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Abstract

We present a technique for the approximation of a class of Hilbert space-valued maps
which arise within the framework of Model Order Reduction for parametric partial differen-
tial equations, whose solution map has a meromorphic structure. Our MOR stategy consists
in constructing an explicit rational approximation based on few snapshots of the solution, in
an interpolatory fashion. Under some restrictions on the structure of the original problem,
we describe a priori convergence results for our technique, hereafter called minimal rational
interpolation, which show its ability to identify the main features (e.g. resonance locations)
of the target solution map. We also investigate some procedures to obtain a posteriori error
indicators, which may be employed to adapt the degree and the sampling points of the min-
imal rational interpolant. Finally, some numerical experiments are carried out to confirm
the theoretical results and the effectiveness of our technique.

1 Introduction

Mathematical models based on Partial Differential Equations are employed to analyze numer-
ically a wide array of physical, financial, and engineering-related phenomena. In many situa-
tions, such models depend on one or more parameters, either because of uncertainties or for
control/design purposes, and multiple solves of the model have to be performed for different
parameter values.

Often the “naive” approach of solving the original problem (which we will refer to as full
order model, FOM) as many times as required is not feasible, for instance because the number of
evaluations is too large, or because a real-time solution is required. In such cases, model order
reduction (MOR) is employed to reduce the computational effort needed for the solution of the
FOM. This is achieved by constructing a surrogate model, whose solution is managed to be
close to that of the FOM. The construction of the reduced model often requires a considerable
computational cost, which, however, can be done offline in a preliminary phase, whereas its
evaluation at any parameter value is quite cheap, and can be carried out online in real-time.

Many MOR techniques have been proposed for general FOMs, with the most notable and
widely applied being the Reduced Basis (RB) method [9, 10, 11, 15, 21, 26, 27, 30, 35, 36].
The RB method, in its simplest form, assumes that few samples of the solution of the FOM
(snapshots) are enough to capture the main features of the solution manifold, i.e. the set of all
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solutions of the FOM for all parameter values. Exploiting this idea, a surrogate model is built
by projecting the FOM onto a subspace generated by few pre-computed snapshots.

The effectiveness of the RB method has been verified in many cases. However, it is possible
to find some parametric problems for which projection-based MOR does not perform optimally.
Such examples are often characterized by some irregularity of the FOM (e.g. roughness, non-
linearity, lack of stability, etc. of the differential operator therein).

One simple case falling in this category, which is of primary importance in our discussion,
is the time-harmonic wave (Helmholtz) equation with parametric wavenumber:

for k ∈ K ⊂ C, find u(k) ∈ V s.t. −∆u(k)− k2u(k)
(W )
= f ∈W , (1)

where V and W ⊃ V are some suitable Banach function spaces. Depending on the choice of
K and of the boundary conditions which complement (1), the problem above may lack inf-sup
stability over K [32], due to the presence of resonant wavenumbers. If one applies carelessly the
RB method (in both its main versions, POD and greedy [35, 36]) to (1), one may observe the
appearance of spurious (“non-physical”) resonances in the surrogate model. The roots of this
issue can be traced back to linear algebra, in particular projection-based numerical methods
for eigenvalue problems, such as the Arnoldi or Lanczos techniques [19], which show analogous
behaviors.

Discussions concerning this effect can be found in works related to MOR methods for dynam-
ical systems, where problems of similar form are quite common, due to the need for frequency-
domain computations. For instance, in Krylov subspace methods [1, 13, 16, 18, 22] one employs
RB-like projection-based ideas, quite often suffering from the issues described above.

Usually, if the number of parameters is small (often, just 1), explicit rather than implicit
approximants are considered, with the surrogate model being built by enforcing interpolation or
moment matching conditions at the sample points in the parameter space, possibly in a Least
Squares (LS) way. The main representative of this class of methods is the vector fitting (VF)
algorithm [22, 23, 25, 31, 39]. VF is tailored to the specific structure of the FOM (or, more
precisely, of its solution map, see Section 2). Indeed, rational functions are employed, with
the objective of representing each resonance of the FOM by a pole of the approximant, i.e. a
root of its denominator. This turns out to be particularly useful when the resonances of the
FOM have a physical meaning, since their approximation is implicitly enclosed in the surrogate
model, from which it can be obtained with small or no computational effort.

More recently, in the wake of these methods for dynamical systems, and somehow trying to
profit from their main advantages, univariate LS Padé approximants have been introduced and
studied, both in a standard [5, 7] and a fast [6] version, in the context of a single parameter.
Such techniques are based on multiple solves of the FOM at a single parameter value, in the
same spirit as Krylov subspace methods, but yield an explicit rational approximant like VF.
Actually, LS Padé approximants are actually quite comparable to VF, the main differences
between the methods being:

(i) LS Padé approximants, particularly in their fast version, do not intrinsically need any
oversampling (i.e. taking more samples of the FOM than the actual amount needed to
ensure existence and uniqueness of the surrogate model), and they have been shown to
provide good results even without it; conversely, a heuristics commonly employed in VF
is to choose a reasonably high “sampling density” [14], namely at least twice as many
samples as the total number of resonances; in particular, VF requires, by construction,
at least as many samples as the number of parameters in the approximant, while fast LS
Padé approximants can get away with half as many;

(ii) the fast version of LS Padé approximants relies on the high-dimensionality of the samples
(namely on their linear independence), whereas VF can be applied even for scalar outputs;
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actually, if the (scalar) quantity of interest is a linear functional of the solution of the
FOM, fast LS Padé approximants can still be employed: it suffices to build a rational
approximation of the solution map, and then to apply the desired linear functional to such
surrogate solution;

(iii) the error convergence of LS Padé approximants with respect to the number of samples
and to the degree of the denominator is well understood for a reasonably broad class of
problems [5, 6], while the convergence behavior of the VF error (even with respect to the
number of VF iterations) has, to our knowledge, yet to be analyzed thoroughly [14];

(iv) LS Padé approximants are computed from moments of the solution at a single parameter,
the explicit computation of which may feature numerically instabilities; instead, VF uses
distributed samples in a LS-Lagrange (or Hermite) interpolation fashion, which does not
suffer from the same ill-conditioning issues.

In this paper we wish to develop and analyze an extension of fast LS Padé approximants
which overcomes (iv) by allowing a distributed parameter sampling, while keeping (i) and (iii)
intact. In particular, in Section 2 we introduce our method, which we name minimal rational
interpolation, and we state more precisely to which kinds of FOMs our theory applies to. Then,
in Section 3 we describe the main convergence results concerning minimal rational interpolation.
Afterwards, in Section 4 we discuss briefly the topic of a posteriori error/residual estimation for
our technique. In Section 5 we show some numerical examples to verify our theoretical claims
and show the effectiveness of our error indicator. Some concluding remarks are in Section 6.

Before we proceed, we wish to mention some details on the application of our technique
to problems depending on multiple parameters. Some work on multi-variate rational approxi-
mation has already been carried out, considering either scalar Padé approximation [12, 24], or
Krylov subspace methods for the bivariate case [39]. We do not discuss the multivariate case
here, leaving as a possible future research direction the integration of our rational approximants
in such frameworks.

2 Description of the method

Let (V, 〈·, ·〉V ) be a Hilbert space over C, with induced norm ‖·‖V , and K ⊂ C be compact. Our
task is to find a surrogate for a given map u : K → V .

Notably, we seek an approach which builds a surrogate starting only from few evaluations
(snapshots) of u. Assuming u to be the outcome of a complex computational model, such
technique qualifies as non-intrusive, in the sense that it can employ any available solver as a
“black box”.

We assume that S > 0 samples of u at the points ΞS = {µj}Sj=1 ⊂ K are available.
In particular, under some additional regularity assumptions on u, we allow confluence of the
sample points: if µj appears Kj + 1 times in ΞS , we assume to have evaluated u, as well as its
derivatives with respect to µ up to order Kj , at the point µj .

In order to set up our approximation, it is necessary to specify how many “resonances” of
u we wish to approximate. To this aim, we consider the integer N ∈ {0, . . . , S − 1}, as well as
the set of normalized polynomials of degree at most N

P?N (C) = {Q ∈ PN (C) , |||Q|||N = 1} , (2)

with |||·|||N an arbitrary (but fixed) Hilbertian norm on PN (C). Our aim will be to approximate
N resonances of u by the roots of some element of P?N (C).
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Let IΞS be the polynomial interpolation operator for V -valued functions based on samples
at the points ΞS . Namely, given φ : ΞS → V , the interpolant IΞS (φ) is the element of

PS−1 (C;V ) =

{
µ 7→

S−1∑
i=0

piµ
i, pi ∈ V for i = 0, . . . , S − 1

}
(3)

such that φ(µ′) = IΞS (φ)(µ′) for µ′ ∈ ΞS . In case of confluent sample points, such interpolation
condition has to be interpreted in a Hermite sense, with derivatives of the interpolant matching
those of the original function.

Definition 1 (Minimal rational interpolants) The minimal rational interpolant of u of
type [S − 1/N ] with samples at ΞS is the rational function

uΞS
N (µ) =

IΞS
(
uQΞS

N

)
(µ)

QΞS
N (µ)

, µ ∈ C, QΞS
N (µ) 6= 0, (4)

where the denominator QΞS
N minimizes the convex functional

jΞS (Q)2 =

∥∥∥∥ 1

(S − 1)!

dS−1

dµS−1
IΞS (uQ)

∥∥∥∥2

V

, (5)

over P?N (C).

We remark that, since jΞS is convex, the existence of a minimizer QΞS
N is guaranteed by

the compactness of P?N (C). From a more practical perspective, the minimization of jΞS can be
carried out as follows:

(i) build a V -orthonormal basis {ϕi}Si=1 of the span of the S samples {u(µj)}Sj=1, as well as
the corresponding “component map”

w(µj) = (〈u(µj), ϕi〉V )Si=1 , so that u(µj) =
S∑
i=1

wi(µj)ϕi, for j = 1, . . . , S;

(ii) fix a basis {ψl}Nl=0 of PN (C), orthonormal with respect to the scalar product associated
to |||·|||N , and employ it to represent any arbitrary Q ∈ P?N (C) by its component vector q
(by construction, ‖q‖2 = 1);

(iii) by linearity, rewrite the interpolant IΞS (uQ) as
∑S

i=1

∑N
l=0 qlI

ΞS (wiψl)ϕi, so that

jΞS (Q)2 =
S∑
i=1

∣∣∣∣∣
N∑
l=0

1

(S − 1)!

dS−1

dµS−1
IΞS (wiψl)ql

∣∣∣∣∣
2

= qHΨHΨq

(H is employed to denote conjugate transposition), with

Ψ =

(
1

(S − 1)!

dS−1

dµS−1
IΞS (wiψl)

)
i=1,...,S, l=0,...,N

∈ CS×(N+1);

(iv) after assembling the Gramian factor Ψ, obtain the required minimizer (more accurately,
its components with respect to {ψl}Nl=0) through a SVD.

For stability reasons it may be wise to replace IΞS with a Least Squares-type interpolator
IΞS
D , which yields as interpolant a degree D < S − 1 polynomial minimizing the approximation

error, computed through some discrete norm at the points ΞS , e.g.

IΞS
D (φ) = arg min

P∈PD(C;V )

∑
µ∈ΞS

w2
µ ‖φ(µ)− P (µ)‖2V .

In this case, the resulting minimal rational interpolant is of type [D/N ], and it may be necessary
to perform small adjustments to the definitions and the properties discussed below.
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2.1 Parametric problem framework

While the map u introduced above may be a very general Hilbert-space valued function, we are
often interested in approximating maps of a quite specific type. Indeed, assume that we are
given a parametric problem:

for µ ∈ K ⊂ C, find u(µ) ∈ Dom(Fµ) s.t. Fµ(u(µ)) = 0, (6)

with Fµ : V ⊃ Dom(Fµ) → V a family of densely defined operators, depending continuously
on µ. Provided the set K? ⊂ K of values of µ, for which a unique u(µ) solving (6) exists, is
non-empty, we focus on the solution map associated to (6):

u : K? → V

µ 7→ u(µ) solution of (6).
(7)

In the following, we restrict our focus to a special class of family of operators {Fµ}µ∈K ,
namely diagonal perturbations L+µI of a bijective densely defined operator L : V ⊃ Dom(L)→
V , whose inverse is compact and normal. Due to the spectral properties of L, see [6], such
operator families induce solution maps (7) that are meromorphic with simple poles over C, and
can be expressed as

u(µ) =
∑
λ∈Λ

vλ
λ− µ , (8)

where {vλ}λ∈Λ is a V -orthogonal set1, and Λ ⊂ C is countable, with no finite limit point. If Λ
is not finite, (8) has to be understood in the sense of V -convergence, for an arbitrary ordering
of Λ. Moreover, the set of excluded parameters K \K? can be characterized as the intersection
between Λ and K. In the following we will refer to the elements of Λ interchangeably as poles
or resonances of u or, by transitivity, of (6).

In our theoretical derivation, we will assume that (8) holds, with Λ having infinitely many
elements, for the sake of notation. Analogous conclusions can be obtained for finite Λ, either by
introducing slight modifications in the statements of the results, or, with an abuse of notation,
by extending Λ to a countably infinite set through the addition of fictitious poles at ∞.

3 Convergence theory

3.1 Preliminaries for convergence theory

In the next sections, we investigate the convergence properties of minimal rational interpolants
as the number of samples S increases. To this aim, it becomes necessary to introduce some
assumptions on the asymptotic properties of the sample set ΞS . We choose to follow a potential
theory-inspired approach, and we start by summarizing some classical results that can be found
e.g. in [38].

For completeness, we wish to remark that equivalent results could be obtained starting from
properties of lemniscates instead of those of Green’s functions, see e.g. [3, Section 6.6], [38,
Section 3.3], and [33]. While the path we choose to follow leads to results which are somewhat
nicer and more easily readable, the theory based on lemniscates applies also to more general
sampling strategies (e.g. confluent points), which are implicitly excluded in our derivations, see
Theorem 1.

1Most of the results in the following rely quite heavily on this orthogonality, but can be generalized to the
case of {vλ}λ∈Λ being just linearly independent, e.g. when the perturbation of L is not diagonal. The price to
pay is a “collinearity” constant in front of most results. Moreover, all results in Section 3.2 hold with halved
convergence rate, in direct analogy to the lack of symmetry/Hermitianity in the matricial case [19].
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Assume that K ⊂ C is either the closure of the finite region bounded by a Jordan curve or
a line segment with positive length. There exist a (unique) positive real number Cap(K) and a
continuous bijective conformal mapping

φK : C \K → C \ B(0,Cap(K)) = {z ∈ C, |z| ≥ Cap(K)}, (9)

holomorphic over C \K, such that |φK | = Cap(K) over ∂K, φK(∞) =∞, and φ′K(∞) = 1.
The value Cap(K) is the logarithmic capacity of K, and captures the scaling of the set. It is

a powerful concept in complex analysis, algebraic geometry, and approximation theory, and we
refer to the monograph [28] for a thorough introduction to the subject of logarithmic capacity.
In its more general framework, logarithmic capacity is well defined for any compact set in the
complex plane, and coincides with the definition above under our assumptions.

Among its properties we remark some bounds for other metrics over the complex plane: for
any compact set A ⊂ C it holds√

`(A)

π
≤ Cap(A) ≤ 1

2
diam(A) =

1

2
max
z,w∈A

|z − w| , (10)

with ` denoting the Lebesgue measure over C. In particular, zero-measure sets are not guaran-
teed to have capacity zero (e.g. Cap([−2, 2]) = 1), and both bounds in (10) are attained if A is
a closed disk.

A crucial quantity for stating convergence results in approximation theory is the Green’s
potential, which is closely related to the complex magnitude of φK :

ΦK(µ) =

{
|φK(µ)| if µ /∈ K,
Cap(K) if µ ∈ K

. (11)

In particular, we use the Green’s potential to induce an ordering in the set of poles Λ =
{λj}j=1,2,...:

ΦK(λ1) ≤ ΦK(λ2) ≤ . . . . (12)

Moreover, we require that ΦK(λN+1) > Cap(K), i.e. that the number of poles within K
is at most N , see (11) and (12). Indeed, we will show in the following that minimal rational
interpolants fail to differentiate between poles of u within K; hence, without the assumption
ΦK(λN+1) > Cap(K), the “unidentifiable” poles would distort the approximant and, in general,
prevent convergence to the target solution map.

Now, for a given sample set ΞS , we define the corresponding nodal polynomial

ωΞS (µ) =
∏
µ′∈ΞS

(
µ− µ′

)
. (13)

This allows us to state the result which motivates our interest in Green’s potentials.

Theorem 1 ([17, 38]) Let K be either the closure of the finite region bounded by a Jordan
curve or a line segment with positive length. There exists a sequence of sample sets

(
ΞKS
)
S∈N,

called Fejér points for K, such that

lim sup
S→∞

∣∣∣ωΞKS (·)
∣∣∣1/S ≤ ΦK(·) uniformly over any compact subset of C, (14)

as well as

lim
S→∞

∣∣∣ωΞKS (·)
∣∣∣1/S = ΦK(·) uniformly over any compact subset of C \ ∂K. (15)
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The Fejér points of order S for the set K admit an explicit characterization in terms of the
conformal mapping φK : if K is the closure of the finite region bounded by a Jordan curve, then

ΞKS =

{
φ−1
K

(
Cap(K) exp

{(
2π

S
j + θ

)
ι

})
, j = 1, . . . , S

}
, (16)

with ι the imaginary unit, and θ ∈ R arbitrary; if K is a line segment, they simply coincide
with the Chebyshev nodes of order S for K. �

From here onward we assume that, given S ∈ N, the sample set ΞS coincides with some set of
Fejér points ΞKS , allowing us to drop the superscript. We stress once more that we introduce
this assumption simply to streamline the derivation of the theoretical results. Our theory can
be extended to more general choices of the sample set ΞS : the only requirement is the existence
of some reasonable bound on the asymptotic behavior of the nodal polynomial, in the same
spirit as (14). In fact, some results can be generalized even in absence of such control for large
S.

A second class of considerations involves the denominator space P?N (C), whose definition
revolves around the choice of the norm |||·|||N . Depending on the type of result we wish to prove,
we may need to introduce the following assumption on the scaling of |||·|||N with respect to N .

Assumption 1 Let µ0 ∈ C be arbitrary but fixed. There exist positive constants Rµ0, cµ0, and
Cµ0, all independent of N , such that

cµ0

D∏
j=1

|µ0 − zj | ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
D∏
j=1

( · − zj)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
N

≤ Cµ0

D∏
j=1

(Rµ0 + |µ0 − zj |) , (17)

for all {zj}Dj=1 ⊂ CD, where 0 ≤ D ≤ N .

In [6] it was shown that Assumption 1 holds (with Rµ0 = cµ0 = Cµ0 = 1) for the “monomial”
norm |||·|||N = |||·|||µ0,N

defined as

|||Q|||µ0,N
=

√√√√ N∑
j=0

|qj |2, where Q =
N∑
j=0

qj ( · − µ0)j . (18)

We describe in Appendix A a more general framework, not relying on the often ill-conditioned
monomial basis, where Assumption 1 can still be shown to hold.

Many of our results do not rely on Assumption 1, but exploit the following weaker result.

Lemma 1 Let µ0 ∈ C be arbitrary but fixed. There exist positive constants Rµ0 (independent
of N), cµ0,N , and Cµ0,N , such that

cµ0,N

D∏
j=1

|µ0 − zj | ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
D∏
j=1

( · − zj)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
N

≤ Cµ0,N

D∏
j=1

(Rµ0 + |µ0 − zj |) , (19)

for all {zj}Dj=1 ⊂ CD, where 0 ≤ D ≤ N .

Proof. As described above, |||·|||N = |||·|||µ0,N
satisfies (19). The result follows by the equivalence of all

norms on a finite-dimensional space. �
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3.2 Convergence of minimal rational interpolant poles

In the present section we prove that the denominator QΞS
N described in Definition 1 performs

well in identifying the approximate position of some of the poles Λ of the solution map, among
which those within the parameter domain K. Results of similar flavor can be easily obtained
for poles located outside K, provided they are close enough, in the sense of (12).

As a preliminary step, it is useful to exploit the definition of QΞS
N to bound the minimal

value of jΞS over P?N (C).

Lemma 2 Let Q ∈ PN (C). Then

jΞS (Q)2 =
∑
λ∈Λ

‖vλ‖2V
|ωΞS (λ)|2

|Q(λ)|2 . (20)

Moreover, for any subset Λ0 of Λ with cardinality at most N , it holds

jΞS (QΞS
N ) ≤

(∑
λ∈Λ\Λ0

‖vλ‖2V
)1/2

|||ωΛ0 |||N
sup
Λ\Λ0

∣∣∣∣ωΛ0

ωΞS

∣∣∣∣ . (21)

In particular, for any ε > 0, there exists Sε,N such that

jΞS (QΞS
N ) ≤ (1 + ε)S

(∑
j>N

∥∥vλj∥∥2

V

)1/2∣∣∣∣∣∣∣∣∣∏N
j=1 ( · − λj)

∣∣∣∣∣∣∣∣∣
N

∏N
j=1 |λN+1 − λj |
ΦK(λN+1)S

for S > Sε,N , (22)

provided ΦK(λN+1) < ΦK(λN+2). If this is not true, there exists a reordering of the poles, still
satisfying (12), for which (22) holds.

Proof. The interpolation operator IΞS can be expressed in barycentric coordinates as

IΞS (φ) =
∑
µ∈ΞS

φ(µ)ωΞS (·)
( · − µ) ωΞS

′
(µ)

. (23)

Accordingly, since Q is interpolated exactly,

1

(S − 1)!

dS−1

dµS−1
IΞS (uQ) =

∑
µ∈ΞS

u(µ)Q(µ)

ωΞS
′
(µ)

=
∑
λ∈Λ

∑
µ∈ΞS

vλQ(µ)

(λ− µ) ωΞS
′
(µ)

=
∑
λ∈Λ

vλ
ωΞS (λ)

∑
µ∈ΞS

Q(µ)ωΞS (λ)

(λ− µ) ωΞS
′
(µ)

=
∑
λ∈Λ

vλ
ωΞS (λ)

Q(λ).

The first claim follows by orthonormality of {vλ}λ∈Λ.
The optimality of QΞS

N implies that

jΞS (QΞS

N )2 ≤ jΞS

(
ωΛ0

|||ωΛ0 |||N

)2

=
∑

λ∈Λ\Λ0

‖vλ‖2V
|ωΞS (λ)|2

∣∣ωΛ0(λ)
∣∣2

|||ωΛ0 |||2N
,

from which (21) follows.
Now, let ε > 0 and N be fixed, and define Λ0 = {λj}Nj=1. It remains to bound the supremum

of rΛ0,ΞS = |ωΛ0/ωΞS | over Λ \ Λ0. To this aim, let λ′S maximize rΛ0,ΞS over Λ \ Λ0 (for all S, the
supremum must be attained since rΛ0,ΞS (λ′) converges to 0 as |λ′| diverges to infinity). The set of
maximizers {λ′S}S>N must be bounded, due to the polynomial degree of ωΛ0 being fixed, and smaller
than that of ωΞS . Thus, by (15), there exists S′ = S′(ε,N,Λ,K) such that, for S > S′,

sup
Λ\Λ0

rΛ0,ΞS = sup
{λ′

S}S>N

rΛ0,ΞS ≤ (1 + ε)S sup
{λ′

S}S>N

|ωΛ0 |
ΦSK

≤ (1 + ε)S sup
Λ\Λ0

|ωΛ0 |
ΦSK

.
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Assume that ΦK(λN+1) < ΦK(λN+2): since |ωΛ0 | is independent of S, the last supremum is attained at
λN+1, provided S is large enough. This yields (22).

If ΦK(λN+1) = ΦK(λN+ν) < ΦK(λN+ν+1) for some ν > 1, the argument above still holds, provided

λN+1 maximizes |ωΛ0 | over {λN+k}νk=1. �
Before proving convergence of the roots of the approximate denominator to poles of the

solution map, we show as a preliminary result that QΞS
N takes small values close to some of the

elements of Λ.

Lemma 3 Let N be fixed. For any ε > 0, there exists Sε,N such that

∣∣∣QΞS
N (λj)

∣∣∣ ≤ Cj(1 + ε)4S

(
ΦK(λj)

ΦK(λN+1)

)2S

for S > Sε,N , (24)

for j = 1, . . . , N , with Cj independent of S and ε.

Proof. Throughout this proof, we identify PN (C) with CN+1 (endowed with the Euclidean norm)
through some isometry, so that, in particular, P?N (C) corresponds to the boundary of the unit sphere
∂BN+1(0, 1) ⊂ CN+1. A simple duality argument guarantees the existence of a family {ωλ}λ∈Λ ⊂ CN+1

such that
PN (C) 3 Q! q ∈ CN+1 implies ωHλ q = Q(λ) for λ ∈ Λ.

Let qΞS

N ∈ ∂BN+1(0, 1) be the identification of QΞS

N , and consider the Hermitian matrices GΞS , GΞS

N ∈
C(N+1)×(N+1) defined as

GΞS =
∑
λ∈Λ

‖vλ‖2V
|ωΞS (λ)|2

ωλω
H
λ and GΞS

N =

N∑
j=1

∥∥vλj

∥∥2

V

|ωΞS (λj)|2
ωλj

ωHλj
,

From here onward, the proof resembles quite closely that of Lemma 3 in [6], being essentially based
on bounding the smallest singular value of GΞS and on finding a rank-N decomposition of GΞS

N . The
final result that can be obtained is of the form: for j = 1, . . . , N , for large S, it holds

∣∣∣QΞS

N (λj)
∣∣∣ =

∣∣∣ωHλj
qΞS

N

∣∣∣ ≤ Cj(1 + ε)2S

∣∣ωΞS (λj)
∣∣2

ΦK(λN+1)2S
,

with Cj independent of S and ε. From here it suffices to bound
∣∣ωΞS (λj)

∣∣ by ((1 + ε)ΦK(λj))
S

, thanks

to (14). �
Finally, we are able to show that the poles of minimal rational approximants converge, as S

increases, to some of the elements of Λ, namely the N poles which are the “closest” according
to (12).

Theorem 2 Let N be fixed, and denote by {λΞS
j }Nj=1 the roots of QΞS

N (in case of deficient
degree, we assume the missing roots to be ∞). For any ε > 0, there exists Sε,N such that

min
i=1,...,N

∣∣∣λΞS
i − λj

∣∣∣ ≤ Cj(1 + ε)4S

(
ΦK(λj)

ΦK(λN+1)

)2S

for S > Sε,N , (25)

for j = 1, . . . , N , with Cj independent of S and ε.

Proof. We start by observing that, by the normalization of QΞS

N , it must hold

∣∣∣QΞS

N (λ)
∣∣∣ =

∏S
j=1

∣∣∣λ− λΞS
j

∣∣∣∣∣∣∣∣∣∣∣∣∏S
j=1

(
· − λΞS

j

)∣∣∣∣∣∣∣∣∣
N

≥ 1

Cµ0,N

N∏
j=1

∣∣∣λ− λΞS
j

∣∣∣
Rµ0

+ |λ− µ0|+
∣∣∣λ− λΞS

j

∣∣∣
for any arbitrary µ0 ∈ C, see Lemma 1.

From here it suffices to apply the same proof as for Theorem 2 in [6], of course with (24) replacing

the corresponding bound for fast LS-Padé denominators. �
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Going back to out original problem formulation, let 0 ≤ ν ≤ N be such that

Cap(K) = ΦK(λν) < ΦK(λν+1).

Theorem 2 shows that, for fixed N and large enough S, minimal rational interpolants approxi-
mate well the ν poles {λj}νj=1 within K, with (exactly) one root of QΞS

N converging to each of

them at rate O((Cap(K)/ΦK(λN+1))2S).

3.2.1 Pole convergence with respect to denominator degree

The statements of Lemma 3 and Theorem 2 may seem somewhat limited due to the fact that the
denominator degree N enters in the convergence bounds through the proportionality constants
and the smallest value of S for which the bounds hold definitely. This makes it impossible to
determine how the pole approximation error behaves if N is increased together with S, namely
if it diverges to infinity. In this section we try to overcome this shortcoming. The main result
we prove is the following.

Theorem 3 Take two diverging sequences of integers (Nk)k∈N and (Sk)k∈N, increasing and
strictly increasing respectively, such that Nk < Sk for all k. Let Ξ(k) be the shorthand for ΞSk ,
so that QΞ(k)

Nk
is the denominator of the [Sk − 1/Nk] minimal rational interpolant computed from

samples of u at ΞSk . We denote by {λ(k)
j }Nkj=1 the roots of QΞ(k)

Nk
.

Let Assumption 1 be satisfied for some µ0 ∈ C. Then, for all j = 1, 2, . . ., it holds

lim
k→∞

min
i=1,...,Nk

∣∣∣λ(k)
i − λj

∣∣∣ = 0. (26)

Proof. Since we are interested in asymptotic properties of the poles, in the present proof we employ
a slightly different ordering of the resonances Λ = {σj}j=1,2,..., such that

|σ1 − µ0| ≤ |σ2 − µ0| ≤ . . . . (27)

Let j ∈ N be arbitrary. Thanks to Assumption 1, it holds

∣∣∣QΞ(k)

Nk
(σj)

∣∣∣ =

∏Nk

i=1

∣∣∣σj − λ(k)
i

∣∣∣∣∣∣∣∣∣∣∣∣∏Nk

i=1

(
· − λ(k)

i

)∣∣∣∣∣∣∣∣∣
Nk

≥ 1

Cµ0

Nk∏
i=1

∣∣∣σj − λ(k)
i

∣∣∣
Rµ0

+ |σj − µ0|+
∣∣∣σj − λ(k)

i

∣∣∣
=

1

Cµ0

Nk∏
i=1

ϕj

(∣∣∣σj − λ(k)
i

∣∣∣) ,

with ϕj = ·/(Rµ0 + |σj − µ0| + ·) non-negative and strictly increasing over R+. On the other hand,

thanks to Lemma 2 with Λ0 = {σi}Nk
i=1, as well as Assumption 1, it holds

jΞ(k)

(QΞ(k)

Nk
) ≤

(∑
λ∈Λ\Λ0

‖vλ‖2V
)1/2∣∣∣∣∣∣∣∣∣∏Nk

i=1 ( · − σi)
∣∣∣∣∣∣∣∣∣
N

sup
l>Nk

∏Nk

i=1 |σl − σi|∣∣ωΞ(k)(σl)
∣∣

≤

(∑
λ∈Λ ‖vλ‖

2
V

)1/2

cµ0

sup
l>Nk

(
1∣∣ωΞ(k)(σl)

∣∣ Nk∏
i=1

∣∣∣∣ σl − σiµ0 − σi

∣∣∣∣
)

.

By observing that, thanks to (20),

∣∣∣QΞ(k)

Nk
(σj)

∣∣∣ ≤
∣∣∣ωΞ(k)

(σj)
∣∣∣∥∥vσj

∥∥
V

jΞ(k)

(QΞ(k)

Nk
),

the two bounds above can be combined to obtain

1

Cµ0

Nk∏
i=1

ϕj

(∣∣∣σj − λ(k)
i

∣∣∣) ≤
(∑

λ∈Λ ‖vλ‖
2
V

)1/2

cµ0

∥∥vσj

∥∥
V

sup
l>Nk

(∣∣∣∣∣ωΞ(k)

(σj)

ωΞ(k)(σl)

∣∣∣∣∣
Nk∏
i=1

∣∣∣∣ σl − σiµ0 − σi

∣∣∣∣
)

,
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i.e., by monotonicity of ϕj ,

ϕj

(
min

i=1,...,Nk

∣∣∣σj − λ(k)
i

∣∣∣) ≤ (C ′j sup
l>Nk

(∣∣∣∣∣ωΞ(k)

(σj)

ωΞ(k)(σl)

∣∣∣∣∣
Nk∏
i=1

∣∣∣∣ σl − σiµ0 − σi

∣∣∣∣
))1/Nk

, (28)

with C ′j = Cµ0
(
∑
λ∈Λ ‖vλ‖

2
V )1/2/(cµ0

∥∥vσj

∥∥
V

). Thanks to the bijectivity of ϕj , which maps 0 to 0, the
claim follows if we can show that the right hand side of (28) converges to 0 as k increases.

To this aim, a first step is to remove the supremum, whose argument can be simplified by introducing
the bounds

Nk∏
i=1

∣∣∣∣ σl − σiµ0 − σi

∣∣∣∣ ≤ Nk∏
i=1

|µ0 − σl|+ |µ0 − σi|
|µ0 − σi|

≤
Nk∏
i=1

2 |µ0 − σl|
|µ0 − σi|

=
2Nk |µ0 − σl|Nk∏Nk

i=1 |µ0 − σi|

and ∣∣∣∣∣ωΞ(k)

(σj)

ωΞ(k)(σl)

∣∣∣∣∣ =
∏

µ′∈Ξ(k)

∣∣∣∣µ′ − σjµ′ − σl

∣∣∣∣ ≤ ∏
µ′∈Ξ(k)

|µ0 − σj |+ |µ0 − µ′|
||µ0 − σl| − |µ0 − µ′||

,

where the term |µ0 − µ′| can be easily upper-bounded by Rµ0,K = maxK | · − µ0|.
Now, let k be large enough, so that |µ0 − σNk+1| > Rµ0,K . Then the absolute value in the last bound

can be omitted, and it must hold∣∣∣∣∣ωΞ(k)

(σj)

ωΞ(k)(σl)

∣∣∣∣∣
Nk∏
i=1

∣∣∣∣ σl − σiµ0 − σi

∣∣∣∣ ≤( |µ0 − σj |+Rµ0,K

|µ0 − σl| −Rµ0,K

)Sk 2Nk |µ0 − σl|Nk∏Nk

i=1 |µ0 − σi|

=2Nk

( |µ0 − σj |+Rµ0,K

|µ0 − σl| −Rµ0,K

)Sk−Nk
( |µ0 − σl|
|µ0 − σl| −Rµ0,K

)Nk

×

×
Nk∏
i=1

|µ0 − σj |+Rµ0,K

|µ0 − σi|
.

Going back to the supremum, it is easy to see that all the terms depending on l in the right hand side
above are maximized (over l > Nk) by the choice l = Nk + 1, thanks to (27). This, after a suitable
rearrangement of the terms, leads to

ϕj

(
min

i=1,...,Nk

∣∣∣σj − λ(k)
i

∣∣∣) ≤ 2 C ′j
1/Nk

( |µ0 − σj |+Rµ0,K

|µ0 − σNk+1| −Rµ0,K

)Sk/Nk−1

×

× |µ0 − σNk+1|
|µ0 − σNk+1| −Rµ0,K

Nk∏
i=1

( |µ0 − σj |+Rµ0,K

|µ0 − σi|

)1/Nk

. (29)

All of the factors appearing in (29), except for the last one, can be easily shown to be bounded as k
(and consequently Nk) goes to ∞. Hence, it suffices to show that

lim
k→∞

Nk∏
i=1

( |µ0 − σj |+Rµ0,K

|µ0 − σi|

)1/Nk

= 0.

To this aim, the Stolz-Cesàro [2] theorem can be applied to prove that

lim
N→∞

1

N

N∑
i=1

log

( |µ0 − σj |+Rµ0,K

|µ0 − σi|

)
= lim
N→∞

log

( |µ0 − σj |+Rµ0,K

|µ0 − σN+1|

)
= −∞,

yielding the claim. �
We can observe that this more general result does not provide any information about the

rate of convergence, at least not a meaningful one for typical applications. Indeed, most of
the steps in the proof above introduce gross simplifications, which make it impossible for the
intermediate bounds (28) and (29) to be reasonably sharp, except in extremely pathological
cases.
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3.3 Convergence of minimal rational interpolants

As a complement to the previous results, in this section we investigate the approximation prop-
erties of the whole minimal rational interpolant uΞS

N , the reference being the map u. Similarly

to the analysis of the denominator QΞS
N , we start by fixing the denominator degree N , and by

proving convergence with respect to the number of samples S.

Theorem 4 Let N and ε > 0 be fixed. There exists Sε,N such that, given an arbitrary compact
subset E of {µ ∈ C,ΦK(µ) < ΦK(λN+1)} \ Λ,∥∥∥u(µ)− uΞS

N (µ)
∥∥∥
V
≤ CE(1 + ε)2S

(
ΦK(µ)

ΦK(λN+1)

)S
for all µ ∈ E, for S > Sε,N , (30)

with CE independent of S and ε.

Proof. We start by deriving a useful identity for the error u− uΞS

N : since QΞS

N is interpolated exactly
by IΞS , we can exploit identity (23) to obtain

QΞS

N (µ)
(
u(µ)− uΞS

N (µ)
)

=u(µ)IΞS (QΞS

N )(µ)− IΞS (uQΞS

N )(µ) (31)

=
∑
µ′∈ΞS

∑
λ∈Λ

QΞS

N (µ′)ωΞS (µ)

(µ− µ′) ωΞS
′
(µ′)

(
vλ

λ− µ −
vλ

λ− µ′
)

=− ωΞS (µ)
∑
λ∈Λ

vλ
λ− µ

∑
µ′∈ΞS

QΞS

N (µ′)

(λ− µ′) ωΞS
′
(µ′)

=− ωΞS (µ)
∑
λ∈Λ

vλ
(λ− µ)ωΞS (λ)

QΞS

N (λ). (32)

After dividing by QΞS

N (µ), taking the norm, and applying Lemma 2, we obtain

∥∥∥u(µ)− uΞS

N (µ)
∥∥∥
V

=

∣∣∣∣∣ωΞS (µ)

QΞS

N (µ)

∣∣∣∣∣
(∑
λ∈Λ

‖vλ‖2V
|λ− µ|2 |ωΞS (λ)|2

∣∣∣QΞS

N (λ)
∣∣∣2)1/2

≤
∣∣∣∣∣ωΞS (µ)

QΞS

N (µ)

∣∣∣∣∣ 1

minΛ | · − µ|
jΞS (QΞS

N ) (33)

≤
∣∣∣∣∣ωΞS (µ)

QΞS

N (µ)

∣∣∣∣∣ 1

minΛ | · − µ|
(1 + ε)S

C ′

ΦK(λN+1)S
,

for S large enough. In particular, the constant C ′ is independent of S and ε.

Now, due to (14), the term
∣∣ωΞS

∣∣ can be bounded by (1 + ε)SΦSK for S large enough. Thus, it just

remains to show that |QΞS

N (µ)|minΛ | · − µ| is bounded away from 0 for µ ∈ E. Since E is a compact

subset of C \ Λ, the second factor is not troublesome. The first term is more problematic, since QΞS

N

may have roots inside E. However, a combination of Theorem 2 and of the triangular inequality ensures

that, for S large enough, each root of QΞS

N has distance from E bounded away from 0. This yields the

claim. �
If we restrict our interest to compact subsets E of K \Λ, we can obtain the simplified result

max
µ∈E

∥∥∥u(µ)− uΞS
N (µ)

∥∥∥
V
≤ CE

(
(1 + ε)2Cap(K)

ΦK(λN+1)

)S
. (34)

Thus, provided N is chosen large enough, the rate of convergence of the approximation error is
the same one that we could expect from polynomial approximants for a function holomorphic
over {µ ∈ C,ΦK(µ) < ΦK(λN+1)}, having a pole or singularity at λN+1.
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3.3.1 Error convergence with respect to denominator degree

Just like Section 3.2.1 describes an extension for variable N of the convergence theory for
approximate poles, here we consider a generalization of the error convergence theory in the
case of diverging denominator degree. The result we are able to show is of a flavor similar to
Theorem 3, and is summarized in the following.

Theorem 5 Take two diverging sequences of integers (Nk)k∈N and (Sk)k∈N, increasing and
strictly increasing respectively, such that Nk < Sk for all k. As in Theorem 3, let Ξ(k) be the
shorthand for ΞSk . Let E ⊂ C be compact, and let Assumption 1 be satisfied for some fixed
µ0 ∈ C. Then, for all ε > 0, it holds

lim
k→∞

Cap
({
µ ∈ E,

∥∥∥u(µ)− uΞ(k)

Nk
(µ)
∥∥∥
V
≥ ε
})

= 0, (35)

with Cap denoting the logarithmic capacity, see Section 3.1.

Proof. We rely on some concepts introduced in the proofs of Theorems 3 and 4, namely the pole
ordering (27) and the intermediate bound (33). In particular, by exploiting (21) with Λ0 = {σj}Nk

j=1,
(33) yields

∥∥∥u(µ)− uΞ(k)

Nk
(µ)
∥∥∥
V
≤

∣∣∣ωΞ(k)

(µ)
∣∣∣∣∣∣QΞ(k)

Nk
(µ)
∣∣∣minΛ | · − µ|

(∑
λ∈Λ ‖vλ‖

2
V

)1/2∣∣∣∣∣∣∣∣∣∏Nk

i=1 ( · − σi)
∣∣∣∣∣∣∣∣∣
Nk

sup
l>Nk

∏Nk

i=1 |σl − σi|∣∣ωΞ(k)(σl)
∣∣ .

By following the same steps as in the proof of Theorem 3, we can simplify the |||·|||Nk
-norm and the

supremum to obtain

∥∥∥u(µ)− uΞ(k)

Nk
(µ)
∥∥∥
V
≤

2Nk

(∑
λ∈Λ ‖vλ‖

2
V

)1/2

cµ0

∣∣∣QΞ(k)

Nk
(µ)
∣∣∣minΛ | · − µ|

(
R+Rµ0,K

|µ0 − σNk+1| −Rµ0,K

)Sk−Nk

×

×
( |µ0 − σNk+1|
|µ0 − σNk+1| −Rµ0,K

)Nk Nk∏
i=1

R+Rµ0,K

|µ0 − σi|
, (36)

with R = maxE | · − µ0|. In order to obtain the desired result, we need to manage carefully the two
troublesome µ-dependent terms in the denominator.

To this aim, let Λ(k) = {λ(k)
j }Nk

j=1 be the set of roots of QΞ(k)

Nk
. We partition Λ(k) into two (potentially

empty) sets Λ
(k)
in and Λ

(k)
out according to the characterization

λ
(k)
j ∈ Λ

(k)
in if and only if

∣∣∣λ(k)
j − µ0

∣∣∣ ≤ 2R.

Given #Λ
(k)
in and N the cardinalities of Λ

(k)
in and Λ ∩E respectively, we define the family of lemniscates

Ek,δ =

µ ∈ C,

 ∏
λ′∈Λ

(k)
in

|µ− λ′|

( ∏
λ∈Λ∩E

|µ− λ|
)
≤ δ#Λ

(k)
in +N

 , (37)

which depends on the index k and on the (small) value δ > 0.
We remark that the exponent of δ in (37) is equal to the degree of the monic polynomial (in µ) whose

magnitude is the left hand side of the inequality. Thus [3, Theorem 6.6.3], the logarithmic capacity of
Ek,δ is equal2 to δ.

The main structure of the remainder of the proof is the following:

(i) we define explicitly a sequence (δk)k=1,2,... converging to 0;

2We are assuming without loss of generality that #Λ
(k)
in + N > 0. If this is not the case, Ek,δ is empty for

δ < 1, and the claim holds quite trivially.
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(ii) we show that
∥∥∥u(µ)− uΞ(k)

Nk
(µ)
∥∥∥
V
< ε for all µ ∈ E \ Ek,δk , provided k is large enough.

Then the claim follows, since, by inclusion,

0 ≤ lim
k→∞

Cap
({
µ ∈ E,

∥∥∥u(µ)− uΞ(k)

Nk
(µ)
∥∥∥
V
≥ ε
})
≤ lim
k→∞

Cap (Ek,δk) = lim
k→∞

δk = 0.

However, before we can proceed with either step, it is necessary to introduce some additional bounds

in (36). First, since QΞ(k)

Nk
is normalized, by Assumption 1 it must hold

∣∣∣QΞ(k)

Nk
(µ)
∣∣∣ =

∏Nk

i=1

∣∣∣µ− λ(k)
i

∣∣∣∣∣∣∣∣∣∣∣∣∏Nk

i=1

(
· − λ(k)

i

)∣∣∣∣∣∣∣∣∣
Nk

≥ 1

Cµ0

Nk∏
i=1

∣∣∣µ− λ(k)
i

∣∣∣
Rµ0

+
∣∣∣µ0 − λ(k)

i

∣∣∣
=

1

Cµ0

 ∏
λ′∈Λ

(k)
in

|µ− λ′|
Rµ0 + |µ0 − λ′|


 ∏
λ′′∈Λ

(k)
out

|µ− λ′′|
Rµ0 + |µ0 − λ′′|

 .

In the first group of factors, we can upper-bound |µ0 − λ′| by 2R. In the second group, since |µ− µ0| ≤ R
for all µ ∈ E by definition, it holds

|µ− λ′′|
Rµ0 + |µ0 − λ′′|

≥ |µ0 − λ′′|
Rµ0 + |µ0 − λ′′|

− |µ− µ0|
Rµ0 + |µ0 − λ′′|

≥ R

Rµ0 + 2R
.

Hence, ∣∣∣QΞ(k)

Nk
(µ)
∣∣∣ ≥ 1

Cµ0

RNk−#Λ
(k)
in

(Rµ0
+ 2R)

Nk

∏
λ′∈Λ

(k)
in

|µ− λ′| ,

which leads to

∣∣∣QΞ(k)

Nk
(µ)
∣∣∣ ∏
λ∈Λ∩E

|µ− λ| ≥ RNk−#Λ
(k)
in

Cµ0
(Rµ0

+ 2R)
Nk

 ∏
λ′∈Λ

(k)
in

|µ− λ′|

( ∏
λ∈Λ∩E

|µ− λ|
)

>
RNk−#Λ

(k)
in δ#Λ

(k)
in +N

Cµ0
(Rµ0

+ 2R)
Nk
≥ δNk+N

Cµ0
(Rµ0

+ 2R)
Nk

,

provided δ ≤ R, for all µ ∈ E \ Ek,δ.
Accordingly, we can simplify (36) for all µ ∈ E \ Ek,δ:

∥∥∥u(µ)− uΞ(k)

Nk
(µ)
∥∥∥
V
<
Cµ0

cµ0

(∑
λ∈Λ

‖vλ‖2V

)1/2 ∏
λ∈Λ∩E |µ− λ|
minΛ | · − µ|

2Nk (Rµ0
+ 2R)

Nk

δNk+N
×

×
(

R+Rµ0,K

|µ0 − σNk+1| −Rµ0,K

)Sk−Nk
( |µ0 − σNk+1|
|µ0 − σNk+1| −Rµ0,K

)Nk Nk∏
i=1

R+Rµ0,K

|µ0 − σi|
. (38)

Since E is compact and Λ has no finite limit point, the distance between E and Λ \E is strictly positive.
Hence, the quantity

Cµ0

cµ0

(∑
λ∈Λ

‖vλ‖2V

)1/2 ∏
λ∈Λ∩E |µ− λ|
minΛ | · − µ|

can be upper-bounded for all µ ∈ E by a constant C ′ depending only on E, µ0, and Λ.
Now it is trivial to achieve (ii) by setting

δ = δk =

(
C ′2Nk (Rµ0

+ 2R)
Nk

ε

(
R+Rµ0,K

|µ0 − σNk+1| −Rµ0,K

)Sk−Nk

×

×
( |µ0 − σNk+1|
|µ0 − σNk+1| −Rµ0,K

)Nk Nk∏
i=1

R+Rµ0,K

|µ0 − σi|

)1/(Nk+N)

. (39)
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We remark that we still need to guarantee that the working assumption δ ≤ R is satisfied. However,
since we are planning to prove (i), such condition will trivially hold, provided k is large enough.

At this point, it suffices to apply the same strategy employed in the final part of the proof of
Theorem 3. In particular, thanks to the Stolz-Cesàro theorem, it can be proven that

lim
k→∞

(
Nk∏
i=1

R+Rµ0,K

|µ0 − σi|

)1/(Nk+N)

= lim
N→∞

R+Rµ0,K

|µ0 − σN+1|
= 0,

while all other factors in (39) remain bounded as k increases. �

Due to (10), Theorem 5 can be weakened to prove the convergence in probability of uΞ(k)

Nk
to

u, when both are interpreted as functions from the probability space (E,B(E), `/`(E)) to the
Banach space (V, ‖·‖V ).

Still, convergence in capacity is somewhat stronger than that in probability: for instance, it
ensures that the set of parameter values for which the approximant yields an error above ε in
the limit, namely ⋂

l∈N

⋃
k≥l

{
µ ∈ E :

∥∥∥u(µ)− uΞ(k)

Nk
(µ)
∥∥∥
V
≥ ε
}

,

cannot include any curve in C.

4 A posteriori error indicators

All convergence results presented above are a priori estimates. In particular, they contain
quantities which are often not available, namely the number and locations of the poles inside
(and of some of the ones outside) the parameter domain K. Moreover, the results in Theorems
2–5 hold only (with some extensions) if the solution map is of the form (8), whereas minimal
rational interpolants can, in principle, be applied to more general parametric problems and
sample points sets.

A typical MOR problem can be cast in the following form: let a certain parameter set K
and a parametric problem as in (6) be given, along with some fixed tolerance ε > 0. The task
is to obtain an approximate solution map ũ such that

max
µ∈K
‖u(µ)− ũ(µ)‖V ≤ ε or max

µ∈K

‖u(µ)− ũ(µ)‖V
‖u(µ)‖V

≤ ε.

In our framework, the presence of singularities in the true and, possibly, the approximate
solution map within K may make the conditions above meaningless. In such cases, it may be
preferable [11] to consider a residual-based accuracy requirement

max
µ∈K
‖Fµ (ũ(µ))‖W ≤ ε or max

µ∈K

‖Fµ (ũ(µ))‖W
‖Fµ (0)‖W

≤ ε, (40)

with the ‖·‖W -norm replacing ‖·‖V to account for regularity differences between residual and
solution.

Now, let us take as approximate map ũ the minimal rational interpolant uZSN with a certain
denominator degree N and samples at the S points ZS , which need not be Fejér points for K.
We face the task of understanding whether the required tolerance ε is achieved, in the sense of
(40).

In particular, let us consider the problem of computing a posteriori the norm of the residual
‖Fµ (ũ(µ))‖W at some given point µ ∈ K. In order to proceed, we will assume that the operator
Fµ is linear and has a separable form in µ, i.e. that there exist two families of complex-valued

functions {θFi }nFi=1 and {θfi }
nf
i=1, a family of operators {Fi}nFi=1 over (suitable subsets of) V , and
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a family {fi}nfi=1 of elements of V , such that

Fµ(v) = F (µ)v − f(µ) =

nF∑
i=1

θFi (µ)Fiv −
nf∑
i=1

θfi (µ)fi. (41)

This is the ideal situation to employ RB methods [10, 27, 30, 35, 36]. Many strategies have been
devised to approximate general, possibly non-linear and non-separable, parametric problems
into the form (41), see e.g. the (Discrete) Empirical Interpolation Method [9, 15, 21] and
hyper-reduction techniques [8].

Now, F (µ) can be applied to both sides of (31) to obtain

QZSN (µ)
(
f(µ)− F (µ)uZSN (µ)

)
=f(µ)IZS (QZSN )(µ)− F (µ)IZS (uQZSN )(µ)

=
∑
µ′∈ZS

QZSN (µ′)ωZS (µ)

(µ− µ′) ωZS ′ (µ′)
(
f(µ)− F (µ)u(µ′)

)
=

nf∑
i=1

∆ZS
(
θfi Q

ZS
N

)
(µ) fi

−
nF∑
i=1

Fi∆
ZS
(
θFi I

ZS
(
uQZSN

))
(µ). (42)

with ∆ZS (φ) = φ− IZS (φ) the interpolation error for a function φ.
This, after dividing by QZSN (µ), provides an affine decomposition of the residual with nF +nf

terms, which consists of generalized moments of QZSN and IZS (uQZSN ). Hence, its norm (squared)
admits an affine decomposition with (nF + nf )2 terms. In particular, if we assume an offline-
online MOR framework [27, 35, 36], the separable terms of the residual can be precomputed
offline, i.e. together with the S expensive evaluations of the target solution map u, without
increasing the complexity of the overall MOR procedure. If the samples are managed carefully,
see e.g. [35, Section 3.7], the evaluation of the residual at a (new) parameter µ can be carried
out online through low-dimensional operations only. The resulting complexity of such procedure
is O((nFS + nf )2), independently of the size of the original problem (41).

Of course, the discussion above can intrinsically be applied only in an intrusive fashion,
since we require access to the operators defining the parametric problem. In general, obtaining
an a posteriori non-intrusive error indicator can be quite tricky. Here we propose a simplified
approach, which is rigorous only for very specific problem structures, namely

Fµ(u) = F (µ)u− f = (F0 + µF1)u− f . (43)

Let the problem be of the form (43). Thanks to (23) and (42), it must hold

QZSN (µ)
(
f − F (µ)uZSN (µ)

)
=− ωZS (µ)F1

∑
µ′∈ZS

QZSN (µ′)u(µ′)

ωZS ′ (µ′)

=− ωZS (µ)

(S − 1)!
F1

dS−1

dµS−1
IZS (uQZSN ).

Now it suffices to take the ‖·‖W -norm and exploit (5) to obtain∥∥∥Fµ (uZSN (µ)
)∥∥∥

W
≤
∣∣∣∣∣ωZS (µ)

QZSN (µ)

∣∣∣∣∣ ‖F1‖L(V ;W )

∥∥∥∥ 1

(S − 1)!

dS−1

dµS−1
IZS (uQZSN )

∥∥∥∥
V

=

∣∣∣∣∣ωZS (µ)

QZSN (µ)

∣∣∣∣∣ ‖F1‖L(V ;W ) j
ZS
(
QZSN

)
. (44)
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One obvious limitation of (44) is the need for some approximation of the V → W operator
norm of F1, i.e.

‖F1‖L(V ;W ) = sup
v∈V \{0}

‖F1v‖W
‖v‖V

.

We remark that this drawback can be interpreted as an issue in identifying the exact scaling of
the error estimator, a common problem even for stable parametric problems, where the inf-sup
(or coercivity) constant must be estimated to link residual and error [26, 29, 35, 36]. If one can
overcome such limitation, see e.g. Section 5.2, bound (44) is certainly quite appealing from a
computational standpoint, since its evaluation consists only of few scalar computations.

If (43) does not hold, we can replace F (µ) by a suitable linear approximation (e.g. its
first-order Taylor series around some parameter) in a spirit similar to that of the Empirical
Interpolation Method. Then (44) can be applied heuristically, with an accuracy which may
depend quite sharply on the smoothness of Fµ, in particular on its second-order variations over
the parameter domain.

As a supplement to our discussion, we would like to note that a posteriori error indicators
are often used in RB procedures not only to determine whether the required accuracy has
been achieved, but also to drive the selection of the sample points. For instance, in the weak-
greedy RB approach [35, 36], one keeps adding a new snapshot at the parameter value which
maximizes the a posteriori error indicator of choice, thus updating the surrogate model (and the
error indicator as well), until convergence. We envision that a similar adaptive procedure could
be devised also for minimal rational interpolation, with new parameter values being added to
the sample set according to the same logic.

5 Numerical examples

In this section we present two numerical experiments to verify some of the theoretical results
presented above, as well as the effectiveness of the a posteriori error estimators described in the
previous section.

5.1 Normal eigenvalue problem

Let n = 100 and take A ∈ Cn×n a normal matrix whose eigenvalues are randomly generated
according to a uniform distribution over {x + ιy, (x, y) ∈ [−5, 5]2}, and whose eigenvectors
are set by orthonormalizing a matrix with random (complex) standard gaussian entries. In
particular, we order the eigenvalues {λj}nj=1 according to their distance from 0.

Our task is to estimate the eigenvalues of A which lie within the unit disk K = B(0, 1). To
this aim, we fix v ∈ Cn a random gaussian vector, and we approximate by minimal rational
interpolants the solution map of the parametric problem

for µ ∈ K, find u(µ) ∈ Cn s.t. (A− µI) u(µ) = v, (45)

with I ∈ Cn×n the identity matrix. As sample points ΞS , we choose the Fejér points of K, i.e.
the roots of unity, and we choose to employ the polynomial norm |||·|||0,N , see (18). This norm is

induced by monomials, which are L2(∂K)-orthogonal. Moreover, the action of the interpolation
operator IΞS can be evaluated quite efficiently as a Fast Fourier Transform.

The poles of the solution map are represented in Figure 1, where we can observe that ν = 5
poles are inside K. As expected, we can observe in Figure 2 that the (euclidean) norm of the
solution map ‖u(µ)‖2 becomes unbounded if µ gets too close to a pole.

Let us assume that our interest lies in approximating just the eigenvalues of A inside K. As
their exact number is unknown, we can choose the denominator degree N according to different
strategies:
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Figure 1: Eigenvalues of A near 0. In green, the
boundary of the parameter domain.
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Figure 2: Logarithm of the euclidean norm of the
solution map u near 0.

−2 0 2

−2

0

2

Re (µ)

Im
(µ
)

−2 0 2

−2

0

2

Re (µ)

Im
(µ
)

−15

−10

−5

0

5

Figure 3: Logarithm of the relative error norm ‖u − uΞS

N ‖2/ ‖u‖2 achieved by minimal rational inter-
polants based on samples at ΞS = {e2jπι/21}21

j=1 (black crosses) with N = 10 (left) and N = 20 (right).
The exact and approximated poles are represented in blue and white respectively.
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Figure 4: Pole approximation error for the poles inside K. On the left N = 10 is kept fixed, whereas
N = S−1 on the right. In black the theoretical rate (25). The dashed lines show the results obtained by
projection on subspaces of dimension N computed through POD. The scale is the same for both graphs.
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• we fix N (in our case, we set N = 10) and increase progressively the number of samples
S; to verify if the starting guess on N was large enough, we can simply check if at least
one of the approximate poles has converged (for large S) to some point outside K, see
Theorem 2.

• we can increase N along with the number of samples S, for instance by choosing N = S−1
for all S; in this case we are sure to approximate all poles, see Theorem 3.

We compare visually the two approaches in Figure 3, where we show the error norm obtained
by approximants of type [20/10] and [20/20], both based on S = 21 samples at Fejér points.
We can see that the error increases much quicker near the boundary of the sampled square in
the case N = 10. This is to be expected, as the region of convergence increases together with
N , see Theorem 4. A (possibly) more interesting observation is that the error appears to be
globally smaller when we choose N = 20 (in fact, a closer look at the data shows that this is
not the case only for 108 points in the uniform 75× 75 grid used to obtain the plot). Overall,
we can conclude that the choice N = 20 leads to a better approximant.

Now it just remains to check how well each approach manages to capture the location of the
eigenvalues of A. To this aim, we increase S from 11 to 30, and compute the pole approximation
error, defined in the left hand side of (25), for the 5 poles within K. The results are shown in
Figure 4. For fixed N = 10, the rate predicted by Theorem 2 can be observed (Green’s potential
for the unit disk coincides with the complex magnitude outside the disk). Remarkably, a similar,
if not slightly better, rate of convergence is obtained for increasingN = S−1, despite the absence
of theoretical results in this regard.

In Figure 4 we also show the pole approximation error obtained through a RB-like projection
technique: given the same sample set ΞS , we perform a Proper Orthogonal Decomposition
(POD) [35] of the samples, identifying the N dominant “sample directions”; then we project
orthogonally the original problem on the subspace spanned by these N directions, and we use
the solution of the resulting N×N eigenvalue problem to approximate the original one. We can
observe that the projection technique performs much worse than minimal rational interpolants
for fixed N = 10, whereas for N = S − 1 the two methods achieve very similar results.

5.2 Time-harmonic vibrations of a tuning fork

Let Ω ⊂ R3 be the region occupied by a tuning fork, see Figure 5. We consider the following
internal acoustic problem in the frequency domain. Assume that the tuning fork is clamped
on a portion ΓD of the handle. Let g̃(t,x) = eι2πνtg(x) be a pressure pulse (sinusoidal in time
and gaussian in space) impinging on a portion Γg of the exterior of the tuning fork, which we
assume to be sound-hard. We are interested in computing the time-harmonic deformation u(ν)
with frequency ν which the tuning fork undergoes.

Assuming the tuning fork to have density ρ and linear stress constitutive relation σ(·), the
displacement u(ν) can be found by solving a time-harmonic linear elasticity problem [20]

−∇ · σ(u(ν))− 2πν(2πν − ηι)ρu(ν) = 0 in Ω

u(ν) = 0 on ΓD

σ(u(ν))n = g on Γg

σ(u(ν))n = 0 on Γfree = ∂Ω \ ΓD \ Γg

, (46)

with η a damping parameter.
In particular, we choose to approximate problem (46) using P1 Finite Elements (FE) on a suf-

ficiently fine tetrahedral discretization of Ω. The FE discretization of (46) defines a parametric
problem of the form (6), whose solution map u can be proven meromorphic using compactness
arguments [7, 37]. Thus, we decide to approximate it for ν ∈ K = [1, 4] · 104 Hz with minimal
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Figure 5: Reference domain (above) and domain warped by the real part of the displacement, magnified
by a factor of 3 · 103 (below). The displacement is the solution of (46) for frequency ν = 104 Hz and
damping coefficient η = 0 Hz. The total number of degrees of freedom of the discretized problem is
36330.
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Figure 6: Energy norm of the solution map u of (46) in blue, for η ∈ {0, 500} Hz. In green and red
the norm of the [20/20] and [40/40] minimal rational interpolant of u obtained from 21 and 41 samples
at Chebyshev nodes respectively.
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rational interpolants relying on samples at the Chebyshev nodes of K, which are the Fejér points
for K. The chosen polynomial norm |||·|||N is the one induced (see Appendix A) by the family
of Chebyshev polynomials over K.

The (elastic energy) norm of the solution map is shown in Figure 6 for η ∈ {0, 500} Hz,
along with the approximated norm profiles, obtained by minimal rational interpolants of type
[20/20] and [40/40]. If S = 21, for both values of η, we can observe that the approximation of
‖u‖V is quite accurate except for the low-frequency region, where the approximant for η = 0
Hz actually appears quite unstable. This behavior can be improved by increasing the number
of samples to S = 41.

In a (more) realistic application, in order to determine whether there is need for more than
21 samples, one could rely on residual-based estimators such as (40). To this aim, we can apply
(42) to obtain an exact (since the problem depends affinely on the parameter) expression for
the residual in the L2(Ω)3-norm. The evaluation of (42) on a fine grid is shown in Figure 7.

In the same Figure, we also show the values obtained through the simplified residual estima-
tor (44). In particular, in order to evaluate the estimator, we need to compute or approximate
the operator norm ‖F1‖L(V ;L2(Ω)3), with F1 the derivative of the operator in (46) at some point

µ′, see Section 4. We manage to avoid this (thus keeping the estimator as non-intrusive as
possible) by the following heuristic argument. We assume that the right hand side of (44) is
able to capture well the behavior of the residual with respect to the parameter, so that we just
need to identify a constant C for which (employing the notation of Section 4)∥∥∥Fµ (uZSN (µ)

)∥∥∥
W
≈ C

∣∣∣∣∣ωZS (µ)

QZSN (µ)

∣∣∣∣∣ .
This can be easily achieved by evaluating (offline and at a relatively low computational cost)
the exact value of the residual at some point3 µ′ ∈ K \ZS , so that the value of C can be set to

C =
∥∥∥Fµ (uZSN (µ′)

)∥∥∥
W

∣∣∣∣∣QZSN (µ′)

ωZS (µ′)

∣∣∣∣∣ .
In our example we set µ′ = 25.5·103 Hz, and we can observe the corresponding residual estimator
to be extremely accurate. Indeed, the values obtained with the two estimators never differ by
more than 1%, and the corresponding curves cannot be distinguished in the plot.

By looking at the curve for S = 21 in the left plot of Figure 7, we can deduce that the
approximation is particularly poor in the region of lowest frequency for η = 0 Hz. This could
lead us to conclude that more sample points are needed, as is indeed the case. The same
reasoning can be applied, more mildly, in the damped case.

Finally, in Figure 7 we also perform a comparison between minimal rational interpolants and
RBs, by showing the norm of the residual obtained with the RB approximant of (46) computed
from samples at Ξ21. We can observe that the two residuals are quite similar in terms of both
order of magnitude and behavior with respect to ν. In particular, simplifying grossly, minimal
rational interpolants seem to have a very slight edge on RBs at higher frequencies, while the
opposite appears to be true at lower frequencies.

6 Conclusions

In this paper we have presented minimal rational interpolants as the natural extension of fast
LS-Padé approximants [6], and we have shown that most of the theoretical properties of this
latter technique generalize nicely to the former. The new method can be considered superior to
the original one for two main reasons:

3For stability reasons it may be advisable to take the average of more than one residual sample, provided the
additional computation cost is acceptable.
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• the stability is greatly improved, since computing (many) derivatives of the solution map
accumulates numerical errors; the Arnoldi-like reorthogonalization technique described in
[6] can somehow limit but not totally eliminate this issue;

• the distributed sampling helps to achieve a globally (e.g. using the L∞(K)-metric) small
approximation error, which is the target in most applications; of course, an interpolatory
approach cannot be as accurate close to the samples as a Taylor-type approximation,
assuming the number of samples to be the same.

Our numerical examples have shown minimal rational interpolants to preform well when
applied to normal eigenvalue problems and MOR of time-harmonic problems. In particular, in
our second example we have shown the effectiveness of a heuristic a posteriori residual estimator,
which is very inexpensive to compute. Accordingly, we deem of interest to investigate a possible
greedy-type algorithm, in the same spirit as the one for the RB method, but with minimal
rational interpolants replacing Galerkin projections.

While the proven theoretical properties seem certainly appealing, we find quite interesting
that the numerical results for denominator degree as large as possible (N = S − 1) manage to
beat the exponential rate proven and achieved for fixed N . Still in connection with the greedy
idea described just above, we believe that it could be interesting to determine whether this
“superconvergence” is preserved if the samples are not computed at the Fejér points.

Concerning extensions to the multivariate case, it is our opinion that explicit rational approx-
imants may not be well suited for high-dimensional problems, mostly because of ill-conditioning
issues, almost entirely due to the curse of dimensionality. We believe that hybrid techniques,
combining explicit (interpolatory) and implicit (projection-based) methods, as is done in para-
metric MOR approaches [4, 34], may yield better results in such cases.
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A Polynomial norm bounds

Let Γ ⊂ C be a Jordan curve, and consider {ϕj}j=0,1,... a hierarchical (degree(ϕj) = j for all j)
family of polynomials, orthonormal over L2(Γ):∫

Γ ϕjϕi |dl|∫
Γ |dl|

= δji ∀(i, j) ∈ {0, 1, . . .}2. (47)

This, for all N ∈ N, induces a norm over PN (C) in the following sense:

|||Q|||N =

√√√√ N∑
j=0

|qj |2, where Q =

N∑
j=0

qjϕj . (48)

The following holds.

Lemma 4 The norm |||·|||N in (48) satisfies Assumption 1 for any µ0 chosen within the interior
of Γ.

Proof. For a given N ∈ N, let 0 ≤ D ≤ N , {zj}Dj=1 ⊂ CD, and Q =
∏D
j=1 ( · − zj). Due to

orthonormality, it holds

|||Q|||2N
∫

Γ

|dl| =
∫

Γ

|Q|2 |dl| =
∫

Γ

D∏
j=1

| · − zj |2 |dl| . (49)
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On one side, let Rµ0
= maxΓ | · − µ0|. We can use the triangular inequality to obtain

|||Q|||2N
∫

Γ

|dl| ≤
∫

Γ

D∏
j=1

(| · − µ0|+ |µ0 − zj |)2 |dl|

≤
D∏
j=1

(Rµ0 + |µ0 − zj |)2
∫

Γ

|dl| . (50)

On the other side, let cµ0
=
(
2πminΓ | · − µ0| /

∫
Γ
|dl|
)2

. We can exploit the Cauchy-Schwarz inequality
to show that ∫

Γ

D∏
j=1

| · − zj |2 |dl|

(∫
Γ

|dl|
| · − µ0|2

)
≥
∣∣∣∣∣
∫

Γ

∏D
j=1 ( · − zj)
· − µ0

dl

∣∣∣∣∣
2

,

so that, due to the Cauchy integral formula,

|||Q|||2N
∫

Γ

|dl| ≥
∣∣∣∣∣
∫

Γ

∏D
j=1 ( · − zj)
· − µ0

dl

∣∣∣∣∣
2(∫

Γ

|dl|
| · − µ0|2

)−1

≥4π2
D∏
j=1

|µ0 − zj |2
(

min
Γ
| · − µ0|

)2
(∫

Γ

|dl|
)−1

≥cµ0

D∏
j=1

|µ0 − zj |2
∫

Γ

|dl| . (51)

Dividing (50) and (51) by
∫

Γ
|dl| yields the proof. �
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metric and stochastic Helmholtz maps. ArXiv e-prints, 2018. DOI: arXiv/1805.05031.

[8] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem. The GNAT method for nonlinear model
reduction: Effective implementation and application to computational fluid dynamics and turbulent
flows. Journal of Computational Physics, 242:623–647, 2013.

[9] S. Chaturantabut and D.C. Sorensen. Nonlinear Model Reduction via Discrete Empirical Interpo-
lation. SIAM Journal on Scientific Computing, 32(5):2737–2764, 2010.

[10] Y. Chen, J.S. Hesthaven, Y. Maday, and J. Rodŕıguez. Certified reduced basis methods and output
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