properties. Since in this thesis we are interested in power forecasts, which typically shows a
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Figure 1.1 – Example of scenario reduction results and encoding of the scenario tree into a
DAG. Left: 200 scenarios generated for the prediction of 24 hours ahead power profile of a
building. Blue lines: original scenarios. Black lines: scenario tree. Right: the same scenario
tree, depicted as a DAG. The size of the dots its proportional to the intra-step probabilities.

daily seasonality, we slightly modify the bootstrap technique to take this into account. In order

to generate statistically consistent scenarios for the power prediction, we fit a forecaster model

M on a training dataset D tr , and then we retrieve the forecaster’s error on D tr , εtr ∈Rnobs,tr ×T ,

where nobs,tr is the number of observations in the training set and T is the horizon of the

prediction. The scenarios for each of the nobs,te entries of the test dataset D te , on which the

control policy is then evaluated, are retrieved performing bootstrap on εtr , based on the hour

of the day.

yt ,scen = ŷt + [ε̂h]s∈N[0,ns ]
t ∈

[
t h

st ar t , t h
end

]
(1.13)

where ŷt ∈RH is the univariate forecast of length H at time t, yt ,scen ∈RH×ns is the matrix of

scenarios for time t , [ε̂h]s∈N[0,ns ]
is the set of errors bootstrapped from the training set at hour

h and
[
t h

st ar t , t h
end

]
are the starting and ending time of hour h, based on the used sampling

time. We the bootstrap technique for retrieving conditional pdfs for the detrended Holt-Winter

(HW) forecaster. Bootstrapping for HWs is suggested also by [52], and a bootstrapping option

is implemented in the R library fpp2 for ARIMA and HW forecasters.

Bagging of multivariate forecaster When combined to model fitting, bootstrap aggregation

is also known as bagging: the same class of models M is fitted n times, applying bootstrap to

the dataset D . Applying bootstrapping at the training dataset D tr , and fitting a model for each

of the nb bootstrapped dataset, will result in a set of models
[
MD tr,b

]
b∈N[0,nb ]

. The prediction

of the bagging model is then the average output of the n models:

ŷ = 1

nb

nb∑
b=1

MD tr,b (D te ) (1.14)
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We will use this is the technique used in chapter 2 to build bagging of extreme learning machine

(ELM) forecasters. Since ELMs can predict multivariate output, that is, the output of each ELM

is the T -steps long power forecast, we could directly use the prediction of each nb models as a

scenario.

Copula coupling Some forecaster algorithms cannot be used to generate multivariate out-

put, but only to predict an univariate response. This is the case of econometric models, such as

AR, ARMA, ARIMAX. The usual approach for scenario generation of these class of forecasters,

and state space based models in general, is to assume that the noise follows some class of

random process (e.g. Brownian motion) and generate as many scenarios as needed, through a

Monte Carlo simulation, as done in [53] and suggested in [54]. Since we don’t want to make

hypothesis on the error pdf, and use non-parametric methods to estimate it, we use instead

the method described in [55], which generates scenarios linking the posterior pdfs of the

prediction with a multivariate Gaussian covariance structure. This method is more flexible,

since can be applied to forecasters which return skewed (non-Gaussian) pdfs as predictions,

and do not assign a prior distribution to the error’s pdf.

In brief, the method can be described as follows. Given a set of T posterior cdf, Ft (x) t ∈
N[0,T ], one for each step in the prediction horizon, we cannot directly build scenarios by Monte

Carlo simulation independently sampling from each distribution. In fact, this will cause the

disruption of the inter-temporal statistical properties of the forecasts. Instead, we can estimate

the temporal correlation of scenarios by means of the sample mean vector µ ∈RT and sample

covariance matrix Σ ∈RT×T , obtained by the historical values in the training set D tr , and

then draw from the Gaussian multivariate distribution the realization of the random variable

z ∼N
(
µ,Σ

)
. This provide us with a consistent inter-temporal structure between timesteps,

which we can then superimpose to the Ft (x) by means of the so called probability integral

transformation, which essentially states that sampling a cdf F using a random variable drawn

from the pdf of F , z ∼ p, will result in a random variable which is uniformly distributed:

F (z) ∼U [0,1] (1.15)

where U [0,1] is the uniform pdf on the interval [0,1]. Given 1.15, we can then sample from

the multivariate Gaussian z ∼N
(
µ,Σ

)
, apply the Gaussian cumulative functionΦ to obtain T

univariate uniform distributions, which we can then use to sample the posterior cdfs Ft (x).

Formally, the sth scenario is obtained using:

ŷt ,s =
[
Ft (Φ (zt ))−1]T

t=1 (1.16)

where zt is the tth component of the realization drawn from x.

We stress out that this procedure is different from assuming a multivariate Gaussian distri-

bution for the errors, which won’t allows to retain different pdfs for each step ahead. This

methods can also be interpreted as a multivariate Gaussian copula approach, as described
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in [56], and ensemble copula coupling [57; 58]. In section 4.2 we will mention again copulas

as means of estimating pdfs of sum of random variables, starting from marginal pdfs. These

methods can also be interpreted as sample reordering techniques [59]. A review on other

techniques for scenario generation, based on the forecasting method, can be found in the

working paper [60].

1.5 Distributed coordination of agents

In this section, we briefly introduce proximal operators and monotone operators. These

concepts are used in various parts of the thesis, especially in chapter 5 for the coordination of

distributed agents.

1.5.1 Proximal operators

The proximal operator, also known as Moreau’s proximal mapping, has been widely used for

the decomposition of convex problems. Proximal algorithms have analogies with Newton’s

methods, but sit at a higher level of abstraction [61]. Formally, given a function f (x) :Rn →R,

its (rescaled) proximal operator is defined as:

proxγ f (v) = argmin
x

f (x)+ 1

2γ
‖x − y‖2

2 (1.17)

where γ is a scaling parameter, weighting the second part of the objective function. The

proximal operator can be interpreted intuitively in terms of its role in minimizing the function

f iteratively. At each iteration, proxγ f mapsRn to a point inside the domain of f . The solution

of the iteration is a compromise between minimizing f and moving from the current point.

This, among the fact that proxγ f has always a unique minimizer, being a closed, bounded

and strictly convex function, gives the proximal operator suitable properties for being used

in optimization algorithms. For instance, the proximal operator can be seen as a single step

of the backward Euler method [61], and can be thus described as an implicit method. In this

thesis, we will mainly use two properties of proximal algorithms. The first one states that, if f

is fully separable, i.e. f (x) =∑n
i fi (xi ), then also the proximal operator can be computed in a

separable way:(
proxγ f (v)

)
i
= proxγ fi

(vi ) (1.18)

This makes the proximal operator suitable for decomposition algorithms. The second no-

table property is that the proximal of an indicator function, Ix∈X , reduces to the Euclidean

projection into the set X :

proxIx∈X
(v) = argmin

x∈X

‖x − v‖2 (1.19)
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1.5.2 Monotone operators

The theory of monotone operators is strictly linked with the derivation and analysis of dis-

tributed convex algorithm. However, in this thesis we are mostly interested in their role in

solving variational inequalities and their implications for non-cooperative n-persons games.

We will only consider operators mappingRn onto itself. For a more general introduction, see

[62]. An operator, or relation, or set-valued mapping F :Rn ⇒Rn , is a map fromRn to the

set F (x) ⊂Rn . An operator is called monotone, and respectively β-strongly monotone, if:

〈u − v, x − y〉 ≥ 0 ∀ x 6= y ∈ Rn , u ∈F (x), v ∈F (y)

〈u − v, x − y〉 ≥β‖x − y‖2 ∀ x 6= y ∈ Rn , u ∈F (x), v ∈F (y)
(1.20)

In paper D, we will deal with a particular operator, called the game mapping, or pseudo-

gradient. Given a game, defined by the agents’ costs ui (xi , x−i ) :Rn ×Rn(N−1) →R, where N

is the number of players, the game mapping is given by:

F (x) = [
∂xi ui (xi , x−i )

]N
i=1 (1.21)

which represents the vector containing the subdifferentials of the agent’s costs, when consid-

ering the actions of the other agents as fixed. If F (x) is (strictly) monotone, it can be shown

that the game admits a (unique) generalized variational Nash equilibrium (GNE) [63; 64]. This

means that there exists a (unique) solution x∗ to the variational inequality:

〈F (x∗), x −x∗〉 ≥ 0 ∀x ∈X ⊂RnN (1.22)

where X is a closed and convex set. In other words, given the definition of F , there exists a

value of x, which encodes all the agents’ actions, x∗, for which no agents can reduce their own

costs if all the others agents keep their own actions fixed and inside the feasible set X . This

is the definition of a GNE. To summarize, the monotonicity of the game mapping F , along

with the convexity with respect to xi of the cost functions ui (xi , x−i ), is a sufficient condition

for the existence of a a solution of the variational inequality (1.22), which is a GNE for the

considered game. However, the inverse does not hold in general, and for this reason this

resolution concept is known to be a ’refinement’ of the GNE. The monotonicity of the game

mapping F will be used in paper D to show that the so called sharing problems generate

games for which a unique variational GNE exists.
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2 Multi-step-ahead forecasting for de-
mand response applications

In this chapter, we investigate the performance of different classes of forecasters for the

prediction of the 24 hours ahead power generation and production of residential users. The

comparison is done evaluating the forecasters in k-fold cross validation, both a-priori and

a-posteriori. The a-priori evaluation is done by means of KPIs on the distance of the forecasts

from the actual observed values, while the a-posteriori evaluation is done by means of closed-

loop control performance, which is obtained using both a deterministic and a TBSMPC

controller. In section 2.1 the dynamic models used to generate a residential power profile

dataset are presented. The modeling choices were made with the aim of keeping a low

complexity in the parametrization of the models, in order to obtain representative but generic

and adaptable components, while producing component-level power profiles with arbitrary

time resolution which could be used to evaluate the impact of smart controllers on the state

of the grid using a bottom-up approach. In section 2.2, a nonuniform stepsize strategy for

MPC and TBSMPC is presented, aiming to reduce the computational time for both control

and forecasting. The feasibility of the proposed strategy and performance losses are evaluated

using perfect forecasts. In section 2.3 different techniques for multistep ahead forecasts are

presented, and performance investigated.

The main outcomes of this chapter are summarized in the following:

• In section 2.2, a nonuniform stepsize MPC formulation is presented. Logarithmically

spaced steps are used, and their number is systematically increased while evaluating

the controller performance using synthetically generated residential power profiles. We

show that, when re-weighting the objective function for the length of the averaging

bins, the maximum relative increase in the objective function evaluated in closed loop,

reduces from 35% to 1.2% in the case in which 7 timesteps are used, while passing from

25% to 0.5% in the 10 timesteps case.

• In section 2.3, four different methods are used to forecast residential power profiles.

We propose two new forecasters: a detrended Holt-Winter forecaster and a bagging

of extreme learning machines. The first forecaster provided strictly better a-priori
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performance for the first step-ahead forecasts, with respect to all the other models.

When evaluating the forecasters a-posteriori, by means of closed loop performances of

an MPC controller, the Holt-Winter forecasters shows performances which are close to

the one provided by the best forecaster, with the advantage of being computationally

cheaper. When the a-posteriori evaluation is done using a TBSMPC controller, the

tests show that the forecaster based on a quantile random forest regressor consistently

provide better performance, at the price of a higher computational time for the model

training.

2.1 Synthetic power profile generation

To our knowlege, one of the most fungible datasets for residential energy consumption fore-

casting is the Apartment dataset of the UMass Smart∗ Dataset [65]. Unfortunately, these data

come from american consumers, which are not very representative of European energy con-

sumptions. Moreover they do not possess PV installations, which we would like to include in

the analysis. Due to the scarcity of energy consumption datasets, researchers in this field have

recently tried to produce synthetic datasets for forecasting and analysis, based on statistical

analysis or on simulation [66][67].

We decided to follow this strategy, producing our dataset through a dynamic simulation. For

this task we built the code from scratch relying on the standard scipy ODE integrator.

In the following we give a detailed description of the reference system we have considered for

the simulation. Since it is not of general interest to describe all the possible configurations of

the simulated systems, we just describe a typical configuration, on which all the simulated

systems are based. In order to obtain a representative dataset for Switzerland, we used the

STASCH6 standard [68] and its variants as a reference for the heating system and the control

logic.

Heating system and control logic

The STASCH6 standard comprehends 3 main components: an heatpump (HP), a water tank

used as an energy buffer, and a heating element delivering heat to the building. The HP control

logic is based on two temperature sensors placed at different heights of the water tank, while

the circulation pump connecting the tank with the building’s heating element is controlled by

an hysteresis on the temperature measure by a sensor placed inside the house.

We describe the control logic in a sequential way, following the heating components of the

system. The first decision is taken by the building central controller, which decides its working

mode, that is, if the building needs to be cooled or heated, based on a moving average of the
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historical data of the external temperature:
wmt =−1 if Tma,t > Tmax,ma

wmt = 1 if Tma,t < Tmi n,ma

wmt = 0 other wi se

(2.1)

where the working mode wmt is negative when the building requires to be cooled, positive

when heating is required, and 0 when no actions are needed.Tmax,ma and Tmi n,ma represent

the maximum and minimum values of the external temperature’s moving average, which is

based on the past 7 days. The actual activation of the heating element is controlled by the

hysteresis on the internal temperature of the building, Tz . If the working mode is positive, this

is given by:
shy,t = 1 if

(
Tz < Tmi n,hy −∆T /2

)
or

(
Tz < Tmi n,hy +∆T /2 and shy,t−1

)
shy = 0 other wi se

(2.2)

where shy,t is the state of the hysteresis at time t , 1 meaning that the circulation pump of the

heating element must be activated, and DT was chosen to be equal to 1◦C . For completeness,

we report also the control logic when the building is in cooling mode:
shy,t = 1 if

(
Tz > Tmax,hy +∆T /2

)
or

(
Tz > Tmax,hy −∆T /2 and shy,t−1

)
shy = 0 other wi se

(2.3)

The incoming water temperature in the heating element is then modulated linearly through a

3-way valve between a maximum and minimum value, based on the external temperature,

both in the heating and cooling modes. When operative, the heating element requests hot or

cold water to the water tank, which control logic is based on two temperature sensors located

in two different layers. When the building is in heating mode, the control logic is a simple

hysteresis based on the temperature of the sensor in the uppermost layer, which is identical to

the one in (2.2). When in cooling mode, the control logic is the following:

shy,t =−1 if
(

Tup > T c
max +∆T /2

)
or Tl ow > T c

max +∆T /2

shy,t = 0 if
(

Tlow < T c
mi n

)
or

(
Tup < T c

max −∆T /2
)

shy,t = shy,t−1 other wi se

(2.4)

where Tup and Tlow are the temperature measured by the upper and lower sensors, respec-

tively, and T c
mi n and T c

max are the minimum and maximum desired temperatures of the water

in the tank while in cooling mode.

The value of shy,t is then communicated to the HP. In the case in which the HP is also used for
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the domestic hot water (DHW), the DHW tank is always served with priority by the HP.

Building model

We modeled the building thermal dynamics with a simple one state RC equivalent model,

as done in [69]. The main reason for this choice is that it is hard to generalize RC models

with higher number of states, since no values can be found in the literature for the needed

parameters. Estimating an RC model from data requires different measurements of tempera-

tures, internal and solar gains, at a resolution of at least 10 minutes. This kind of datasets are

extremely hard to find, and limited to only a few, often undwelled, cases. These equivalent

RC circuit parameters could, in theory, be estimated starting from first principles, however

recently proposed studies show that this can give worse results then estimating a model from

data [70]. The second reason is that, while a higher order model leads in general to smaller one

step ahead residuals compared to a lower order model, the loss of accuracy passing from a one

state model to an higher order one when considering a longer period of simulation is much

lower [71]. Last, when considering RC models for buildings with a number of states higher than

3, the chances of overfitting are high, and additional measurements such as the heat fluxes

between thermal zones are required to guarantee observability. Alternatively, pseudo-random

binary sequences can be applied to the heating systems in order to excite the system in a

wide range of frequencies [72], while being uncorrelated with other exogenous inputs. This

technique induces high changes in internal temperature of the building and cannot clearly be

applied to occupied buildings.

We adopted the following methodology to retrieve representative R values for the single state

RC equivalent model. We retrieved the distribution of year of construction for residential

buildings in Switzerland from the swiss Federal Statistical Office [73]. We then combined them

with the estimated mean heating needs per squared meter, based on construction year [74]. In

this way we obtained a distribution of energy demand for heating, Ed
[
kW h/m2/year

]
. We

then retrieved the U values per squared meter (the inverse of the R parameter per squared

meter), dividing Ed for 1500 equivalent hour of the building’s heating system per year. This

gave us the estimated U value distribution in
[
kW /m2

]
. In Fig. 2.1, the final distribution for

Switzerland is shown. For comparison, we also plotted the distribution of the declared U

values from the EU28 members, which is available for the year 2014 at [75]. For additional

comparison, we identified a one state RC equivalent circuit from a monitored building located

in Biel-Benken. The model is the following;

C
∂Tz

∂t
= Text −Tz

R
+kQh + Aeq Is (2.5)

where Text is the the external temperature, R is the equivalent thermal resistance for the

building, k is a parameter weighting the estimated power coming from the heating system Qh ,

Is is the incoming solar radiation and Aeq is the estimated equivalent window area.
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Figure 2.1 – Comparison of U value distributions for Switzerland and for the member of EU28.
The vertical line shows the identified U value for a monitored building located in Biel-Benken

Floor heating

Modeling floor heating requires to simulate an N-states system, since the temperature of the

water in a given point of the serpentines depends in a non-trivial way on all the temperatures of

the previous portion of the serpentines and of the surrounding floor. Furthermore, simulating

the temperature of the water in the serpentine in a dynamic way could lead to prohibitive

computational time (considering we want to simulate hundreds of buildings), due to the

Courant–Friedrichs–Lewy condition. Considering a typical mass flow in the serpentine of

0.1
[
kg /s

]
, a radius of the tubes of 2[cm], and a discretization of 1 meter along the serpentine,

the maximum allowable time-step is in the range of 2 seconds (considering implicit solution of

the transport equation inside the tube). Since we do not simulate thermal activated building

structures (TABS), in which the water of the heating system flows inside the building’s concrete

structure, but only underfloor heating pipes, which effects due to thermal inertia are less

significant, we chose to neglect the thermal transient of the screed layer. Considering a fixed

and uniform temperature for the ground and the building internal temperature at each time-

step and stationary conditions, we can retrieve the analytical expression of the temperature

profile along the pipe, through the energy balance on an infinitesimal element of the pipe.

This can be expressed as:

∂Tx

∂t
=Φx −Φx+∂x + q̇up + q̇down (2.6)

where x is the distance from the pipe entrance, Tx is the temperature of the water inside the

pipe at x, Φ are enthalpy flows at the entrance and exit of the considered infinitesimal volume,

q̇up and q̇down are the heating powers from the building and from the ground. Expressing the
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latter through equivalent resistance taking into account convective and conductive effects,

the balance in steady state can be rewritten as:

ṁcp

ρ∗
∂Tx

∂x
= RdownTz +Rup Tg

Rdown +Rup
−Tx = T a −Tx (2.7)

where T a is the asymptotic temperature and where:

Rdown = 1

hi n w
+ 1

hu,eq w
+Ru (2.8)

Rup = 1

hi n w
+Rg (2.9)

ρ∗ = Rup +Rdown

Rup Rdown
(2.10)

where w is the diameter of the tube, hi n is the internal coefficient of heat transfer, which can

be retrieve using available empirical relation for fully developed flow with fixed temperature

at the boundary conditions [76], hu,eq is the heat transfer coefficient between the floor and

the building air including both the effect for natural convection and radiation. The values of

hu,eq can be found in the literature [77],[78]. The value of the thermal resistances Ru and Rg ,

towards the floor and the ground, can be found in the literature as well. We can reformulate

(2.7), making it adimensional through a change of variable:

∂Θ

∂X
=−Θ (2.11)

from which solution we can retrieve the temperature profile of the water inside the pipe:

Tx = T a + (T0 −T a)e
−xρ∗
ṁcp (2.12)

where T0 is the temperature of the water at the pipe inlet. We can use (2.12) to retrieve the

heating power flowing into the building, integrating q̇up (x) along the pipe.

Q̇up =
∫ L

0
q̇up (x)dx =

∫ L

0

T (x)−Tz

Rup
dx (2.13)

where L is the length of the serpentine. Integrating, we obtain

Q̇up =
(T a −Tz )L− (TL −T0)

ṁcp

ρ∗

Rup
(2.14)

where TL is the temperature of the water at the outlet of the serpentine. Note that the equation

(2.14) tends to (TL −T0)ṁcp when Rdown increase and Rup is kept fixed.

The nominal mass flow of the heating system and the length of the serpentine are found as the
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solution of the following optimization problem:

argmin
L,ṁ

(
Q̇up (L)−Q̇nom

)2 +10−3 (ṁ −ṁnom)2 (2.15)

where ṁnom is a reference mass flow, equal to 0.1
[
kg /s

]
and Q̇nom is the power required

to keep the building internal temperature constant under reference conditions (we used an

external temperature of -4◦C and a desired internal temperature of 20 ◦C ):

Q̇nom = ∆Tr e f

R
(2.16)

where R is the resistance of an equivalent RC circuit describing the heating dynamics of the

building.

Water tanks and boilers

The water tank connected with the floor heating, which is used as a buffer by the heat pump,

and the boiler for the DHW, are modeled as a N-states fully-mixed stratified tanks. De-

spite not being able to model buoyancy driven effects such as heat plumes and transient

de-stratification, this kind of models are suitable for 1D simulations and control [79].

The dynamic equation describing the evolution of the temperature of the tank’s layers is the

following:

C
∂Ti

∂t
= Q̇u

buo,i +Q̇d
buo,i +Q̇h,i +Q̇l oss,i +Q̇u

cond ,i +Q̇d
cond ,i + cp ṁ(Ti−1 −Ti ) (2.17)

where Ti is the temperature of the ith layer, Qu
buo ,Qd

buo ,Qu
cond ,Qu

cond are the thermal powers

due to buoyancy and conduction, from the lower and upper layer, respectively. The last term

represents the enthalpy flow due to mass exchange, while C is the thermal capacity of the

layer, in [J/K ] and Qh,i is the thermal power due to an electric resistance (for the boiler) or an

heat exchange (for the heating system buffer). The expression for the above thermal power are

the following:

Q̇u
buo,i = k max(Ti+1 −Ti ,0)N , 0 f or i = N (2.18)

Q̇d
buo,i = k max(Ti−1 −Ti ,0)N , 0 f or i = 1 (2.19)

Q̇u
cond ,i = uamb(Ti+1 −Ti ), 0 f or i = N (2.20)

Q̇d
cond ,i = uamb(Ti−1 −Ti ), 0 f or i = 1 (2.21)

Q̇loss,i = uamb(Text −Ti ) (2.22)

Q̇h,i = Q̇tot /nh i f i ∈I (2.23)

(2.24)

where N is the number of layers, uamb is the equivalent thermal loss coefficient with the
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ambient and I is the set of the nh layers heated by the heat exchange (or electric resistance).

The buoyancy model is the one proposed in the IDEAS library [80]. Detailed description of the

parameters for the boiler model can be found in [81].

Heat pump model

The heat pump is modeled by means of interpolated tables, in which heating and electrical

power are available as a function of the evaporator and the condenser temperatures. The

tables were taken from the energy simulation software Polysun (Vela Solaris AG, Winterthur,

Switzerland). When the heat pump produces heat for both the heating system and the domes-

tic hot water, its control logic prioritizes the latter, meaning that the buffer is heated as long as

the DHW tank temperature sensor reaches the upper bound of its hysteresis control.

PV model

The sun azimuth and elevation are calculated based on the current time and the altitude,

longitude and latitude of the given location. For this task we have used the Sandia National

Laboratories PV Collaborative Toolbox [82], which is based on the 1985 Grover Hughes’ En-

gineering Astronomy course at Sandia National Laboratories. The direct normal irradiance

(DNI) is then calculated by means of the empirical disc model [83] . The diffuse horizontal

irradiance at time t, DHIt is then calculated as:

DHIt = GHIt −cos
(
θz,t

)
DNIt (2.25)

where θz,t is the zenith angle of the sun at time t. DHI is then used to estimate the projection

of the diffuse radiation on the given surface Id , using the Hay and Davies’ model [84]. The

overall radiation on the given surface is then given by the sum of the diffuse, direct and

ground-reflected radiation.

It = Ib,t + Id ,t + Ig ,t (2.26)

where Ig is the ground reflected component, calculated as:

Ig ,t = ρGHIt
(1−cos(α))

2
(2.27)

where ρ is the albedo, which was fixed to a typical value of 0.2, and α is the tilt angle of the PV

field. The direct irradiation on the oriented surface Ib is obtained from the DNI:

Ib,t = DNIt cos(AOIt ) (2.28)

where AOI is the angle of incidence of direct light on the PV oriented surface. To calculate

DNI and Id ,t we used the PV Performance Modeling Toolbox by Sandia National Laboratories

[82]. Since reflection losses can significantly increase at small AOI [85], we applied an AOI
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correction, independent from the module technology [86]:

IAOI
t = IAMt Ib,t +0.95(Id ,t + Ig ,t ) (2.29)

where IAM is the incidence angle modifier. We use the following ASHRAE approximation [87]:

IAMt = max(1−k1 (cot(min(AOIt ,π/2))−1) ,0) (2.30)

and k1 is 0.05. Finally, in order to obtain an estimation for the electrical power produced

by a field with the ith orientation, we apply a correction taking into account the ambient

temperature and the inverter and module efficiencies. The cell temperature is first estimated

from the ambient temperature, then a linear correction is applied [88]:

Tcel l ,t = Ta,t +φIAOI
t (2.31)

IAOIT
t = IAOI

t

[
1+γ(Tcel l ,t −Tr e f )

]
(2.32)

Tr e f = 25◦C a reference temperature, φ and γ two coefficients. In this study, φ and γ are not

estimated and are set respectively to the values of 3.14e-2 [K m2/W ] and -4.3e-3 [1/K ], which

represent crystalline silicon framed PV modules. Finally, the estimation of power production

are corrected for the module and inverter efficiencies, using the following equation:

Pt = ηt IAOIT
t (2.33)

where ηt is the combined module and inverter efficiency. In order to reduce the number of

parameters, we modeled it as a function of the irradiance IAOI T
t using the following equation:

ηt = k2 +k3 ln(IAOIT
t /ISTC )+k4(ln(IAOIT

t /ISTC ))2 (2.34)

where ISTC = 1000W/m2 is the reference irradiance and k2, k3, k4 are free parameters. By

fitting equation 2.34 to typical inverter and polycrystalline module data, we obtained the

following values: k2 = 0.942, k3 =−5.02e-2, k4 =−3.77e-2.

2.2 Multi-step-ahead forecast for control with nonuniform step size

Systems with an internal buffer, such as batteries, boilers and the thermodynamics systems

composed by an heatpump and a building, can increase their performance when shifting

from a reactive control to a predictive one. Furthermore, when the dynamics of the controlled

system can be modeled accurately, we can use the system model to generate prediction on the

system state into the future, as it’s done in Model Predictive Control (MPC). In any case, the

predictive control requires a multi-step-ahead forecast of the disturbances when the typical

rate of change of the system rate due to control actions and disturbances is meaningful effect

we get from controlling the system, has a typical time scale which is smaller than the rate of

change of the system’s state (e.g. the state of charge of a battery) when subject to a typical
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control action.

The idea behind the proposed strategy is that, we could change the size of the time-step

when forecasting distant events into the future, since these should have a lower impact on the

optimal control action we must apply to the system at the present time, with respect to the

events occurring in the next timestep. A similar reasoning is used in reinforcement learning,

where a discount factor is applied to the reward of future actions [89]. If this is the case, instead

of predicting one day ahead with 1 minute timesteps, we could instead predict averaged values

of the system’s disturbance on wider timesteps during the end of the day.

The advantage of using a nonuniform step-size would be twofold. Firstly, it will reduce the

computational time needed for both the training of a forecasting algorithm, and for the

solution of the control problem. Even when considering an optimistic computational time for

the optimization problem of O (n), where n is the number of steps, passing from an horizon

of 1440 steps (one minute intervals) to one of 14 steps reduces the computational time by a

factor of 100. Secondly, in general is more difficult to predict disturbances at several steps

ahead into the future than predicting aggregates for the same time horizon. Aggregation of

distant time-steps will reduce the variance of the signal to be predicted. In fact, the sample

mean of a signal is the best predictor in the case of least squares loss functions, i.e. is the value

minimizing its variance. The variance reduction of signals due to aggregation is exploited in

hierarchical forecasting to try to increase the prediction accuracy of the forecasts in the bottom

level of the hierarchy [90; 91]. In [92] the same reasoning is used with temporal hierarchies, to

reconcile solar forecasts.

An alternative solution to the proposed approach would be to set up a stack of hierarchical

receding horizon controller operating at different time scale, where the higher level controller

sets up state constraints for the lower level controllers, in cascade. The concept of nested

controllers for functional, temporal and spatial decomposition is not new [93], but in they are

usually limited to up to 3 layers, mainly due to the rising in the overall controller complexity.

For example in [94] a three layer temporal hierarchy is proposed for the management of

wastewater networks. A similar approach using two temporal layers is presented in [95],

where the master controller set constraints for the lower level MPC, operating with different

objective functions. The same approach is followed in [96], where the lower level controllers

are operated by PIDs. A related work in the context of dispatchability of distribution feeders is

presented in [97], where a battery commits in advance to a day-ahead dispatch plan, and is

then operated using a shrinking horizon MPC.

A similar approach for speeding up MPC is the so called move blocking. This technique

consists in fixing the control action for a given amount of time steps. Formally, the control

vector u = [ui ]i∈N[1,N ]
∈RN m must satisfy:

u = (T ⊗ Im)umv (2.35)

where umv ∈RMm , with M < N , is the actual decision vector, which is expanded by the product
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with T ∈RN×M and Im , where ⊗ is the Kronecker product. In [98] a review of different move

blocking strategies is presented, while in [99], a way for the optimal design of T is presented. It

must be noted that these strategies reduce the overall number of decision variables, but does

not decrease the resolution of the forecast needed to operate the controller.

2.2.1 Nonuniform stepsize MPC

In this section the loss of accuracy when approximating a typical MPC control problem with

one having a lower number of variables and inputs is investigated. As seen in section 1.5, since

coordination strategies deriving from decomposition of centralized problems using ADMM,

DW decomposition and similar techniques result in the evaluation of proximal operators [100],

I consider an objective function which includes a quadratic tracking. In particular, I restricted

the analysis to the case in which an electrical battery is operated to minimize/maximize the

energy cost/revenues of a single user, while trying to track a constant power profile equal to

zero, which corresponds to the case of peak shaving. Consider the battery’s control law to be

the solution of the following optimization problem:

u∗ = argmin
x,u∈U

α‖P̂ +Su‖2
2 +

T∑
t=1

c(P̂ +Su)

s.t . : xt+1 = Ad xt +Bd ut ∀t ∈R[1:T ]

xt ∈X ∀t ∈R[1:T ], X = [xmi n , xmax ]

ut ∈U ∀t ∈R[1:T ], U = [umi n ,umax ]

x0 = xst ar t

(2.36)

where xt and ut ∈ IR2 are the state of charge of the battery and the vector of control actions

(charging and discharging power) of the battery, S ∈ IRT×2T is a summation matrix, summing

charging and discharging battery operations with appropriate signs, X and U are the con-

straints sets containing the battery operational limits, P̂ ∈ IRT is the forecasted uncontrolled

power at the electrical main of the user, and c(·) is the energy cost function defined as:

c(zt ) =
pb,t zt , if zt ≥ 0

ps,t zt , otherwise
(2.37)

where pb,t and ps,t are the buying and selling tariffs, respectively, at time t . Ad and Bd are the

exactly discretized dynamic matrices, that consider self-discharge, and (asymmetric) charging

and discharging efficiencies, which are derived from the continuous matrices using:

Ad = e At

Bd = (Ad − I )B A−1
(2.38)

where A and B are the continuous dynamic matrices and t is the discretization time-step.
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I compare problem (2.36) with the one in which the forecasted power profile P̂ is only available

as average values, performed with an increasing number of aggregation steps. The rationale

behind this, as previously explained, is that the controller shouldn’t incur in a high perfor-

mance loss considering only the mean value of the power profile at distant timesteps. In

other words, that the first order moment of the disturbance for the last timesteps is the only

relevant information for the controller, and knowing other statistical properties won’t result in

an increase of the controller’s performance. This means that instead of having fixed dynamic

matrices, we will have to consider a set of na matrices, where na is the number of aggregation

steps:

Ad ,k = e Atnk ∀k ∈R[1:na ]

Bd ,k = (Ad ,k − I )B A−1 ∀k ∈R[1:na ]
(2.39)

where nk is the number of original steps used for the kth aggregation. I have used logarith-

mically spaced bins for the reduction of the control horizon. Given an original timestep of

10 minutes, the series of aggregation steps nk is found setting n1 = 1 and solving for γ the

following system of equations:nk+1 = bγ nkc ∀k∑14
k=1 nk = 144

(2.40)

where b·c is the floor operator. An example of the logarithmically spaced aggregation is shown

in Fig. 2.2.

The resulting nonuniform stepsize optimization problem is the following:

u∗ = argmin
x,u∈U

na∑
k=1

wk

[
α

(
P̂k +Suk

)2 + c(P̂k +Suk )
]

s.t . : xk+1 = Ad ,k xk +Bd ,k uk ∀k ∈R[1:na ]

xk ∈X ∀k ∈R[1:na ], X = [xmi n , xmax ]

uk ∈U ∀k ∈R[1:na ], U = [umi n ,umax ]

x0 = xst ar t

(2.41)

where wk is a coefficient which re-weights the importance of the objective function of the kth

step, and S = [1,−1]. Differently from the formulation used in [101], where no re-weighting

was considered, we argue that the wk should re-weight the terms of the objective function

based on the number of original steps used for the kth aggregation, that is wk = nk /T .

I stress out that it is not guaranteed that problem (2.41) is a good approximation for (2.36), due

to the presence of a sum of squares. If the objective function was linear, it is easy to see that

the process of averaging future steps using bins would result in a mathematically equivalent

form of the objective function. In this case, the only difference between (2.41) and (2.36) will

be in the formulation of the system dynamics. In the presence of a sum of squares, we can see
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Figure 2.2 – Example of logarithmically spaced aggregation, using 14 steps, of a de-trended
random walk. Blue: the original profile of 96 timesteps of 15 minutes each. Orange: logarithmic
aggregations.
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that the two objective functions would in general differ, recalling that, for any random variable

x:

E
[
x2]=V ar [x]+ (E [x])2 (2.42)

This means that, since the variance is always positive, problem (2.41) will tend to underes-

timate the influence of future (averaged) steps in incrementing the objective function. For

instance, the two formulations would be equal only in the case of zero variance of the power

profile. Anyway, we are not directly interested in the difference betweenE
[
x2

]
and (E [x])2,

but rather in the difference of controller performances when the aggregation bins are logarith-

mically spaced. This is evaluated by means of numerical tests in the following subsection.

2.2.2 Estimation of sub-optimality for the nonuniform stepsize MPC

Since estimating sub-optimality of the nonuniform stepsize MPC doesn’t imply any considera-

tion on the accuracy of the forecasts, in this section we just consider to be in possess of perfect

forecasts of the disturbance. We compare two controllers, the first one using a fixed 10 min-

utes step for the description of the disturbance, and a second one using a reduced number of

nonuniform logarithmically spaced steps. To perform this comparison, we used synthetically

generated power profile, obtained as described in section 2.1, and tested the controller closed

loop performances. In particular, we have generated 6 different annual profiles each of which

composed by an uncontrolled power profile, an heat pump and a residential PV. For each

power profile we randomly chose 6 sets of three consecutive days, in order to solve problem

(2.41) on the first two days of each set. That is, the observations of the last day are only used

as perfect forecasts for the last step of the second day, and the closed loop performance is

just evaluated on the first two. We then solved the problem in a receding horizon fashion,

where only the solution of the optimal control action of the first time step is actually applied.

This means that for each profile we solved 12-days long receding horizon problems, which

means that for each profile we solved problem (2.41) 864 times, retrieving an equal number of

optimal control actions u∗
i ,t , t ∈ [1,288] . We systematically changed the two main parameters

of the battery, which are the capacity [kW h] and the E-rate [kW /kW h]. The capacity was

changed between [0.5,2]Ēd , where Ēd is the average daily generated power exceeding the

demand, that is:

Ēd =ED
[
P̂ T

s

(
P̂s < 0

)]
/Nd (2.43)

where Nd is the number of days for each profile, ED is the expectation with respect to the

randomly sampled profiles, and P̂s ∈R144Nd is the sth random profile. This scaling was done

to provide a realistic dimensioning of the battery for each scenario.

The KPI used is the ratio between the expectation over the dataset Ds of the closed loop

evaluation of the objective function in (2.41) and the expectation of (2.36), when considering

32



2.2. Multi-step-ahead forecast for control with nonuniform step size

n
a

7
10

13
16

96 c[kW/kWh]
0.5

1
1.5

2

1.00
1.05
1.10
1.15
1.20
1.25

1.30

1.35

cap = 0.5
cap = 1
cap = 1.5
cap = 2

n
a

7
10

13
16

96 c[kW/kWh]
0.5

1
1.5

2

1.000

1.002

1.004

1.006

1.008

1.010

1.012

cap = 0.5
cap = 1
cap = 1.5
cap = 2

Figure 2.3 – Performance gap shown in terms of K ∗, which is the ratio of the objective function
value obtained by problem (2.41) and the non averaged formulation (problem 2.36), when
using unitary wk (left) or equal to nk /T (right). The scores are plotted as a function of the
battery capacity and E-rate, for an increasing number of aggregation steps na . For both the
cases the increase of capacity is more relevant reducing the performance gap, with respect an
increase in the E-rate.

the same combination of capacity and E-rate:

K ∗
i , j ,na

=
Kci ,cap j ,na

Kci ,cap j

K =EDs

[
α‖P +Su∗‖2

2 +
T∑

t=1
c(P +Su∗)

] (2.44)

where Kci ,capi ,na is the KPI obtained with the nonuniform formulation in (2.41), with na

averaging steps, u∗ are the optimized control actions, and P is the realization of the power

profile, which in this case is equal to the one used in the optimization, since we are using

perfect forecasts. In Fig. 2.3 K ∗
i , j ,na

is plotted as a function of the capacity and the E-rate, when

considering unitary unitary wk (left box) or equal to nk /T (right box). As we can see, for both

the formulations, the normalized KPI K ∗ exponentially approaches the performance obtained

by the uniform step-size formulation (2.36). It is clear that the parameter which most affects

the KPI K ∗ is the capacity of the battery, while the c parameter effect is negligible. As we can

see, the non re-weighted formulation incurs in a higher performance loss, with an increase

in K , with respect to the uniform formulation, spanning from around 30 % to more than 5%,

going from na =7 to na =18. The re-weighted formulation is far more stringent, ranging from

a maximum of 1.2 % to under 0.1 % for the same range of na . The gain in performance is made

more evident in Fig.2.4, where the K ∗
i , j ,na

KPIs are collapsed in the same boxplot for all the

values of capacity and E-rates.
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Figure 2.4 – Comparison of controller performances, when using unitary wk or equal to nk /T .
Each boxplot contains 16 observations, which are the fold-averages of the KPI, with respect to
the capacity and c combinations. The scores are plotted with increasing number of aggregation
steps na . The score K ∗ is normalized with the KPI obtained by the non averaged formulation
(problem 2.36).

Fig. 2.5 shows the relative increase in computational time when using the nonuniform step-

size formulation, for increasing na . Once again, all the results from different values of capacity

and E-rate are collapsed in the boxplots. We stress out that we are just interested in seeing

the linear scaling of the computational time, while we are less interested in the absolute

computational time, since the code is not pre-compiled and could be further optimized. Just

to give an idea of the problem complexity, we report that the median computational time for

solving (2.41) with na = 7 was of 0.028 seconds on a IntelCorei 7−5500UC PU @2.4G H z.

2.3 Evaluation of multi step ahead forecasters for net power predic-

tion

Demand side management algorithms use forecasts of the overall power consumed or gen-

erated at the point of common coupling with the grid in order to properly plan an optimal

control signal. They typically need up to 24 hours ahead forecasts, since residential power

profiles have a strong daily seasonality. Forecasting a signal several steps ahead in the future

poses technical and conceptual challenges, depending on the adopted technique. Some

simple methods, like state space methods, ARMAX and exponential smoothing, are usually

used to perform multi-step ahead forecasting through a recursive technique, in which the

1 step ahead forecast is used as an input to the same model to predict the next step ahead

[102]. Although this procedure is very simple, since it does not change the model at each

time step, it can be prone to instabilities: since errors tend to accumulate and cannot be
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Figure 2.5 – Boxplots of the computational time of the nonuniform stepsize formulation, for
increasing number of aggregation steps na . The computational time is normalized with the
CPU time for the formulation with na = 7. The median computational time for na = 7 was
0.028 seconds.
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compensated, the recursive technique strongly depends on the quality of future exogenous

inputs, that are usually forecasted using some other methods. Another possible way to apply a

general purpose univariate interpolator to multivariate regression, is to perform some sort of

embedding of the time step ahead one is trying to predict, and pass it as an additional input

to the interpolator. The so called direct way is to fit T different interpolators where T is the

number of steps ahead to be predicted, keeping the set of regressors fixed, while changing

the target variable to be the tth step ahead target. The latter could provide better accuracy

when compared to multivariate regression, also known as multiple input multiple output

(MIMO) regression, but it lacks of interdependency modeling between time-steps, which

is needed in the case we are interested in producing scenarios for stochastic control out of

the predictions [48]. Anyway, the interdependency structure can always be superimposed

later, through time dependent copulas, for example with the dual-ensemble copula-coupling

approach [58]. A comparison of several multi-step ahead strategies for forecasting, applied

to very simple univariate time series of the NN5 competition [103], using non-probabilistic

methods, is presented in [104].

2.3.1 Models and methodology

Forecasting multi step-ahead power profiles for residential households is an extremely com-

plex task, mainly due to the high dimensionality of the multivariate output, the even higher

dimensionality of the inputs, which make us incur in curse of dimensionality [105] related

problems, the volatility of the target and its low signal to noise ratio. The last two points doom

any point forecasting method to return large errors when compared to the task of forecasting

more predictable time series (like the power flow at a medium voltage transformer). Further-

more, a decision maker or a control algorithm is, generally speaking, not interested in point

forecasts, but rather in probabilistic ones, that is, in the a-posteriori probability distribution of

the target given the present conditions. As such, we only focused on methods able to cope

with those aspects, and evaluated them also based on the predicted quantile of the conditional

distributions. For 3 of them we directly predict time aggregates of the target variable, as

motivated in subsection 2.2.1, in the attempt of mitigating the difficulties of predicting an

output with high dimensionality. For the recursive quantile random forest model, we firstly

retrieve the whole set of 96 step predictions (24 hours ahead with a timestep of 15 minutes)

and we perform a-posteriori.

We introduce the methodology used for the creation of the training and testing datasets D tr

and D te . Each of these datasets contain a predictors (or regressors) matrix X , and a target

matrix Y . Formally, given datasets with N observations, and a prediction horizon of T steps

ahead, we obtain the Hankel matrix of targets Y ∈ IR(N−T)\T×T, where \ stands for integer

division, and the Hankel matrix of the regressors, X ∈ IR(N−T)\T×nxT, where nx is the number of
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regressors. Verbosely, X and Y are the following:

X =


x1,t−T x1,t−T+1 ... x1,t x2,t−T x2,t−T+1 ... xnx ,t

...

x1,t−T+1 x1,t−T+2 ... x1,t+1 x2,t−T+1 x2,t−T+2 ... xnx ,t+1

x1,N−2T x1,N−2T+1 ... x1,N−T x2,N−2T x2,N−2T+1 ... xnx ,N−T

 (2.45)

Y =

 yt+1 yt+2 ... y1,t+T

...

yN−T+1 yN−T+2 ... yN

 (2.46)

where x1,t stands for the first explanatory variable at time t . In order to further reduce the

dimensionality of the problem, for some of the forecasting methods we test, we aggregate

columns of X and Y with logarithmically spaced bins. That is, referring to table 2.4, the first

31 (465 divided by 15) columns of matrix X , which are the farthest in time with respect to the

one step ahead prediction, are averaged together, and so on for all the columns. This reduces

the size of X from (N −T )×T nx to (N −T )×10nx . This strategy assumes that, since we are

requiring forecasts with a loss of temporal resolution as we move forward in time from t , we

can as well get rid of the high temporal resolution of historical values, as we move backward

from it.

Formally, we can define the reduction of X and Y through a block diagonal matrix M :

Xr ed = [
Xr ed ,i

]
i∈N[1:nx ]

Xr ed ,i = Xi Mx

Mx = ⊕
k∈K

1nk K = [K : 1]

Yr ed = Y My

My =
⊕

k∈K

1nk K = [1 : K ]

(2.47)

where
⊕

is the direct sum operator, Xr ed ,i and Yr ed are the ith regressor’s reduced matrix and

the output reduced matrix, K is the number of aggregated steps, each of which includes nk

original steps (reported in table 2.2) and 1nk is the column vector of ones, of length nk . An

example of the resulting aggregation for the past and future values of the target is shown in

Fig. 2.6.

In the following we describe the four methods we employed for this analysis. Each method

belongs to a different class of multi-step ahead forecasters introduced before.

Quantile regression forest and recursive quantile regression forest Random forests are

basically an ensemble of (high variance and low bias) decision trees, trained with random

subsets (independently chosen) of the explanatory variables and samples of the original
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Figure 2.6 – Example of logarithmically spaced aggregation, for the bins reported in 2.2, for the
regressor (green) and the target (orange).
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training dataset. It is known that aggregating multiple forecasters leads to variance reduction

of the prediction, when base learners (the to-be aggregated forecasters) are trained using

random samples of the dataset. This technique is known as bagging, bootstrap aggregation

[106], or weak learners aggregation. Each tree is trained following a greedy strategy, choosing

which variable to split and at which level in a sequential way, minimizing a loss function

(usually squared error). In order to get the quantiles out of a random forest, one could

simply estimate the quantiles of the prediction of the N trees, assuming each tree has been

independently optimized. Anyway, a better alternative exists, which consists of keeping track

of all the data in the trees’ leaves, and estimating empirical quantiles out of them. This

algorithm is known as quantile regression forest (QRF) [107]. The first method based on QRF

uses a direct MISO approach, which uses past variables up to time t −T to predict aggregated

output at step k. The input of the QRF is the logarithmically time averaged set of regressors

Xr ed . We train K different random forests, each of which predicts a different (aggregated) step

ahead. For the kth step ahead forecaster:

Ŷr ed ,k = fk (Xr ed ) ∀k ∈ N[1:T ] (2.48)

where Ŷr ed ,k is the prediction for the kth column of Yr ed , that is, the forecast for the kth step

ahead. The final set of K forecast steps at time t , is then retrieved joining the output of all the

fk forecasters.

The second method still relies on QRF, but uses a recursive-like logic to predict the t +k step

ahead. The first step ahead is simply predicted taking the full Henkel matrix X as regressors,

that is, the one described by equation (2.45) and with 15 minutes sampling time. The second

forecaster, predicting Ŷr ed ,2, will make use of a regressors matrix, Xr ec,2, generated replacing

the first column of X with the prediction of fk (X ) for the first step ahead, Ŷr ed ,1. The kth

forecaster will replace again nk original steps from Xr ec,k−1, where nk is the number of original

steps for the kth aggregation, with its predicted output Ŷr ed ,k . The procedure is iterated since

10th step ahead, for which all the columns referring to the historical values of y but the last

31, have been removed from the original X . The rationale behind this strategy is that the

progressive reduction of the dataset and the inclusion of the prediction of the previous step

ahead could increase the accuracy of the QRF.

Tree bagging Extreme learning machines This method uses a MIMO regressor, the so called

extreme learning machine (ELM) [108], to predict all the 10 step ahead at once. Since ELMs

were originally thought as interpolators, we perform an ensemble through bagging in order

to obtain the conditional distribution of the prediction. The ELM is a 2-layers perceptron, in

which the first matrix of weights linking the inputs to the layers of neurons, and the neurons

biases, are randomly initialized. As such, the only weights that need to be learned are the

ones linking the neurons with the (multivariate) output. This can be done efficiently by

means of linear regression exploiting the Moore-Penrose inverse. The main advantage of the

ELM is that, since there is no need of training the first matrix of weights and biases, we can
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bypass backpropagation (gradient descent) or other types of iterative optimizers, which are

usually needed due to the presence of the nonlinear activation function, and just retrieve the

optimal values of the second matrix of weights. In practice, this method firstly augment the

space of explanatory variables by applying random nonlinear transformations, and retrieves

their optimal combination by linear regression. Since the dimensionality of the explanatory

variables is highly increased, we can penalize the weights adding a Ridge punishment in order

to regularize the output and decrease the forecaster variance. Formally, the ELM is described

by:

Y T = θO +ε
O =σ(W X T +b)

(2.49)

where X and Y are the previously described Henkel matrices, σ is the activation function

(which is usually a sigmoid), W ∈ IR(N−T)\T×nn and b ∈ IRnn are the randomly initialized matrix

of weights and biases of the first neuron layer, where nn is the number of neurons. O ∈
IRnn×(N−T)\T is the output of the first layer and θ ∈ IRnn×T is the matrix of final weights which

connects the output of the first layer O to the matrix of targets Y . As in normal linear regression,

assuming Gaussian noise ε and applying regularization, we retrieve the analytical solution for

θ:

θ∗ = (
OOT +λI

)†
(OY ) (2.50)

where λ is the Ridge regularization parameter, I is the identity matrix of appropriate dimen-

sions and † stands for the pseudoinverse. Due to the presence of the sigmoid activation

function, inputs must be normalized to be centered in the interval [−1,1]. We normalized X

to unit variance; informally:

Xn = σ̂−1
s (X − µ̂s) (2.51)

where σ̂s is the vector containing the estimated sample standard deviation of the columns of

X , and µ̂s is the vector of the estimated sample means of the columns of X . In order to speed

up the activation function computation, we have used a piecewise linear function instead of

the analytic sigmoid. Notice that in this case the nonlinearity reduces to an upper and lower

threshold. For the tests we have adopted 400 neurons ELM, with λ equal to 1e −1. The value

of λ was chosen minimizing the quantile skill score, introduced later in section 2.3.2, on a set

of residential profiles, and kept fixed. To estimate the conditional pdf and reduce the variance

of the predictions, we have applied bagging to 100 ELMs. For each ELM, we selected 70% of

variables and 70% of the original observations, at random.

Detrended multiple Holt-Winters The Holt-Winters (HW) method [109] is a special class of

the exponential smoothing [110], which consists of three smoothing equation, such that the

final prediction is a combination of the level a, trend b and seasonality s. We tested different

flavors of the HW families and based on performance we adopted a double seasonality additive
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HW:

ŷt+h = (at +hbt )+ s1,t−p(1)+1+(h−1)\p1 + s2,t−p2+1+(h−1)\p2

at =α(yt − s1,t−p1 − s2,t−p2 )+ (1−α)(at−1 +bt−1)

bt =β(at −at−1)+ (1−β)bt−1

s1,t = γ1(yt −at − s(2, t −p2))+ (1−γ1)s1,t−p1

s2,t = γ2(yt −at − s(1, t −p1))+ (1−γ1)s2,t−p2

(2.52)

where α, β, γ1 and γ2 are parameters to be learned from data, while p1 = 96 and p2 = 672 are

the periods of the seasonalities, and \ is the modulo operator. The data we used is sampled

with a 15 minutes timesteps, so that p1 and p2 corresponds to a daily and weekly period.

The model (2.52), and HW in general, do not include exogenous inputs. Since quantities like

external temperature and irradiance are important explanatory variables in load forecasting,

we included them with an a-priori linear detrend, such that the new target is y = y − Xβd ,

where X is a three column matrix containing G H I , T and the unit vector (for the intercept),

and βd is the vector of linear coefficients. Usually, a single set of α, β, γ1 and γ2 values is

fitted, and the prediction of each step ahead is obtained applying equations 2.52 recursively,

as usually done for state space systems. That is, the HW can be classified as a SISO forecaster,

which uses recursion in order to generate the univariate predictions for the whole prediction

horizon. In order to increase the accuracy of the method, we instead fitted 96 sets ,α, β and γ

parameters, based on the step ahead. To identify them, we used synthetic generated power

profiles, using the methodology described in section 2.1. Due to the linear detrend we applied

to the target, the fitted β values where close to 0 for all the steps ahead, and thus we decided

to fix this parameter to 0. The identified parameters are shown in Fig. 2.7. It can be seen

that the variation of the parameters with the step ahead is very regular, and hence the three

set of parameters could be replaced by 3 smoother interpolating function. The only steep

variation of the parameters is located in the first steps ahead, where the α and γ1 parameters

experience a quick drop. The effect of the high values of these two parameters in the first step

ahead on the HW prediction, is that of having a more persistent-like response. In fact, as can

be seen from the second equation in 2.52, the α value directly weight the previous value of the

time series yt and the two seasonality values s1,t−p1 and s2,t−p2 . For the HW the conditional

probability distribution of the prediction was obtained a-priori, using data from the training

set. That is, for each fold, we obtained the distribution of the error on the training set, based

on the step ahead and the hour of the day:

q̂αi ,h,k = qαi (eh,k ) (2.53)

where eh,k is the set of training errors related to the hour h and to the kth step ahead and αi is

the level of the quantile.

Table 2.1 summarizes for clarity the differences between the tested forecasting methods.
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Table 2.1 – Characterization of the used forecasting methods.

forecaster regressors target class pdf

QRF Xr ed Yr ed MISO conditional

RQRF Xr ec,k Yr ed MISO conditional

Detrended HW original signals Y , averaged ex-post MISO bootstrap

Bagging of ELM Xr ed Yr ed MIMO conditional

0 20 40 60 80 100
timestep [15 min]

10 -3

10 -2

10 -1

10 0

1

2

Figure 2.7 – Fitted parameters for the HW model, as a function of the step ahead

2.3.2 A priori evaluation

We compared the performance of the four different forecasters in predicting the power de-

mand/production of a group of 100 prosumers, at different levels of aggregation, using one

year synthetic data generated as described in 2.1. We used 15 minutes-sampled time series,

but we did not predict 96 timesteps. Rather, we predicted 10 steps ahead with different levels

of aggregations, using logarithmically spaced bins, as explained in section 2.3.1. The length of

each bin is reported in Table 2.2. In table 2.3 the regressors for which the averaged historical

values are passed to the forecasters, as well as the ones for which only the value at the current

prediction time t is given.

Each user power consumption is obtained combining 3 different appliances: an heat pump

(HP), a roof-mounted PV and uncontrolled loads (UN). The simulated prosumers are com-

posed as described in Table 2.4. The forecasters are evaluated in cross validation, using 6 folds

of 2 months each. We adopt the same cross validation approach later described in section
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Table 2.2 – Number of minutes for each step ahead.

k 1 2 3 4 5 6 7 8 9 10

nk 1 1 2 3 5 7 10 15 21 31

minutes 15 15 30 45 75 105 150 225 315 465

Table 2.3 – Regressors for which the averaged history is passed to the forecasters (first row),
the ones for which the averaged future values is given (second row, NWP variables), and the
ones for which only the value at the current time is given (third row)

24 steps-back averaged regressors P,G H I ,T

24 steps-forward averaged regressors G H Inw p ,Tnw p

not averaged regressors dayhour, day of week

3.2.1, in which the training set in each of the 6 folds is composed by groups of 3 consecutive

days (see Fig. 3.2). As explanatory variables we use the historical values of the power, GHI and

T. Additionally, we gave the regressor the perfect forecast of GHI and T. This was motivated

firstly by the lack of NWP for the typical meteorological year we have used to generate the

synthetic load, and secondly because we wanted to evaluate the best possible performance of

the forecaster, without dealing with NWP accuracy. In fact, NWP services provide forecast with

different accuracy, based on the presence of on-ground measurements used for prediction

calibration.

Table 2.4 – Number of houses per type of appliances.

PV+HP+UN PV+UN HP+UN UN

20 20 10 50

A-priori KPIs

The main two KPIs for the evaluation of forecasters performances are the root mean squared

error (RMSE) and the mean absolute error (MAE):

RMSEsa =
[

1

n

n∑
t=1

(
yt ,sa − ŷt ,sa

)2
] 1

2

(2.54)

M AEsa = 1

n

n∑
t=1

|yt ,sa − ŷt ,sa | (2.55)

where sa is the step ahead and n is the number of observations in the current test fold. These

KPIs are the most used in the literature for performance evaluation. However, in some case is

better to use a normalization factor to fairly compare the performance. For example, when

evaluating PV predictions and forecasts, we have to keep in mind that the PV power signal is
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highly variable, getting close to zero when the sun elevation is low, and zero during nighttime.

For this reason before evaluation of the KPIs we have discarded all the values for which the

sun elevation is bigger than zero: θs,el ≤ 0. Moreover, due to the periods in which the signal

is close to zero, using the mean absolute percentage error is misleading, since dividing the

prediction error by the true value would result in high (and highly non-linear) results. This is

not only true for PV signals, but for signals with several zero crossings. For this reason, when

evaluating PV forecasts we will also make use of the normalized variants of RMSE and MAE, as

reported hereafter. In this case, the error is previously normalized using the mean of non-zero

values for each step ahead, that is:

nRMSEsa =
[

1

n

n∑
t=1

(
yt ,sa − ŷt ,sa

ȳsa

)2] 1
2

(2.56)

nM AEsa = 1

n

n∑
t=1

|yt ,sa − ŷt ,sa |
ȳsa

(2.57)

where ȳsa = 1
n

∑n
t=1 ysa,t is the mean of non zero values of y for the current fold, at the sa step

ahead. Note that this normalization does not requires to re-weight for the different length of

the step ahead bins.

For probabilistic forecasts, different KPIs can be used to evaluate the predicted quantiles

accuracy. Quantile skill score S which compares the quality of the predicted quantiles of

the a-posteriori probability distribution returned by the forecasters, with the empirical one,

estimated on the test set.

Formally, S is defined as:

S(ŷt+k|t , yt+k ) =−
m∑

i=1

(
I{yt+k≤q̂αi ,t+k|t } −αi

)(
yt+k − q̂αi ,t+k|t

)
(2.58)

where q̂αi ,t+k|t is the predicted αi level quantile for t + k at time t and Ix is the indicator

function on the condition x, and m is the number of evaluated empirical quantiles. The skill

score (2.58) is a proper skill score [111], it is always positive, and lower values of S mean higher

quantile prediction accuracy.

Numerical results

For this study, we have used m = 10, using linearly spaced quantiles on the [0.05,0.95] interval.

Examples of the conditional pdfs returned by the forecasters are shown in Fig. 2.8. The first

row refers to the first step ahead, while the second refers to the 10th step ahead. The results

for the individual profiles are shown in Fig. 2.9, by means of boxplots. Each boxplot contains

the KPIs of 100 profiles, already mediated across the 6 folds. We evaluated the forecasters

using the quantiles skill score 2.58 , RMSE 2.54 and MAE 2.55. Since all the boxplots show

skew distributions for the KPIs, we additionally evaluated the nMAE 2.57, which results in
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Figure 2.8 – Example of returned conditional pdfs, for the QRF, the HW and the bagging of
ELM forecasters. First row: predictions for the 1st step ahead, that is, the mean value of the
next 15 minutes. Second row: predictions of the last step ahead, that is, mean values of 7.75
hours, going from 16.25 hours ahead up to 24 hours ahead.Confidence intervals are relative to
10 linearly spaced quantiles between [0.05,0.95]
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Figure 2.9 – Evaluation of different regressors for multiple step ahead forecasting, in terms of
quantile skill score, RMSE,MAE and nMAE. Each boxplot contains 100 points, which are the
results for each agent, mediated across the CV folds. Blue: QRF, direct. Red: RQRF, recursive.
Yellow: bagging of ELM. Violet: detrended HW

not-skewed distribution. This indicates that the skewness was due to the original distribution

of the mean absolute values of the power signals in the evaluated population. In any case,

as expected, the renormalization did not change the rank of performance of the various

forecasters. QRF and the RQRF clearly obtain better performance in all the indicators, with the

exception of the one step ahead prediction, in which the HW is consistently the best forecaster.

Besides the accuracy of the methods, we reports also the agent computational time for each

forecasters, obtained on a Intel Core i7-4790K @ 4.00GHz with 32 GB of RAM. The values in the

boxplots are, once again, already mediated across the folds, and refer to the training period

on each fold, which was roughly 2 months. The median training time for each forecaster is

reported in table 2.5. While the QRF and RQRF achieve greater accuracy in the forecasts, they

are hardly embeddable in a smart meter due to both the high number of parameters and the

high computational time. On the other hand, the ELM only requires matrix inversions in the

training phase, and simple algebraic multiplication for the test phase. While the ELM requires

O (nn) parameters, where nn is the number of neurons, the HW only requires 3× 96 parameters,

which can be reduced further if the parameters in figure 2.7 are approximated with splines

or piecewise linear functions. More importantly, the HW does not require to keep historical

values for the training dataset, being an adaptive state-space method. This means that all

the information needed for performing a forecast are stored in the model parameters. This is
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2.3. Evaluation of multi step ahead forecasters for net power prediction

also true for the detrend of the exogenous variables when an adaptive linear fit is applied, as

it was the case in this study. This means that the HW method can be easily embedded in a

microcontroller.

Table 2.5 – Agent median computational training time for 2 months of data, for each forecaster.

forecaster QRF RQRF ELM HW

training time [s] 45.7 241.1 6.3 -

2.3.3 A posteriori evaluation

Beside evaluating the various a-priori through the KPIs introduced in section 2.3.2, we would

like to evaluate them by means of performance of a controller planning for charging and

discharging operations of an energy storage. As explained in section 2.2.1, we consider the

case in which a residential user is operating its own battery in order to minimize its billing

costs, while coordinating with some other batteries in order to minimize a common objective

. When the coordination is done using decomposition techniques, this would results in the

evaluation of a proximal operator [100], which in general leads to a linear-quadratic objective

function. This is further explained in chapter 5 and in papers C and D. We used both a

deterministic and a TBSMPC controller. For both of them, we used the logarithmically spaced

stepsizes reported in table 2.2, as in section 2.2.1 we have estimated that the performance gap

in this case is below 0.5 % for all the considered combinations of battery capacity and E-rate.

The TBSMPC controller was formulated using 4 sets of variables for each node in the distur-

bance tree (the state of the battery, the charging and discharging operations, and an additional

variable y which performs as the upper bond for the cost function 2.37), leading to a total of

4nnodes optimization variables, where nnodes is the total number of nodes in the disturbance

tree. This reduces the overall number of optimization variables with respect to the case in

which scenarios are treated separately, as in [35], and non-anticipativity constraint (causality

of the control actions) is enforced by means of equality constraints. In fact, in this case the

overall number of variables would be 4ns H , where ns is the number of scenarios and H is the

length of the optimization horizon. Since the two formulations are mathematically equivalent,
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Chapter 2. Multi-step-ahead forecasting for demand response applications

we adopt the one with the lowest number of optimization variables.

u∗ = argmin
x,u∈U

na∑
k=1

wk

µk∑
j=1

πk, j

[
α

(
P̂k, j +Suk, j

)2 + yk, j

]
s.t . : xk+1,d = Ad ,k xk, j +Bd ,k uk, j ∀k ∈R[1:na ], ∀ j ∈µk , ∀d ∈Dk, j

xi ∈X , ∀i ∈N , X = [xmi n , xmax ]

ui ∈U ∀i ∈N , U = [umi n ,umax ]

yi ≥ pb
(
P̂i +Sui

) ∀i ∈N

yi ≥ ps
(
P̂i +Sui

) ∀i ∈N

x0 = xst ar t

(2.59)

where πk, j is the probability of reaching the jth node of timestep k starting from the root

node, µk is the number of nodes at timestep k, Dk, j is the set of descendant of the jth node at

timestep k, and N =N[1:nnodes ] is the set of all the nodes in the tree.

Since the RQRF was strictly worse in terms of a-priori KPIs, with respect to the QRF, while

being more computationally demanding, we evaluated only the a-posteriori performance

for the RF, the bagging of ELMs and the detrended HW. For each forecasters, we generated

scenarios using one of the techniques described in section 1.4. Namely, we used multivariate

Gaussian copula coupling for the QRF, estimating different multivariate copula based on the

hour of the day. This means that we estimated 24 covariance matrices from the historical data

of the power signal, Σh ∀h ∈N[1:24], which were then used to remap the empirical conditional

cdf returned by the QRF. For the HW forecaster, bootstrapped historical data, always based on

the hour of the day, was used. Finally, the individual weak learner (single ELMs) predictions

was used for the bagging of ELMs. For each forecaster, we retrieved 200 scenarios, which were

reduced into a disturbance tree using the technique and code presented in section 1.3.

The performance of the controller was evaluated in closed loop, using cross validation. We

used the forecasts obtained in the previous section for one power profile composed by un-

controllable loads, an HP and a PV power plant. We systematically changed the capacity

and E-rate of the battery, with an equally spaced sampling grid, as done in section 2.2. The

values assumed by the E-rate were {0.5,1,1.5,2}, while the values of the battery capacity were

{1,1.5,2}Ēd , where Ēd is the mean daily generated energy, as defined in (2.43). From the yearly

profile, which was divided in 6 folds, as described earlier, we tested the controller on only 4

days belonging to the original forecast test set. This means that the control problem (2.59)

was evaluated 6 ·4 ·96 times during the performance assessment, for each capacity and E-rate

combination.
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2.3. Evaluation of multi step ahead forecasters for net power prediction

A-posteriori KPIs

For both the deterministic and TBSMPC, we evaluated the performance by means of relative

difference from the objective function obtained by a prescient controller K ∗
pr e . The prescient

controller uses perfect forecasts, and thus provides us with the lower bound for the optimized

objective function used in 2.41. The first KPI is the ratio between the expectation of the

performance gap and the expected optimal objective function of the prescient controller.

K ∗
r e =

EDs

[
K −Kpr e

]
EDs

[
Kpr e

]
K =α‖P +Su∗‖2

2 +
T∑

t=1
c(P +Su∗)

(2.60)

where K was evaluated for both the deterministic and stochastic controller.

Additionally, we also computed the expectation of the same ratio:

K ∗
er =EDs

[
K −Kpr e

Kpr e

]
(2.61)

This second KPI is more unstable than the first, since folds for which the optimal objective

function value retrieved by the prescient controller is close to zero (which are the folds in

which a higher rate of self consumption is attainable) make this estimator more pessimistic

than (2.60).

In order to clearly see the increase of performance due to the stochastic formulation, we

defined the additional KPIs K∗di f f ,r e and K∗di f f ,er :

K ∗
di f f ,r e = 1− EDs

[
Kstoc −Kpr e

]
EDs

[
Kdet −Kpr e

]
K ∗

di f f ,er = 1−EDs

[
Kstoc −Kpr e

Kdet −Kpr e

] (2.62)

which correspond to the amount of performance gap reduction made possible by the TBSMPC

formulation, with respect to the deterministic case. Once again, we both investigated the ratio

of the expectation and the expected ratio.

Numerical results

The TBSMPC was evaluated using four different scenario tree structures τµ1,µH , where µ1 is

the number of scenarios in the first step ahead, and µH is the number of scenarios in the last

step ahead. The steps ahead in between the number of scenarios were linearly scaled between

µ1 and µH . Based on this notation, the four different evaluated trees were τ1,20,τ1,40,τ10,20 and

τ10,40. In Fig. 2.10 K ∗
r e and K ∗

er are plotted for all the combinations of battery’s capacity and E-
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rate, for both the deterministic and stochastic formulations (for the case of τ1,40), represented

by dots and crosses, respectively.

From the left panel, in which K ∗
r e is reported, we can see that for both deterministic and

TBSMPC formulations, the bagging of ELM gives the worst results, for all the parameters’

combinations. Both QRF and the detrended HW provide significantly better results, showing a

performance gap with respect to the prescient controller between 10 and 15 % for most of the

parameters’ combinations. The deterministic HW forecaster provides performance which are

very close, and sometimes better than, the QRF forecaster. In particular we can see that for the

deterministic formulation, the ranking of performance between the QRF and the HW changes,

passing from a normalized capacity of 1 to 2, for any E-rate. For a normalized battery capacity

of 1, the QRF is always better than the HW, while for a normalized battery capacity of 2, the

opposite is true.

On the other hand, the higher accuracy of the QRF in modeling the conditional pdf can be

appreciated when solving the problem using TBSMPC. In this case the QRF solutions are

always better than the ones provided by the HW forecasters, in terms of expected performance

gap from the prescient solution. For all the parameters’ combinations, the K ∗
r e for QRF is

below 10 %.

The right panel of Fig. 2.10 shows the K ∗
er KPI. From this panel we can see that for the HW,

passing from the deterministic to the stochastic formulation increase this KPI, while on the

contrary, both the ELM and the QRF show a decrease. This could mean that the HW estimated

pdf is not good enough for periods in which the power signal is close to zero. In Fig. 2.11

and Fig. 2.12, the KPIs K ∗
di f f ,r e and K ∗

di f f ,er are shown, respectively. From the first figure, we

can see how the expected reduction of the performance gap with the prescient solutions, is

significantly higher for the QRF formulation, for which, in the case of a normalized battery

capacity greater than 1.5, K ∗
di f f ,r e is always higher than 19%, for all the four tree configurations.

The performance gap reduction is less significant for the HW, for which is around 10% in the

case of τ10,40, while being even less significant for the ELM forecaster. From Fig. 2.12 we can

draw the same conclusions reported for Fig. 2.10, for the HW forecasters, which in some cases

shows a reduction of K ∗
di f f ,er .

In Fig. 2.13, the boxplots of the computational times are reported for the deterministic and the

four stochastic formulation. The increase of computational time is consistent. We must notice

that the TBSMPC formulation we used adopted a non fixed tree structure between the solving

horizon. This means that the structure of τ is not fixed, although having a fixed number of

nodes per step ahead µk . Fixing the structure, for example specifying the number of splits per

node at each step ahead, can readily halve the computational time, since the optimization

problem does not need to be re-formulated after each run.

In order to systematically investigate the effect of the number of scenarios in the tree structures,

µH , we used 20 annual synthetically generated profiles, in combination with the QRF forecasts.

Of these, a first set includes 10 residential profiles, which are composed by a PV power plant,
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Figure 2.10 – KPI K ∗
r e (left), and K ∗

er (right), for different forecasters, as a function of combina-
tions of normalized battery capacity and E-rate. On the x axis, the first row refers to the E-rate,
while the second one to the battery capacity normalized with E∗

nom . Dots refer to the solutions
of the deterministic solver, while crosses to the solution of the TBSMPC controller.

a HP and uncontrolled loads. In the second set, the profiles are similarly composed, but the

HP is not present. We linearly increased the number of scenarios from µH = 20 to µH = 80,

using seven steps. The tested disturbance trees are τ1,20,τ1,30, ...τ1,80. For this test we kept the

capacity and E-rate fixed to E∗
nom and 1 respectively. In Fig. 2.15

In Fig. 2.15, the results of the cross validation are shown. The left panel reports the KPI

K ∗
di f f ,r e , as a function of the number of scenarios µH . Each line represents a different power

profile. The red ones are the ones including a HP, while the blue ones belong to the second

set. We can see how the reduction in the performance gap for the red profiles is in general

higher with respect to the second group of profiles. This can be explained in terms of volatility

of the forecasted power profiles in the two cases. In Fig. 2.14, an example of one profile

from each set is shown for the first test fold of 4 days. We can see how the presence of the

HP increases the variance (and decreases forecastability) of the profiles from the first group.

It is thus reasonable that the TBSMPC provides higher benefits for this set of profiles. We

can see that for a few cases, the benefit of considering more scenarios is not monotone, but

start being detrimental after a certain number. This phenomenon has been observed also in

[45; 35]. The right panel reports boxplots of the computational time per single solved horizon.

Each boxplots contains 16 points, which represent the mean computational time of 16 single

cases, mediated across all the solved horizons. These computational times were obtained on a

IntelCore 8 x i7-4790K CPU @4.0GHz, while running 8 solvers in parallel (for this reason the

computational times of the last 4 cases were not included in the boxplots). We stress out again

that the code was not optimized nor ready to run on an embedded system, and we just want

to report how the computational time scales with respect to the number of scenarios.
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Figure 2.11 – KPI K ∗
di f f ,r e , for different forecasters, as a function of combinations of normalized

battery capacity and E-rate, and different numbers of scenarios. On the x axis, the first row
refers to the E-rate, while the second one to the battery capacity normalized with E∗

nom .
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Figure 2.12 – KPI K ∗
di f f ,er , for different forecasters, as a function of combinations of normalized

battery capacity and E-rate, and different numbers of scenarios. On the x axis, the first row
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Figure 2.14 – Example of power profiles from the two sets, during winter. On the left, a power
profile from the first set, composed by a PV, an HP and uncontrollable loads. On the right, a
profile from the second set, composed only by a PV and uncontrollable loads.
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Figure 2.15 – Left: K ∗
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3 PV modeling for power forecasting

In this chapter the influence of using a physics-based model for predicting and forecasting AC

PV power output, based on meteorological conditions, is investigated. In this chapter, new

methods to identify a PV model without irradiance measurements are proposed. Moreover,

we present new algorithms which are able to identify the presence, and estimate a PV physical

model, using only composite AC power flow measurements. Additionally, the PV physical

models can be exploited to estimate the global horizontal irradiance (GHI) with higher ac-

curacy with respect to satellite-based services. This would allow to use already installed PV

power plants as a distributed sensor network for retrieving GHI measurements. Finally, we

evaluate the influence of the identified models on the accuracy of the forecasted PV power

production.

The main outcomes of this chapter are summarized in the following:

• A methodology to blindly identify a physical model of PV power plants, starting from

composite power signals, is introduced in sec 3.1. The different methods are explained

in detail in paper A.

• A new unsupervised method for estimating the GHI from AC photovoltaic power mea-

surements is introduced. The detailed procedure is presented in paper B, and its im-

proved accuracy with respect to satellite-based irradiance estimations is reported, for

two case studies.

• It is shown how, when combining physical models and QRF, the accuracy of predicting

PV output from meteorological conditions increases significantly. Moreover, blindly

identifying the PV model starting from composite power measurements does not signifi-

cantly decrease the prediction accuracy.

• It is shown how modeling PV does help to increase the forecast accuracy, only for steps

ahead between 30 minutes and 12 hours, which corresponds to the period in which

NWP are more reliable.
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3.1 Blind PV model identification and GHI unsupervised estimation

3.1.1 Problem formulation

The physics of PV power production, as well as the physics of solar geometry is well known.

Accurate empirical models, which assess the total incoming irradiation on an oriented surface,

given the GHI are also available [112],[113]. Under the assumption that the AC power produced

by the PV power plant is not curtailed, we can therefore build a function that links the GHI

and T to a given PV plant power output:

P̂pv = g (G H I ,T, t , g eo,Θ)

Θ= [θt ,θa ,Pnom]
(3.1)

where P̂pv ∈ IRT is the estimation of the power generated by a given PV plant, G H I ∈ IRT

and T ∈ IRT are the vectors of the observed GHI and temperatures at time t , θt and θa are

the vectors containing the tilts and azimuths of the modules, g eo is a vector containing the

geographical coordinates of the plant, namely latitude, longitude and elevation, and Pnom is

the vector of the nominal powers of the modules. Usually, the physical model is estimated by

minimizing the distance from the observer PV AC power signal and the one predicted by g

and knowing G H I , solving the following nonlinear optimization problem:

Θ? = argmin
Θ

‖Ppv − P̂pv
(
G H I ,T, t , g eo,Θ

)‖2 (3.2)

We are interested in retrievingΘ, both in the case in which GHI and T local measurements are

not available, and in the case in which only the overall power measurement of the building to

which the PV power plant is connected.

3.1.2 On how to identify PV models without GHI measurements, and use PV pan-
els as irradiance sensors

In order to find a good functional form for g , the following consideration must be taken into

account:

1. We want to estimate PV plants orientation without knowing the actual GHI seen by the

panels

2. PV plants can be composed by groups of panels with different orientations, e.g. plants

with an east-west configuration

3. The presence of shadows affects the relation between the projection of GHI on an

oriented surface and the PV power output

4. Problem (3.2) is non convex, due to the nonlinear transformations required to map G H I

58



3.1. Blind PV model identification and GHI unsupervised estimation

to the plane of array.

If the GHI seen by the panels is unknown, the estimation of the panel’s orientation would result

in a blind identification problem. We exploit the fact that we can retrieve a good approximation

of GHI for clear-sky periods, using a model for the extra terrestrial irradiation and for the

air mass index, e.g. the McClear clear sky model [114]. We can thus identify the PV plants

orientations if we could select clear-sky periods using only the PV plant’s power output.

In order to select clear sky periods for the identification, we propose the following method.

The distributions of the PV power signals as a function of the sun position typically presents a

bimodal behavior, induced by the presence of clouds during data acquisition. On the other

hand, a unimodal distribution could indicate a systematic shadow for the corresponding sun

position. To select clear data periods, we fit a Gaussian mixture pdf with two components

X ∼N (µ,σ), with µ ∈N2,σ ∈N2, for each sun position, with a discretization of 5 ◦. Then, for

each sun position we identify the observations lying in the one sigma interval around zero of

the Gaussian distribution with the largest µ as clear observations.

However, it is not always guaranteed that during the selected periods, the G H I seen by the PV

plant would be exactly the one predicted by the clear sky model. To overcome this and the

other aforementioned problems, instead of solving problem (3.2) and directly estimateΘ, we

recast it as a robust linear regression:

ω∗ = argmin
ω∈IRN

+

L
(
Ppv − INω

)
(3.3)

where L is a robust loss function, IN ∈ IRT×N is a matrix whose columns contain estimations

of the power produced by N differently oriented virtual PV panels with unitary nominal power,

ω ∈ IRN is the vector storing the importance of the virtual PV panels in predicting Ppv . The

IN matrix is obtained starting from G H I and T as described in 2.1, through equation 2.33.

An example of signals contained in the IN matrix is shown in Fig. 3.1, for N = 21, starting

from clear sky G H I obtained using the McClear clear sky model. The additional requirement

ω ∈ IRN+ forces vector ω∗ to have all positive entries. Thus, we can interpret the vector ω∗ as

coefficients describing the significance of each virtual PV panel in explaining the power output

of the PV plant, rescaled for its nominal power.

Note that this strategy is very similar the method adopted by the ELM forecaster presented

in section 2.3: we have turned a nonlinear problem into a linear one, avoiding solving a non-

convex problem, providing an a-priori set of explanatory variables. This is the same for ELM,

in which a-priori nonlinear regressors are obtained from random sigmoidal transformations,

avoiding fitting the model using back-propagation. The difference is that in this case, physical

information from the PV model is encoded in the regressors IN . Furthermore problem 3.3

forces ω to be sparse and it is robust with respect to the presence of partial shadows.

If we use a loss function of an M-estimator for L , we can solve problem 3.3 using an efficient

iterative reweighted least squares algorithm. The presence of constraints ω ∈ IRN+ calls for a
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Figure 3.1 – AC power produced by 21 differently oriented virtual PV panels, during the first of
January, for the location of Biel-Benken, CH. The virtual PV panels’ orientations are obtained
by generating a triangular mesh of an icosahedron on a unit sphere.

modification of the leverage weighting function, that can be achieved using a constrained

linear regression, as explained in paper B.

Using the presented method, we can estimate ω without knowing the actual G H I seen by the

panels, selecting only clear sky periods. Once ω has been estimated, we can finally use it to

reconstruct the G H I signal seen by the PV panels. This can be done solving the following

optimization problem:

G H I∗ = argmin
G H I

‖Ppv − IN (G H I )ω‖2 (3.4)

Problem (3.4) can be solved iteratively as explained in paper B. This means that we can retrieve

the G H I that better explains the AC power produced by the identified model, i.e. the identified

ω. We could use more than one PV signal to reconstruct G H I . In this case we need to identify

a set of ω coefficients for each signal, and a merit function taking into account the influence

of shading, as explained in paper B.
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3.1. Blind PV model identification and GHI unsupervised estimation

3.1.3 Identification of PV models from composite power flow measurements

As opposed to the case of industrial PV power plants, direct measurements of AC power are

not always available for residential PV installations. In this case is more common to have only

the aggregated measurement at the electric main of the building. As it has been reported in

the literature in the case of wind forecasting [115], performing separated forecasts of load and

production signals outperforms the accuracy of directly forecasting the net load. It has been

recently shown that the same conclusion holds for the case of behind-the-meter PV [116]. In

paper A, a way for identifying the physical model for the PV through unsupervised learning

techniques is presented. The methods are then used to disaggregate the composite power flow

measurements, retrieving the signal due to PV generation. Here we briefly explain the main

idea behind the four presented methods. Let Pm ∈RT be the composite power measurement

at the electric main, that is, the point of common coupling with the public grid (PCC), of

a residential building. In the presence of a PV power plant connected at the PCC, we can

describe Pm as the sum of of two components, generated and consumed power:

Pm = Pl + INω (3.5)

where Pl ∈RT represents the power consumption, and the power production has been de-

scribed in terms of the matrix IN and unknown vectorω, as introduced in the previous section.

All the proposed methods try to estimate ω assuming that the PV power signal is uncorrelated

to, and independent form, the load Pl , at least for specific sampling time or in some range of

frequencies. To better clarify this idea, we present one of the proposed method.

ω∗,P∗
l = argmin

ω,Pl

‖Pm −Pl − INω‖2
2 +λ‖DPl‖1 (3.6)

where D = IT ⊗ [−1,1] is the discrete differentiation matrix, IT is the identity matrix of length

T and ⊗ is the Kronecker product. This method jointly estimates Pl and ω, assuming that the

load is a piecewise constant signal.

The first part of the objective function is a least squares minimization between the estimated

aggregated power and the observations at the PCC, Pm . However, this problem is under-

determined since the free variables are more than the number of observations T . Therefore,

we additionally punish temporal variations of the load. This results in a combination of

linear regression and trend filtering problem, as for example in [117] [118]. The trend filtering

problem can be seen as a fused lasso regression with a zero penalty term [119].

This method is used in the next section to blindly identify a PV model starting from Pm and a

G H I measurement. This model is then compared, by means of prediction accuracy, to a PV

model identified with direct observations of Ppv
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3.2 Influence of PV modeling on forecasting

Several studies have tried to include physics based model in the forecasting task [120], while

a pletora of methods relying on econometrics and machine learning have been proposed to

forecast PV using a data-driven approach [121], [122]. However in these studies the authors

tend to focus on one of the two approaches, and as such is hard to assess the contribution of

physics-based models to PV power forecasting.

We split the analysis in two, starting from estimating the effect of PV models in predicting PV

AC power, given observations of G H I and ambient temperature T and the current time t . That

is, we want to find a function

P̂pv,t = g (G H It ,Tt , t ) (3.7)

which maps the aforementioned variables to the estimated PV production, and see if the

reconstruction accuracy increases when considering a physics-based model for the PV. We

then investigate the effect of the same models when trying to forecast the PV power for the

next 24 hours, that is, we want to find a second function

P̂pv,[t :t+T ]|t = f
(
G H I[t−T :t ],T[t−T :t ], ˆG H I [t :t+T ]|t , T̂[t :t+T ]|t

)
(3.8)

where x[t :t+T ]|t means all the values of variable x from t up to t +T , given the information

available at time t , ˆG H I [t ,t+T ]|t and T̂[t ,t+T ]|t being the forecasts at time t for irradiation and

ambient temperature provided by a numerical weather prediction service, up to time t +T .

The rationale behind this is that, if we possess accurate enough G H I and T forecasts for the

next day, we can combine them with an estimated PV model to increase the forecast accuracy.

For this task, we use real data coming from 4 PV roof-mounted power plants located in Biel-

Benken, Switzerland. The PV power plants are composed by differently oriented folds; their

description and metadata can be found in [123].

3.2.1 Evaluation of PV modeling for prediction

Since we want to estimate the effect of a physics-based model on the accuracy of g , we a-priori

chose a family of regressors and kept it fixed during the analysis. We chose to use a random

forest regressor due to its ability in modeling nonlinearities, its high resiliency to overfitting

and its low prediction variance [106]. We compared the performance of g against physics-

based models, and then we tried to increase its predictive power including the models’ output

as regressors in g . The final estimated models are the following:

1. We just use the random forest to map G H I and T to the PV generated power. Instead of
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3.2. Influence of PV modeling on forecasting

including time as a regressor, we use the solar azimuth instead.

1
P̂ pv,t = g

(
G H It ,Tt ,θa,t

)
(3.9)

2. The PV power is estimated using only a physic based model, as described earlier in

section 3.1. We used N = 21 different orientations, uniformly distributed on the unit

sphere, disregarding the ones facing north.

2
P̂ pv,t = IN ,t ω̂ (3.10)

3. The PV power is still estimated using only a physic based model, but this time the model

is identified blindly, based only on the aggregated power measurements at the main of a

residential building. Firstly, we use a disaggregation technique to estimate the generated

AC power production of the PV, which is then used to identify the PV model, as described

in paper A

3
P̂ pv,t = IN ,t ω̂bl (3.11)

4. In the fourth model, the PV power estimated with the second model is passed as a

regressor to the random forest g , along with the same inputs used for the first model.

The idea here is to investigate if the non-trivial nonlinear transformations which project

G H I on the plane of array, can help the random forest in predicting Ppv

4
P̂ pv,t = g

(
G H It ,Tt ,θa,t ,

2
P̂ pv,t

)
(3.12)

5. This model is equal to the previous one, but uses the prediction of model 3, which were

obtained through the blind identification

5
P̂ pv,t = g

(
G H It ,Tt ,θa,t ,

3
P̂ pv,t

)
(3.13)

Results

We evaluated the methods through k-fold cross validation on a dataset of increasing size. In

particular, we have investigated the prediction performance using 10 datasets, spanning from

a minimum of of 40 days up to a maximum of 400 days. For each of these datasets we estimated

the performance of the methods using a 10-folds cross validation. The cross validation is done

in the following way: each dataset is divided in 10 folds; for each fold we extract a training and

a test set. The training set is obtained taking sequences of 3 days out of 4, for all the length of

the fold. The remaining data constitutes the test set. This fold selection was done to exclude

seasonality effects from the analysis. In fact, it should be noticed that this methodology is

more realistic compared to simply taking the first period of the data in each fold as the training

test and the last part as the testing set, as the test sets can be as long as 100 days. This would
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f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

d1 d2 d3 d4 d5 d6 d7 d8

Figure 3.2 – Example of 10 folds cross validation on the 80 days dataset. The dataset is divided
in 10 folds, each of 8 days. For each fold, the training set (green) is composed by 3 consecutive
days each 4 days, while the test set (red) is composed by the remaining days.

lead to test the model on periods of the years which are significantly different from the data

seen by g in the training set. On the other hand the aforementioned methodology mimics

the behavior of estimating a model for the PV power plant once each three days, which is

reasonable. Fig. 3.2 shows as an example the division of the cross validation folds for the 80

days dataset.

The used KPIs are the RMSE, MAE and their normalized versions, see equation (2.56) and

(2.57) in chapter 2. The results, in form of boxplots containing all the cross validation results

for the four different PV power plants (that is, each boxplot contains 40 points), are shown in

Fig.3.3 and Fig.3.4 for RMSE and MAE, and their normalized versions, respectively.

From the results, we can draw the following conclusions: first, the accuracy of the identification

does not show significant changes with the dataset size, for datasets larger than 120 days,

for all the methods but the blind identification
3

P̂ pv . Secondly, while the random forest

estimation
1

P̂ pv has similar performance to the proxy based identification
2

P̂ pv in terms of

RMSE, the latter is slightly better for all the dataset periods when considering the MAE. Last,

the most accurate methods for estimating Ppv are clearly
4

P̂ pv and
5

P̂ pv , which combine the

physics-based methods with the random forest regression. This could be explained by the fact

that the IN matrix used for the physics based regressions includes the projection of the GHI

signal onto differently oriented planes. These projections are non-trivial, since they include

the split of GHI in the diffuse and direct irradiance seen by these planes. At the same time, the

physics behind these splits and projection is well-known. It seems reasonable that the random

forest predictive accuracy increases when the information of these projections is (indirectly)

included as a regressor.

In Fig. 3.5 the average values of the identified θ coefficient, mediated across the folds, for
2

P̂ pv and
3

P̂ pv are shown, based on the total number of training days. Each line of the figure

refers to one of the four households hosting the PV power plants. We can see that the
2

P̂ pv

method, which only relies on the aggregated power profile, presents a dense pattern in the θ

value, meaning that the true orientation of the PV folds is not accurately identified. On the

other hand, the
2

P̂ pv method, which makes use of values of measured G H I , presents a sparse

and consistent pattern in the values of θ across the datasets, meaning that the dataset size is
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Figure 3.3 – Boxplots of the RMSE and MAE based on the number of days of the dataset and

on the method of prediction. Blue:
1

P̂ pv , yellow:
2

P̂ pv , red:
3

P̂ pv , green:
4

P̂ pv , violet:
5

P̂ pv .
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Figure 3.4 – Boxplots of the nRMSE and nMAE based on the number of days of the dataset and

on the method of prediction. Blue:
1

P̂ pv , yellow:
2

P̂ pv , red:
3

P̂ pv , green:
4

P̂ pv , violet:
5

P̂ pv .
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Figure 3.5 – Values of the identified ω coefficients for all the households, for the robust
fit regression (left) and for the blind identification (right), based on he number of
training days, mediated over the cross validation folds.
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less relevant to the identified values.

3.2.2 Evaluation of PV modeling for forecasting

As mentioned previously, predicting the value of PV power output and forecasting PV produc-

tion are two different task. As we have seen in the previous section, using a physics based

model for PV increases the prediction accuracy when we try to estimate PV power production

starting from known values of GHI, but whether this results in an increase of forecasting accu-

racy mainly depends on the NWP quality and resolution, as we argument in this section. Once

again we used cross validation, this time using folds of 120 days, since no gain in accuracy was

seen in 3.2.1 when selecting higher dataset size in PV power prediction. This time we used

aggregating times with the minimum resolution of 10 minutes. The whole set of aggregation

times is reported in table 3.1.

Table 3.1 – Number of minutes for each step ahead.

step 1 2 3 4 5 6 7 8 9 10 11 12 13 14

minutes 10 10 10 30 30 30 60 60 120 120 240 240 240 240

hours ahead 0.17 0.33 0.5 1 1.5 2 3 4 6 8 12 16 20 24

In order to estimate the influence of the PV modeling on forecasting, we evaluated the perfor-

mance of a QRF, which was the forecaster with the higher accuracy among the one evaluated

for the power forecast in the analysis presented in 3.2.1, on the Biel-Benken dataset. We

used two variants of the
4

P̂ pv,t model (equation 3.12) in order to increase the accuracy of

the forecast. Namely, in each fold we estimated a physics based model, using the technique

previously explained . Secondly, with the same data, we trained a random forest regressor to

learn the map from G H I , T and the solar azimuth to the power production. We then fed this

model with the NWP forecast for G H I and T , and then we use the result as an explanatory

variable for the QRF. Formally, the forecaster can be described as:

P̂pv,[t :t+T ]|t = f (X )

X =
[
G H I[t−T,t ]|t ,T[t−T :t ]|t ,

4
P̂ pv,t

(
θ̂, ˆG H I [t :t+T ]|t , T̂[t :t+T ]|t

)] (3.14)

where
4

P̂ pv,t is the best model for the PV power prediction 3.12. The difference from the

prediction task is that now the model makes use of the NWP forecast ˆG H I [t :t+T ]|t and T̂[t :t+T ]|t .

We used MeteoBlue [124] as NWP service, which provides local forecasts for G H I and T at

hourly resolution for the next 48 hours, with 12 hours updates. As such the accuracy of the

NWP forecasts is not constant with the step ahead, but is also dependent from the time of

the day. Some authors use Kalman filters to reduce the forecast error, but this method needs

to retrieve a dynamic model for the error, which in this case has discontinuities (twice per

day, at the moment of the update), thus it is hard to model with a simple autoregressive
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model. To perform the correction we decided once again to use a random forest which we fed

with the perfect forecasts from historical values of G H I and T , and the hour of the day. We

stress that the RFs for the NWP correction and the models for the PV prediction
(

4
P̂ pv,t

)
were

trained and identified in each fold, in order to keep the results from different folds statistically

independent.

In the second variant we assumed the lack of a pyranometer for the measurement of the local

value of G H I . As such, we identified the PV model, θ̂, directly from the PV AC power measure-

ments, using only observations from clear sky periods and exploiting robust regression. In

this case, in order to correct the NWP forecasts, we reconstructed the local G H I seen by the

PV panel starting from the identified model, as described in [123].

We started assessing the effect of the estimated PV models using perfect forecasts for G H I

and T in order to have a lower bound for our evaluations. In Fig. 3.6 and Fig. 3.7 boxplots

containing the nRMSE and nM AE for all the households and all the folds, as a function of

the step-ahead, are shown. The blue boxplots refer to the base case predictions, where no PV

models are estimated, while the red and yellow boxplots refer to the first and second variants

of PV model estimations. We can see that the improvements in forecast accuracy due to the

estimation of PV models are significant both in nRMSE and nM AE , especially for the most

aggregated time-steps. Additionally, the effect of estimating
4

P̂ pv,t without knowing G H I is

marginal.

When using NWP for G H I and T , PV modeling favorably affects the forecasts accuracy only

starting from 1 hour ahead, as can be seen in Fig. 3.9, where the RMSE ratio between the

base case and the PV modeling cases are shown. The positive influence of PV models vanishes

again starting from the 12th step, corresponding to 12 hours ahead. This result can be better

explained taking into account the accuracy of the NWP forecasts, as a function of the step

ahead and aggregation. Fig. 3.10 shows the boxplot of the RMSE of G H I in J/m2, normalized

to the observed energy in J/m2. The distributions in the boxplots are obtained randomly

sampling one tenth of the dataset for 50 times. It can be seen that the RMSE decreases with

increasing aggregation steps, up to 12 hours ahead (the 11th step), at which point the NWP

starts increasing. This is due to the fact that the NWP forecasts are updated every 12 hours, at

midnight and at noon.

We additionally investigate the loss of accuracy due to the resolution of the forecasts: since the

NWP are available with a sampling time of one hour, we are interested in the loss of accuracy

when the perfect forecasts are downsampled using the same resolution. In Fig. 3.8 the nRMSE

for the base case forecast, in which no PV models are used, are shown. The blue boxplots refer

to the perfect forecasts, while the green and bordeaux refer to the 1 hour downsampled perfect

forecasts and to the real forecasts, respectively. One can see that in the first timesteps, the

distribution of the nRMSE of the real forecasts is close to the distribution of nRMSE of the

downsampled perfect forecasts. This means that there is little or no bias in the corrected NWP

forecasts. The results in Fig. 3.9 can be explained additionally considering the effect of PV
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Figure 3.6 – nRMSE as a function of step ahead for perfect forecasts. Blue: base case. Red: with
PV model. Yellow: with PV model estimated without G H I .
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Figure 3.7 – nMAE as a function of step ahead for perfect forecasts. Blue: base case. Red: with
PV model. Yellow: with PV model estimated without G H I .
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modeling when using the 1 hour downsampled perfect forecasts, as shown in Fig. 3.11. The

effect of modeling PV when using the 1 hour sampling time resolution is negligible for the

first 3 step ahead, while increasing for the last steps ahead. We can conclude that the NWP

forecasts accuracy and temporal resolution for G H I and T are not accurate enough to induce

a decrease in the forecast error when using a PV model. Anyway, one can see from Fig. 3.8 that

the accuracy of the real forecasts is already close to the 1 hour averaged perfect forecasts. This

means that the (anyway modest) increase of accuracy that can be seen in Fig. 3.6 for the first

step ahead is mainly due to the perfect knowledge of G H I . It seems not reasonable that the

NW P accuracy can be improved for the first step ahead. This is mainly due to the fact that

G H I signal has a typically high variance during overcast days. Any low-variance forecaster

which uses a quadratic loss will tend to smooth out the high frequency components of the

signal to be predicted, since under least squares error minimization criterion the conditional

expected value of the signal is the best minimizer. On the other hand, one can see from Fig.

3.8 that PV modeling decreases the error starting from the 7th step ahead (which corresponds

to 2 hours ahead) up to 24 hours ahead, even when using 1 hour sampling time. At the same

time we can see from Fig 3.8 that the last step ahead NWP forecast accuracy is distant from

the perfect forecasts downsampled signal. This means that if the NWP forecasts accuracy

increases for the last steps ahead, this will results in an increase of accuracy in PV power

prediction when using PV modeling.

At last, we repeated the same analysis using only clear day samples. The clear days are

identified as the 10% of days which shows the lowest error between the NWP forecasts and the

expected extra-terrestrial irradiance:

εcl ,t =
1
n

∑t+H
k=t

ˆG H I k|t
1
n

∑t+H
k=t Ek

st =
1 i f εcl < q0.1(εcl )

0 other wi se

(3.15)

where st is the indicator for clear day selection, Ek is the extraterrestrial irradiance, which

is known for a given time and geographical location, ˆG H I k|t is the NWP forecasted of G H I

available at time t for time-step k, εcl ,t is the normalized error at time t , εcl is the vector of

all the normalized error for all the dataset, H is the number of step-ahead and qα stands

for the quantile of level α. Note that both signals are known in advance, so that this filter

can be actually implemented to switch between different forecasting models. In Fig.3.12 the

empirical cumulative distribution function (ECDF) of the nRMSE for the whole forecasting

horizon, for the case of perfect forecasts, is shown. Formally, we plotted the ECDF of

nRMSEt =
[

1

H

H∑
sa=1

nRMSEsa

] 1
2

(3.16)

where nRMSEsa is the normalized RMSE for step ahead sa, described in equation (2.56).
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Figure 3.8 – nRMSE for perfect forecasts (blue), perfect forecasts downsampled (green) and
real forecasts (bordeaux), for the base case (no PV models)
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Figure 3.9 – RMSE of the forecast obtained using the PV models, normalized to the RMSE of
the base case. Blue: with PV model. Red: with PV model estimated without G H I . When using
NWP forecasts, PV modeling results beneficial for the step ahead in which the NWP accuracy
is higher (top), while consistently increasing for the case in which perfect forecasts are used
(bottom).
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Figure 3.10 – RMSE of NWP forecasted G H I , as a function of the step ahead, normalized with
the total observed energy per step.

The continuous lines refer to the whole dataset, while the dotted lines are the ECDFs referring

to the clear sky dataset, which was obtained using only observations for which st = 1. It is clear

that when the NWP for G H I for the next 24 hours are close to the extraterrestrial irradiance,

the forecasting error for the whole horizon is significantly lower. Fig. 3.13 shows the same

results when NWP forecasts for G H I and T are used. Also in the case of clear days, modeling

the PV does not significantly increase the accuracy of the forecasts, since when no clouds are

present, splitting G H I in its direct and diffuse components is easier, and the map which links

PV production to G H I is much easier to learn.
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Figure 3.11 – nRMSE as a function of step ahead for 1 hour downsampled perfect forecasts.
Blue: base case. Red: with PV model. Yellow: with PV model estimated without G H I . The
effect of modeling PV is negligible for the first 3 steps ahead.
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Figure 3.12 – ECDF of the horizon nRMSE for the base forecast and the two PV model forecasts,
for each household. The dotted lines are referred to the clear sky day dataset.
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Figure 3.13 – ECDF of the horizon nRMSE for the base forecast and the two PV model forecasts,
for each household. The dotted lines are referred to the clear sky day dataset.
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4 Hierarchical forecasts for distributed
control algorithms

When forecasting power consumption in the electrical grid, we are typically interested in

different levels of aggregation. For example, when we aim at controlling an HVAC system of

a residential building for minimizing future expenses, we are interested in single household

level forecasts. On the other hand, when we want to provide a peak-shaving service to a local

DSO, we are most interested in the forecast of its entire power consumption. When we try

to optimize for both a local (ar household level) and a global (e.g. at the PCC with the MV

grid) objective functions, we must require consistency in the forecasted power profile. This

means that forecasts at households level should sum up to the forecast of the aggregated power

profile, which is not guaranteed when forecasting them separately. Moreover, single house

electrical consumption is usually difficult to predict, due to the high variability of the signal.

Overall forecast accuracy could be increased performing a forecast of the aggregated signal

and using hierarchical forecasting techniques to reconcile the measurements. In the second

part of the chapter we focus on the reconciliation of probabilistic hierarchical forecasts, in the

presence of PV.

The main outcomes of this section are the following:

• In section 4.1, a new distributed method to reconcile forecasters at different levels of a hi-

erarchical structure is presented. This method can be used to make aggregate-consistent

forecasts, thus usable in distributed control. The main advantage in redistributing the

reconciliation is that private information, which could be used by the base forecasters,

is not disclosed. Furthermore, informations at upper levels of the hierarchical structure

is only available by means of aggregated power profiles.

• In section 4.2 a new method to obtain aggregated consistent pdfs for hierarchical power

forecasts is presented. We show that nontrivial methods for summing the bottom level

forecasts’ pdf are needed especially in the case of high penetration of PV. In this case

forecasting errors becomes dependent, due to imperfect NWP.
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4.1 Distributed hierarchical forecasting

4.1.1 Introduction

Consistency can be enforced by encoding the hierarchical structure in a learning algorithm.

One way of achieving this, is to firstly obtain forecasters for all the levels of the hierarchy

and then reconcile them based on the hierarchical structure. Following this approach, in

[90] the authors used ordinary least squares (OLS) regression to reconcile the forecasts in

the hierarchy. Elaborating on this approach, [125] proposed a trace minimization method

in which the covariance matrix of the forecasters error is estimated to perform a weighted

least squares regression. In [126], an elastic net penalization was proposed in order to induce

sparseness in the forecasters adjustments, and benefit was shown on the reconciliation of

the forecasts for the power consumption of residential consumers. We included this variant

in our analysis. In the following we present a distributed algorithm to obtain hierarchical

reconciliation of the different time series. Being able to reconcile time series through a

distributed algorithm allows to not fully disclose informations about individual time series,

respecting the privacy of individual prosumers. In fact, this information would be available

only in an aggregated form to the upper level of the structure. Apart from the basic case in

which hierarchical reconciliation techniques are useful due to geographical smoothing of the

power consumption, the distributed mechanism can be also beneficial in the case in which

prosumers possess additional information about their future consumption, for example the

internal scheduling of their HP or EV chargers. Moreover this technique can be applied to

temporal hierarchy [92], but in this case decomposing the problem is less interesting, since

typically a single entity would be in possess of the information needed to apply the technique

in this case.

4.1.2 Problem formulation

We consider a hierarchical structure which can be described by a rooted tree, which is a

unidirected acyclic graph, with every node having exactly one parent, except for the root node.

Each node is identified by a tuple (d1...di ...dl ) where l is the level to which the node belongs,

and each entry represents the enumeration of its ith level ancestor. Formally, we indicate

with τ the set of all the nodes in the tree. Given the forecasts for the next t timesteps of all

the n nodes of the rooted tree, called the base forecasters, we can collect them in the matrix

T ∈ IRt×n. Reconciling the forecasts is then equal to the task of finding the set of bottom level

forecasts X ∈ IRt×nb which minimizes the residual ε

T = [Tu ,Tb] = X ST +ε (4.1)

where Tu ∈ IRt×n−nb and Tb ∈ IRt×nb are the matrices of the upper level and bottom level base

forecasters. The intuition behind this is that we are seeking for a set of latent variables, X ,

which generate the forecasts at all the levels, through the summation matrix S. For example,
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for a 3 levels hierarchy with two nodes in the second level, with 4 bottom forecasters, the

matrix S would be the following:

S =



1 1 1 1

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(4.2)

If the covariance matrix of ε, W , is known, the optimal solution of the reconciliation is then

given by solving the generalized least squares problem [90]

X ∗ = argmin
X

1

2
‖T −X ST ‖W (4.3)

where X ∗ is the set of reconciled bottom forecasts, with the analytical solution

X ∗ = (ST W †S)−1ST W †T T (4.4)

where W † is the pseudoinverse of W . In the following we limit ourselves to the case in which

W is diagonal, the simplest case being the one proposed in [90], in which W is the identity

matrix. We start splitting problem (4.3) among the nodes of the rooted tree:

argmin
X

n∑
i=1

wi

2
‖t̂i −X sT

i ‖2
2 (4.5)

where si ∈ IRnb are the ith rows of the summation matrix S and t̂i are the base forecasts. We

can then decompose the problem introducing additional variables yi :

argmin
X ,Y

n∑
i=1

wi

2
‖t̂i − yi‖2

2

s.t yi = X sT
i ∀ i ∈ {n}

(4.6)

we proceed with an augmented Lagrangian relaxation to turn the problem in a set of un-

constrained optimizations, and solve it with an ADMM [127] strategy. The overall problem

becomes:

argmin
X ,Y

∑
i∈P

wi

2
‖t̂i − yi‖2

2 +
1

2ρ
‖yi −X sT

i +λi‖2
2 +

∑
i∈B

wi

2
‖t̂i −xi‖2

2 (4.7)

where λi ∈ IRT are the Lagrangian multipliers associated to the constraints in (4.6), P is the set

of nodes not belonging to the set of terminal nodes B, formally P = τ\B(τ). Problem 4.7 can
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be interpreted as a sharing problem, in which each node of the hierarchy tries to minimize

the distance of its decision variable (the latent variables, that is the reconciled forecasts) from

its target (the original base forecasts t̂i ), while being subject to the structural constrained

encoded by the summation matrix S. We then use a parallelized formulation of the sharing

problem, which makes use of ADMM [127]. The resulting formulation is the following:

xk+1
i = argmin

xi

wi

2
‖t̂i −xi‖2

2 +
1

2ρ
‖xi − ri‖2

2 ∀ i ∈B

yk+1
i = argmin

yi

wi

2
‖t̂i − yi‖2

2 +
1

2ρ
‖X k+1sT

i − yi +λi‖2
2 ∀ i ∈P

λk+1
i =λk

i +X k+1sT
i − yk+1

i ∀ i ∈P

(4.8)

where ri is a reference signal coming from the parent node of node i :

ri =
∑

a∈Ai

(
yi −X k sT

a

)
/na +xk

i −λa (4.9)

where Ai is the set of ancestors of node i and na is the number of the children of the ancestor a.

Intuitively, (4.8) and (4.9) divides equally (division by na in (4.9)) the quadratic loss needed to

respect the consistency constraints when moving away from the target (the original forecasts).

Note that the minimizations in (4.8) have analytical solutions, so that the final algorithm can

be rewritten as:

xk+1
i = ri + t̂iρwi

nl +ρwi
∀ i ∈B

yk+1
i = ρwi t̂i +X k+1sT

i +λi

1+ρwi
∀ i ∈P

λk+1
i =λk

i +X k+1sT
i − yi ∀ i ∈P

(4.10)

where nl is the number of levels in the hierarchy. The algorithm can thus be computed

only using summation and multiplication; furthermore, it can be solved following a forward-

backward strategy. The forward passage consists in each parent node sending the updated

Lagrangian multipliers λi downward through the hierarchy. When the Lagrangian is received

by a non-terminal node, this will send it, together with its own Lagrangian, to its children. This

allows terminal nodes to compute xi , since these depend on the the sum of the λi coming

from all of their ancestors, as described in (4.9). In the backward passage, the terminal nodes

compute their update for xi as in (4.10), and send it upward to their ancestors. Note that each

ancestor only needs information from its own children to compute its minimization, since

X k+1sT
i filters out all the other optimization variables in X k+1. As soon as the ancestors com-

putes their optimization, they send the solution, and so on, up to the root node. Lagrangian
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4.1. Distributed hierarchical forecasting

multipliers are updated in a similar fashion.

4.1.3 Inducing regularization

It is easy to see that when W is the identity matrix, the solution of (4.3) just retrieves a set of

bottom level forecasts which mimimize the distance of aggregate consistent forecasts with

the original base forecasts T . This would totally ignore the historical accuracy of the base

forecasters. In fact, in the case in which some base forecasters present a higher accuracy with

respect to the others, we should include it in the reconciliation. This is possible through matrix

W . Anyway, estimating W is difficult and was avoided in [90], where it was replaced with the

identity matrix. In [125] W is directly estimated for historical error covariance matrix. We

follow the approach reported there, also used in [126]:

W = θWd + (1−θ)W1

Wd = di ag (W1)

W1 = E
(
ee ′

)
θ =

∑
i 6= j V ar

(
r̂i , j

)∑
i 6= j r̂ 2

i , j

(4.11)

where r̂i , j are the elements of the one step ahead sampled covariance matrix. More details on

the computation of θ can be found in [128]. In practice, though, this method alone can induce

too large adjustments in the bottom level forecasts, since it does not allow the base forecasters

to be unchanged, and could lead to reconciled forecasts with poor prediction accuracy. A

regularization technique can be applied to the reconciliation problem with favorable results,

as shown in [126], where large displacement of X ∗ from the bottom level base forecasters are

punished, inducing a sparsity structure in the forecasts corrections. We refer to this method as

the minT strategy. This method can be readily included in our distributed algorithm, adding

to the second line of (4.8) a punishment for the deviation of the upper level forecasts from the

one generated by the original bottom level forecasts Tb :

k

(
1−α

2
‖yi −Tb sT

i ‖2
2 +α‖yi −Tb sT

i ‖1

)
(4.12)

Similarly, the same punishment can be added for the bottom level forecasts (first line of (4.8)).

In this case, the minimization in (4.8) has still a closed form, which is equal to the proximal

operator of the L1 norm, also known as the soft threshold operator [129]. For completeness,

the final equations are reported below:

xk+1
i =


ax,i−ρα

bx,i
if ax,i−ρα

bx,i
> 0

ax,i+ρα
bx,i

if ax,i+ρα
bx,i

< 0

ti other wi se

yk+1
i =


ay,i−ρα

by,i
if

ay,i−ρα
by,i

> 0
ay,i+ρα

by,i
if

ay,i+ρα
by,i

< 0

ti other wi se

(4.13)
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where ti are the original base forecasters of the ith node, and

ax,i = ti
(
ρwi +ρ(1−α)

)+ ri

bx,i = ρwi +ρ(1−α)+nl

ay,i = ρwi ti +X sT
i +λi +ρ(1−α)Tb sT

i

by,i = ρwi +ρ(1−α)+1

(4.14)

and the λ update is the same as in (4.8).

4.1.4 Results

In order to estimate the effect of forecast reconciliation, we used 2200 power profiles coming

from a smart meter trial measurement campaign in Great Britain provided by AECOM, which

is available at https://www.ukdataservice.ac.uk/. In Fig. 4.1, the error in terms of RMSE

is reported for different levels of the hierarchy. The first column refers to the mean RMSE in

the whole hierarchy, while the second and third columns refer to the top and bottom level,

respectively. We can see how the bottom-up approach, which is consistent by construction,

introduces an error with respect to the original forecasts for the top level. The use of recon-

ciliation solving (4.3) when W is the identity matrix, doesn’t have a significant effect on the

top layer prediction, while reducing the mean RMSE for the bottom level forecasters. The

use of the minT strategy, on the other hand, helped to reduce RMSE for both the top and the

bottom levels. We report no significant differences in the results obtained with the centralized

solution and the distributed approach. Finally, we stress out that the increase of accuracy in

the bottom level forecasters when applying hierarchical reconciliation is due to the smoothing

effect during the aggregation process, and uncorrelated errors of the bottom level hierarchy.

In the case in which forecast errors of the bottom levels are highly correlated, hierarchical

reconciliation can still be used to obtain aggregate consistent forecasts, but the increase of

accuracy in the bottom level forecasts will be reduced. Furthermore, retrieving an aggregate

consistent pdf is a more complex problem with respect to considering point forecasts. In the

next sections these problems are addressed, with a particular attention to the forecast of PV

power production.

4.2 Forecasting sums of random variables

As anticipated in the last section, consistency among forecasts at different level of aggregation

is essential when we are trying to apply DSM in the distribution grid. This is mainly due

to the presence of grid constraints, which link the objective functions of the agents across

different portions of the distribution grid. Since we are interested in applying DSM in a

probabilistic setting, achieving aggregate-consistent point forecasts is not sufficient. We

are rather interested in retrieving aggregate-consistent pdfs, which is a much harder task in

general. In particular, in the presence of high penetration of rooftop installed PV systems, as
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Figure 4.1 – RMSE for the base forecasters, the reconciled profiles with W equal to the identity
matrix, and the reconciliation using the minT strategy. The first column refers to the mean
RMSE across the whole hierarchy, the second to the error of the top level, and the third to the
error in the bottom forecasters.

we will see, the errors become mutually dependent, making the summation of the forecasted

pdfs hard.

A second motivation for having aggregate-consistent forecasts is when we are trying to opti-

mize both local and global objective function, since in this case, contrasting interests of agents

could lead to suboptimal solutions. This issue is further explained in chapter 5, where the

case of energy sharing communities is investigated form a game theoretic point of view. In

this case, prosumers can be described as selfish non-coopeartive agents, which are willing to

minimize their own total energy costs. If the pdf of their own power profiles is not aggregate

consistent with the pdf of the power at the PCC of the self consumption community, the

problem decomposition will become intractable.

In this section we present a method which generates aggregate consistent probability distri-

butions for power forecasts, without the need of estimating a multidimensional empirical

copulas. We report that in [130], a copula-based hierarchical risk aggregation method [59] for

the estimation of aggregate-consistent pdfs is used. However, these techniques, which still

requires to estimate a big number of copulas, only model child-parent probabilistic relations,

and thus can not be used for stochastic coordination. The method proposed in this section,

although being less generic, guarantees to generate samples from all the nodes of the tree,

which are consistent by construction. The main outcomes from this section are summarized

in the following:

• We show how errors of forecasted PV generated power are mutually dependent, due to
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Figure 4.2 – PV error selection mask for one day of observations, with 96 timesteps of 15
minutes each. The mask entries are 1 if in all the time window of that step ahead θaz > 0.

the error on meteorological forecasts.

• Common modeling assumptions for estimating sum of random variables from the

marginal probabilities are too stringent in the case, and would result in inaccurate pdfs.

• A method for retrieving aggregate-consistent pdfs of sums of random variables for power

profiles in the presence of PV is presented, with experimental results form measurements

of 8 PV power plants.

4.2.1 Correlation in PV forecast errors due to imperfect NWP

We used the synthetic power profiles described in section 2.1 to investigate up to which extent

the hypothesis of correlated forecasts errors for the PV power forecasting holds. In particular,

we want to understand if, in the case of correlated errors, this correlation is due to imperfect

NWP forecasts of G H I and T . We generated 3 sets of 100 profiles, each of which containing

only PV, HP or uncontrolled profiles. Additionally, we used 2200 power profiles from the UK

dataset described in section 4.1. For each of the 4 datasets we retrieved forecasts for the 24

hours ahead, using the same logarithmically spaced bins reported in table 2.2. Since for this

analysis we are not interested in the accuracy of the forecasters, but rather in seeing the effect

of considering perfect or real NWP forecasts for the meteorological data, we used only one

class of forecaster. We chose to use the QRF model described in section 2.3, since was the one

with the best a-priori scores for all the considered KPIs.

In order to investigate the correlation of the forecast errors, we computed the expectation of

the Pearson correlation coefficient over the test dataset:

ρi , j ,k =
∣∣∣∣cov(εi ,k ,ε j ,k )

σi ,kσ j ,k

∣∣∣∣
ρc,i , j ,k =ED te

[
ρi , j ,k

] (4.15)

where ED te is the expectation operator with respect to the testing dataset, and εi ,k is the

forecast error of the ith profile for the kth step ahead. The training and testing datasets are

divided in 6 folds, for each of which the testing and training days are divided as in Fig. 3.2.
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Figure 4.3 – Probability density of the absolute value of the correlation coefficient, as a function
of step ahead, for 100 simulated PV profiles. Left: with corrupted forecasts. Right: with perfect
forecasts.

Since power signals coming from PV panels are strongly correlated, due to the circadian cycle,

we risk to overestimate ρc,i , j ,k . To remove this effect, we discard all the forecasts belonging to

prediction steps k, if there is at least one observation with a negative elevation of the sun. This

means that we discarded prediction steps if they refer to a period of time during which the

sun is below the horizon.

st = {k|θel ,i ≥ 0 ∀i ∈Ik } (4.16)

where st is the selection set at timestep t , with length na (in this case na = 10), θel ,i is the

sun elevation at time i , and Ik is the set of observations at the original resolution, which are

averaged in the kth step. An example of the resulting mask for one day is shown in Fig. 4.2.

The variables used for the forecasts of the signals are shown in table 2.3. Since we do not

possess real forecasts for the TMW data which was used for the generation of the synthetic

dataset, we corrupted perfect forecasts of GHI and T applying a one hour down-sampling of

the signal. As shown in 3.8 this approach is conservative in terms of NWP forecast error.

The result of the correlation analysis for PVs are shown in Fig. 4.3. The left panels shows a

density map of the ρc,i , j ,k coefficient, as a function of the step ahead. It can be seen that for

the first steps ahead, the forecast errors are highly correlated. Beside knowing that the error

are correlated, we would like to know if they are mutually dependent, since in this case, we
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Figure 4.4 – Distribution of the absolute value of the correlation coefficient, by means of
quantiles (form 0.05 to 0.95), as a function of the step ahead. Left: 100 simulated heat pump
profiles. Center: 100 simulated uncontrolled profiles. Right: 2200 measured mixed power
profiles from the UK dataset.
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cannot easily sum their pdfs together, as it’s explained later. Since correlation doesn’t imply

dependence in general, we investigated the change of correlation when perfect forecasts for

G H I and T are used. The results are shown in the right panel of Fig. 4.3. We can conclude that

when we have perfect information about the future G H I and T signals, the forecast errors for

the PVs decrease their correlation. This means that in the case of non perfect NWP, the PV

forecasts errors are mutually dependent, and the dependence arises due to inaccurate NWP

forecasts.

In Fig. 4.4 the same analysis is repeated for the errors coming from the forecasts of the PV

profiles, the HP profiles, the uncontrolled ones (UN) and the forecasts’ errors for the 2200

signals from the UK dataset, described in the previous section 4.1. Each quadrant shows

the density map of ρc as a function of step ahead, in terms of quantiles ranging from 0.05 to

0.95. We can see that the correlation of the forecasts’ errors for the HP and U N are similar,

with increasing correlation for increasing step ahead. The correlation of the errors for the

UK dataset are even lower, never exceeding the value of 0.3. This means that for this class of

dataset, hierarchical forecasts techniques are expected to increase the accuracy of the bottom

level forecasters, as was confirmed in 4.1 and in [126]. However, the same technique will fail

in the presence of a high penetration of PV, since the error of the single timeseries won’t be

smoothed out by aggregation, but on the contrary, the will add up due to their correlation and

dependence.

4.2.2 Modeling assumptions for sum of random variables

Different techniques do exist to model sum of random variables starting from marginal pdfs,

in the case of uncorrelated and independent random variables. Here we apply them to the

forecasts of the single time series P̂i , retrieved in the previous section, and visually compare

the resulting a-priori pdf with the a-priori empirical distribution of the forecast error of P̂bu ,

that is, the point forecast of the aggregated profile, obtained with the bottom-up approach.

We remark that these a-priori distributions are not the ones we are interested in (we want

indeed to estimate the conditional pdfs), but we can use them to quickly assess if the modeling

assumptions for the pdf of P̂bu are valid.

In the following the investigated methods for retrieving the pdf of P̂bu are summarized, based

on the modeling assumptions.

• Gaussian uncorrelated profiles: if we assume that the errors of the forecasters follow

Gaussian distributions and are uncorrelated, we can model them as:

ε=N

(
N∑

i=1
µi ,

(
N∑

i=1
σ2

i

)1/2)
(4.17)

where µi and σi are the mean and standard deviation of the forecast errors of the single

profiles, respectively, and N is the number of summed profiles. That is, if we group the
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prediction errors of each forecaster ei , in the matrix E = [ei ]i∈N[1:N ], µi and σi are the

mean and standard deviation of the columns of E .

• Gaussian correlated profiles: when we further assume that the errors are correlated,

we can model ε as:

ε=N

(
N∑

i=1
µi ,

(
1T W1

)1/2

)
(4.18)

where W = cov(E) is the covariance matrix of the forecasts error, and 1 is the unitary

vector with appropriate dimension. Equation (4.18) can be found by induction, starting

from the formula for the sum of two correlated Gaussian distributions.

• Independent distributions: if the errors are mutually independent, the pdf of ε can be

estimated by means of multidimensional convolution of the pdfs of the single signals.

As the number of signals N grows, computing the convolution by means of multidimen-

sional integration becomes computationally intense. Instead of computing it directly,

we applied the convolution theorem to the Fourier transform of the single signals, and

then recovered the final pdf by means of inverse Fourier transform. This method relies

on the fact that the convolution of two signals is the product of their Fourier transform:

f ∗ g =F−1 [
F

[
f
]
F

[
g
]]

(4.19)

where F denotes the Fourier transform and F−1 its inverse. Using (4.19) in combina-

tion with FFT results in an efficient algorithm, which can be used for computing the

convolution of hundreds of pdfs, as in our case. This method involves padding the single

pdfs with zero vectors of appropriate dimensions. More details on this approach can be

found in [131].

The results of applying these three methods to the single a-priori pdfs of the errors are reported

in Fig. 4.5 for the uncontrolled profiles and in Fig. 4.6 for the PV forecasts. As we can see,

even in the case of uncontrolled profile, the assumption of uncorrelated distributions is not

realistic. However, the modeling of the a-priori forecast error as a sum of correlated Gaussians

seems reasonable, as the pdf obtained with this method is similar to the empirical a-priori

pdf of the error of P̂bu . On the other hand, when considering P̂bu for 100 PV forecasts, none

of the aforementioned modeling approaches results in a pdf similar to the empirical one.

As we can see, considering the pdfs as uncorrelated (using both the Gaussian or generic

distribution assumptions), results in a way too optimistic pdf for the error of P̂bu . On the

contrary, considering Gaussian correlated errors results in a too pessimistic pdf, since the PV

errors do not follow a Gaussian distribution.
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Figure 4.5 – Empirical a-priori pdf of the forecast error of the sum of 100 uncontrolled power
profiles, by means of quantile intervals. Upper left: assuming uncorrelated Gaussian errors.
Upper right: assuming correlated Gaussian errors. Lower left: convolution of single pdf. Lower
right: empirical distribution.
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Figure 4.6 – Empirical a-priori pdf of the forecast error of the sum of 100 PV power profiles,
by means of quantile intervals. Upper left: assuming uncorrelated Gaussian errors. Upper
right: assuming correlated Gaussian errors. Lower left: convolution of single pdf. Lower right:
empirical distribution.
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4.2.3 Probabilistic hierarchical forecasts avoiding copulas

We now introduce a method for recovering a set of aggregate consistent pdfs without the need

of modeling multidimensional (or a great number of) copulas. The rationale of the method,

is that we can think of forecasters in terms of deterministic maps fi (xi ,t , zt ) → p
[

yi |xi ,t , zt
]
,

linking a set of regressors xi ,t , which only affects the ith base forecaster, and some global

variables zt affecting all the forecasts, to the marginal pdf of the predicted variable y . It is

reasonable to think that the correlation (end dependence) of forecast errors of different power

profiles, is due to inaccuracy of zt , which is used by all the forecasters, and not of xi ,t which is

private information, only exploited by the ith forecaster. If we can model the pdfs of the global

variable zt , we can broadcast this information to all the forecasters fi , in order to achieve

aggregate consistent probabilistic pdfs. In other words, if we know the existence of a variable

z which is used by all the forecasters, it is likely that if we provide a consistent description of

the pdf of z to all the forecasters, their forecast errors will become independent.

Power forecasts usually make use of few exogenous variables, and in most of the cases they

are NWP or historical values of meteorological conditions, for both demand forecasting [132]

and PV and wind power forecasting [121]. It is reasonable to think that G H I and the external

temperature T , are the only variables which influence all the loads, apart from time of the day

and day of the week, which are known in advance without uncertainties. Since as we have

seen in the previous section, the forecasts’ errors correlation vanishes when the forecasters

are provided with exact weather prediction, we assume that for power forecasts the global

variable which induce mutual dependence in the forecast errors is the tuple z = (G H I ,T ).

We suggest that, rather than retrieving all the conditional distributions p(yi |xi ,t , zt ) and then

sum them by means of empirical copulas, pdfs of power forecasts for arbitrary aggregation

structures, consistent by construction, can be obtained passing enumerated scenarios of z

drawn from the cdf of the meteorological conditions at current time, Fm,t , to all the forecasters.

This approach seems feasible in practice, since to obtain accurate power forecasts, single

users already need to retrieve predictions of meteorological conditions from a NWP provider.

This provider could, instead of responding with a point forecast, provide several scenarios of

G H I and T . In the experimental trials we have used enumerated scenarios, but the amount of

data can be drastically reduced, passing a tree of prediction, as described in section 1.3, and

logarithmically spaced steps, since the performance of the controller are negligibly affected by

this kind of aggregation, as shown in section 2.2.

Problem formulation

We want to retrieve a tuple of conditional pdf,
(
p

[
Pi |xi ,t , zt

]
, p

[∑N
i=1(Pi |xi ,t , zt )

])
. The pseudo-

code of the proposed method is provided in Algorithm (1). Line 6 in 1 extracts the sth scenario

from the joint conditional pdf p [zt ] = p [z|t ] = p [(G H I ,T ) |t ]. This is expressed more generally

by means of a deterministic function fm(xt ) which takes as input a set of regressors, and

outputs the a set of ns scenario. In the numerical study, we have used a QRF to generate

scenarios, which are linked using the multivariate Gaussian copula coupling method described
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in section 1.4. In line 7 of (1), the generated scenario zs,t is then passed as an input to all the

power profile forecasters fi . In general, fi could return the whole conditional pdf for Pi , but

once the uncertainty on G H I and T is removed, this pdf would be very narrow. Moreover, since

we expect the errors of fi to be uncorrelated, the summation process will tend to smooth them

out. Finally, in line 8, the output of all the forecasters fi is summed into P̂bu,t ,s . Obviously, this

bottom-up approach produces aggregate consistent forecasts by construction. The various

scenarios for the prediction of the aggregated power profiles are then used in line 9 to retrieve

the cdf of P̂bu,t , by means of quantiles. Fig. 4.7 visualizes the conceptual steps of the proposed

method.

Algorithm 1 Aggregate consistent probabilistic forecasts through scenarios

1: ns : number of scenarios, N : number of power profiles.
2: xm,t : set of regressors for meteorological forecaster at current time.
3: xi ,t : set of regressors for profile i at current time.
4:

5: for s ∈N[1:ns ] do
6: fm(xm,t ) → (

G H It ,s ,Tt ,s
)= zt ,s . generate GHI,T scenarios

7: fi (xi ,t , zt ,s) → P̂i ,t ,s =E
[
Pi |xt , zt ,s

] ∀i ∈N[1:N ] . forecast all profiles

8: P̂bu,t ,s =
∑ns

i=1 P̂i ,t ,s . sum forecasts by scenarios
9: P̂bu,t ,s → F̂bu,t . estimate cdf of the sum

Table 4.1 reports the regressors used by the meteorological forecaster and by the power

forecasters. In particular, the regressors for the meteorological forecaster fm consist of: the

observations of the past 24 hours of G H I and T , reduced using K logarithmic bins; the future

values of sun azimuth and elevation, θs,az and θs,el respectively, similarly reduced; the hour of

the day at current time ht . The power forecasters fi , use the same set of regressors, plus the

set of G H I and T scenarios generated by the meteorological forecaster fm , and the past data

of Pi .

Table 4.1 – Set of regressors for each type of forecaster

forecaster type regressors

fm QRF xm =
(
[G H Ik ,Tk ]k∈N[t−K :t ]

,
[
θaz,k ,θel ,k

]
k∈N[t :t+K ]

,ht

)
fi QRF xi =

([
Pi ,k ,G H Ik ,Tk

]
k∈N[t−K :t ]

,
[
θaz,k ,θel ,k

]
k∈N[t :t+K ]

,ht

)
, zi = [G H Is ,Ts]s∈N[1:ns ]

4.2.4 Numerical results

The performance of the proposed method was estimated using one year of data coming from

5 PV power plants located in Lugano, a hilly region in the alpine foothills. The power signals

are related to 5 different industrial PV plants, with nominal power ranging from 126 to 275

kWp. Each PV plant has a number of PV fields ranging from 6 to 11. Since the PV field for

each plant are similarly oriented, we took only two PV fields per power plant, for a total of 10

signals and 220 kWp. The acquired data refers to a period between 16 November 2016 and 13
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Figure 4.7 – Visualization of the steps of the proposed methods. On the left, the generation of
meteorological scenarios by means of fm is depicted (top:G H I ,bottom:T ); the central part
represents the deterministic output of the power forecasters, based on the set of received
scenarios; the right part depicts the deterministic summation of the fi responses, producing
aggregate consistent scenarios, which are then used to retrieve the final pdf.

November 2017, sampled with a 15 minutes resolution. Once again, the method was tested in

cross validation using 6 folds.

We compare three methods for the description of p
[∑N

i=1 Pi
]
. The first one is the proposed

method, described by algorithm 1, which we refer to as model Ms . The second one is the

bootstrapped pdf built using errors from the training set, to which we refer to as model Mp .

This model uses the method described in 1.4, for which sets of scenarios for the forecast errors

are bootstrapped from the errors of the training set, based on the hour of the day.

Pt ,s = ŷt + [ε̂h]s∈N[0,ns ]
t ∈

[
t h

st ar t , t h
end

]
(4.20)

The final bootstrapped scenarios Pt ,s are then used to estimate p
[∑N

i=1 Pi
]

by means of empir-

ical quantiles.

The third method is the summation of the single conditional pdfs of the base forecasters, by

means of convolution. We refer to this method as model Mc . Note that this approach is differ-

ent from the one used to obtain 4.5 and 4.6, which were retrieved from the convolution of the

empirical a-priori pdf of the error. On the contrary, model Mc performs the multidimensional

convolution of the conditional pdfs p
[
Pi |xi ,t , zt

]
at each prediction time t .

In Fig. 4.8 the reliability plot for 10 empirical quantiles, linearly spaced in the interval

[0.05,0.95] is shown, based on the step ahead. The results are mediated over the 6 folds.

The reliability of the α quantile for the kth step ahead is defined as:

rα,k = 1

nobs

nobs∑
t=1
I[yt ,k<q̂α,t ,k ] (4.21)

which is, the average number of times the observed signal was actually below the predicted α
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Figure 4.8 – Reliability plots for the tree different methods of forecasting. First column: Ms ,
second column: Mp , third column: Mc

quantile. We can see that all the methods return a too narrow distribution of the quantiles,

overestimating the value of the quantiles below α = 0.5, and underestimating for higher α

values. However, model Ms clearly provides the better results. The reliability plot for model

Mc , using the convolution of the conditional pdfs, confirms the results obtained using the

a-priori pdfs: the hypothesis of error independence results in a too optimistic pdf for the error

of the aggregated profile.

In Fig. 4.9, the fold boxplot of different KPIs for Mp and Mc , normalized with the same KPIs

for Ms , are plotted, based on the step ahead. The KPIs are the RMSE, the MAE and the quantile

skill score, as introduced in section 2.3.2. We can see how the ratio for the quantile skill score

is always positive for all the steps ahead, meaning that the pdf for the aggregated forecasts

returned by Ms , are not only aggregate consistent, but also more accurate than the ones

returned by the other two models. From the second and third row of Fig.4.9, we can see how

the Mp and Mc models return a slightly lower RMSE for the first 3 timesteps (corresponding to

the first hour ahead of the prediction horizon), while the MAE becomes strictly better starting

from 30 min ahead.
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Distributed DSM implies the implementation of a method for multi-agent coordination and

poses certain fundamental questions that must be investigated in detail: scalability, user

privacy, fault tolerance and resilience against malicious attacks. Scalability ensures that the

computational time of coordination scales near-linearly with increasing number of agents,

allowing for fast control. Prosumers’ privacy is inherently guaranteed if they do not need to

share their private information (e.g. size of batteries, desired set-point temperatures in their

homes), or their forecasted power profile. Fault tolerance mitigates the effect of any kind of

agent misbehaviour, from missing data, to computational errors, to malicious attacks.

In this chapter, I introduce two promising methods for grid-aware multi-agent and multilevel

coordination, relying on distributed control and game theory, which can be used to achieve

these desirable properties. Both methods rely on a hierarchical structure of aggregators, which

reflects the voltage level separations of the electrical grid. In this approach, upper levels of

the hierarchy have only access to aggregated information from the underlying levels, allowing

scalability and privacy preservation. Moreover, this scheme considers only communication

regarding power consumption/production forecasts for the agent, and does not imply sharing

private information about one’s own system parameters, not even to the trusted party.

The problem formulation and proposed solution strategies are briefly introduced in sections

5.2 and 5.3, while the detailed explanation of the methods and numerical simulations can be

found in the annexed papers C and D, respectively. The main outcomes of this chapter are

summarized in the following.

• We propose a distributed control algorithm for the coordination of electric batteries,

which takes into account a multilevel hierarchical setting, able to cope with competing

objective functions.

• We turn the proposed model into a market, which is then analyzed using game theory.

We demonstrate that, when the original problem belongs to the class of so called sharing

problem, the resulting game has a unique Nash equilibrium, which can be reached
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through a trivial modification of the algorithm used for solving the original problem.

We then compare this algorithm with the recently presented preconditioned Forward

Backward (pFB) algorithm [133], and show that the proposed one converges in a lower

number of iterations.

5.1 From distributed OPF to distributed energy markets - state of

the art

The mathematical problem of coordinating distributed agents in order to achieve a desired

global effect is pretty general, and different approaches can be found in the literature for its

application to the electrical grid. We will generally refer to this class of problem as distributed

optimal power flow (D-OPF). This can be described as a networked optimization problem,

in which each agent can only communicate with their neighbors, which are defined by a

communication graph [134]. When dealing with D-OPF, grid constraints must be decomposed

among the different agents, and we refer to them as coupling constraints. Various approaches

exist to solve them in a distributed way [135; 136; 137]. In [25] a non-exhaustive review on D-

OPF methods can be found. A non-comprehensive review on architectures for distributed MPC

can be found in [138]. In [139] several papers on distributed MPC, including deterministic and

robust approaches, are cataloged based on process commonalities, control architecture and

theoretical properties. When applied to power systems, most of the studies are focused on a

single level decomposition [140; 141; 142], where agents can communicate with a coordinator.

Fewer works are focused on completely decentralized protocols. Notably, in [143], a method

to solve the D-OPF through ADMM on arbitrary graphs is presented, which is referred by the

authors as proximal message passing. Methods found in the D-OPF literature for coordination

of distributed agents are usually based on some decomposition techniques, such as ADMM,

primal-dual Douglas-Rachford splitting [140], which is equivalent to ADMM (cfr. [61] §4.5),

Dantzig-Wolfe decomposition [144; 145], proximal minimization [146]. These methods have

been historically developed in different contexts, and multiple interpretations can be given for

each algorithm (see for example [61] for interpretations of proximal algorithms), but they can

all be derived using monotone operator theory. See for example [62] on this topic.

Despite the abundant literature on distributed control, the ongoing paradigm shift from cen-

tralized to decentralized generation poses new challenges. When power generators belong to a

single entity, which is usually the assumption in D-OPF, the redistribution of revenues among

competing entities does not have to be taken into account in the problem decomposition

by the independent system operator (ISO). This is not the case for DSM in general, in which

prosumers’ actions are motivated by their own utility. In this setting, proper regulatory mech-

anisms defining rules for remunerations and compensations need to be set up to allow the

integration of DSM services in the wholesale market. Such rules need to address the problem

of conflicting interests between market participants.

Additionally, a growing number of publications [13; 15; 14] highlights the possibility for some
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agents to alter the distributed optimization mechanism in their favour, to the detriment of the

welfare of the other agents, by just lying about their predictions. This setting requires to treat

the problem decomposition in a game theoretic way, shifting the focus from distributed control

to market design. Solving the D-OPF can be described in terms of welfare maximization (WM)

problem, in which the sum of costs and revenues faced by generators is maximized. On the

contrary, mechanism design literature focuses on the Nash equilibrium (NE) concept, which

analyzes the distributed problem from the point of view of the single prosumers. The solution

under NE concepts will in general differ from the un-weighted WM equilibrium, leading to the

so called price of anarchy [134], which is the overall loss in welfare (social cost) while passing

from the WM equilibrium to NE. See for example [147] on this topic in the case of DSM.

In Table 5.1 and 5.2 selected papers on distributed control literature are presented, based on

the adopted concept of equilibrium and uncertainty, and on the decomposition technique,

respectively.

Table 5.1 – Distributed control methods for OPF and DSM based on uncertainty formulation
and equilibrium formulation.

Uncertainty

Deterministic Robust CC ST/S

E
q

u
il

ib
ri

u
m

W
M [143; 140; 148; 149; 150; 151; 152; 141; 153; 154] [155] [142] [156] [146]

N
E [157; 158; 159] [160] - -

G
N

E
/V

N
E

[133; 161; 162; 63; 64] - - -

Table 5.2 – Distributed control methods for OPF and DSM based on decomposition method.

D
ec

o
m

p
o

si
ti

o
n

ADMM [143; 140; 142; 148; 149; 141; 153; 154]

Douglas-Rachford splitting [140]

Saddle point dynamics [155]

Nikaido-Isoda funcion [157]

Proximal minimization [146]

Lagrangian relaxation [150; 151]

C+I [152; 163]

pFB/APA [64; 133; 161; 162]

FBF [63]

Gradient descent [159]

Dantzig–Wolfe Decomposition [145]
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5.1.1 Trustless coordination mechanisms

Different authors have designed market rules using a game theoretic framework, describing

the problem as a non-cooperative game. The underling concept in game theory and mecha-

nism design is that, if the right amount and type of incentives are given, rational prosumers

will decide to cooperate. In the following, we briefly introduce fundamentals concepts of

mechanism design, which are needed to understand the ideas behind different kinds of Nash

equilibriums. Usually, mechanism design implies the redistribution of a scarce resource

among the agents. We slightly simplify the presented concepts, considering that in our case,

we assume energy needs of agents are always satisfied, that is, we do not consider islanded

portions of the grid.

In a centralized setting, the ISO is assumed to know all the relevant information in order to

optimally solve the intended problem. This consists in minimizing a function f :Θ→U , where

Θ=∏N
i=1Θi is the Cartesian product of the space of private information of all the N controlled

agents, and U =∏N
i=1 Ui is the space of economic outcomes for all the agents, usually referred

to as utility. Function f is also called the social choice function.

On the other hand, when we decentralize the problem, each agent will follow its own strategy

σ : Θi → Xi , which is a function of his own private information only, and will return its

decisions xi ∈ Xi to the ISO, where Xi is the feasible space of actions for agent i . These are

then retrieved by the ISO, and mapped into agents’ costs by means of the so called outcome

function g : X →U , where X ∈∏N
i=1 Xi is the joint action space of all the agents.

The purpose of mechanism design is to build an outcome function g such that a strategy σ∗

exists, which, if followed by the agents, provides them the maximum economic benefit, and at

the same time, minimizes the original social function f . In this way, there will be no reasons

for the agents for not following the suggested strategy σ∗, since doing so will guarantee them

the maximum profits.

If agents think that the outcome function g is such that true telling is a dominant strategy (i.e.,

the strategy that maximizes an agent’s utility is independent from other’s agent strategies),

they will chose to truthfully report their types θi to the aggregator, without any strategic

manipulations. In this case the mechanism is called direct, since the aggregator will be able to

directly implement the social choice function f , solving the associated problems. If true telling

is a dominant strategy, the mechanism is said to be dominant strategy incentive compatible or

strategy-proof. Formally, a strategy-proof mechanism ensures that:

ui ( f (θi ,θ−i )) ≥ ui ( f (θ̂i ,θ−i )) ∀i ∈ N (5.1)

where ui (λi ) is the utility of the ith agent, as a function of the price chosen by the mechanism,

θi denotes the true private information, while θ̂i denotes a manipulated declaration of θi . Note

that f is used instead of g ◦σ is used, since the mechanism can be directly implemented by the

ISO. Most of the studies historically focused on the class of direct mechanisms implementable

in a centralized way, due to the fact that one of the most celebrated outcomes of mechanism
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design, the revelation principle, states that any implementable social choice function can

be implemented by a direct mechanism. Belonging to this class are the well known Vickrey-

Clarke-Groves (VCG) mechanisms [164; 165; 166] . The VCG has many teoretical theoretical

properties, among which being weakly budget-balanced and strategy-proof. The strategy-

proofness is achieved by the mechanism paying each agent the sum of the value of all other

agents. In this way, the social choice coincides with the interest of each agent, but at the same

time it makes the mechanism extremely expensive for the aggregator, which should pay each

agent the total amount of money that it would have paid in a trusted setting. This problem is

alleviated using the Clarke pivot rule, with a resulting total value for the ith agent equal to:

u′
i (x) = max

x∈Xi

N∑
i=1

ui (x)− max
x−i∈X−i

∑
j 6=i

u j (x) (5.2)

It is clear that since the second term does not directly nor indirectly depend on any decision

of i , the only way to influence its total value is influencing the first term. Since maximizing

the first term is equal to maximizing the social welfare, the mechanism implements social

welfare maximization and is strategy-proof. Anyway, the requirement that the second term has

to be independent from agent i implies that N optimization problems must be solved, each

of which is performed without considering a given agent, which is a major drawback when

the total number of agents is big. Since the computational cost of solving a single problem is

expected to scale linearly with the number of users, the overall computational cost will scale

as O (n2). Moreover, when trying to distribute strategy-proof mechanisms as VCG, dominant

strategy equilibrium can not be guaranteed anymore [167]. This effect is also known as the cost

of decentralization. The strongest notion of equilibrium when decentralizing a mechanism is

known as ex-post Nash equilibrium. Informally, this equilibrium guarantees that the suggested

strategy σ∗(θi ) is the best strategy when all the other agents follow it. Formally:

ui
(
g (σ∗(θi ),σ∗

−i (θ−i ))
)≥ ui

(
g (σ′(θi ),σ∗

−i (θ−i ))
)

(5.3)

Authoritative work on decentralized mechanism have been carried out in the contest of

algorithmic game theory [167]. The ex-post implementations of VCG has been theoretically

studied in [168], where design principles are presented. Notable work has been done in [169]

trying to reuse parts of the redundant computation of distributed VCGs mechanisms. In [170]

a Cournot model is considered for dynamic bidding in the electricity market. In [171] a VCG

mechanism is adopted to model a virtual inertia market.

None of the studies that have been identified in our literature review covers the design of

a non-cooperative game, taking into account coupling constraints (e.g. grid constraints)

applied to energy markets [172; 173; 63; 174]. A way of considering coupling constraints in

games comes from the seminal work of [175] on n-person non cooperative games. In this

work, conditions for the existence and uniqueness of the NE are given in terms of convexity

of the considered game map. For instance, this work has been used in [176], applied to the

problem f bidirectional energy trading between residential loads ad electric vehicles. The
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concept has been lately reconsidered, showing the existence of a new class of equilibrium

refinement, called Variational NE (VNE) [177], which guarantees the same marginal prices for

all the users at equilibrium. In [64] conditions are given for the uniqueness of a VNE in terms

of monotonicity of the game map, in presence of coupling constraints. A similar description

using monotone operators is provided in [133]. We have used this solution concept in D, in

order to demonstrate convergence to a VNE using ADMM.

5.2 Multilevel hierarchical control

As previously stated, the flexibility of prosumers can be exploited providing multiple services

to the electrical grid, for example secondary control and energy management. Due to the

electrical grid interconnections, in order to provide these services safely, an optimization

method taking into account their effects on multiple voltage levels should be used. Moreover,

coordinating groups of prosumers is always better than having prosumers to follow individual

policies, in terms of aggregated effect. For example, let us consider the case in which we want

to minimize a given objective function in terms of the aggregated power profile of a group of

prosumers connected at the same LV transformer. Additionally, suppose that we require the

power at the PCC to be symmetrically bounded, that is, Sx ∈
[
−P ,P

]
, where with S = 1T

N ⊗ IT

we denoted the time summation matrix of all the prosumers’ actions. In order to guarantee

that this constraint is never violated using individual policies, we must replace it with the

set of prosumers’ constraints xi ∈
[
−P/N ,P/N

]
. On the other hand, the feasible space of

prosumers’ actions would increase when allowing communication, thus leading to a better

solution. Formally:

Lemma 5.2.1. The n-dimensional hypercube intersecting each axis in {−P/N ,P/N } is always

included in the convex hull defined by the points
[

ei (−P ,P )
]N

i=1
, where ei is the versor of the ith

dimension.

Proof. The maximum distance of the center from the n-dimensional hypercube defined in

5.2.1, equal to half of its diagonal, is P/
p

N , which equal to the distance of the hyperplanes

defined in 5.2.1 form the center, in each orthant.

This means that constraining the aggregate instead of the single users will enlarge the feasible

set X , always resulting in a (not strictly) better solution.

The concept of hierarchical control of power distribution system is not new [178], as well for

DSM [179]. In the literature, different methods have been proposed to coordinate groups

of prosumers by means of an aggregator. Most of them refer to a single level hierarchy, as

in [142; 145]. Both [141; 180] consider distributed MPC for a single level hierarchy, without

grid constraints. In [181] a three level hierarchy has been proposed for the control of reactive

power from PV inverters. The adopted sequential strategy does not explicitly take into account

grid constraints and is solved through particle swarm optimization heuristic. In paper C,
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Figure 5.1 – Feasible sets for the space of two prosumers’ actions, for the constraint |x1+x2| < P
in the case of individual policies (dark gray) and in the case of communication (light gray).
Communication enlarges the feasible set, thus potentially improving the solution.

we present a multilevel hierarchical algorithm for the coordination of prosumers located in

different voltage levels of the electrical grid. The hierarchical structure of the grid is described

by means of a rooted tree. The coordination of prosumers is made possible by aggregators

located at branching nodes of the tree. It is not necessary that the levels of the hierarchical

structure coincide with the grid voltage levels. For instance, the first level of aggregation could

be done at building level, while the second level could be placed at the LV cabinets. Formally,

given N prosumers with a controllable battery, located in a hierarchical structure, we solve the

so called sharing problem [182]:

argmin
x

e(S;x)+
N∑

i=1
fc,i (xi )

s.t . : SB x ≤ vB ∀ B ∈B(τ)

(5.4)

where xi ∈RT are the overall charging or discharging power from the ith prosumer, x = [xi ]N
i=1

is the vector containing the overall battery operations from all the prosumers, S; =1T
N ⊗IT

is a summation matrix summing all the xi . Here SB are similar summation matrix, each

of which encodes a constraint in the set of branching points of the hierarchical structure,

B(τ). The private functions fc,i (xi ) :RT →R are extended real value functions, encoding

both prosumers’ objectives and constraints, including battery dynamics. As explained in

the next section, the inequalities in (5.4), can be used to encode grid constraints. Despite

having a simple formulation, problem (5.4) is very flexible, allowing having multiple objectives

in different branches, or appliances providing possibly competing services to the grid, like

primary regulation and dispatchable operations.
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5.2.1 Respecting grid constraints in grids with unknown topology

Different relaxations of power flow equation exist, which can be used when solving D-OPF

[25]. Usually, knowledge of phasors’ angles (e.g. DC approximation), or knowledge of the lines’

parameters and topology (e.g. the DistFlow model) are required inputs to these approximation.

However, these information are not always available. Residential users, for example, are

located in the LV grid, for which the grid topology is usually unknown or hard to retrieve. In

this case we should opt for an approximated formulation of the power flow, whose parameters

can be estimated by means of smart meter data. One of these formulation consists in the first

order linearization of the power flow equations. The linear coefficients of this formulation are

known as the voltage sensitivity coefficients:

kp
i , j =

∂|V j |
∂Pk

kq
i , j =

∂|V j |
∂Qk

(5.5)

where P and Q are the active and reactive power, respectively, and kp
i , j ,kq

i , j are the sensitivity

coefficients between node i and node j . The analytical expression of voltage sensitivity

coefficients, and an efficient method to compute them based on the state of the grid and

admittance matrix, is provided in [183]. In [184], it has been shown that the voltage sensitivity

coefficients can be estimated by least squares regression of the time derivatives of voltage

magnitudes, P and Q, such that:

∆V =∆ (P,Q)K +ε (5.6)

where ∆V ∈RT−1×3N is the matrix containing the time derivatives of the voltage magnitudes

for the N nodes of the (three-phase) grid, over T timesteps, K ∈R6N×3N is the matrix contain-

ing the voltage sensitivity coefficients, and ε is a random variable with the same dimension

of ∆V representing the model error. Moreover, in [185] it has been reported how estimating

voltages using (5.6) could lead to lower errors with respect to the case in which the grid is

modeled using a white-box approach, but having inaccurate parameters information (e.g.

uncertainty in the length of the cables). As previously reported in chapter 1, voltage sensitivity

coefficients can be used to optimize a relaxation of the OPF:

min
Pc ,Qc

f (Pc )

s.t . |V | =V0 +Kp∆P +Kq∆Q

|V | ∈V , P ∈P , Q ∈Q
(5.7)

where Kp ∈R3N×3N and Kq ∈R3N×3N are the voltage sensitivity matrices related to active and

reactive power and Pc and Qc are the vectors of active and reactive powers in the controlled
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Figure 5.2 – Example of topology identification using the IEEE European Low Voltage Test
Feeder. Small light gray dots represents the actual nodes in the grid. Big dark gray dots
represents PQ nodes where measurements are available. Dashed lines are the actual physical
connections, while dark blue lines are the identified connections.

nodes. It is worth mentioning that, since the voltage sensitivity coefficients are a linearization

of the power flow equations, K depends on the state of the grid V . For a particular grid,

this dependency can be estimated empirically, testing if the approximation of |V | in (5.7)

is accurate enough under changing values of V . Alternatively, different sets of the rows of

matrices Kq and Kp can be identified, based on the voltage magnitude range of the associated

node, leading to the control of a piecewise affine linear system. In order to define the constraint

set P and Q, it could be helpful to retrieve an approximated topology (connectivity) of the

various nodes. In this way we can know which group of nodes can influence the total power in

a given point of the distribution grid. In the case of LV grids, which are typically radial, this task

can be carried out using only smart meter measurements. In particular, only covariance matrix

of the voltages’ magnitude deviations is needed to infer the structure of the grid, through a

minimum spanning tree [186]. The identification is also possible in the case of missing nodes,

as described in [187]. In Fig. 5.2, an example of topology identification for the IEEE European

Low Voltage Test Feeder [188] with the algorithm presented in [186] is shown. Each PQ node of

the Test Feeder (dark gray dots in the figure) has been populated with synthetically generated

residential power profiles. The identification is carried out using one day data of the three
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phases voltage magnitudes of the PQ nodes. It is clear that the accuracy of the identified

topology strictly depends on the available points of measurements in the grid. In particular,

in the case in which we are only in possess of smart meter data as in the case shown in Fig.

5.2, the topology identification can just be used to divide users in groups and to assess their

approximated distance between each other and from the PCC. On the other hand, more useful

results can be retrieved if measurements from cabinets and transformers can be used.

5.2.2 Main results from paper C

Paper C introduces an algorithm for the coordination of prosumers organized in hierarchical

structure. The aim of the paper is to exploit a hierarchical communication topology in order

to obtain a scalable algorithm, while preserving prosumers’ privacy and increase resiliency

through system redundancy. The main results from paper C are summarized in the following.

• System redundancy. The proposed decomposition alleviates the problem of having

a single point of failure, typical of one-level hierarchical control. Since all branching

nodes perform the same kind of computations, if the root node goes offline, its children

can inherit its role or revert to a predefined objective function (e.g. peak shaving). This

introduces redundancy and resiliency in the system.

• Prosumers’ privacy. In addition to the level of privacy guaranteed by decomposition

methods, that allow prosumers’ to keep their own parameters and constraints private,

the suggested method prevents higher levels of the hierarchy to directly know prosumers’

power forecasts and realizations. In fact this information is only used by each prosumers’

parent, and is available to higher branches only by means of aggregations.

• Computational time. A trivial way of decomposing the problem would consist in reach-

ing convergence in the lower level, then sending the results to the upper level of the

hierarchy. In this way, the whole number of iteration before convergence in the lower

level would represent a single iteration in the upper level. This solution concept would

clearly result in an exponential computational time with respect to the number of

considered levels, namely:

Ntot ∼ tnN L
i

L∏
l=1

N l
b ∼ N L

i N
L+L2

2

b (5.8)

where t is the computational time for each agent for solving its local problem, n is the

number of agents per level, Ni is the number of iterations before convergence for a single

level, L is the number of levels, and Nb is the number of branches per level. Instead of

following this strategy, we decompose the monolithic formulation of the problem to

obtain nearly linear convergence, with respect to the number of levels. This is shown

in Fig. 5.3, where the computational time before convergence from 500 simulations is

shown as a function of the number of levels. The boxplots refer to randomly generated
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Figure 5.3 – Estimated pdfs of the computational time divided by the total number of agents,
as a function of the number of levels in the hierarchy. The vertical bar is the interquartile
range, the horizontal line is the median.

tree structures with at most 4 aggregation levels, a branching factor of 2 and a maximum

of ten agents for each branching node, and agents are represented by controllable

batteries.

5.3 Coordination in a trustless setting

As anticipated in section 5.1, the exploitation of DSM requires to provide users with rules for

remuneration and compensation of their flexibility. This means that a market for flexibility

must be created. This is a fundamentally different scenario, as opposed to the D-OPF or

UC problems, in which the units to be coordinated belong to a single entity. In the case of

coordination of prosumers, we must consider the case in which single agent will try to exploit

weaknesses in the market design or directly try to hack their smart meters. In the following,

the reasons that make these behaviours likely are summarized.

• High number of agents with conflicting economical interests

• Possible interactions of different technologies (smart meters/ algorithms)

• Cheating only requires to trivially modify the distributed control algorithm [13; 14; 15].

For these reasons, I decided to treat the distributed coordination of prosumers using algo-

rithmic game theory [167] and distributed mechanism design [189]. In paper D, the sharing

problem 5.4, for a single level hierarchy is considered. I focused on a single use case, in which
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the energy market is deployed for an energy sharing community (also known as self consump-

tion community). These communities, which are made possible by law in Switzerland from

January 2018 [190], are part of the grid, which is rented or privately built, which are billed

only at the point of common coupling with the main grid. This means that members of these

communities do not pay individually, but they are billed as a single entity. This pushes the

members of the community to increase their self consumption through coordination. The

possibility of aggregating consumption and production behind the meter represents an im-

provement in counteracting the volatility of locally installed DERs, with respect to the existing

indirect control embodied by asymmetric buying and selling prices. For this reason, in this

case, we considered the following system-level objective e(x):

e(x) = c

(
N∑

i=1
xi

)
−

N∑
i=1

c(xi ) (5.9)

where xi ∈ IRT is the vector of total power of the ith agent, c(·) is the energy cost function

defined in 2.37. Function e(x) represents the difference between the energy cost paid by

the community at the PCC and the sum of the cost that the prosumers would have paid

individually in the base case. This sum is always negative in the presence of an heterogeneous

mix of producers and consumers, and vanishes in case of an homogeneous mix (i.e. all

the users are consuming or all users are producing). As such, 5.9 represents the economic

(negative) surplus generated by the community with respect to the base case. Minimizing e(x)

indirectly minimizes the total energy exchanged at the PCC. In a welfare maximization setting

(WM), problem 5.4 can be decomposed, and the generated surplus redistributed among the

users using a metric of choice. In a trustless setting, the redistribution rule must be declared

in advance, so that prosumers can decide their actions based on their projected economic

benefits. The rule of repartition, along with the cost function c(·), constitutes the outcome

function g , introduced in 5.1.1.

5.3.1 Main results from paper D

Paper D introduces an energy market concept, enabling to optimally exploit the flexiblity

of prosumers, while respecting grid constraints. Users are assumed not to have any active

decision nor belief in the formation of the market equilibrium price. Instead, the well known

concept of Lagrangian relaxation form optimization theory is used to automatically identify

prices for the grid’s constraints. I further avoided to model users’ utility as intended in standard

auction and game theory, and replaced it with costs and users’ constraints sets. In fact, the

latter can be interpreted as a binary and non differentiable utility function, and prevent us

from making any assumption on users’ marginal satisfaction with respect to consumed energy.

The main outcomes from paper D are summarized in the following.

• Existence and uniqueness of a VGNE for the class of sharing problems. In D, it is proven

that decomposing 5.4 using different repartition weights for the surplus, induces a
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game with unique generalized variational equilibrium, which can be reached jointly

minimizing the utility function of the agents, given by:

u(xi , x−i ) = ci (xi )+αi e(x)+ AT
i λ (5.10)

where α is a repartition coefficient for prosumer i , Ai ∈RT×T , T being the optimiza-

tion horizon, with SB = [
AT

i

]N
i=1

, N is the number of prosumers, and λ is a vector of

Lagrangian multipliers associated with grid constraints.

• Enforcement of individual rationality. Lagrangian multipliers are not bounded a-priori;

this could lead to a situation in which the prosumers pay more than in the base case. In

paper D, I proposed to limit the increment of the Lagrangian multipliers to guarantee

the individual rationality (IR) constraint. IR requires that prosumers won’t face higher

energy bills when opting in the proposed energy market. Limiting the Lagrangian

reflects a natural economic reasoning, which prevents prosumers from providing their

flexibility for free at the only scope of balancing voltage and power fluctuations in the

grid. In Fig. 5.4, an example of solution is shown in terms of prosumer’s battery state

of charge, aggregated power profiles and voltage at the PCC. The results for the WM

problem and for the associated game are reported, using the proposed formulation and

the pBF algorithm. In this case, grid constraints, represented by the dashed red lines,

are respected. This could not always be the case, for two reasons. The first is that the

prosumers’ flexibility could be in any case not enough to keep power and voltages inside

the constraints set. For instance, this could depend on the total number of agents which

are willing to participate to the proposed energy sharing community, which could be

low with respect to the total number of users. Secondly, as anticipated, the hard cap on

the Lagrangian multipliers enforcing individual rationality could prevent prosumers

from using all their batteries’ flexibility for grid regulation.

• Comparison with the preconditioned forward backward (pFB) algorithm. We compared

the proposed algorithm with the pFB. The work presented in [133] states that all the

projected-gradient algorithm class, when applied to aggregative games, can be inter-

preted as pFB. The comparison was done by means of iterations before convergence,

and showed that the ADMM based formulation requires on average fewer iterations to

converge.

111



Chapter 5. Distributed energy markets

0 10 20 30 40 50

time step [-]

0

0.2

0.4

0.6

S
O

C
 [-

]
centr
ADMM
pFB

0 10 20 30 40 50

time step [-]

-2

-1

0

1

2

P
 [p

.u
.]

centr
ADMM
pFB

0 10 20 30 40 50

time step [-]

0.7

0.8

0.9

1

1.1

1.2

V
 [p

.u
.]

centr
ADMM
pFB

Figure 5.4 – Time series example, N = 10. Blue: forecasted profiles. Red: constraints. Grays:
solutions of the centralized and decentralized approaches. Top: state of charge for each battery.
Middle: power profiles. Bottom: voltage profiles.
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6 Conclusions

In this thesis I have proposed new methods for the distributed control of prosumers located

among a multilevel hierarchical structure, and their coordination in a trustless setting. In

this context, I have proposed novel methods for the unsupervised identification of PV power

plants and the forecast of their power production.

The thesis focuses on the three main topics:

• Probabilistic forecasts for the 24 hours ahead residential power production and con-

sumption, and their performance assessment by means of a-priori and closed loop

tree-based stochastic MPC evaluation.

• Unsupervised methods for retrieving physics-based models for PV power plants, and

their influence on the forecasting accuracy of PV power signals.

• Deterministic and probabilistic forecasting of hierarchical time series, in the case of a

high penetration of PV power plants.

• Multilevel hierarchical control of prosumers in the distribution grid, and their coordina-

tion in a trustless setting.

6.1 Discussion

Probabilistic forecasts of residential power profiles In the context of distributed control,

in which residential forecasts and operation planning should be computed on a smart meter,

methods with low computational requirements and memory usage must be taken into account.

As remarked in [191], the yearly shiftable energy through DSM is strictly dependent on the

penetration scenario of smart meters. The cost factor is pivotal to the roll out of these devices,

and how to reduce smart meters cost is an active area of research [192]. Smart meters’ cost is

crucial for the deployment of DSM and for the economic benefits it can provide with respect

to grid refurbishment. In this view, I have suggested new probabilistic forecasters using a
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non-uniform stepsize for the training and for the prediction horizon. The benefit of having

non-uniform stepsize is twofold, lowering in general the computational time for forecasting

and control. In section 2.2 of chapter 2, I have numerically verified that for the class of control

problems with linear-quadratic objective functions, using disturbance averages obtained with

logarithmically spaced stepsizes provides a good approximation of the original problem. This

led us to use a similar formulation for the forecasting algorithms. In fact, a non-uniformly

sampled training set reduces the dimension of the historical values to be stored in the smart

meter in order to train a forecaster. For a general purpose interpolator, such as the QRF,

the training set is usually composed by Hankel matrices of some significant signals, such as

the historical values of the power, temperature and irradiance. In chapter 2 it’s shown how

reducing a 15 minutes sampled training dataset using 10 logarithmically spaced bins does

not affect the prediction accuracy. This reduces the training set dimension by a factor of

9.6, impacting on both the memory requirement and computational training time. On the

other hand, other existing forecasting methods, such as the Holt-Winter forecaster, require a

far lower computational time and memory usage. The drawback of the HW, which belongs

to the class of the exponential smoothing forecasters, is that it cannot exploit exogenous

signals. We propose to previously detrend the power forecasts by means of linear regressions

taking into account both temperature and GHI, in order to overcome this limitation. We have

additionally proposed a bagging of extreme learning machine (ELM) interpolators. ELMs

are general purpose MIMO interpolators, and thus can directly output a consistent set of

scenarios, without the need of modeling the temporal dependence of the predictions. They

also present a favorable computational time with respect to QRF. In section 2.3 of chapter

2, the performance of the forecasters were assessed by means of a-priori KPIs and closed

loop MPC control. The best forecasters on both evaluations was the QRF. In particular, this

forecaster, coupled with a multivariate Gaussian copula for the modeling of the scenarios,

provided a better description of the conditional pdf. This was confirmed by both the a-priori

evaluation and by the superior performance gap reduction obtained with the QRF forecasts,

when passing from a deterministic control to a stochastic one.

Unsupervised methods for PV modeling and their influence on forecasting In chapter 3,

unsupervised and robust methods to identify physics-based models for PV power plant were

introduced. The methods are able to retrieve a model for the prediction of PV power output,

starting from AC power measurements only. The resulting models map the meteorological

conditions, in terms of GHI and T, to the power output of the PV. In section 3.2.1, was shown

that the prediction performance of the identified models can be improved when coupling

them with a RF, outperforming also the predictions of a RF without physics based information.

This result shows that including physical knowledge about the geometric projections, low

angle of incidence efficiencies, and temperature influence, helps increasing the accuracy of the

estimator. In paper A, similar methodologies are used to disaggregate composite residential

power measurements starting from the total power signal and from G H I observations. The

different proposed methods rely on the hypothesis that the residential load is uncorrelated for
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a given range of sampling times or frequencies with the PV power production. The methods

have been tested on four residential buildings, in which electrical batteries were installed

in order to increase the self consumption of the households. As expected, when the battery

operations are not included in the overall power signal, the disaggregation techniques shown

higher performances. In fact, when trying to maximize the self consumption, the battery

operations get highly correlated with the PV power production, leading to an underestimation

of its nominal power. The best performing method was the one based on a robust regression

of the low-pass filtered power and G H I signals, whose only drawback the need for high fre-

quency input data (> 1 sample/min). This would require the installation of a pyranometer, or

to estimate G H I from a nearby monitored PV plant. This possibility was investigated in paper

B, where a new unsupervised algorithm for estimating the G H I signal seen by a PV panel is

presented. The method is able to fuse observations from different nearby power plants, thanks

to its ability of identifying and mapping persistent shadings seen by each panel. Since the

method is unsupervised, it can be used to turn already available power production data of res-

idential PV power plants into G H I pseudo-measurements. Additionally, as remarked in B, the

proposed method showed significant increase in the accuracy, with respect to commercially

available satellite-based methods. Finally, the influence of PV modeling on forecasting the

power production up to 24 hours ahead is investigated. In section 3.2.2, the PV models are

used in combination with QRF, and their accuracy is evaluated using experimental data. An

increase of performance is seen in the range going from one hour ahead up to 12 hours ahead.

This can be explained considering the temporal resolution of the NWP and the frequency at

which updates are available. The used NWP service provided forecasts with 1 hour temporal

resolution. This resolution is not enough to provide an increase of accuracy for the first hour

ahead when using a PV model, since at 1 hour resolution, the local measurements of PV pro-

duction, that are already available, are more informative. This due to the low spatial resolution

of NWP services, and is likely the same reason for which the method presented in paper B

outperformed satellite-based irradiance estimation services. On the other hand, for forecasts

beyond 1 hour ahead, modeling the PV provided higher accuracy, up to 12 hours. This can be

explained considering that the forecasts are updated each 12 hours. It is highly likely that if

the weather forecasts were updated more frequently, the PV modeling would perform better

even in the time range between 12 and 24 hours.

Forecasting hierarchical time series In chapter 4 I focused on the problem of forecasting

hierarchical time series in distributed DMS problems. In this case, having local and global

competing objective functions, or simply the inclusion of grid constraints in a multilevel

setting, requires consistency of the forecasts at the bottom and at the aggregated level.

In the deterministic case, this is usually achieved through a bottom up approach, in which the

bottom level forecasts are simply summed to estimate the forecast of the aggregated power.

This has been shown to be suboptimal in the case in which the bottom level forecasters present

a low signal to noise, as for residential power production/consumption. Following the work

done in [126], in which a reconciliation techniques are used to fuse forecasts at different levels
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of aggregation for the power retrieved by smart meter data, I proposed the decomposition of

the problem through ADMM. The main advantage of decomposing the reconciliation relies in

the fact that individual prosumers forecasts get aggregated by the branching nodes, and their

private information is never disclosed to higher levels of the grid.

In a probabilistic setting, even the simple bottom up approach becomes non-trivial. In the

simplest case in which forecasts errors are not correlated, the summation of random variables

involves a multidimensional convolution. The sum of random variables is a subject of interest

for risk aggregation, and from this field the use of hierarchical copulas [59] has been suggested.

However, this technique requires to empirically estimate the copulas linking different time

series in the hierarchy, while the one proposed in this thesis guarantees aggregate-consistent

pdfs by construction, without the need of a reconciliation step. The approach I proposed

requires a NWP provider to broadcast ordered scenarios for the forecasts of the meteorological

conditions (G H I and T ), for the next prediction horizon. As remarked in section 4.2, this

seems feasible in practice, since to obtain accurate power forecasts, single users already need

to retrieve predictions of meteorological conditions from a NWP provider. Moreover, the

amount of data can be reduced if instead of a set of scenarios, the provider pass a tree of

prediction, previously obtained as described in section 1.3.

Multilevel hierarchical control and trustless coordination In paper C, I proposed a method

for systematically taking into account multiple possibly contrasting objective functions of

agents located at different voltage levels in the distribution grid. This was done by decom-

posing a monolithic convex problem in the presence of separable coupling constraints for

the agents, using techniques of networked optimization and using an ADMM based con-

vergence scheme. The convergence of both primal and dual variables is imputed to agents

based on their location in the hierarchical structure. This resembles the physical structure

of the distribution grid, for which agents located under different transformers can influence

each other’s actions or constraints only indirectly. The same concept is retained in paper

D, where I proposed a energy market for energy sharing communities. In this case I have

used a generalized Nash equilibrium refinement, called variational equilibrium [177], which

ensures equal marginal prices for agents responsible for the same sets of grid constraints.

The main outcomes of paper D are provided by theorem II.1, which demonstrates existence

and uniqueness of the VNE for the class of games generated by the class of sharing problems,

and the demonstration in chapter III that this equilibrium can be reached re-weighting the

quadratic terms of proximal operators generated by the standard ADMM decomposition. A

superior convergence in terms of iterations has been shown with respect to the pFB algorithm

for solving the same class of problems [133; 64]. Additionally, in order to ensure the individual

rationality condition, requiring that prosumers never incur in higher costs with respect to the

base case, I proposed to cap the Lagrangian multipliers associated to their grid constraints.

This procedure reflects a natural economic reasoning, which prevents prosumers from provid-

ing their flexibility for free at the only scope of balancing voltage and power fluctuations in the

grid. A system operator willing to increase the exploitation of prosumers’ owned assets for this
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scope, should provide them with a discount in terms of energy tariffs.

6.2 Future development

In the following, suggestions for future works are presented based on treated topics.

Probabilistic forecasts of residential power profiles

• Experimental validation of forecasters performances for control. The a-priori and a-

posteriori evaluation of the forecasters in this thesis did not include a detailed nonlinear

model for the simulation of the operated battery. This was avoided to fairly compare the

forecasters performance without dealing with goodness of fit for the identified battery

model. For real life operation, the state of charge of the battery would be provided by

a proprietary API, while the control of the battery could be done through a piecewise

linear time-varying model as in [97]. However, in this way, the performance assessment

of the forecasters would have been influenced by the goodness of fit of the model

identification, undermining the validity of the results. However this additional step is

needed in order to estimate the profitability of using different forecasters.

Unsupervised methods for PV disaggregation

• Use monitored PV panels to estimate G H I and disaggregate composite power flows. The

most accurate disaggregation technique from A, required a sampling time of 1 minute for

the G H I signal. This temporal resolution is not currently available from satellite services.

This would require the installation of a pyranometer. However, this kind of instrument

is expensive and usually installed only at utility-scale PV power plants for monitoring

reasons. As an alternative, a monitored PV panel could be used to estimate the local

G H I , with the technique described in paper B, in order to disaggregate composite power

flow of nearby buildings.

Forecasting hierarchical time series

• Use of aggregate-consistent pdf in hierarchical control. The distributed stochastic

control in electrical grid is a challenging topic, since requires to consider coupled

probabilistic constraints. This class of problems is considered in [156], where under the

assumption of independent disturbance, coupling constraints are treated computing

discrete scalar convolutions of the disturbance pdfs of single agents. However, as seen

in section 4.2, independence of the forecasts errors does not hold in the presence of

high penetration of PVs. The method proposed in the same section to obtain aggregate-

consistent forecasts can be coupled with TBSMPC and decomposition techniques of
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Chapter 6. Conclusions

chapter 5 to solve the the problem in a stochastic setting. This will require, in addition

to a disturbance and a decision variables tree, a tree of Lagrangian multipliers for the

coordination of the prosumers’ actions.

Multilevel hierarchical control and trustless coordination

• Closed loop simulations including electric grid feedback. Although the accuracy of

sensitivity coefficients has been investigated, a closed loop evaluation of the proposed

strategy including feedback from a simulated grid, is necessary.

• Include mesh grid formulations. The algorithm presented in paper C is suited to take into

account linear formulations of the PF. However it was not tested using a combination of

PF approximations for radial and mesh grids. This is necessary when willing to control

loads located both in the LV (typically radial) and MV (typically meshed) grids.

• Comparison with other trustless methods. The method proposed in paper D for the

trustless coordination of prosumers is based on the concept of Nash equilibrium. One of

the advantages of modeling the optimization problem as a game is that the theoretical

properties are independent on the specific hardware and software implementation. The

prosumers will simply incur in a loss if they do not follow the suggested strategy. On the

other hand, the total achievable welfare under this equilibrium concept is lower than

the one achievable by a centralized (and trusted) controller. Distributed computing

techniques, such as secure multiparty function evaluation (SMFE), could represent

an alternative solution for achieving trustless coordination. However, the number of

messages required by SMFE could present quadratic grow when applied to distributed

control [189]. Other techniques, such as probabilistic checkable proofs (PCP), are able

to guarantee faithful execution of code on a hosting machine and to keep personal

information private. However, the computational burden increment with respect to

native code performances of various protocol implementing PCP, seems to be incom-

patible with distributed control applications [193]. On the other hand, the reported

computational and communication complexity of the recently proposed ZK-STARK

protocol [194] seems to allow its use for distributed control and trustless coordination.
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Unsupervised Disaggregation of PhotoVoltaic
Production from Composite Power Flow

Measurements of Heterogeneous Prosumers
Fabrizio Sossan, Member, IEEE, Lorenzo Nespoli, Member, IEEE, Vasco Medici, Member, IEEE, and

Mario Paolone, Senior Member, IEEE,

Abstract—We consider the problem of estimating the unob-
served amount of photovoltaic (PV) generation and demand in a
power distribution network starting from measurements of the
aggregated power flow at the point of common coupling (PCC)
and local global horizontal irradiance (GHI). The estimation
principle relies on modeling the PV generation as a function of
the measured GHI, enabling the identification of PV production
patterns in the aggregated power flow measurements. Four esti-
mation algorithms are proposed: the first assumes that variability
in the aggregated PV generation is given by variations of PV
generation, the next two use a model of the demand to improve
estimation performance, and the fourth assumes that, in a certain
frequency range, the aggregated power flow is dominated by
PV generation dynamics. These algorithms leverage irradiance
transposition models to explore several azimuth/tilt configura-
tions and explain PV generation patterns from multiple plants
with non-uniform installation characteristics. Their estimation
performance is compared and validated with measurements from
a real-life setup including 4 houses with rooftop PV installations
and battery systems for PV self-consumption.

Index Terms—PV generation, Demand, Disaggregation, Opti-
mization problems, Algorithms, Unsupervised learning.

NOMENCLATURE AND ACRONYMS

PV Photovoltaic.
GHI Global Horizontal Irradiance.
GNI Global Normal Irradiance.
nRMS Normalized Root Mean Square Error.
PCC Point of Common Coupling.
MPPT Maximum Power Point Tracking.
k Discrete time index.
Pk Active power flow at the PCC at time interval k.
I—
k GHI observation at time k.
j Index for panel tilt/azimuth configuration.
I�jk Estimated GNI corrected for temperature for con-

figuration j at time k.
Ĝk Estimated PV production at time interval k.
L̂k Estimated demand at time interval k.
αj PV nominal capacity at configuration j.

F. Sossan and M. Paolone are with the Distributed Electrical Sys-
tems Laboratory at the Swiss Federal Institute of Technology of
Lausanne (DESL, EPFL), L. Nespoli and V. Medici are with the
ISAAC at the University of Applied Sciences and Arts of Italian
Switzerland (SUPSI), CH. Emails: {fabrizio.sossan,mario.paolone}@epfl.ch,
{vasco.medici, lorenzo.nespoli}.supsi.ch

This research received funding from the Swiss Competence Center for
Energy Research (FURIES).

I. INTRODUCTION

Incresed levels of distributed photovoltaic (PV) generation
determine higher reserve requirements at the system level and
violations of voltage and line ampacity constraints in distribu-
tion systems during peak production hours [1], [2]. Technical
solutions envisaged to mitigate PV generation drawbacks are
curtailment strategies, control of converters active/reactive
power, PV self-consumption schemes and dispatch of local
power flows according to network-safe power consumption tra-
jectories (e.g. [3]–[11]). A requirement for the implementation
of those strategies is the availability of real-time production
measurements from PV facilities. Incidentally, these are also
useful to train data-driven prediction models (e.g. [12], [13]).
However, such a precondition is not always met in real-life
conditions because installations are not always monitored,
and, even when they are, factors such as i) privacy concerns,
ii) conflicts due to the different owners of the metering
infrastructures, and iii) lack of standards for monitoring and
aggregation of measurements, and their communication, play
against the possibility of collecting real-time PV production
measurements.

As an alternative to direct monitoring of PV systems, we
consider in this paper the problem of disaggregating PV
generation from the aggregated active power measurements
of a group of prosumers. The estimation principle relies on
modelling PV generation as a function of the global horizontal
irradiance (GHI), assumed known from local measurements.
Four estimation algorithms are proposed and compared: the
first assumes that the variability in the aggregated power
flow measurements are mostly given by variations of the PV
generation, the second and third leverage a model of the
demand to improve estimation performance, and the fourth
assumes that there is a certain frequency range in which
the aggregated power flow measurement is dominated by PV
generation components. All four algorithms use a transposition
model to project GHI into a number of pre-defined differently
oriented tilted planes to explain production from sites with
different configurations. The algorithms are designed to be
unsupervised, i.e., they do not require measurements of the
PV power profiles to be trained. The algorithms are tested
with measurements from a real-life setup of four houses
with monitored rooftop PV plants and grid-connected battery
systems, enabling the testing of estimation performance even
when the demand is correlated with PV generation.
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Even if in the existing literature the problem of disag-
gregation has been extensively investigated for nonintrusive
load monitoring (e.g., [14], [15]), its application to PV disag-
gregation was considered in [16], which develops estimators
of the total PV generation using the active power profile
of a nearby installation and GHI proxy measurements as
explanatory signals. With respect to [16], we leverage PV
transposition models to identify PV production patterns from
installations with different tilt/azimuth configurations, a key
factor in urban contexts where PV generation is from rooftop
PV plants and tilt and azimuth configurations are dictated by
roofs characteristics and might not be uniform.

The paper is organized as follows: Section II states the
problem, III presents the disaggregation algorithms, IV dis-
cusses procedures and measurements for validation, V presents
and discusses performance, VI summarizes key results and
contributions.

II. NOTATION AND PROBLEM STATEMENT

A. Configuration of the system
We consider a feeder with distributed PV production, pos-

sibly from installations with different tilt and azimuth, and
demand (e.g., Fig. 1). The power injections at the single
buses are not measured, however the total prosumption (PV
generation + demand) is known thanks to sensing the active
power flow1 at the point of common coupling (PCC). Local
GHI values are from a pyranometer (although other methods
could be considered, e.g. leveraging information available
from nearby monitored PV installations [17]). We do the
modeling assumption that the PV installations in the area
are subject to the same GHI. Local GHI measurements are
known to be accurate in a range of 50 meters [18]. Therefore,
the proposed algorithms are expected to perform adequately
when PV plants are spread over a small area, and their
performance to decrease when considering larger areas. Due
to the small size of the networks that these methods target,
grid transmission losses are neglected at this stage due to the
short length of the cables.

Fig. 1. A network topology with unmonitored demand and PV generation
from multiple production sites with different azimuth/tilt configurations. The
active power flow at the PCC and GHI are known from measurements. The
problem is estimating the raw PV generation.

B. Notation
The active power flow measured at the PCC at the discrete

time interval k is denoted as Pk (kW). Positive flows de-
note consumption and vice-versa (i.e., passive sign notation).

1Reactive power is not of special interest since PV plants normally operate
at unitary power factor and, more in general, it is not possible to do
assumptions on the kind of reactive power control implemented.

GHI measurements are denoted by I—
k in kW m−2, while

I�jk (kW m−2) denotes the estimated global normal irradiance
(GNI) to a certain tilted plane j corrected for temperature (as
described in III-E), where j = 1, . . . , J denotes the plane
tilt/azimuth configuration. We consider J = 21 tilted planes
with tilt and azimuth values equally spaced on a south-facing
semi-sphere, chosen to have a reasonably representative set
of potential configurations of PV installations in the north-
ern hemisphere. GNI estimations are from the Hay-Davies
transposition model [19], [20]. The quantity Ĝk and L̂k (kW)
respectively denote the estimated PV production and estimated
demand, which are to be determined. A practical example
of the disaggregation process is described in the following
paragraph.

C. Problem statement

The problem is estimating the trajectories of the demand
and total PV generation from measurements of the active
power flow at the PCC and local GHI observations. This is
exemplified in Fig. 2a (night time observations are omitted)
which shows the inputs, intermediate results and outputs of one
among the proposed algorithms. The inputs are the aggregated
power flow Pk at the PCC (top panel) and GHI (middle panel,
solid fill). The middle panel plot in Fig. 2b also shows the GNI
trajectories I�jk, used to explore the potential PV production
from plants with various tilt/azimuth configurations, as typical
in urban feeders where panels are installed according to roof
characteristics. Finally, the lower panel plot in Fig. 2c shows
the output of one of the proposed algorithms2, with the
estimated demand and estimated PV generation (orange line),
the latter close to the measured ground truth PV generation
(solid gray fill).

III. DISAGGREGATION ALGORITHMS

The estimated global PV generation Ĝk at the PCC is
modelled as the sum over all the tilt/azimuth configurations
j = 1, · · · , J of the transposed irradiance I�jk times J
nonnegative coefficients αj ∈ R+:

Ĝk(α) =
J∑

j=1

αj · I�jk, k = 1 . . . ,K, (1)

where α = {αj , j = 1, · · · , J} ∈ RJ
+ denotes the set of

αj . Physically, αj is the PV generation capacity installed at
configuration j. It is measured in kWp, kilowatt peak, and de-
notes the amount of power produced in standard test conditions
(STC, kW m−2 GNI at 20 ◦C). The temperature effect on the
PV conversion efficiency is accounted for by preprocessing
the input GNI time series as described in Section III-E. By
modelling the PV generation as in (1), we assume that PV
plants operate in the maximum power point tracking (MPPT)
mode; in case the output of a PV plant is controlled (i.e.
curtailed), it is likely to be monitored and its contribution can
be removed from the aggregated power flow, still allowing to
apply the algorithms. Partial shading effects is not explicitly

2Method C, parameters Ts = 30 s c = 10, mean nRMSE 5%.
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Fig. 2. Input, intermediate results and output of the proposed disaggregation
algorithms (night hours not shown).

modeled, even if, as discussed in the following, some of the
proposed methods are robust against it.

As detailed in the following, the proposed disaggregation
algorithms estimate α (thus PV generation Ĝk) and require a
training phase. Four algorithms, denoted as Method A, B, C
and D, are discussed. They attempt to estimate PV generation
by exploiting different modeling principles inspired by the
following empirical considerations:

• variations of PV generation dominate the variations of
the power flow at the PPC. Method A estimates PV
generation by seeking for a trajectory with variations
as close as possible to those observed at the PCC.
The drawback is that variations are also due to demand
changes (e.g. load inrushes);

• the power flow at the PCC is modelled as the sum
between PV generation and demand, where the latter
is described by using a load model. Method B and
Method C exploit two different load models, as explained
later;

• in a certain frequency range, the dynamics of the power
flow at the PCC are dominated by those of PV generation.
Method D exploits the fact that demand and PV genera-
tion have different time dynamics: filtering the power flow
measurements at the PCC makes possible to estimated the
PV generation.

The validity of these empirical modelling considerations are
tested in the results section by assessing and comparing the
algorithms performance.

A. Method A

The unknowns α are determined by assuming that the
variability in the observed aggregated power flow are due to
variations of the aggregated PV power. This is modeled by
minimizing the norm-1 of the difference between the once
differentiated time series Pk and Ĝk while subject to the
estimated total PV production model (1):

αo = arg min
α∈RJ

+

{
K∑

k=1

∣∣∣∣ (Pk − Pk−1)+

−
(
Ĝk(α)− Ĝk−1(α)

) ∣∣∣∣
} (2)

subject to:

Ĝk(α) =
J∑

j=1

αj · I�jk, k = 1 . . . ,K. (3)

The problem in (2)-(3) is linear, thus convex and tractable.
The resolution of the input time series is a parameter of the
Method A, and its importance is discussed in the performance
assessment. Method A does not allow to model demand
dynamics, e.g. load inrushes would be considered as variations
of PV generation. The next two methods use a model of the
demand to work around this limitation.

B. Method B

Let L̂ = [L̂1, . . . , L̂K ] be the estimated demand trajectory.
The estimated active power flow at the PCC P̂k is now written
as:

P̂k(α, L̂) = L̂k − Ĝk(α), k = 1 . . . ,K, (4)

i.e. the sum between the estimated total PV generation and
demand, the former with negative sign because corresponding
to generation. Method B attempts to determine L̂k and α
by minimizing the norm-2 of the estimation error Pk − P̂k.
However, this problem is under-determined since the K + J
free variables are more than the number of observations K.
Therefore, we augment the cost function and consider the sum
of the least square and norm-1 of the once differentiated L̂k

series (i.e., a combined linear regression and trend filtering
problem, as for example in [21] [22]):[

αo

L̂
o

]
= arg min[

α ∈ RJ
+

L̂ ∈ RK
+

]
{

K∑
k=1

(
Pk − P̂k(α, L̂)

)2
+

+λ

K∑
k=1

∣∣∣L̂k − L̂k−1

∣∣∣}
(5)

subject to:

P̂k(α, L̂) = L̂k −
J∑

j=1

αj · I�jk, k = 1, . . . ,K. (6)

The cost function is the sum of a vector norm-1 and a quadratic
cost function and convex if the latter term is convex. As shown
in Appendix A, the convexity of the quadratic term cannot
depends on the input data and can be verified a-priori.
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C. Method C

In Method B, under-determination was solved by minimiz-
ing the norm-1 of the demand trajectory L̂. As an alternative,
we apply here a piecewise constant model of the demand, i.e.
we require the unknown sequence L̂ to be piecewise constant
for c consecutive samples, where c is a parameter, by enforcing
the following c− 1 equality constraints:

L̂1 = L̂2 = · · · = L̂c, (7)

for the case of the first c samples. Extending to the set of K
measurements (K multiple of c) yields:

L̂c(i−1)+1 = · · · = L̂c(i−1)+c i = 1, . . . ,K/c. (8)

Modelling the demand as piecewise constant is a reasonable
assumption when the length of the constant segment does
not overlap with typical intra-day dynamics of the demand,
i.e. for small c values and densely sampled series. In other
words, it is reasonable when considering short periods of time
(e.g., seconds), when the persistence model of the demand has
unbeaten performance, see, e.g., [23], [24]. When the demand
has shorter variations than c (e.g., load inrushes), the estimated
demand will have the average value of the waveform and the
residuals will be the estimation error. The sampling time and
c are design parameters: the sensitivity of the algorithm per-
formance with respect to their values is assessed in Section V.
Method C consists in minimizing the norm-2 of the estimation
error Pk − P̂k subject to the estimated aggregated power flow
and piecewise constant demand models:[

αo

L̂
o

]
= arg min[

α ∈ RJ
+

L̂ ∈ RK
+

]
{

K∑
k=1

(
Pk − P̂k(α, L̂)

)2}
(9)

subject to:

P̂k(α, L̂) = L̂k −
J∑

j=1

αj · I�jk, k = 1, . . . ,K (10)

L̂c(i−1)+1 = · · · = L̂c(i−1)+c i = 1, . . . ,K/c, (11)

The additional constraints (11) are linear and do not impact
convexity, thus the same consideration as for Method B
applies.

D. Method D

Method D splits the observed active power flow at the PCC
by exploiting similarities between the signals Pk and Ĝk(α)
in a certain frequency range. This approach is motivated
by having verified similarities in the spectral density of the
measured aggregated power flow and measured PV generation
(available from the test site) with the Welch’s periodogram
method for coherence analysis [25]. Method D initially filters
the input GNI I�jk and aggregated power flow Pk with a sixth
order Butterworth band-pass filter, where the low and high
cut-off frequencies are parameters that reflect the frequency
range where the aggregated power profile and PV generation
are similar. They are free parameters and the sensitivity of
the algorithm performance to their values is investigated in

Section V. Let Pk and I�jk respectively denote the above
mentioned filtered version of the sequence Pk and transposed
irradiance I�jk. The vector of unknowns αo is computed by
the following robust linear regression:

αo = arg min
α∈RJ

+

{
K∑

k=1

ρ (Pk −Gk (α))

}
(12)

subject to:

Ĝk(α) =
J∑

j=1

αj · I�jk, k = 1 . . . ,K. (13)

where ρ(·) is the bisquare loss function, see [26], a nonconvex
relantionship which gives less weight to extreme values in the
cost function to be robust against outliers. The problem (12)-
(13) is solved by applying an iterative least square approach
with guaranteed covergence [27].

E. Temperature correction

To account for the dependency between PV conversion
efficiency and temperature, GNI values are corrected to reflect
temperature variations from the reference value Tref (25 ◦C) by
using the empirical model proposed in [28]:

I�jk = I�jk [1 + γ(Tcell,k − Tref)] (14)

where I�jk is the original irradiance value, and Tcell,k the cell
temperature at time k, estimated as [28]

Tcell,k = Tair + βI�jk, (15)

where Tair is the air temperature, assumed known from local
measurements, and β = 3.78× 10−2 and γ = −4.3× 10−3

are empirical and plant specific values here assigned consid-
ering typical average values3.

IV. METHODS FOR PERFORMANCE EVALUATION

The performance assessment of the disaggregation algo-
rithms is performed by evaluating their ability to reconstruct
the PV generation time series starting from the measurements
of the power flow at the PCC and GHI. Let ek = Gk − Ĝk

(Gk and Ĝk are the PV generation ground-truth value and
estimation, respectively) be the estimation error. The per-
formance metrics are: normalized root mean square of the

estimation error (nRMSE)
(

1
G

1
K

∑K
k=1 e

2
k

)1/2
, normalized

mean absolute error (nMAE) 1
G

1
K

∑K
k=1 |ek|, and normalized

mean error (nME) 1
G

1
K

∑K
k=1 ek, where G is the total installed

PV capacity (35.3 kWp) and K is the samples number in the
testing data set.

3β is the average of values for the close roof mount and open rack
configurations from [28] , and γ the average of the values for polycrystalline
modules from [29].
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A. Data sets for training and testing

Time series are GHI, power flow at the PCC and PV
generation measurements for 1 year from the real-life test
facility described in the next paragraph. The first 2 are used
for the training, while the last as the ground truth value to test
the estimation performance. To preserve daily dynamics of
the signals, time series are divided into daily sequences, then
randomly shuffled to avoid to train and test the algorithms on
different periods of the year. The series time resolutions are 10,
30, 60, 120, 300, 600 and 900 sec (downsampling by samples
average) and are to assess algorithms performance with respect
to sampling time. Selected resolutions include those normally
implemented in existing metering systems, e.g., 900 s is the
resolution of smart meters in Switzerland and Italy. Here, the
intent is to verify whether such a sampling time is enough
for the proposed application, or if performance would benefit
from more densely sampled data. Each of the 7 datasets at
different resolution is further split into 3 sub-sequences to
perform a three-fold cross-validation, i.e., for each resolution,
the algorithms are trained on the first fold and tested on the
remaining 2; the process is repeated for all the 7 datasets, each
time testing the algorithms on the part of the data which is not
used for the training. In total, each algorithm is trained and
tested 3 times for each resolution, for a total of 21 training
and test runs. Measurements refer to days with a uniform
mix of sky conditions: partly cloudy, clear sky and overcast.
Algorithms performance is tested both when there are batteries
performing PV self-consumption and when not, thus allowing
to account for the case when the demand is correlated with
PV generation.

B. Experimental Setup

Measurements are from a real-life setup in the region of
Basel, Switzerland, with 4 private households, each equipped
with a rooftop PV installation with different characteristics,
as reported in Table I. PV converters operate in MPPT mode
at unitary power factor. The total PV installed capacity is
35.3 kWp and the peak demand is 12 kWp. The house-
holds are also equipped with grid-connected battery systems
with bidirectional power converter to implement PV energy
self-consumption policies (actuated at 5 minutes resolution).
Batteries specifications are summarized in Table I. Battery
injections are monitored. They are removed from the power
flow at the PCC by algebraic difference, such that, in the
following analysis, it is possible to consider two cases: with
and without battery action (self consumption).

TABLE I
PV AND BATTERY SYSTEMS IN THE EXPERIMENTAL SETUP

House
ID

PV ca-
pacity
(kWh)

Azimuth Tilt
(◦)

Distance
from

House 1
(m)

Battery
rating

(kVA/kWh)

1 10.0 95 14 0 3/8.8
2(a) 7.2 187 36 100 3/4.4
2(b) 3.5 266 40 100 –

3 8.0 187 40 260 3/8.8
4 6.6 180 24 170 3/4.4

a) PV and power flow measurements: The power flow
at the PCC is the sum of the four households flows, measured
synchronously at 10 s resolution. Similarly, the global PV
production (used as the ground truth value to validate the
estimation performance of the algorithms) is the sum of the
single PV facilities power injections, measured at the converter
level.

b) Global horizontal irradiance measurements: GHI
measurements are from a pyranometer installed on the roof
of the household ID1. The line distance of the remaining
households from the GHI observation point is shown in the
second to last column of Table I. All the measurements are
synchronized and timestamped, and logged in a time series
database.

V. RESULTS AND DISCUSSION

For a visual exemplification of the disaggregation process,
the reader is referred to Section II-C and Fig. 2. In this
section, we first assess the performance of the proposed
methods individually. In V-E, we perform a joint performance
assessment to compare the quality of the estimations of the
different algorithms and support the assertion that they can
be considered unsupervised. Key results are discussed and
summarized in V-F. In V-G, the algorithms are tested in
scenarios with a lower penetration of PV generation to verify
if less prominent patterns of PV generation are detrimental
to estimation performance. Finally in V-H, we discuss the
computational performance.

A. Method A

The estimation nRMSE as a function of the only parameter
of Method A (i.e. sampling time) with and without PV self-
consumption is shown in Fig. 3. With no self-consumption, the
nRMSE stabilizes at around 2 kW for sampling times larger
than 200 s; with self-consumption, performance is poorer and
is best at around 150 s. In both cases, estimation performance
when the input time series is densely sampled (large sampling
time) is poor.

Fig. 3. Method A nRMSE as a function of the input time series sampling
time.

B. Method B

On top of the series sampling time, Method B has a
smoothing parameter λ in (5) to weight the demand time
variations L̂k − L̂k−1 in the cost function. Performance as a
function of the two parameters is shown in Fig. 4. With self-
consumption, best performance happens in the middle right
region of the parameter space. This region is larger in the case
without self-consumption. Performance degradation patterns
do not have a well identifiable trend.
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C. Method C

The parameters of Method C are input time series sampling
time and piecewise constant segment length c (in number
of samples). Their influence on the nRMSE is shown in
Fig. 5. Estimation performance decreases when moving away
from the axis origin, denoting that using densely sampled
input time series and small c values (the best performance
is with 20 s resolution) are convenient. As mentioned in the
formulation stage, this is to be expected because the choice
of the two parameters affects the constant segment length of
the demand piecewise constant model (i.e., the shorter it is,
the better performance the persistence model has). Estimation
performance is worse with self-consumption (a numerical
quantification is given in the next paragraph). Contour lines
of Fig. 5 denote that the performance degradation follows the
same pattern when with and without self-consumption. Thus,
even if estimation performance is different in the two cases, the
optimal values of the parameters lay in the same parameters
space area.

D. Method D

Method D parameters are the lower and upper cut-off
frequencies of the bandpass filter, and a tuning constant of
the bisquare loss function ρ(·). The last was found not to
impact substantially on the algorithm performance and is
therefore excluded from the current analysis. The sensitivity of
algorithm performance to upper and lower cut-off frequencies
is shown in Fig. 6. Best performance happens in a well
identifiable region in the lower left part of the parameter
space, which however tend to shrink in the case with self-
consumption.

E. Joint Performance Comparison

The min, max, mean, and median statistics of the estimation
nRMSE, nMAE and nME of the 4 algorithms are reported in
Table II. For each algorithm, the reported statistics are calcu-
lated over all the combinations of the considered parameters
values. They are to be interpreted in the following way:
• min: performance to be expected assuming to know a-

priori the best performing set of parameters.
• max: performance to be expected when choosing the

worst possible combination of parameters.
• mean: performance to be expected when choosing a

random combination in the parameters space.
• median: to evaluate performance distribution skewness.

Table II shows that all the methods perform poorer under self-
consumption regimes (e.g. mean nRMSE 4.6 to 5.6% and 5.3
to 7% for Method D and Method C, respectively), in other
words when the demand includes a component anti-correlated
with PV generation. In terms of mean and median statistics,
Method D scores the best metrics, followed by C, B and A. In
terms of min value, Method C outperforms the other, except
for for the cases nMAE and nRMSE without self-consumption,
where Method B is better, and nME with self-consumption,
where Method D is the absolute best for all the metrics.

TABLE II
ESTIMATION PERFORMANCE STATISTICS (%)

Statistic A B C D
nRMSE with self-consumption

min 5.22 5.2 4.0 4.3
max 20.6 17.8 10.4 8.2
mean 9.7 9.2 7.0 5.5

median 8.4 8.4 7.0 5.4
nRMSE without self-consumption

min 3.5 4.4 3.4 4.1
max 17.9 17.7 9.5 8.8
mean 6.6 7.62 5.3 4.6

median 4.6 4.8 4.7 4.4
nMAE with self-consumption

min 3.3 3.3 2.5 2.7
max 14.0 11.8 8.5 5.1
mean 6.2 5.9 4.7 3.4

median 5.3 5.3 4.4 3.4
nMAE without self-consumption

min 2.2 2.8 2.3 2.5
max 12.1 11.8 5.4 5.6
mean 4.3 4.9 3.2 2.9

median 3.0 3.0 3.0 2.7
nME with self-consumption

min -13.9 -11.7 -8.1 -4.3
max -1.8 -1.8 8 4.3
mean -5.7 -5.2 2.3 -1.0

median -4.7 -4.8 -2.8 -1.3
nME without self-consumption

min -11.9 -1.2 -4.8 -5.0
max 1.9 -1.1 4.6 4.0
mean -2.2 -3.8 0.8 0.5

median -1.2 -1.7 -1.0 0.2

F. Discussion

The previous results showed that the algorithms with the
largest number of best scores is Method D, followed by C, B
and A. If only sparsely sampled power flow observations are
available (such as those from smart meters, typically at 15 min-
utes resolution), Method D should be selected because it keeps
good performance even at low resolutions. If densely sampled
observations are available, the performance of Method C and
D are comparable. In this case, Method C has two advantages:
i) parameters can be selected with an educated physical-based
guess, ii) degradation patterns are the same for both with and
without self-consumption.

When selecting the two best performing Methods (C and D),
the mean nRMSE is 7% and 5.5% and nME is rather small,
0.5 and 0.8%. The latter metric is of importance because it
denotes that estimators are almost unbiased, in other words,
even if a single estimation in time is wrong, the estimated
global PV production over a period is nearly correct.

It is worth noting that, in the proposed sensitivity analy-
sis, PV measurements have been used to assess estimation
performance. However, in practical applications when PV
observations are not available, it is not possible to do so
otherwise there would be no use for disaggregation algo-
rithms. In case of Method C (min/max nRMSE in the range
4.0 ÷ 13.6%), parameters can be chosen with an educated
guess in order to get closer to the best performance. As far as
Method D is concerned, the min/max nRMSE gap is smaller
(4.2÷9.6%), and estimation performance is good over a wide
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(a) nRMSE with self-consumption.
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Fig. 4. Method B sensitivity analysis: nRMSE as a function of the input time series sampling time and scaling parameter λ.

0.
04

0.04

0.04

0.
05

0.
05

0.
05

0.05

0.05

0.05

0.05

0.
06

0.
06

0.
06

0.06

0.06
0.06

0.060.
07

0.
07

0.
07

0.07

0.07

0.
08

0.
08

200 400 600 800
Sampling Time Ts

5

10

15

20

25

30

35

40

Pi
ec

ew
is

e 
se

gm
en

t l
en

gt
h 

c

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

m
1 [W

/m
2]

0.
04

0.04

0.04

0.
05

0.
05

0.
05

0.05

0.05

0.05

0.05

0.
06

0.
06

0.
06

0.06

0.06

0.06

0.060.
07

0.
07

0.
07

0.07

0.07

0.
08

0.
08

200 400 600 800
Sampling Time Ts

5

10

15

20

25

30

35

40

Pi
ec

ew
is

e 
se

gm
en

t l
en

gt
h 

c

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

m
1 [W

/m
2]

(a) nRMSE with self-consumption.

0.
04

0.04

0.04

0.
05

0.
05

0.
05

0.05

0.05

0.05

0.05

0.
06

0.
06

0.
06

0.06

0.06

0.06

0.060.
07

0.
07

0.
07

0.07
0.07

0.
08

0.
08

200 400 600 800
Sampling Time Ts

5

10

15

20

25

30

35

40

Pi
ec

ew
is

e 
se

gm
en

t l
en

gt
h 

c

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

m
1 [W

/m
2]

0.
04

0.04

0.04

0.
05

0.
05

0.
05

0.05

0.05

0.05

0.05

0.
06

0.
06

0.
06

0.06

0.06

0.06

0.060.
07

0.
07

0.
07

0.07

0.07

0.
08

0.
08

200 400 600 800
Sampling Time Ts

5

10

15

20

25

30

35

40

Pi
ec

ew
is

e 
se

gm
en

t l
en

gt
h 

c

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

m
1 [W

/m
2]

(b) nRMSE without self-consumption.

Fig. 5. Method C sensitivity analysis: nRMSE as a function of the input time series sampling time and and length c of the piecewise constant segment.
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Fig. 6. Method D sensitivity analysis: nRMSE as a function of the lower and upper cut-off frequencies.
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area of the parameter space. In other words, although it is not
possible to derive analytical criteria for performing an a-priori
assignment of the parameters, empirical results showed that, in
the proposed case, parameters can be chosen in a wide range
of values without a sensible deterioration of the performance.

G. Extension to cases with lower PV generation levels

In this section, the algorithms with the best performing pa-
rameters from the previous analysis are tested in scenarios with
lower PV production capacity to verify how less prominent
PV generation patterns are detrimental to their performance.
In each scenario, synthetic time series of the power flow
at the PCC are generated as the sum between the demand
and a fraction of the original PV generation. Two additional
scenarios are considered, with 50% and 25% of the original PV
capacity (17.5 and 8.75 kW, respectively), which correspond to
146 and 76% PV penetration levels (i.e. installed PV capacity
over the observed peak demand), respectively. Results are
reported in Table III. Results show that lower PV penetration
levels affects estimation performance of methods B and C
(their performance worsens approximately by a factor 2 with a
quarter of PV generation), whereas Method D is more robust
and its performance is minimally affected.

TABLE III
ESTIMATION NRMSE (%) AT DIFFERENT LEVELS OF PV PENETRATION

WITH SELF-CONSUMPTION.

Nominal PV
Capacity

(kWp)

PV
Penetration

(%)
A B C D

35.3 294 5.2 5.2 4.0 4.3
17.6 146 9.4 6.9 9.7 4.6
8.8 73 18.7 10.4 11.8 5.2

H. Computational aspects

In the disaggregation and estimation process, the only
required real-time operation is the computation of (1), a cheap
task which involves algebraic and trigonometric relationships.
Computing αo is a training process without real-time require-
ments which can be executed off-line with historical data. The
computational time is 183 s for Method A, 709 s for B, 103 s
for C and 67 s for D.4

VI. CONCLUSIONS

The problem of disaggregating a sequence of active power
flow measurements composed of unobserved PV generation
and demand into the respective trajectories was considered.
Four disaggregation algorithms were discussed. They attempt
to explain similarities between the time series of the aggre-
gated and estimated PV generation, three in the time domain
and one in the frequency domain. Estimation algorithms

4Computational times refer to a workstation equipped with an Intel Xeon
processor running at 2.70 GHz with Matlab on a virtualized operating system.
Method C and Method A,B and D were executed on two different machines,
machine 1 and 2. The computation time of Method C was adjusted by a
factor t2/t1, where t1 and t2 is the computation time of a reference problem
executed on machine 1 and 2, respectively.

leverage GHI measurements transposed onto a number of
tilted planes with the objective of explaining PV production
patterns from sites with potentially different configurations (a
key feature in urban/suburban context where PV generation
is mostly from rooftop PV facilities with tilt/azimuth config-
urations dictated by roof characteristics). The effect of the air
temperature was modelled by preprocessing GHI values with a
model-based approach. Algorithms require an offline optimiza-
tion problem-based training phase with historical data. For
three algorithms, the convexity of the underlying optimization
problem, important to assure tractability, is verifiable a-priori
by inspecting the input data. Reconstructing the PV power
output requires computing on-line an algebraic relationship
and is suitable for implementation with deterministic deadlines
and low processing power, in real-time target devices. Algo-
rithm performance was tested with data from a real-life setup,
with PV generation from multiple sites with different config-
urations, different demand profiles, and battery systems for
PV self-consumption. Results show that the best performing
algorithms estimate PV generation with a root mean square
and mean estimation errors in the ranges 3.4 ÷ 8.8% and
0.5 ÷ 2.3%, respectively, and that performance is minimally
affected by the level of PV penetration in the prosumption mix.
The practical utility of the proposed algorithms is envisaged
in the context of power and energy management of distributed
energy resources and data-driven PV generation forecasting
in those situations where information from PV plants is not
available due to issues such as privacy concerns or lack of
adequate communication infrastructures.

APPENDIX A
ON THE CONVEXITY OF METHOD B AND C

We discuss on the convexity of the problem (9)-(11). Let
P = [P1, P2, · · · , PK ], I�j = [I�j,1, · · · , I

�
jK ], j = 1, . . . , J ,

M ∈ RK×J =
(
I�1 , I

�
2 , . . . , I�J

)
the matrix obtained by

stacking horizontally the GNI columns. The estimated total PV
production (1) is (matrix product) Ĝ = Mα, which replaced
into (4) yields:

P̂ = L̂−Mα =
(
1K×K , −M

)(L̂
α

)
= Sx (16)

where 1 is the K ×K identity matrix, S =
(
1K×K ,−M

)
∈

RK×(K+J) and x = (L̂,α)T . The least square cost (9) is:

J = (P − P̂ )T (P − P̂ ) = P TP + P̂
T
P̂ − 2P T P̂ , (17)

Minimizing (17) is the same as minimizing (minimization is
invariant under sum with constants and scale factors):

J = P̂
T
P̂ − 2P T P̂ = (Sx)

T
Sx− 2P TSx = (18)

= xTSTSx− 2P TSx =
1

2
xTHx− fTx, (19)

where (16) is used, H = STS and f = STP . Eq. 19 is convex
if H is semidefinite positive. Since H depends on input data,
convexity cannot be enforced by construction, but it can be
checked numerically. It was noted that adding a regularization
term to the matrix quadratic matrix H ′ = H + β · 1 (β =
1× 10−4) helps to achieve convexity while not impacting
substantially on algorithms performance.
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An Unsupervised Method for Estimating the Global Horizontal Irradiance from

Photovoltaic Power Measurements

Lorenzo Nespolia,b,∗, Vasco Medicib

aSwiss Federal Institute of Technology in Lausanne, Switzerland
bUniversity of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland

Abstract

The precise calculation of solar irradiance is pivotal for forecasting the electric power generated by PV plants. However, on-ground

measurements are expensive and are generally not performed for small and medium-sized PV plants. Satellite-based services

represent a valid alternative to on-site measurements, but their space-time resolution is limited. In this paper we present a method

for estimating the global horizontal irradiance (GHI) from the power measurements of one or more photovoltaic (PV) systems

located in the same neighborhood. The method is completely unsupervised and is based on a physical model of a PV plant. It can

estimate the nominal power and orientation of multiple PV fields, using only the aggregated power signal from their PV power plant.

Moreover, if more than one PV power plant is available, the different signals are reconciled using outliers detection and assessing

shading patterns for each PV plant. Results from two case studies located in Switzerland are presented here. The performance of

the proposed method at estimating GHI is compared with that of free and commercial satellite services. Our results show that the

method presented here is generally better than satellite-based services, especially at high temporal resolutions.

Keywords: solar radiation, signal estimation, photovoltaic power systems, numerical optimization

1. Introduction

1.1. Motivation

Solar power generation, both at utility and residential level,

will play a central role in the future of the electric power in-

dustry, with a predicted installed power ranging from 4.3 to

14.8TW by 2050 [1]. Although this trend is certainly to be

welcomed, unless countermeasures are taken the intermittent

nature of solar generation could lead to stability issues in the

electrical grid [2]. In the distribution grid, these problems will

be further emphasized by the increase of electricity consump-

tion driven by the electrification of heat generation and mobility

[3], which will further increase the amplitude of the power and

voltage fluctuations [4].

Fortunately, in the meanwhile smart grid solutions that help to

overcome the above-mentioned issues by modulating genera-

tion and demand are becoming available and affordable. For

example, distributed energy storage systems [5] and demand

side management [6, 7] can be exploited for the active control

of distribution networks.

Nomenclature

α pv field tilt [rad]

∗Corresponding author

Email address: lorenzo.nespoli@epfl.ch (Lorenzo Nespoli )

αpr proxy tilt [rad]

β pv field azimuth [rad]

βpr proxy azimuth [rad]

δ fixed GHI increment for the computation of

derivatives [W/m2]

η combined module and inverter efficiency [−]

γ PV power temperature coefficient [1/K]

γs sun azimuth [rad]

λ stepsize for the optimization algorithm [−]

ω coefficients related to Pr [m2]

E estimation error matrix [W]

e PV estimation error [W]

Pr proxy matrix [W/m2]

F trust function

I outlier detection function

L robust loss function

N normal distribution

AOI angle of incidence [rad]
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IAM incident angle modifier [−]

I irradiance on an oriented surface [W/m2]

IAOIT irradiance corrected with the angle of incidence

and temperature [W/m2]

IAOI irradiance corrected with the angle of incidence

[W/m2]

Ib beam component of the irradiance on an oriented

surface [W/m2]

Id diffuse irradiance on an oriented surface [W/m2]

Ig ground reflected irradiance on an oriented surface

[W/m2]

ISTC reference irradiance [W/m2]

Pr proxy [W/m2]

reclear relative PV estimation error with respect to clear

sky condition[−]

µ mean of distribution

ν current iteration [−]

ω coefficient associated to Pr [m2]

φ PV cell temperature correction coefficient

[Km2/W]

ρ albedo [−]

σ standard deviation of the distribution

θz sun zenith [rad]

‖ · ‖ f r Frobenius norm

P̂ estimated power (W)

g vector of geographical coordinates

h objective function

npv number of PV power signals [−]

Pn normalized power signal [−]

Pnom PV field nominal power [W]

T number of time steps (-)

Ta ambient temperature [◦C]

Tcell PV cell temperature [◦C]

Tre f reference temperature [◦C]

DHI diffuse horizontal irradiance [W/m2]

DNI direct normal irradiance [W/m2]

GHI global horizontal irradiance [W/m2]

GHI⋆ optimized value of GHI [W/m2]

To optimize the control and guarantee the quality-of-service

in the electricity grid, it is important to predict the power flows

accurately, as this favors a sensible management of the available

flexibility. It has been shown that forecasting accuracy can be

improved when the production and consumption in the grid are

disaggregated and predicted separately [8, 9]. The disaggrega-

tion of solar generation from the total grid load can be achieved

by using on ground irradiance measurements [10]. In general,

global horizontal irradiance (GHI) measurements are often used

as exogenous input when performing both long term and short

term PV production forecasts [11, 12]. Unfortunately, accurate

on ground irradiance measurements are often not available. Al-

though irradiance measurements can also be used for the online

estimation of PV power production and for fault detection, sen-

sors are usually not installed for small and medium-sized plants,

due to their high cost. If the irradiance is not measured directly

by means of on-ground measurements, satellite estimations can

be exploited. Satellite-based radiation assessment services pro-

vide an estimate of the time course of GHI for a given location,

but their spatio-temporal resolution is constrained by technical

limitations. Most of these services are based on the images ac-

quired by the Meteosat 2nd generation satellites, which have a

spatial resolution of 3 km at the nadir and a temporal resolution

of 15 minutes [13]. These coarse resolutions limit the perfor-

mance of satellite-based nowcasting methods. Moreover, the

limited spatial resolution has a smoothing effect that can result

in reduced accuracy levels for GHI estimation at a specific lo-

cation, especially in the presence of local clouds. The active

control of distribution networks, of which some of the critical

sections can take up a small area, requires a more accurate and

fast estimate of GHI. Satellite-based methods could also profit

from an increased availability of on-ground GHI measurements,

as they could be used for calibration [14, 15, 16], a technique

also known as site adaptation.

In this study, we investigate the possibility of using local PV

power measurements to estimate GHI with a high temporal and

spatial accuracy. Being able to estimate GHI directly from PV

power measurements will allow to better estimate and forecast

the PV production of an entire neighborhood by monitoring the

power output of only a small fraction of the PV plants, without

the need to install additional irradiance sensors.

For the development of the proposed method, we focused on

accessibility and simplicity. Indeed, the method is fully unsu-

pervised and the only inputs it requires are the measurements of

the AC power output of the monitored PV plants, the ambient

temperature and the geographical coordinates of the neighbor-

hood.

1.2. Previous work

The idea of using PV plants as surrogated irradiation sen-

sors has already been researched in the past. In [17], voltage

and current measurements from a PV module were used to cal-

culate the incoming radiation on the plane of array. In [18], it is

suggested that a nearby PV plant can be used as a proxy to es-

timate the power generated by another PV installation, even if

only a linear relationship is considered between the proxy and

the estimated output. In [19], proximate PV plants are used to

2
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predict the PV outputs of other PV installations, for the pur-

poses of automatic fault detection. In [20], a clear sky index,

Kpv, is introduced: this is the ratio between the AC power of a

simulated PV plant under clear sky conditions and the actual

power measurements. The authors use a clear-sky radiation

model, a transposition model and an inverter and PV module

model. This method relies on an accurate, technical description

of the PV system, which includes the PV module orientation.

In [21], a methodology is proposed to project power generation

between different PV systems. The PV system power output is

modeled as a quadratic function of the solar irradiance on the

plane of array (POA) and the ambient temperature. The five co-

efficients of the curve must be fitted for each type of PV mod-

ule technology. The POA irradiance is obtained by inverting

the quadratic expression. The GHI is then estimated from the

POA irradiance, using an iterative procedure. In their discus-

sion, the authors suggest that simultaneously considering PV

systems with multiple orientations could increase the accuracy

of the GHI estimation. In [22], a similar methodology is pre-

sented for obtaining GHI from PV power measurements. Build-

ing on the work of [21], a correction for low angle of incidence

and wind speed is considered. The AOI correction is based on

18 coefficients, specific to the type of PV module coating con-

sidered. In all the aforementioned studies, namely [20, 21, 22],

it is assumed that the inverter type, PV module type and PV

module orientation are known. Furthermore, it is assumed that

all the modules of a given PV plant have the same orientation.

1.3. Outline and objective

Despite the increasing number of PV installations and the

abundance of available monitoring data, it is difficult to use

them to estimate the GHI signal. Considering the works previ-

ously cited in subsection 1.2, we can identify three main causes

that make this task particularly challenging:

1. Most of the estimation methods in the literature require

a detailed description of the PV systems, including PV

power plant nominal power, fields orientations, module

and inverter types. Gathering all these metadata is diffi-

cult and time consuming. Moreover, when available, the

data contained in databases could be imprecise or flawed

[23]. This could lead to erroneous estimations.

2. Occasionally, PV power plants can be composed of dif-

ferent PV fields, each field having different nominal power

and orientations. A typical case is a PV power plant with

an east-west configuration, but more complex configura-

tions are possible, as presented later in the paper. In this

cases, if we possess only a single power signal, we should

be able to retrieve nominal powers and orientations of an

arbitrary number of PV fields to correctly estimate GHI.

3. If more than a power signal is available for a given geo-

graphical location, an automated procedure is needed to

reconcile all the measurements and efficiently make use

of all the signals.

We present here a fully unsupervised method for estimating

the local GHI using only the power measurements from one or

more PV plants, without the need to know their nominal power

and module orientations. The problem of identifying PV plants

with differently oriented modules from a single power signal

is addressed by means of a robust regression. In order to in-

crease the accuracy of the GHI estimation, the method can ex-

ploit multiple power signals from different PV plants. The dif-

ferent signals are reconciled by means of outlier detection and

by determining the shading patterns of each PV plant. The code

related to the GHI estimation method, including the PV system

identification methodology, is freely available online (see Sec-

tion 7).

The paper is structured as follows: Section 2 describes the

methodology used for estimating the GHI. Section 3 discusses

the issue of how to identify the PV plant orientations without

knowing the actual GHI. Section 4 discusses the models used to

obtain the PV power production proxies. Section 5 briefly dis-

cusses the numerical methods for solving the GHI estimation

problem. In Section 6, the accuracy of the method is assessed

for two case studies, and compared to satellite-based GHI es-

timations and secondary standard pyranometer measurements.

Finally, conclusions are presented in Section 7.

2. Methodology

The combined effect of irradiance and ambient temperature

on the PV power production is well-known. Accurate empirical

models that assess the total incoming irradiation on an oriented

surface, given the GHI, are also available [24, 25]. We can

therefore build a function that links the GHI to a given PV plant

power output:

P̂ = f (GHI, t,α, β, g,Ta,Pnom) (1)

where P̂ ∈ IRT×1 is the estimate of the power generated by a

given PV plant, where T is the number of time steps in the data,

GHI ∈ IRT×1 and Ta ∈ IRT×1 are the vectors of the observed

GHI and temperatures at times t ∈ IRT×1, α and β are the vec-

tors containing the tilts and azimuths of the modules, g is a vec-

tor containing the geographical coordinates of the plant, namely

latitude, longitude and elevation, and Pnom is the vector of the

nominal powers of the modules. Function f is described later

by equations 7-16 and by the empirical disc model, as stated in

Section 4. If the module orientations and nominal powers were

known, f could be inverted in order to estimate GHI. Unfor-

tunately, f is not always invertible, especially when P̂ comes

from a PV plant with differently oriented PV modules. So, for

different values of GHI, the function f could return the same

output P. In this case, a method is required in order to choose

the correct GHI value from a range of possible choices. This

problem is solved by following two steps. First, we estimate

the panel orientation from the measured power of the given PV

plant. We then use the calculated orientations to build function

f and solve

GHI⋆ = arg min
GHI

‖P − P̂‖2 (2)

without inverting f . Here GHI⋆ refers to the optimized values

of GHI.

3
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Equation 2 can be solved by using one or more PV power sig-

nals and can therefore be easily reformulated as:

GHI⋆ = arg min
GHI

∥∥∥∥∥∥∥
1

npv

npv∑

i=1

Pn
i − P̂n

i

∥∥∥∥∥∥∥
2

(3)

where npv is the total number of PV power signals and Pn
i

and

P̂n
i

are the observed and estimated power signals normalized

with the estimated nominal power (see Section 3 for how this

is estimated). The main drawback to this formula is that, when

estimating GHI, all the PV signals are equally weighted. This

solution is not robust in the event of shadows or faulty signals.

Equation 3 can be improved in two ways:

1. Faulty signals can be statistically detected, to avoid using

them for estimating GHI

2. When the modules are partially or completely shaded, the

GHI estimation is not accurate. This effect can be miti-

gated by building a map of the error ei = Pn
i
− P̂n

i
, as a

function of the sun position (azimuth and elevation). This

map can then be used to evaluate how much a certain PV

measurement can be trusted as a function of sun position.

For the rest of the paper, we will refer to this map as the

trust function.

The above considerations lead to the more general formula:

GHI⋆ = arg min
GHI

∥∥∥∥∥∥∥
1

npv

npv∑

i=1

I(E)Fi(γs, θz)ei

∥∥∥∥∥∥∥
2

(4)

where I : IR → {0, 1} is an indicator function detecting the

presence of outliers, E = [e1, e2, ...eN] is the estimation error

matrix, F : IR → [0, 1] is the trust function and γs and θz are,

respectively, the azimuth and zenith of the sun. Here F can be

interpreted as a dynamic weight function, since γs and θz are

function of time. The role of the trust function is to attach less

importance to the calculation of the ith signal if this is believed

to be affected by shadows with a particular position of the sun.

The construction of the I and F functions is described in Sec-

tion 5.

3. Orientation assessment

PV plant orientation could theoretically be estimated from

the PV plant power measurements, and from the GHI measure-

ments, by means of the equations 7, 8, 9 and 10. The orienta-

tion estimation can be formulated as the following optimization

problem:

minimize
αi ,βi

‖Pi − P̂i‖2 (5)

where P̂i is the PV production estimated from the GHI signal.

The following aspects must be taken into account:

1. We want to estimate PV plant orientation without know-

ing the actual GHI seen by the modules

2. PV plants can consist of groups of modules with different

orientations, e.g. plants with an east-west configuration

3. The presence of shadows affects the relationships between

the GHI projection on an oriented surface and the PV

power output

4. Problem 5 is non-linear and non-convex

If the GHI seen by the modules is unknown, estimating their

orientation would result in a blind identification problem [26,

27]. We exploit the fact that we can obtain a good approxima-

tion of GHI for clear-sky periods, using a model for the extra

-terrestrial irradiation and for the air mass index. In this paper,

we used time series obtained from the Soda-pro CAMS Mc-

Clear service1, which uses the McClear clear sky model [28].

We can thus identify the PV plant orientations if we can select

clear-sky periods, using only the PV plant power output. Dif-

ferent methods can be used to exploit PV power signals in order

to identify clear-sky radiation periods. In [29], a period is con-

sidered to be clear if the measured PV power is higher than the

80% percentile of the set of measurements taken at the same

time of day, during the previous 15 days. In [23] this method is

combined with the clear-sky detection routine described in [30],

which uses GHI observation as input and a set of 5 extraction

parameters. In this paper, we first developed a selection based

on the smoothed power signals: the power output of each PV

plant is filtered using a second order low-pass Butterworth filter

[31]. We then considered a period to be clear if the root mean

squared relative error between the original and filtered signal

was lower than a threshold value.

The main drawback of this method is that its performance is

influenced by three parameters, namely the threshold value, the

low-cut frequency period and the length of the period, which

have to be tuned. Moreover, in the event of PV curtailment,

these curtailment periods can be identified as clear periods.

In order to overcome these issues, we developed a different

method. PV power signal distribution as a function of the sun

position is typically bimodal, due to the presence of clouds dur-

ing data acquisition. On the other hand, a unimodal distribution

could indicate a systematic shadow for the corresponding sun

position. In order to select clear data periods, we fit a gaus-

sian mixture probability density function with two components

Xi ∼ N(µi, σi) for each sun position, with a discretization of

5◦. Then, for each sun position we identify the observations ly-

ing in the one sigma interval of the gaussian distribution with

the largest µ as clear observations. We chose to discard other

values since they could have been potentially caused by cloud

enhancement events (higher power) or by the presence of haze

or high clouds (lower power). An example of a PV power dis-

tribution for a particular sun position is depicted in figure 1.

Despite the second model being more robust in terms of selec-

tion of clear sky periods, the task of predicting the GHI seen

by PV panels through a clear sky model presents some intrinsic

errors. Clear sky models are not perfect and it is not possible

to guarantee that the GHI seen by the PV panels is exactly the

one predicted by the clear sky models. In order to overcome

this problem and the others referred to above, instead of di-

1http://www.soda-pro.com/web-services/radiation/cams-mcclear

4
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rectly solving the optimization problem 5, we reformulated it

as a robust linear regression:

 se = 45 ± 2.5°

 sa = 225 ± 2.5°

0 1 2 3 4 5 6 7 8

!"#$"#

P
AC

 (kW)

Figure 1: Distribution of the power signal of one particular PV power plant of

the Biel-Benken case study, for θz = 45±2.5◦ and γs = 225±2.5◦ . The distribu-

tion presents a bimodal shape. We fit two gaussian distributions and considered

the leftmost peak to be caused by clouds, while we select the data between one

standard deviation from the mean of the rightmost gaussian distribution as be-

longing to clear sky periods. Values outside the one standard deviation interval

were discarded, since they could have been potentially generated during cloud

enhancement events (higher power) or in the presence of haze or high clouds

(lower power).

minimize
ωi∈IR

np
+

L (Pi − Prωi) (6)

where L is a robust loss function [32], Pr ∈ IRT×np is the proxy

matrix, each proxy being the estimated power produced by a

panel with a given orientation, ωi ∈ IR
np

+ is the coefficient vec-

tor for the ith PV installation, np and T being the number of

proxies and total number of temporal observations. The addi-

tional requirement ωi ∈ IR
np

+ forces vector ωi to have all pos-

itive values. Thus, we can interpret the components of vector

ωi as coefficients describing the significance of each proxy in

explaining the power output of the ith PV plant, rescaled for its

nominal power. Another interpretation is that non-zero entries

of ωi are the estimates of the nominal power of the ith PV plant

oriented as its corresponding proxies. Furthermore, problem 6

forces ωi to be sparse and it is robust with respect to the pres-

ence of partial shadows.

If we use a loss function of an M-estimator for L, we can solve

problem 6 using an efficient iterative reweighted least square

algorithm [33]. As previously anticipated, we could use more

than one PV signal to estimate GHI. In this case, we need

to identify a set of coefficients for each of the n signals, and

some methods to assign different weights to the estimation er-

rors arising from the different PV signals, in order to calculate

GHI more accurately.

4. Proxy Model for PV Performance

The proxies are an estimate of the electrical power gener-

ated by a panel with a given orientation and GHI. In order to

effectively solve problem 5, we need to select the most rep-

resentative proxy orientations. The tilts and azimuths of the

proxies, respectively αpr,i and βpr,i, are obtained by generating

a triangular mesh of an icosahedron on a unit sphere. This is

later refined through subdivisions, in order to increase the num-

ber of points. In this paper, the most north-facing orientations

are discarded, as shown in figure 6.

The sun azimuth and elevation are calculated based on the cur-

rent time and the altitude, longitude and latitude of the given

location. For this task we have used the pvl ephemeris.m

matlab function from the freely available Sandia National Lab-

oratories PV Collaborative Toolbox [34], which is based on the

1985 Grover Hughes’ Engineering Astronomy course at San-

dia National Laboratories. The direct normal irradiance (DNI)

is then calculated by means of the empirical disc model [35] .

The diffuse horizontal irradiance at time t DHIt is then calcu-

lated as:

DHIt = GHIt − cos
(
θz,t
)

DNIt (7)

where θz,t is the zenith angle of the sun at time t. DHI is then

used to estimate the projection of the diffuse radiation on the

given surface Id, using the Hay and Davies’ model [25]. The

overall radiation on the given surface is then given by the sum

of the diffuse, direct and ground-reflected radiation.

Ii,t = Ib,i,t + Id,i,t + Ig,i,t (8)

where Ig is the ground reflected component, calculated as:

Ig,i,t = ρGHIt

(1 − cos(αi))

2
(9)

where ρ is the albedo, which was fixed to a typical value of 0.2.

The direct irradiation on the oriented surface Ib is obtained from

the DNI:

Ib,i,t = DNIt cos(AOIi,t) (10)

where AOIi is the angle of incidence of the oriented surface i.

To calculate DNI and Id,i,t we used the PV Performance Mod-

eling Toolbox by Sandia National Laboratories [34]. Since re-

flection losses can significantly increase at large AOI [22], we

applied an AOI correction, independent from the module tech-

nology [36]:

IAOI
i,t = IAMi,tIb,i,t + 0.95(Id,i,t + Ig,i,t) (11)

where IAM is the angle of incidence modifier. We use the

following ASHRAE approximation [37]:

IAMi,t = max
(
1 − k1

(
cot(min(AOIi,t, π/2)) − 1

)
, 0
)

(12)

and k1 is 0.05.

Finally, in order to obtain a proxy for the electrical power

produced by a field with the ith orientation, we apply a cor-

rection taking into account the ambient temperature and the in-

verter and module efficiencies. The cell temperature is first es-

timated from the ambient temperature, then a linear correction

is applied [38]:

Tcell,i,t = Ta,t + φI
AOI
i,t (13)

5
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IAOIT
i,t = IAOI

i,t

[
1 + γ(Tcell,i,t − Tre f )

]
(14)

Tre f = 25◦C a reference temperature, φ and γ two coefficients.

In this study, φ and γ are not estimated and are set respectively

to the values of 3.14e-2 [Km2/W] and -4.3e-3 [1/K], which

represent crystalline silicon framed PV modules. Finally, the

proxies are corrected for the module and inverter efficiencies,

using the following equation:

Pri,t = ηtI
AOIT
i,t (15)

where ηt is the combined module and inverter efficiency. In

order to reduce the number of parameters, we modeled it as a

function of the irradiance IAOIT
i,t

using the following equation:

ηt = k2 + k3 ln(IAOIT
i,t /IS TC) + k4(ln(IAOIT

i,t /IS TC))2 (16)

where IS TC = 1000W/m2 is the reference irradiance and k2, k3, k4

are free parameters. By fitting equation 16 to typical inverter

and polycrystalline module data, we obtained the following val-

ues: k2 = 0.942, k3 = −5.02e-2, k4 = −3.77e-2.

5. Numerical optimization

5.1. Algorithm description

As stated in Section 2, function f is not always invertible.

For this reason, we solve 2, or 4 if more than one PV signal is

available. These minimizations can be naturally decomposed in

time: that is, the norm operator can be written as the sum of the

objective functions related to a single observation in time. To

keep the discussion general, we can restate the left-hand side of

equations 2, 3 and 4 as:

arg min
GHI

h(GHI) (17)

where h is a placeholder for one of the objective functions de-

fined in equations 2, 3 or 4. The overall objective function can

be restated as

h(GHI) =

T∑

t=1

ht(GHIt) (18)

where T is the total number of observations. Derivative-free

optimization algorithms such as genetic algorithms, the Nelder

Meads simplex method and particle swarm optimization algo-

rithms are badly affected by increasing numbers of decision

variables [39, 40]. General purpose nonlinear solvers usually

rely on calculating the objective function derivatives for all the

values of the decision function. This means that
∂h(GHIi)

GHI j
must be

calculated at each step. Even if it is possible to specify a pattern

for the Hessian matrix to the trust-region-reflective algorithm in

Matlab, which would significantly speed up the optimization,

this algorithm requires the analytical gradient for h, which we

do not possess [41].

For this reason, we implemented a solver for our problem. A

comparison between our solver and fmincon computational time,

when fmincon solves 4 for each time step individually, is shown

in table 1. The results are related to 1500 points. The relative

Table 1: Computational times comparison

mean s/sample std s/sample

fmincon 2.32 3.1e-2

our solver 1.8e-2 8.5e-3

difference in the solutions was below 1% with associated stan-

dard deviation of 2.02e-1 %. Our algorithm took approximately

15.7 minutes to process one year of data with a temporal res-

olution of 10 minutes, on an Intel Xenon CPU E5-2697 v2 @

2.70 GHz with 32.0 GB of RAM.

Since our objective function h is in the form described in 17,

our solver simply minimizes h(xi) ∀i ∈ [1, T ] with a steepest-

descent solution strategy. Since h(GHIi) could present local

minima as previously stated in 2, we initialized the solution

with a grid search over the possible values of GHI, as shown

in the pseudocode 1.

For each time step, we searched in a discrete space of possible

values of GHI, uniformly sampled from 0 to

GHImax,t = kGHIclear,t (19)

where GHIclear,t is the GHI calculated from the clear sky model,

and k is a safety factor accounting for the fact that particular

cloud configurations can increase the measured GHI to above

the clear sky values [42]. We use a 30-step discretization for

the grid search. Considering a standard irradiation of 1000

W/m2, this would result in an approximate accuracy level of

33.3 W/m2. We obtain a set of ng guess vectors for GHI, and

for each of them we calculate the proxies and assess the hypo-

thetic power produced by each PV plant (line 3 and 4 of algo-

rithm 1), and the PV estimation error matrix Eg ∈ IRT×npv (line

5). Then, for each time t we find the best guess GHI∗t , which is

the one that minimizes the average PV estimation error among

the different PV plants (line 8-11 of algorithm 1). Note that the

inner minimization of line 9 is inexpensive, since it consists of

finding the position of the minimum element of the average of

Eg,t,i over g, at a given t, where i refers to the ith PV plant.

Once the initial guess for GHI has been obtained, the solution

is refined as shown in the pseudocode 2. Starting from the first

guess solution, we once again determine the PV estimation er-

ror at iteration ν, and then calculate the gradient of the objective

function introduced in 4 with respect to GHI:

∇GHIh =
1

N

N∑

i=1

I(E)Fi,t∇GHIei (20)

where

∇GHIei = − (∇GHIPr)ωi (21)

note again that, since the function is time-separable, the only

non-zero elements of ∇GHIPr are those related to observations

occurring at the same time-step

∂Pri, j

∂GHIk

= 0 ∀ j , k (22)
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For this reason, the resulting tensor can be rewritten in matrix

form such that ∇GHIPr ∈ IRT,np . Each element of ∇GHIPr is

calculated as

∂Pri, j

∂GHIi

=
Pr+i, j − Pri, j

δghi

(23)

where Pr+
i, j is the jth proxy at ith observation computed from

GHI+ = GHI + δghi.

Algorithm 1 Initialize GHI

1: for g ∈ [1, ng] do ⊲ grid search initialization

2: GHIg = g/ngGHImax ⊲ linear rescale

3: Prg ← GHIg

4: P̂g = PriΩ

5: Eg = P − P̂g

6: end for

7: Find GHIg that minimize the mean PV error at each t

8: for t ∈ [1, T ] do

9: g⋆ ← arg min
g

1
np

∑np

p=1
Eg,t,i

10: GHI⋆t ← GHIg⋆,t

11: end for

Algorithm 2 Estimate GHI

1: while errν ≤ errν−1 and ν < νmax do

2: Prν ← GHIν
3: P̂ν ← PrνΩ

4: Eν ← P − P̂ν ⊲ PV estimation error

5: ∇GHIhν ← GHIν + δghi,I(E),Fi,t

6: errν = ‖E‖ f r

7: for t ∈ [1, T ] do

8: ǫt,ν =
1
N

∑N
i=1 |(ei,ν − ei,ν−1)I(E)Fi,t| ≤ 0

9: if ∼ ǫt,ν then

10: λt,ν+1 = kλt,ν

11: λt,ν = 0

12: end if

13: end for

14: GHIν+1 = GHIν − λν∇GHIhν
15: end while

Lines 7 to 13 in algorithm 2 describe the λν update strategy,

where λν is a vector of coefficients describing how much GHI

must be shifted in the direction of the objective function gradi-

ent, at the ν iteration. Instead of using a backtracking strategy,

which performs a line search on parameter λt,ν, we applied an

exponential decay on λt,ν, in the attempt to reduce the total num-

ber of function evaluations. Since the objective function is not

monotone in GHI, at each iteration ν we check if the mean esti-

mation error has decreased. In this case, λt,ν is unchanged, oth-

erwise λt,ν is set to zero (which results in not updating GHIν,t)

and the new λt,ν+1 decreases by a factor k < 1.

5.2. Trust function and outlier detection

We now illustrate the method used to construct the trust

function F (t) and the outlier detection function I(E). As previ-

ously stated in Section 2, F (t) weights the PV estimation differ-

ently based on the sun position. Greater importance is attached

to signals with lower relative estimation errors during clear sky

conditions for a given sun azimuth and elevation. Since we do

not possess the real GHI, clear sky periods must be estimated.

In order to use as much data as possible for shadow detection, a

different method from the one introduced in 3 is used. We esti-

mate the relative PV estimation error under clear sky conditions

as:

reclear,i(γs, θz) = Q0.01,γs,θz


P̂i(GHIclear) − Pi

Pi

 (24)

where Q0,01 is the 1% quantile, γs and θz are the sun azimuth

and zenith angles, discretized with a 2◦ step.

Since the reclear(γs,t, θz,t) map is assumed to be affected by

noise, in order to obtain a more significant representation of

the shadow pattern, we fit a gaussian process on top of it. We

then apply a threshold to eliminate the lowest values in the map,

which could be due to the lack of observed clear sky conditions

in the corresponding sun position. An example of the resulting

thresholded map for a given PV plant is shown in figure 2.
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Figure 2: Thresholded smoothed estimated error as a function of sun position,

for a given PV plant. This particular PV plant presents significant shadowing

during morning hours

Once the PV estimation error has been established, we use

it to map those signals that are more accurately calculated in a

given combination of γs,t and θz,t, through an inverse relation:

dt,i = reclear,i(γs,t, θz,t)
−1 (25)

Finally, since we do not want the change in GHI to be un-

bounded , we normalize the obtained distances:

Fi(γs,t, θz,t) =
di,t∑N

i=1 di,t

(26)

where di(t) is the distance of signal i at time step t. The second

strategy for improving the GHI estimation accuracy is to de-

tect outliers in different signals at each time-step t. Intuitively,

if we possess more than one power signal, we can study the

distribution of the various estimation errors and exclude from

7
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the objective function those signals that at time-step t are la-

beled as outliers, applying a standard outlier detection method.

We used Tukey’s outlier detection method [43], which is based

on the interquartile range, and which can be applied to non-

symmetric data distributions. We can now define the outliers

detection function I as:

I(ei,t) =


0, if ei,t ≤ Q0.25 − kqIQ ∨ ei,t ≥ Q0.75 + kqIQ

1, otherwise

(27)

where IQ is the interquartile range: i.e. Q0.75 − Q0.25 and kq is

a parameter dependent on the assumed distribution of et. We

used kq = 1.5, which corresponds to considering approximately

1% of the points as outliers, under normal data distribution con-

ditions. When a point is identified as an outlier, it is not used to

correct GHI. This is done by setting to zero the corresponding

elements of the objective function gradient. Formally:

∇GHIhν,io,to = 0 (28)

where io, to are the signal and timestep marked as outliers.

6. Evaluation on case studies

The proposed method has been tested on two case studies

with multiple power signals. Both case studies are located in

Switzerland and are particularly challenging for GHI estimation

since they present:

• multiple PV orientations (even at single inverter level)

• different nominal powers for each PV installation

• significant shading, due to nearby objects and/or horizon

profile

• partial PV curtailment

The first case study is located in Biel-Benken, on the north-

ern Swiss plateau close to the German and French borders. It

consists of 4 residential rooftop PV installations with nominal

powers ranging from 6.6 to 10.7 kWp. The mean distance be-

tween the PV plants and the pyranometer is approximately 150

meters. The PV plants are affected by local shading, due to the

presence of chimneys and nearby buildings. One PV plant has

two different module orientations (mounted on two folds of the

same roof). The effect of the horizon in this region is negligible.

The second case study is located in Lugano, a hilly region in the

alpine foothills. In this case the power signals are related to 5

different industrial PV plants, with nominal power ranging from

126 to 275 kWp. Several inverters are installed in each plant,

making a total number of 50 inverters. The mean distance be-

tween the PV plants and the pyranometer is approximately 300

meters. In this case the horizon is non-negligible, due to the

presence of significant topographical relief formations.

For each case study, both on-ground measurements and satel-

lite data are used for performance assessment. At each loca-

tion, an ISO 9060 secondary standard pyranometer (CMP10

and CMP21, Kipp&Zonen, Delft, The Netherlands) is used as

Table 2: Data splits for Biel-Benken Ω identification

split [days] 365 182 121 91 73

PVRMS E [-] 6.6e-2 5.7e-2 5.64e-2 5.6e-2 6.4e-2

GHIRMS E [W/m2] 41.7 34.8 34.4 33.5 35

ground-truth reference. In the first case-study, the pyranome-

ter is mounted on one of the roofs hosting the PV installa-

tions, while in the second case the pyranometer is located in

the SUPSI Trevano campus. The results were also compared

against two different satellite-based irradiation models: MACC-

RAD and SICCS. MACC-RAD uses the Heliosat-4 method [44],

while SICCS is based on a Cloud Physical Properties model

[45]. Both models are based on Meteosat satellite images. The

MACC-RAD data are freely accessible, while SICCS data are

sold by 3E.

The data for the Biel-Benken case study refer to the period

from August 1st, 2015 to August 1st, 2016, with a 1-minute

sampling time. Since this case presents a great annual varia-

tion in terms of shadow pattern, in order to increase the method

accuracy, we repeatedly identified Ω for different time splits of

the data. Then, we chose Ω as the one that minimizes the total

RMSE on the mean PV estimation error. In particular, table 2

shows the attempted split and the achieved RMSE for the PV

estimation error and for the GHI estimation error, reported here

only for comparison. The chosen split uses 3 months data folds

.

The data for the Lugano case study refer to the period from

January 1st, 2016 to June 1st, 2016, with a 10-minute sampling

time. In both case studies, equation 2 is solved for each PV

plant separately, obtaining 4 and 5 different GHI estimations,

respectively. Equation 4 is then solved using all the signals

from the different PV plants, in an attempt to improve the GHI

estimation.

Figure 3 summarizes the main results of two case studies, for

a sampling time of 10 minutes. The top graphs show the nor-

malized error distributions between GHIpy and the two satellite-

based models and between GHIpy and the solution of problem

4, where GHIpy is the signal measured by the pyranometers.

The normalization is obtained by dividing the error distribution

by a constant value kn, defined as the mean value of non-zero

GHI observations:

kn =
1

T ∗

T ∗∑

t=1

GHIpy,t ∀ GHIpy,t > 0 (29)

where T ∗ is the number of non-zero elements of vector GHIpy.

In both case studies, estimating GHI from on-ground measure-

ments significantly narrows the error distribution. The lower

part of figure 3 shows the estimated probability density function

for the absolute relative errors. Each line represents the GHI

calculated using one single PV plant, while the thick slashed

line is related to the GHI calculated using all the PV signals.

The red band represents the typical pyranometer level of ac-
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Figure 3: Error distribution for the two case studies with sampling period of 10 minutes. Upper part: empirical probability density functions of the normalized error

distributions for the estimated GHI signal and for the GHI signal from MACC-RAD and SICCS models. Lower part: empirical cumulated density functions for the

absolute relative errors of the estimated signals. Colored lines refers to the GHI signal estimated using single PV plants power signals, the black dashed line refers

to the GHI signal estimated with power signals of all the PV plants. Pale red bands refers to the confidence interval of the pyranometer

curacy. The results suggest that using more than one signal

increases the robustness and accuracy of the method. This is

partly due to the trust functions and outlier detection function,

as better explained in figure 4. As we can see, the normalized

root mean squared error decreases when we remove erratic ob-

servations from the objective function, and when we use the

trust function to weight the signals.

Figure 3 shows that the proposed method has low bias with

respect to the satellite-based methods. In order to gain addi-

tional insight into the error distributions, we performed a bias-

variance error decomposition:

RMS E2
D = (IEDe)2 +

[
IED (e − IEDe)2

]2
(30)

= bias2
D + std2

D (31)

where e is the estimation error,D is a given dataset and IED
is the expectation over the dataset D. We calculated biasD and

stdD using daily datasets. We performed the calculation using

the maximum available time resolution, for our method with

trust function and outlier detection and for the two satellite-

based methods. This procedure generates bivariate distributions

in terms of bias and standard deviation. For visualization rea-

sons, instead of showing all the points generated by this daily

decomposition, estimations of the regions containing 25, 50 and

75 % of the points, respectively, are plotted in figure 5. These

estimations were obtained using the kernel density smoother

Matlab function ksdensity. Normalized bias and normalized

standard deviation for all the observations in the datasets are

shown (filled circles). We also show the daily expected val-

ues for the normalized bias and normalized standard deviation

(diamonds). We can see from figure 5 that, in comparison with

other methods, the proposed method has a narrower distribution

in terms of bias and standard deviation.

For the Biel-Benken case study, the exact tilt, azimuth and

nominal power of the installed PV plants are known. In order to

check if these values were estimated correctly, we compared the

ground truth with the identified Ω, plotted as a function of az-

imuth and elevation in figure 6. It can be seen that the non-zero

coefficients ofΩ are close to those of the real PV plants. In fact,

except for the second PV plant, whose PV panels present more

than one orientation, the real orientations lie in the convex-hull

formed by the non-zero coefficients.

7. Conclusions

In this paper, we present an unsupervised method for esti-

mating global horizontal irradiance from the AC measurements

of one or more PV plants, consisting of PV modules of un-

known nominal power and orientation. The only inputs to the

method are the AC power signals from the PV plants, with cor-

responding timestamp, and their approximate location in terms

9
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of latitude, longitude and altitude.

An algorithm was developed to speed up the optimization of the

underlying non-linear non-convex problem. In terms of com-

putational time, this compares favorably with existing general-

purpose solvers.

The method was tested in two different case-studies, both

presenting shading and partial curtailment. With respect to other

existing satellite-based methods, the results show a significant

improvement in the GHI estimation, in terms of RMSE, as shown

in figure 4. In both case studies, the relative calculation er-

ror is within the secondary standard pyranometer confidence

interval for roughly 20-30% of the observations, as shown in 3.

The method can correctly identify the orientation and nominal

power of the PV modules, even when the PV plant presents PV

fields with different orientations. See figure 6.

The method relies on constructing proxies for the electrical power

output of the PV modules. This depends on a set of parameters,

namely β, γ, k1, k2, k3, k4, which in this study were kept fixed.

Further work is required in order to determine the influence of

these parameters on the performance of the algorithm in terms

of estimation accuracy. In this work the Maxwell empirical disc

model has been used to disaggregate the direct and diffuse ir-

radiance. In recent years, other models have been developed,

which have been shown to provide better results [46], as for

example the ENGERER2 model [47]. In future work we will

study the effect of different separation models on the algorithm

performance.

The proposed method will be used in future studies, in order

to disaggregate PV generation from electricity demand, in an

attempt to increase the accuracy of aggregated net load short-

term forecasts in a low voltage grid. The developed algorithm

is freely available as open-source code at

https://github.com/supsi-dacd-isaac/GHIEstimator.
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Abstract—In this paper, we propose a distributed control
strategy for the design of an energy market. The method relies
on a hierarchical structure of aggregators for the coordination of
prosumers (agents which can produce and consume energy). The
hierarchy reflects the voltage level separations of the electrical
grid and allows aggregating prosumers in pools, while taking
into account the grid operational constraints. To reach optimal
coordination, the prosumers communicate their forecasted power
profile to the upper level of the hierarchy. Each time the
information crosses upwards a level of the hierarchy, it is first
aggregated, both to strongly reduce the data flow and to preserve
the privacy. In the first part of the paper, the decomposition
algorithm, which is based on the alternating direction method of
multipliers (ADMM), is presented. In the second part, we explore
how the proposed algorithm scales with increasing number of
prosumers and hierarchical levels, through extensive simulations
based on randomly generated scenarios.

I. INTRODUCTION

With the penetration of renewable energy sources (RES),
a decentralized market design with self-dispatch components
is developing in the distribution grid. The demand side is
becoming increasingly capable of providing flexibility services
and contributing to a reliable power system and price stability
on power markets. As flexible generation and consumption
capacity will be highly fragmented and distributed, to better
exploit it and maximize its economical profitability a high
number of prosumers will be required to coordinate with each
other, when responding to demand response (DR) signals. A
market design that rewards flexibility needs to be set up. The
highly stochastic nature of RES generation calls for a market
that is able to operate in near real-time.

The presence of highly correlated distributed generation
increases the risk of local congestions and voltage fluctuations.
Indeed, the highly stochastic nature of RES generation calls for
near real-time control of flexibility. Many authors have tried to
achieve prosumers coordination in different ways, for instance
by modelling the market as Cournot games with constraints
[1], [2], [3], seeking Nash equilibria in non-cooperative games
[4], [5], generalized Nash equilibria [6], and as a distributed
control problem. An optimal coordination of the prosumers
can be achieved in different ways, among which making use

of aggregators is one of the most promising ones [7]. The
question of how the aggregators will achieve coordination,
however, is still matter for research with a number of promis-
ing solutions being investigated. An interesting way to exploit
flexibility of a pool of prosumers is to explicitly formulate
a common target for their aggregated power profile, and give
them economic incentives to follow this target. Energy retailers
and balance responsible parties, which bid for purchase of
energy in the energy market, would benefit from a reduction
of uncertainty in the prosumers consumption or production.
In this paper, we consider prosumers as cooperative agents
not able to modify the control algorithm that optimizes the
operations of their flexible loads. As such, we are not obliged
to choose prosumers’ utility functions that generate a unique
generalized Nash equilibrium. We will rather focus on a
distributed control protocol allowing prosumers coordination
through multiple voltage levels. In this context, a good coor-
dination protocol must ensure prosumers privacy while being
scalable. Prosumers privacy is inherently guaranteed if they
do not need to share their private information (e.g. size of
batteries, desired set-point temperatures in their homes), or
their forecasted power profile. Scalability ensures that the
computational time of coordination scales near-linearly with
increasing number of agents, allowing for fast control.
Most studies on the subject are focused on maximizing the
welfare of a group of prosumers, by means of maximiz-
ing their utility functions. In the mathematical optimization
framework, this problem can be modelled as an allocation
or exchange problem [8]. In [9] the welfare maximization
problem is considered with additional coupling constraints,
modelling line congestions. The problem is solved using a
primal-dual interior point method, considering that each agent
has access to the dual updates of his neighbours. In [10] the
same problem is solved with different multi-steps gradient
methods. In recent years, other authors proposed decompo-
sition techniques based on the theory of monotone operator
splitting [11]. These algorithms are known to have more
convenient features in terms of convergence with respect of
the gradient-based counterparts. An example of such approach,
is represented by the proximal algorithms, which are well
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suited for non-smooth, constrained, distributed optimization
[12]. In [13] the decomposition of the welfare maximization
problem under uncertainty is considered, combining proximal
gradient method and weighted gradient method. [14] proposes
a decentralized energy market that makes use of the alternate
direction method of multipliers (ADMM) [8] to split the
problem. In [15] the unit commitment problem is solved
through ADMM. In [16] a robust implementation of demand
response mechanism is introduced and solved with ADMM.
A multi-objective optimization problem aiming at maximizing
prosumer’s welfare while minimizing a system-level objective
can be modelled as a sharing problem, see for example [8],
[17]. The general sharing problem can be written as:

argmin
x∈X

e(x) +

N∑
i=1

fi(xi) (1)

where xi ∈ IRt are the prosumers’ vector of decision variables,
x = [xTi ]

T = [xT1 , ...x
T
N ]T ∈ IRNT is the concatenation of

all the decision variables, X is a convex and compact set of
constraints, e : IRNT → IR is a system-level objective function
and fi : IR

T → IR is a prosumer specific objective function.
For example, in [18] an application to the energy market is
considered, where a dynamic version of the sharing problem
with a tracking profile system-level objective is decomposed
using the Douglas-Rachford splitting. The same problem is
solved in [19], where an adaptation of the ADMM algorithm
for the sharing problem is used. This is the same solution
approach proposed in [8], §7.3. In [20] a high-level hierarchi-
cal control flow between the DSO, independent aggregators
and prosumers is proposed, but no link is given between the
different control signals. It is worth noting that some authors,
as [16], [19], [15], use the term hierarchical to refer to a single
level hierarchy, in which a the problem can be solve with a
master-slave solution scheme.
In this paper, we introduce a hierarchical market design
that exploits the flexibility of prosumers located in different
voltage levels of the distribution grid. By aggregating a higher
number of prosumers, we can better exploit their flexibility
for grid regulation. Each prosumer communicates with an
aggregator, i.e. with his parent node. The algorithm, which can
be monolithically described as a sharing problem, effectively
preserves privacy between the different levels, since only
aggregated information is available at the higher levels of the
communication structure. In the first part of the paper, we
present the algorithm used to solve the coordination problem.
In the second part, we present results from the coordination
of prosumers in different hierarchical structures. We system-
atically vary the number of levels and draw the number of
prosumers per level from a uniform distribution. Results on
convergence and computational time are presented.

II. PROBLEM FORMULATION

In this work we jointly maximize prosumers’ specific objec-
tive functions and a system-level objective, taking into account
grid constraints. Prosumer’s flexibility is modeled by means

of electrical batteries, but the approach can be generalized to
other kinds of flexibilities. Prosumers communicate only indi-
rectly, with the help of aggregators, located in the branching
nodes of the hierarchical structure.

This problem can be formulated monolithically using the
very general formulation in 1. However, 1 does not explicitly
show the tree-like dependences of the problem we would like
to solve. In order to express the hierarchical nature of the
problem, we briefly introduce the nomenclature of rooted tree
structure, from graph theory. A rooted tree τ is a unidirected
acyclic graph, with every node having exactly one parent,
except for the root node. Each node is identified by a tuple
(d1..dl...dld) where ld is the level to which the node belongs,
and each entry represent the enumeration of its lth level
ancestor. In this paper, we keep d1 = 1, and indicate the root
node as ∅. Next, we introduce the definition of the set we will
use in the description of the algorithm.

Definition II.1 (Node sets). 1) Descendants of node A =
(d1, ..dL). D(A) = {Aj = (j1, ..jLj ) : Lj >
L, (j1, .., jL) = A}

2) Leaf node L(τ) = {A ∈ τ : D(A) = ∅}
3) Nodes in level l. Nl(τ) = {A ∈ τ : L = l}
4) Branching nodes. B(τ) = \L(τ)
5) Anchestors of node A. A(A) = {Aj ∈ τ : A ∈ D(Aj)}

(1,2)(1,1)

(1,1,2)(1,1,1)

(1)

Fig. 1. Example of rooted tree hierarchical structure

Figure 1 shows a simple example of rooted tree hierarchical
structure and the tuples associated with every node. Now, we
can use the definition of branching node of level l to rewrite
problem 1. For sake of simplicity and clarity of exposition, we
assume to have only one constraint in each branching node.
We will remove this assumption in the simulations.

argmin
x

e(S∅x) +
N∑
i=1

fc,i(xi)

s.t. : SBx ≤ vB ∀ B ∈ B(τ)
(2)

where xi are the actions associated to the agent i in the
terminal node Ai, B denotes the branching nodes of the tree
τ and S ∈ IRT×N are summation matrices defined as:

SB = [MB,Aj
], MB,Aj

=

{
aB,jIIT, if Aj ∈ D(B)

0T , otherwise

where 0T and IIT are the zero and identity matrix of size T
respectively, aB,j is a weight associated to the jth descendant
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of branching node B and fc,i is the objective function of agent
i, which takes into account his agent-specific constraints:

fc,i(xi) =

{
f(xi), if xi ∈ Xi
∞, otherwise

We can now clarify how the notation used in 2 allows us to
express grid constraints in a flexible way. Again, for sake of
simplicity, in the following we only consider apparent power
and no additional uncontrolled loads. Both these assumptions
will be removed in the presented simulations. Since we are
considering a radial grid, we can express the total power at
a given branching node B as the sum of the power of its
descendants, D(B). In this case, we can set aB,j = 1 ∀j
so that SB becomes the time-summation matrix of powers
of D(B). Imposing voltage constraints in terms of apparent
power involves solving the power flow (PF) equations. Solving
the exact PF equations would result in a non-convex optimiza-
tion problem, which are in general difficult to solve. Differ-
ent convex formulations of the PF exist, the most adopted
being the DC PF model. Despite well suited for high and
medium voltage grids, this model is typically inappropriate
for distribution systems [21]. Furthermore, the DC PF still
requires susceptances, voltage angles and the knowledge of
the grid topology. Differently from the medium voltage grid,
parameters and topology are hardly available for low voltage
grids. A better linear approximation for low-voltage grids is
represented by the first order truncation of the PF equations
[22]:

|V |≈ V0 + PT∇P |V |+QT∇Q|V | (3)

where P ∈ IRn, Q ∈ IRn are the nodal active and reactive
power in a grid of n nodes and V and V0 are the voltage and
reference voltage at a given point of the grid. ∇P |V |∈ IRn and
∇Q|V |∈ IRn are the gradients with respect to the nodal active
and reactive power at each node, and are collectively called
voltage sensitivity coefficients. It has been shown that they
can be estimated using distributed sensor networks of phasor
measurement units [23] or even smart meter data [24]. We
can use this approximation, replacing aB,j with the voltage
sensitivity coefficient of node j with respect to B. If we set
vB = Vmax,B − V0,B we retrieve the formulation in 3.

III. PROBLEM DECOMPOSITION

A trivial way of decomposing the problem would consist
in repeatedly applying existent decomposed formulation of
the sharing problem for each level. This would result in an
exponentially increasing computational time, with the number
of considered levels, namely:

Ntot ∼ tnNL
i

L∏
l=1

N l
b ∼ NL

i N
L+L2

2

b (4)

where t is the computational time for each agent for solving
its local problem, n is the number of agents per level, Ni is
the number of iterations before convergence for a single level,
L is the number of levels, and Nb is the number of branches
per level. Instead of following this strategy, we decompose the

monolithic formulation of the problem to obtain a near-linear
increase of iterations with the number of levels. Problem 2 is
not decomposable as it is, due to the first term e(x) and the
coupling constraints. To decompose it, we introduce additional
variables, copy of the linear transformations of DB(τ):

argmin
x

e(y∅) +

N∑
i=1

fc,i(xi)

s.t. : yB,i = aB,ixi ∀ B ∈ B(τ), ∀i ∈ DL(B)∑
i∈DL(B)

yB,i ≤ vB ∀ B ∈ B(τ)

(5)

where DL(B) is the set containing the terminal nodes which
descent from branch B, DL(B) = D(B) ∩ L(τ) We now
formulate 5 as an unconstrained minimization problem. We do
it using an augmented Lagrangian formulation for the equality
constraints involving duplicated variables and explicitly con-
sider inequality constraints of 5 by means of the indicator
functions. See for example [12] §5.4 for a similar approach
applied to the allocation problem.

Lρ = e(y∅) +

N∑
i=1

fc,i(xi) + IYB
(yB)

+
∑

B∈B(τ)

∑
i∈DL(B)

1

2ρ
‖aB,ixi − yB,i + λB,i‖22 (6)

where yB is the sum of yB,i, defined as yB =∑
i∈DL(B) yB,i, λB,i are the dual variables associated to the

equality constraints of problem 5, ρ ∈ IR is the augmented
Lagrangian parameter, YB are the constraint sets of the in-
equalities of problem 5 and IYB

(yB) are indicator functions,
defined as:

IY(y) =

{
0, if y ∈ Y
∞, otherwise

and yB = [yB,i]. We now follow the alternating direction
method of multipliers (ADMM) strategy [8], and perform a
joint minimization-maximization of Lρ(x, y, λ). Note that the
convergence results from the ADMM algorithm allow us to
take into account extended-real-valued and non-differentiable
functions, as the indicator function. The overall decomposed
problem can be written as:
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xk+1
i = argmin

xi

fc,i(xi)+∑
A∈A(Ai)

∑
j∈DL(A)

1

2ρ
‖aA,jxkj − ykA,j + λkA,j‖22 (7)

yk+1
∅ = argmin

y∅

e(y∅)+∑
i∈DL(∅)

1

2ρ
‖a∅,ixk+1

i − y∅,i + λk∅,i‖
2
2+IY∅(y∅) (8)

yk+1
B,i = argmin

y

1

2ρ
‖aB,ixk+1

i − y + λkB,i‖22+IYB
(yB) (9)

λk+1
B,i = λkB,i + ρ(aB,ix

k+1 − yk+1
B,i ) (10)

Note that due to the definition of the SB matrices, the xi
update only involves constraints from the ancestors of node
Ai. This is thanks to the fact that in our model, actions of
node Ai do not influence agents in other subtrees, and is
the ultimate reason that justifies a hierarchical communication
structure. Note that for solving the first minimization problem,
agent i must consider all the other agent actions x−i as
fixed. It has been shown that following a Gauss-Seidel like
iteration, in which agents update their actions in sequence,
considering all the available updated actions from the other
agents, the above formulation converges [17]. Anyway, this
requires to solve the subproblems in sequence, reducing the
computational advantage of a distributed solution. We prefer
to use a parallel formulation, in which agents solve their own
problems simultaneously. This will obviously not decrease
the overall computations, but rather the effective convergence
time. We parallelize the problem fixing the average of the
auxiliary variables yB,i during their update step. This will
effectively reduce the overall number of variables and allows
for a stable parallelization. Note that the resulting formulation
can be interpreted as requiring each xi to reduce the average
constraint violations SBxk−yB minus the scaled value of the
previous iteration aB,ixk. See [19] and [8] §7.3 for a detailed
description of the method. We reformulate the iterations noting
that the yB updates can be rewritten in terms of the proximal
operator proxρf . Additionally, for all the yB but the root
node, the proximal operator of the indicator function reduces
to the projection operator ΠX .

xk+1
i = argmin

xi

fc,i(xi) +
∑

B∈A(A)

1

2ρ
‖(SBxk − ykB)/NB

− aB,ixki + xi + λ
k

B‖22 (11)

yk+1
∅ = ΠY∅(proxρe(S∅x

k+1 + λ
k

∅)) (12)

yk+1
B = ΠYB

(SBx
k+1 + λ

k

B) (13)

λ
k+1

B = λ
k

B +
ρ

NB
(SBx

k+1 − yk+1
B ) (14)

where NB is the number of descendants of branch B. Since
the root node update involves the minimization of system-
level objective function e, equation 12 projects its proximal

minimization into the root node constraint set Y∅, similarly to
proximal gradient methods, as the forward-backward splitting
[25].

The pseudocode of the update rule is summarized in Algo-
rithm 1. The sum of norms in the agent update step can be
reduced to a single norm:

xk+1
i = argmin

xi

fc,i(xi) +
1

2ρ
‖ri +Rixi −Ra,ixki ‖22 (15)

where Ri = [IIT] ∈ IRTna×T is the concatenation of na
identity matrices where na is the number of ancestors of agent
i, Ra,i = [aB,iIIT] ∈ IRTna×T, and ri = [rB ] ∈ IRTna is the
concatenation of reference signals form its ancestors:

rB = (SBx− yB)/NB + λB (16)

Algorithm 1 Hierarchical optimization
1: Initialize err = tol ∗ 2, yB = 0T , λB = 0T
2: while err ≤ tol do
3: xk+1

i ← xki , r
k
i . agents

4: yk+1
A , rk+1

B ← λB , x
k+1
D(B) . branch B

5: errk+1
B ← xk+1

D(B), y
k+1
B . primal err in branch B

6: λ
k+1

B ← λ
k

B , err
k+1 . dual variable in branch B

7: err ← errB
8: end while

We can see from the pseudocode in 1 that each agent
requires only the reference signals from its ancestors to
solve its optimization problem. Thanks to the hierarchical
communication structure, these signal can be collected from
the parent node of agent i. This allows the algorithm to be
solved in a forward-backward passage. In the forward passage
each branch B sends its reference signal rB and the one
received by its parent to his children, which propagate it
downwards through the hierarchy. At the same time, prosumers
in leaf nodes solve their optimization problem as soon as
they receive their overall reference signal ri. In the backward
passage agents send their solutions to their parents, which
collect them and send the aggregated solution upward. Note
that rB contains only aggregated information from branch B,
which ensures privacy among prosumers.

IV. SIMULATION RESULTS

In this section we present the results of the numerical
investigation of the proposed algorithm. In particular, we
simulated 500 scenarios of different hierarchical structures
in order to study the algorithm performances in terms of
computational time. In each scenario the prosumers coordinate
their actions for the day ahead. Each agent has a random
generated power profile and an electrical battery with a random
starting state of charge. The battery are considered to be
dynamic linear systems, cyclic and calendar aging are not
considered. For each scenario we built a random tree with at
most 4 aggregator levels, which means that l ∈ [2, 5]. We only
consider trees in which each branching node is the parent of at
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Fig. 2. Example case. The considered hierarchical structure has 4 levels, and a single branching node in the first 3 levels. For the first two columns, the
first row refers to the root node, second and third rows to the second and third level. First column represents the aggregated power profiles. Blue line: no
battery actions. Red line: optimized power profiles. Dashed lines: power constraints. The second column represent voltage profiles. Blue line: no battery
actions. Red line optimized voltage profiles. voltages and the state of charge (SOC) of the batteries are shown. The third column represents state of charge
of prosumers’batteries in the second, third and fourth levels.

most other 2 branching nodes, while the maximum number of
leaf nodes per branch is 10. Only leaf nodes are considered to
be flexible nodes, which means that all prosumers are located
in leaf nodes, while branching nodes are aggregators. Voltage
sensitivity coefficients for each level are randomly generated.
With these rules, we obtain a tree with maximum number of
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Fig. 3. Mean overall primal residual for all the simulations, plotted versus
the number of iterations before convergence, colored against the number of
agents.

15 branching nodes (including the root node). The objective
function of each prosumers fi is the sum of its electricity costs
or revenues:

fi(xi) =

T∑
t=1

Ci,t (17)

where the cost at time t is defined as:

Ci,t =

{
(Pui,t + xi,t)pb, if Pui,t + xi ≥ 0

−(Pui,t + xi,t)ps, otherwise

where xi is the overall power from the battery, Pui
is the

uncontrolled power of agent i, pb and ps are the buying
and selling energy prices, respectively. Note that positive
powers are considered as consumed quantities. The system-
level objective is a tracking objective with a zero power profile,
which results in a quadratic peak shaving:

e(x) = ‖S∅(x+ Pu)‖22 (18)

where Pu = [Pui
]. The simulations are carried out using an

Intel Core i7-4790K CPU @ 4.00GHz with 32 GB of RAM.
In figure 2 an example of the coordination mechanism is

shown. The considered hierarchical structure has 4 levels, and
a single branching node in the first three levels. Aggregated
power profiles, voltages and the state of charge (SOC) of the
batteries are shown.

In figure 3 the mean overall primal residual for all the
simulations is shown, where the primal residual in branch
B is errB = SBx − yB , is plotted versus the number of
iterations before convergence, which is considered reached
when err ≤ 1e−2. The line color is related to the total number
of prosumers in the related tree. As expected the number of
iterations before convergence increases with the number of
coordinated prosumers.
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Fig. 4. Estimated probability densities of the computational time divided by
the total number of agents, as a function of the number of branching levels.
The vertical bar is the interquartile range, the horizontal line is the median.

Figure 4 shows the estimated probability densities of the
agent-normalized computational time, as a function of the
number of branching levels of the considered tree.

V. CONCLUSIONS

We presented a constrained networked optimization algo-
rithm for the coordination of prosumers, which exploits a
hierarchical structure, reflecting the hierarchy of the different
voltage levels of the electrical grid. Prosumers are coordi-
nated with the help of aggregators, located at the branching
nodes. The monolithic optimization problem is decomposed
and parallelized using the ADMM, resulting in a forward-
backward communication flow in the hierarchy. The proposed
mechanism ensures that prosumers’ privacy is preserved, since
communication between different levels involves only aggre-
gated information. The numerical simulations show that the
computational time normalized with the number of prosumers
scales linearly with the number of levels. In future work
the authors will investigate the algorithm performance using
low and medium voltage test grids, by means of power flow
simulations.
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Abstract—We propose a method to design a decentralized
energy market which guarantees individual rationality (IR) in
expectation, in the presence of system-level grid constraints.
We formulate the market as a welfare maximization problem
subject to IR constraints, and we make use of Lagrangian
duality to model the problem as a n-person non-cooperative
game with a unique generalized Nash equilibrium (GNE). We
provide a distributed algorithm which converges to the GNE.
The convergence and properties of the algorithm are investigated
by means of numerical simulations.

I. INTRODUCTION

A. Motivations

The scientific community agrees that in the future the intel-
ligent activation of demand response (DR) will contribute to
a reliable power system and price stability on power markets.
Actuation of DR requires to solve an optimization problem
in order to maximize an economic objective, which typically
results in a welfare maximization problem (WMP), in which
the unweighted sum of the economic costs of a group of
agents is minimized. A very similar, and perhaps more studied
problem, is the optimal power flow (OPF) problem. The OPF
is usually solved in a centralized way by an independent
system operator (ISO), in order to minimize the generation
cost of a group of distributed power plants, over the set of
underlying grid constraints. When the number of generators in-
creases, the problem could become computationally expensive.
Furthermore, retrieving all the generator-specific parameters
could become impractical for the ISOs. For these reasons,
different decentralized formulations of the OPF exist [1],
which can speed up the computation exploiting parallelization
among the different units. Furthermore, solving the problem
in a decentralized way allows the generators to keep most of
their information and parameters private, increasing privacy
and lowering cyber-security concerns. The main difference
between the OPF and DR setting, is that the second one
involves the participation of self-serving agents, which cannot

The authors would like to thank Innosuisse - Swiss Innovation Agency
(CH) and SCCER-FURIES - Swiss Competence Center for Energy Research
- Future Swiss Electrical Infrastructure for their financial and technical support
to the research work presented in this paper. This work has been sponsored
by the Swiss Federal Office of Energy (Project nr. SI/501499)

be a-priori trusted by the ISOs. This implies that if an agent
find it profitable (in terms of its own economic utility), he
will compute a different optimization problem from the one
provided by the ISO. For this reason, some aspects of DR
formulations are better described through a game theoretic
framework.

B. Background and previous work

In this setting, we must consider that agents can adopt a
strategy si(θi), which can be in general different from the
one suggested by the ISO, based on their private information
(or type), denoted as θi, and their belief about the strategy of
the other prosumers. The well-known Vickrey-Clarke-Groves
(VCG) mechanism [2]–[4] belongs to the strategy-proof class
of mechanisms and presents other useful theoretical properties,
among which being weakly budget-balanced. Anyway, to
achieve this, it requires a value redistribution among agents
under the form of monetary taxation, such that the tax which
applies to agent i is directly or indirectly independent from
its actions. This implies that N optimization problems must
be solved, each of which is performed without considering
a given agent. This makes the computational cost quadratic
in N . Furthermore, VCGs are typically centralized and as
such, they do not preserve the privacy of the agents. For
example, in [5], a VCG mechanism for virtual inertia is
considered, in which bidders send their bidding curves to a
center, which solves N independent optimization problems.
Since the VCG mechanism guarantees that the best bidding
strategy is bidding truthfully, they send their true cost curves
ci(xi, λi) to the center. Note anyway that, if the agent’s
system presents some constraints, ci(xi, λi) must represent
them. This means that the center must know all the agent
constraint sets Xi in order to solve the VCG. The unfavorable
computational cost makes the VCG impractical for combina-
torial auctions [6] and problems with a large number of users
with a nontrivial objective function. Despite this and other
aspects which make it impractical in some cases [7], VCGs
have been extensively studied since they are the only general
purpose incentive compatible mechanisms which maximize
social welfare [8]. In order to preserve agent’s privacy, it is
possible to retrieve a distributed formulation of VCG using
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primal-dual decomposition algorithms. Note that distributing
the mechanism aggravates the scalability problem of VCG,
since the overall computation must now take into account com-
munication delays. A second effect of adopting a decentralized
formulation is that we cannot guarantee strategyproofness any-
more. This is known as the cost of decentralization [9], which
leads to a weaker notion of incentive compatibility, namely
ex-post Nash equilibrium (EPNE). Although weaker than a
dominant-strategy equilibrium, ex-post Nash equilibrium does
not require agents to model the strategies nor types of other
agents through belief functions, as it’s done using Bayes-Nash
equilibrium [10]. Following this concept, in [11] guidelines for
distributed implementations of VCG mechanisms are derived.
In [9] a distributed VCG mechanism which reuses part of
the computation done in each subproblem is presented. More
recently [12] has proposed a distributed VCG implementation
based on dual decomposition, and applied the concept of
multistage mechanism, in which different mechanisms are
applied at each primal dual update. Also in this case, the
proposed algorithm scales quadratically with the number of
agents. Another field of research, started with the seminal work
of Rosen on n-person non-cooperative games [13], adopt non-
VCG mechanisms to reach EPNE [14], [15]. This involves
allowing a loss in terms of efficiency [16], with the benefit of
better scalability with respect to the number of agents.

In this paper we propose a method to guarantee participation
constraint, also known as individual rationality (IR): all the
prosumers must have a positive return participating in the
proposed energy market, with respect to the base case. We
ensure IR allowing a coordinator to limit the Lagrangian
multipliers associated to the coupling constraints. The rest of
the paper is structured as follows: in II the specific problem
we address is formulated and we show that its associate game
mapping is monotone, which is a condition for the unique-
ness of the VGNE; in III we propose a new algorithm for
reaching the GNE, based on the alternating direction method
of multipliers (ADMM); in IV we compare the convergence
of the aforementioned algorithm with a recently proposed
[17] preconditioned forward backward (pFB) algorithm for
distributed Nash equilibrium seeking.

II. PROBLEM FORMULATION

In this work we are interested in a more general problem
with respect of the OPF. In particular, we consider the case
in which a group of agents which produce and/or consume
energy (prosumers now on) can sell their aggregated flexibility
to third parties, for example to DSO through demand response
programs or to balance responsible parties. The mathematical
formulation of this problem is known as the sharing problem:

argmin
x∈X

e(x) +

N∑
i

ci(xi)

s.t. Ax ≤ b
(1)

where X =
∏N
i=1 Xi is the Cartesian product of the

prosumers feasible sets, e(x) is a system level objective, ci(xi)

are the costs of each prosumers and the linear constraints
are affine coupling constraints between the prosumers and
x = [xT1 , ..x

T
N ] = [xi]

N
i=1 is the vector of the concatenated ac-

tions of all the prosumers. Here the affine coupling constraints
encode grid constraints, limiting voltage and power in a subset
of selected nodes of the grid in which the agents are located.
This is possible taking into account the linearized formulation
of the power flow equations [1], [18], whose coefficients can
be estimated using phasor measurement units [19], even using
smart meter data [20]. The advantage of considering coupling
constraints instead of agent-level constraints on voltage and
power is given by the fact that the first approach can reach
better solutions in terms of total welfare.

As anticipated in the introduction, we are interested in
decomposing problem (1) among the self interested prosumers,
in such a way that the induced game presents only one
variational GNE, and in the algorithms leading to such an
equilibrium. Being the equilibrium unique, rational agents will
converge to the EPGNE. This is equivalent to assume that the
agents believe their own influence on the prices broadcasted
by the sequence of mechanism proposed by the algorithm are
negligible, i.e. they are price takers.

A reasonable way to turn the centralized problem (1) into
a non-cooperative game, is to reward each prosumer with a
part of the system level objective e(x), based on the amount
of energy he produces or consumes during a give period of
time:

v(xi, x−i) = ci(xi) +
|xi|∑N
i=1|xi|

e(x) (2)

Anyway, this would result in a non-linear and non-convex
game. As a first approximation we can replace this repartition
rule with fixed (during each horizon) coefficients, based on a
moving average:

v(xi, x−i) = ci(xi) + αie(x) (3)

where

αi =

∑t
k=t−τ |xi,k|∑t

k=t−τ
∑N
i=1|xi,k|

(4)

Note that the game G(si(x), vi(x)) induced by the value
functions in (2) defines an aggregative game [21], in which
the each prosumer influence other’s prosumers value only by
means of the aggregated actions. The induced game can be
described as the set of optimization problems (5) in which
each prosumer minimizes its own value function v(xi, x−i)
and associated KKT conditions (6).{

min
xi∈Xi

v(xi, x−i)

s.t Ax ≤ b
∀i ∈ N (5)

KKT (i) =

{
0 ∈ ∂xi

vi(xi, x−i) + NXi
+ATi λi

0 ≤ λi ⊥ −(Ax− b) ≥ 0
(6)

where AT =
[
ATi
]N
i=1

and NXi
is the normal cone operator.

Before introducing the algorithms that can be used to solve 5,
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we discuss some properties of the proposed objective function.
It is known that a sufficient condition for the existence and
uniqueness of a NE for a n-person non cooperative game is
that the system-level objective function σ(x) =

∑N
i=1 vi(xi) is

diagonally strictly convex [13]. In the case of affine coupling
constraints, authors in [22] and [23] have shown that the
game has a unique variational GNE if the pseudogradient of
σ(x), F : IRNT ⇒ IRNT = [∂xivi(xi)]i also known as game
mapping, is strictly monotone. Furthermore, the equilibrium
can be reached making the agents pay Aiλi, that is, the value
function of each agent coincides with the integral of the first
row of KKT in (6), ṽi = vi(xi, x−i)+λTAixi. In this case, it
has been shown that the agents reach a variational GNE with
unique Lagrangian multiplier λ. Note that the game mapping
differs from gradient of σ(x) since its components are the
partial derivatives of the values of the ith agent with respect
to its own actions. We now show that the game map generated
by the agents’ values defined in (2) inherits monotonicity from
the convexity of e(x).

Theorem II.1. Let e(x) : IRNT → IR be a (strictly/strongly)
convex function and let the costs of the agents ci(xi) : IRT →
ĪR be convex functions. Then any repartition [αi]

N
i=1 of e(x)

among the agents such that:

1) vi(xi, x−i) = αie(x) + ci(xi)

2) αi ≥ 0 ∀i ∈ {N}

generates a (strictly/strongly) monotone game map F :
IRNT ⇒ IRNT

Proof. F = [∂xivi(xi, x−i)]
N
i=1 can be seen as a sum

of two operators: E = [∂xi
αie(xi, x−i)]

N
i=1 and C =

[∂xi
ci(xi)]

N
i=1. Due to the separability of C, it coincides with

the gradient of σ(x) =
∑N
i=1 ci(xi). Due to the convexity

of σ(x), C is a monotone map, since the gradient of a
convex function is monotone (theorem 1 in [24]). Using
the same reasoning, ∇xe(x) is a monotone map due to
the convexity of e(x). From the definition of monotonic-
ity, 〈x− y|∇xe(x)−∇ye(y)〉 ≥ 0 ∀ (x, y). Additionally,
since any convex function must be convex along any path, we
can state it component-wise: (xi − yi)(∂xie(x)− ∂yie(y)) ≥
0 ∀ (i ∈ {N}, x, y). Since we defined all αi as positive,
(xi−yi)αi(∂xi

e(x)−∂yie(y)) ≥ 0 ∀ (i ∈ {N}, x, y). Thus
〈x− y|E(x)− E(y)〉 ≥ 0 ∀ (x, y), and F is monotone
being the sum of two monotone operators.

III. ALGORITHMS FOR GNE SEEKING

As demonstrated in [23], asysmmetric projection algorithms
[25] can be used to reach a GNE of an aggregative game
with quadratic utilities. Recently, the same algorithm has been
rigorously derived modeling the GNE as a monotone inclusion
[17], showing that it coincides with a preconditioned forward
backward (pFB) method (algorithm (1)), which is a special
case of the Banach-Picard iteration [26] of two operators
whose sum is the set value mapping associated to the KKT
conditions in (6).

Algorithm 1 pFB

xk+1 = ΠX
[
xk − α(F(xk) +Atλk))

]
λk+1 = ΠIR+

[
λk + β(2Axk+1 −Axk − b)

]

We compare algorithm (1) with a trivial modification of the
ADMM algorithm [27], which convergence rate and properties
have been extensively studied in the literature. For clarity of
exposition, we start considering the version of problem (1)
without coupling constraints. This can be solved in a central-
ized way through ADMM, applying the procedure in [27] §7.3,
which results in the following parallelized formulation:

Algorithm 2 ADMM

xk+1
i = argmin

xi∈Xi

ci(xi) +
αi
2ρ
‖(Sxk − yk)/N

− xki + xi + λk‖22

+
1

2ρ
‖(Axk − yk)/N −Aixki + xi + λka‖22 (7)

yk+1 = argmin
y

e(y) +
1

2ρ
‖y − Sxk+1 − λk‖ (8)

λk+1 = λk + Sxk+1 − yk+1 (9)

yk+1
a = argmin

y
IXa

+
1

2ρ
‖ya −Axk+1 − λk‖ (10)

λk+1
a = λka +Axk+1 − yk+1

a (11)

where the only difference form the centralized algorithm is
the αi coefficient in the xi update. We can write the KKT
conditions at convergence



∂xici(x
∗
i ) + αi

λ∗

ρ
+ATi

λ∗a
ρ

+ NXi = 0 ∀i ∈ N (12a)

∂ye(y
∗)− λ∗

ρ
= 0 (12b)

y∗ = Sx∗ (12c)
0 ≤ λ∗a ⊥ −(Ax− b) ≥ 0 (12d)

We can find λ∗ from 12b and substitute it in 12a:

∂xi
ci(x

∗
i ) + αi∂ye(y

∗) +ATi
λ∗a
ρ

+ NXi
= 0 (13)

then we can use 12c, and recalling that S is the summation
matrix, we obtain:

∂xici(x
∗
i ) + αi∂xie(x

∗) +ATi
λ∗a
ρ

+ NXi = 0 (14)

which, together with 12d are equivalent to the KKT 6 of the
game 5, when vi = ci(xi) + αie(x).

A. Pricing and individual rationality

In this paper we only consider the case in which the function
e(x) is the surplus that the agent community has in paying the
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energy at the point of common coupling with the electrical
grid:

e(x) = c

(
N∑
i=1

xi

)
−

N∑
i=1

c(xi) (15)

where xi ∈ IRT is the vector of total power of the ith agent,
c(·) is the energy cost function defined as:

c(zt) =

{
pb,tzt, if zt ≥ 0

ps,tzt, otherwise
(16)

where pb,t and ps,t are the buying and selling tariffs, re-
spectively, at time t. In order to induce agents to follow the
proposed mechanism, we must ensure that the energy tariff
they pay participating in the market is always lower than the
one they pay in the base case. This is always true when we are
not taking into account grid constraints, since e(x) as defined
in (15) is always non-negative, when pb,t ≥ ps,t, as usual in
energy tariffs. However, if the agents are located in a grid with
big voltage oscillations, the Lagrangian dual variables (which
we can interpret as punishment prices) could be such that the
cost paid by the agents is higher than αie(x). To ensure IR,
we encode it in the optimization scheme. At each iteration, for
each time step in the horizon, we increment the Lagrangians
only if the following condition holds:

αie(x
k
t ) +ATi λ

k
t ≤ 0 ∀i ∈ N, ∀t ∈ T (17)

where a negative value means that the prosumer is gaining a
reward. This obviously results in the impossibility to satisfy
the coupling constraints. We can give the following straightfor-
ward economic interpretation to this mechanism: each agent
would opt-out from the game as soon as the energy tariffs
become unfavorable with respect to the existing one. Condition
(17) prevent this from happening. In the presence of bad
power quality, the DSO could provide favorable energy tariffs
to prosumers participating in the mechanism, ensuring that
condition (17) is met with high probability.

B. Prosumers problem formulation

In this paper, each prosumer’s flexibility is modeled using
an electric battery. Although simple, the model we used is
not simplistic and we briefly describe it in this subsection.
Since the effect of charging or discharging on the state of
charge is not symmetric due to the efficiencies, the problem is
usually formulated as a mixed integer linear program (MILP),
introducing binary decision variables and using bilinear con-
straints, to avoid the simultaneous charge and discharge of
the battery. Furthermore, the objective function of the agents
is non differentiable at Pm = 0 and is mathematically
described by the maximum operator. In order to speed up the
computations, we reformulated all the control problems as a
quadratic optimization.

We start considering that both the ADMM and the pFB
formulations can be described by the following optimization
problem:

argmin
xi∈Xi

f(xi, x−i) +
1

2ρ
‖Dxi − rk‖22 (18)

where r is a reference signal and D ∈ IRT×2T = IT ⊗
[1,−1], performs the sum of the charging and discharging
operations with appropriate signs. Here, with abuse of no-
tation, we redefined the vector xi ∈ IR2T as the vector
containing both the charging and discharging operators, in
such a way that xi = [Pin,t;Pout,t]

T
t=1, where Pin,t and Pout,t

are the charging and discharging powers of the battery. For the
ADMM formulation, it is easy to see that problem (18) can
be used to solve (7). We can still use (18) for solving the
pFB formulation recalling that the projected gradient descent
is equivalent to a quadratic optimization problem in the form:

argmin
xi∈Xi

(
Fi(xki ) +Atiλ

k
)T
xi +

1

2ρ
‖xi − xki ‖22 (19)

The battery is modeled as a discrete linear system, with the
state of charge denoted by s:

si,t+1 = As,isi,t +Bs,ixi,t (20)

We can eliminate the dependence on the state of the optimiza-
tion problem, using the standard batch formulation:

si = Λsi,0 + Γxi (21)

where xi ∈ IR2T×1 is the control vector for the whole time
horizon T and Λ ∈ IRT×1,Γ ∈ IRT×2T are the batch matrices.

We can now describe the set Xi through the linear con-
straints Acixi ≤ bci , defined as:

Aci =


I
I
−Γ
Γ

 bci =


xmin
xmax

−emin + Λe0
emax − Λe0

 (22)

where xmin, xmax, emin, emax ∈ IR2T are the power and
energy box constraints, while I is the identity matrix of
appropriate dimensions. Now we can reformulate the non
differentiable cost function (16) with a linear function, such
as we can reuse it in both the ADMM and pFB formulations.
We start considering that the if condition of the cost function
in (16) can be equivalently formulated using the max operator.
In turn, the max operator can be replaced by the sum of an
auxiliary variable y and appropriate inequality constraints. We
augment our decision variable such as x̃ = [xT , yT ]T . Now
the minimization of (16) is equal to the following optimization
problem:

min
x̃

lT x̃

s.t. : Ãx̃ ≤ b̃
(23)

where Ã = [Ac,i;Ay] and b̃ = [bc,i, by], and

Ay =

[
D ◦ Pb − IT
D ◦ Ps − IT

]
by =

[
−pbPm
−psPm

]
(24)

where the Pb, Ps ∈ IRT×2T tth rows entries are identical
to the buying and selling prices at time t. The effect of the
matrices in (24) is that the new auxiliary variable y is now an
upper envelope for the cost function (16). Since we require the
cost to be minimized, y will coincide with the cost function
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c(·) at optimality. We can now use Ay and by in both the
ADMM and pFB formulations. While in the first lTxi replaces
f(xi, x−i) in (18), in the latter the prosumers’ energy costs
are considered as part of the pseudogradient: Fi = l+∂xi

e(x).
This problem formulation prevent us from introducing bi-

nary variables for the charging and discharging powers, since
optimal solutions of (23) does not require to simultaneously
charge and discharge the battery at the same time. This is
not true for the ADMM formulation, in which the quadratic
penalty on the sum of Pin,t and Pout,t with respect to a ref-
erence signal rk is present. In the case in which the reference
signal rk is negative, the battery is not only incentivized to
charge itself, but to consume as much energy as possible.
This will result in a simultaneous charge and discharge, due
to the round-trip efficiency. To avoid this behavior, f(·) can
be augmented with a linear therm, punishing the battery dis-
charging operation when r is negative: f̃(x̃i) = f(x̃i) + lTp x̃i
where lp ∈ IR1×3∗T has non zero entries, all identical to a
punishment therms, only when r < 0.

IV. NUMERICAL ANALYSIS

We test both the ADMM and the pFB and compare the
performance to a centralized solution. The only difference
from the ADMM and the centralized formulation are the
αi coefficients in equation (7), which are not present in the
centralized solution. Since the system-level objective function
e(x), as defined in (15), is not differentiable in 0 and is not
strictly nor strongly convex, the convergence of pFB is not
guaranteed. To have an equal comparison, we replaced the
system-level cost function (16) with a continuously differen-
tiable function. We define it by means of its derivative:

∇z c̃(z) = (pb,t − ps,t)
tanh(kSxt) + 1

2
+ ps,t (25)

where k regulates the steepness of the function in z = 0. In
our simulations k = 10, which provides a reasonable steepness
for all the possible values of the power aggregate, since
we did all the computations in per units, and the aggregate
power constraint is Sx ∈ [−1.1, 1.1]. We stress out that this
approximation is only used for the system-level objective, and
not for the prosumers objective functions, where the cost (16)
is modeled as described in subsection III-B. In order to fairly
compare the algorithms, we used an equal stepsize ρ, fixed
to 0.1. The power profiles of each prosumer are randomly
chosen from a yearly dataset of real residential electrical
consumption. Each prosumer is equipped with a PV field, with
a nominal power uniformly distributed between 2 and 10 times
its daily energy consumption. Furthermore, each prosumer
is provided with an electric battery with size equal to the
expected daily energy exceeding its consumption. Figure 1
shows the optimized time series from a single case. In the
upper panel, the batteries’ state of charge (SOC) are shown.
Since the SOC is the time integral of the optimization variables
(Pin, Pout), it is clear that the ADMM and the pFB converged
exactly to the same solution. The middle panels shows the
forecasted aggregated power profile and the optimized one.

0 10 20 30 40 50

time step [-]

0

0.2

0.4

0.6

S
O

C
 [-

]

centr
ADMM
pFB

0 10 20 30 40 50

time step [-]

-2

-1

0

1

2

P
 [p

.u
.]

centr
ADMM
pFB

0 10 20 30 40 50

time step [-]

0.7

0.8

0.9

1

1.1

1.2

V
 [p

.u
.]

centr
ADMM
pFB

Fig. 1. Time series example, N = 10. Blue: forecasted profiles. Red:
constraints. Grays: solutions of the centralized and decentralized approaches.
Top: state of charge for each battery. Middle: power profiles. Bottom: voltage
profiles.

Note that both the ADMM and pFB solutions are not far from
the centralized solution, while differences are more evident in
terms of single prosumers SOC. The last panel shows voltage
profiles at the point of common coupling. In figure 2 the
convergence of the two algorithms is shown, in terms of game
objective function σ(x). We ran a total of 50 simulations,
each of which includes 10 prosumers with power profiles and
battery sizes randomly chosen, as explained before. For each
simulation s, we retrieve the best optimal value of σ(x), psbest,
defined as:

psbest = minimum {p∗sADMM , p
∗s
pFB} (26)

where p∗sADMM , p
∗s
pFB are the solution of the two algorithms

after 200 iterations (after which the relative change in σ(x)
for all the simulations was smaller than 1e − 5). The thick

Appendix D. Appendix D
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lines show the median, while the shadowed patches contain
half of the simulations.
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Fig. 2. Normalized optimal value p∗. The thick lines denote the median,
while the shaded areas are the 25% and 75% quantiles.

V. CONCLUSIONS

We have proposed a method to enforce IR while reaching
a EPGNE in a distributed way. The method and the related
algorithm have been tested, and compared with pFB, a state
of the art algorithm for GNE seeking. The simulations shows
that the proposed algorithm reaches the same solutions of pFB,
while showing faster convergence in most of the cases. In
future research, we will extensively investigate the advantages
of the proposed methodology.
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