000265866 001__ 265866
000265866 005__ 20190617200543.0
000265866 0247_ $$a10.5075/epfl-thesis-9127$$2doi
000265866 037__ $$aTHESIS
000265866 041__ $$aeng
000265866 088__ $$a9127
000265866 245__ $$aCrystalline materials for microresonator-based quantum optics
000265866 260__ $$aLausanne$$bEPFL$$c2019
000265866 269__ $$a2019
000265866 300__ $$a183
000265866 336__ $$aTheses
000265866 502__ $$aprofesseure Cécile Hébert (présidente) ; Prof. Tobias Kippenberg (directeur de thèse) ; Prof. Nicolas Grandjean, Prof. Jérôme Faist, Dr Paul Seidler (rapporteurs)
000265866 520__ $$aHybrid quantum systems are composed of different physical components that can perform simultaneously several tasks such as quantum computing, quantum sensing and quantum communication. Photons are at the core of many of the functionalities of these systems. Photons of various wavelengths are better suited for different applications: microwave for quantum information processing, mid-infrared for sensing and visible for transmitting quantum information. The ability to study, understand and control these photons is key for this purpose. Nonlinear processes are necessary to implement some of these tasks or to connect
different quantum systems. Single-crystal materials, with their unique properties, provide a promising source of nonlinearities for classical and quantum photonics. The integration of crystalline materials with optical microresonators enhances the physical effects of interest for the different applications.

This thesis explores the innovative use of new materials and microresonator designs. Three main results are presented. First, a device architecture capable of direct and efficient quantum microwave-to-optical conversion. Second, a method to fabricate uncoated chalcogenide tapered fibres and to study the properties of crystalline microresonators in the mid-infrared spectral window. Third, the coupling of the excitonic emission of atomically-thin van der Waals crystals to microcavities. The findings of this thesis provide the technological basis for design and fabrication of new chipscale microresonator based devices.
000265866 592__ $$b2019
000265866 6531_ $$ahybrid quantum systems
000265866 6531_ $$anonlinear optics
000265866 6531_ $$aquantum electro-optics
000265866 6531_ $$acrystalline microresonators
000265866 6531_ $$amicrowave-to-optical frequency conversion
000265866 6531_ $$amid-infrared
000265866 6531_ $$achalcogenide
000265866 6531_ $$aatomically-thin van der Waals crystals
000265866 6531_ $$amonolayers
000265866 6531_ $$ananolasers
000265866 700__ $$aJaverzac-Galy, Clément Christian$$g222695
000265866 720_2 $$aKippenberg, Tobias$$edir.$$g182444
000265866 8564_ $$uhttps://infoscience.epfl.ch/record/265866/files/EPFL_TH9127.pdf$$s50813549
000265866 909C0 $$pLPQM1
000265866 909CO $$qthesis-public$$pthesis$$pDOI$$ooai:infoscience.epfl.ch:265866
000265866 918__ $$aSB$$cIPHYS$$dEDPY
000265866 919__ $$aLPQM1
000265866 920__ $$a2019-05-31$$b2019
000265866 970__ $$a9127/THESES
000265866 973__ $$sPUBLISHED$$aEPFL
000265866 980__ $$aTHESIS