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Résumé

Soit k un corps algébriquement clos de caractéristique p. Soient Y un groupe algébrique simple
simplement connexe sur k et X un sous-groupe maximal parmi les sous-groupes fermés connexes
simples de Y . A l’exclusion de certaines valeurs de p pour des plongements précis, nous classifions
les représentations irréductibles p-restreintes de Y sur lesquelles X agit avec exactement deux
facteurs de composition. Ce travail s’inscrit dans la continuité de la classification des sous-groupes
irréductibles des groupes exceptionnels donnée par Testerman.

Mots-clés: Théorie des représentations, groupes algébriques, groupes exceptionnels, règles de
branchement.

Abstract

Let Y be a simply connected simple algebraic group over an algebraically closed field k of charac-
teristic p and let X be a maximal closed connected simple subgroup of Y . Excluding some small
primes in specific cases, we classify the p-restricted irreducible representations of Y on which X
acts with exactly two composition factors. This work follows on naturally from the classification of
irreducible subgroups of exceptional algebraic groups given by Testerman.

Key words: Representation theory, algebraic groups, exceptional groups, branching rules.

iii





A mes parents, Danièle & Daniel





Remerciements

Ce travail n’aurait jamais vu le jour sans l’encadrement exceptionnel de Donna Testerman, ma
directrice de thèse. Sa volonté de me transmettre ses connaissances et sa passion pour la recherche
mathématique ont été autant de moteurs tout au long de ces quatre ans. Sa disponibilité et ses
innombrables commentaires sur mon travail m’ont permis, jour après jour, de mieux comprendre
mon sujet de recherche jusqu’à aboutir à cette thèse.

Je la remercie infiniment.

Many thanks to Frank Lübeck, George McNinch and Jacques Thévenaz for accepting to be part of
the thesis jury, and to Joachim Krieger for presiding it. I am also grateful to Frank Lübeck and
George McNinch for their useful comments on my thesis.

Je suis également reconnaissant envers Anna Dietler, Pierrette Paulou-Vaucher et Maroussia
Schaffner Portillo, les secrétaires de l’Ecole doctorale et du groupe GR-TES, qui ont toujours été
d’une grande assistance.

Ces années auraient été bien différentes sans la compagnie de mes collègues de l’EPFL et plus
particulièrement de mes collègues de bureau: Ana, Claude, Jonathan, Mikaël, Mikko et Neil. Je
souhaite les remercier pour tous les moments que nous avons partagés: ceux de silence monastique,
de discussions mathématiques ou non, de soutien, de découvertes, de rires...

Je remercie également mes amis qui m’ont soutenu et rappelé qu’il y a d’autres choses dans la vie
que les maths.

Merci à mes parents et à mes sœurs, Rafaela et Ariela. Je leur dois beaucoup.

Merci enfin à Rachel d’avoir été présente à chaque étape de cette thèse.

vii





Contents

List of notations xi

Introduction xiii

1 Theoretical background 1
1.1 General notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Characters and cocharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Root subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Parabolic subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.5 Dynkin Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.6 Weight lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.7 Lie algebra of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.8 Rational kG-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.9 Weyl modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.10 Simple modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.11 Characters of modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Alcove geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Affine Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Alcoves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Linkage principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 The Jantzen p-sum formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Computing the Jantzen p-sum formula . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 A truncated version of the Jantzen p-sum formula . . . . . . . . . . . . . . 14

1.4 Composition factors for the restriction . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Restriction to Levi subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 The embedding (F4, E6) 31
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 (X,Y ) = (C2, A3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Proof of proposition 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 (X,Y ) = (C3, A5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Proof of Proposition 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



x CONTENTS

2.3.2 An additional result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4 (X,Y ) = (B3, D4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4.1 Deducing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.5 (X,Y ) = (F4, E6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5.1 Proof of Proposition 2.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 The other embeddings 121
3.1 Preliminary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.2 Maximal subgroups of non-maximal rank . . . . . . . . . . . . . . . . . . . . . . . 123

3.2.1 (G2, E6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.2.2 (A2, E6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.2.3 (C4, E6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.2.4 (A2, E7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.2.5 (B2, E8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.2.6 (G2, F4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.2.7 Maximal A1’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.3 Maximal subgroups of maximal rank . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.3.1 (A8, E8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.3.2 (D8, E8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.3.3 (A7, E7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.3.4 (B4, F4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.3.5 (A2, G2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Table A 149

B Root system data 153
B.1 Fixing an ordering on the set of positive roots . . . . . . . . . . . . . . . . . . . . . 153

References 157

Curriculum Vitae 159



List of notations

For an explanation of the tables containing the data of the Jantzen p-sum formula see p. 19.

rank(G) rank of G, p. 1
X(T) = Hom(T,Gm), the group of characters of T , p. 1
Φ root system of a group G, p. 1
∆ set of simple roots of the root system Φ, p. 1
Φ+ set of positive roots in Φ, p. 1
α0 largest root in Φ, p. 1
α̃0 largest short root in Φ, p. 1
Uα root subgroup corresponding to a root α, p. 1
α∨ coroot corresponding to a root α, p. 1
Φ∨ dual root system of Φ, p. 2
W Weyl group of Φ, p. 2
w0 longest element in W , p. 2
PI standard parabolic subgroup of G corresponding to I ⊆ ∆, p. 2
LI standard Levi subgroup of PI for I ⊆ ∆, p. 2
λi fundamental weight corresponding to the simple root αi, p. 3
X(T)+ set of dominant weights in X(T), p. 3
� partial order on X(T), p. 3
L (G) Lie algebra of G, p. 3
θm1

1 / · · · /θmss set of composition factors of a kG-module V , where θi ∈ X(T)+ and
mi is the multiplicity of LG(θi) in V , p. 4

Vλ = {v ∈ V | tv = λ(t)v for all t ∈ T} for a kG-module V and a weight
λ ∈ X(T), p. 4

Λ(V ) = {λ ∈ X(T) | Vλ 6= 0} for a kG-module V , p. 4
Λ(V )+ = {λ ∈ X(T) | λ ∈ Λ(V ) ∩X(T)+} for a kG-module V , p. 4
mV (λ) = dimVλ, the multiplicity of λ in V , p. 4
radV radical of a kG-module V , p. 4
VG(λ) Weyl module of highest weight λ ∈ X(T)+, p. 5

xi



xii LIST OF NOTATIONS

Λ(λ) = Λ(VG(λ)) for λ ∈ X(T)+, p. 5
mλ(µ) = dimVG(λ)µ, the multiplicity of µ in VG(λ), p. 5
LG(λ) irreducible module of highest weight λ ∈ X(T)+, p. 5
chV formal character of a kG-module V , p. 6
χ(λ) =

∑
i≥0(−1)i chHi(λ)(= chV (λ) if λ ∈ X(T)+), p. 7

[VG(λ) : LG(θ)] coefficient aλ,θ in chVG(λ) =
∑
θ∈X(T)+ aλ,θ chL(θ), p. 7

[λ : θ] = [VG(λ) : LG(θ)], p. 7
(LG(λ) : VG(θ)) coefficient bλ,θ in chLG(λ) =

∑
θ∈X(T)+ bλ,θχ(θ), p. 7

(λ : θ) = (LG(λ) : VG(θ)), p. 7
chV S S-truncated character of V , p. 7
Wp affine Weyl group, p. 8
sα,r(λ) = sα(λ) + rpα, p. 8
ρ half-sum of positive roots, p. 8
w·λ = w(λ+ ρ)− ρ, p. 8
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Introduction

Representation theory of algebraic groups. — In this thesis, we focus on the study of
rational representations of connected reductive linear algebraic groups over an algebraically closed
field k of characteristic p ≥ 0, a prime or zero. We will assume henceforth all the groups to be
linear and their representations to be finite-dimensional rational.

Let Y be a reductive algebraic group over k and let φ : Y → GL(V ) be a representation of
Y . By the Jordan-Hölder theorem, V admits a well-defined filtration by simple modules called a
composition series. Since the simple modules constitute the building blocks of any kY -module,
the first step towards understanding the representations of Y involves understanding the simple
modules. In positive characteristic, as opposed to characteristic 0, the study of these modules is a
difficult task and has constituted a vast area of research over the last forty years. Recall briefly
that the set of simple kY -modules is in bijection with the set X(T)+ of dominant weights of T .
Under this bijection, a dominant weight λ is mapped to LY (λ), the simple module of highest weight
λ. By Steinberg’s tensor product theorem, the task of understanding the simple kY -modules is
reduced to that of understanding those with p-restricted highest weights. The good news is that for
a fixed p, the set of p-restricted weights is finite.

The simple module LY (λ) can be realized as the unique simple quotient of VY (λ), the Weyl
modules of highest weight λ. The dimension of VY (λ) is given by Weyl’s degree formula and the
dimension of a given weight space in VY (λ) can be recursively computed using Freudenthal’s formula.
However, VY (λ) is an indecomposable kY -module and its structure is not known in general. Most
of our efforts are focused at understanding the maximal submodule of VY (λ) in order to gain an
understanding of LY (λ).

Over the course of the last years, Williamson and his collaborators made exciting progress
in this area of research. Very recently, in [RW], Williamson and Riche discovered and proved a
character formula for p-restricted simple kY -modules under the assumption that p ≥ 2h− 2, where
h is the Coxeter number of Y . Even though it is now clear from a theoretical point of view which
setting has to be adopted, the computational aspects related to this new character formula are at a
very early stage. None of these new techniques will be discussed in this thesis, instead we will use
and further develop well-established techniques in order to solve the following problem.

The problem considered. — The two first functors which are studied in representation theory
are induction and restriction. These functors provide a way of building new representations and
of deducing particular properties by taking advantage of the subgroup structure of a given group.
Before stating the specific question we answer in this thesis, we will give a brief overview of a

xiii



xiv INTRODUCTION

related question which led to the current work.

Question 1. Let Y be a simply connected simple algebraic group over k and let X be a maximal
closed subgroup of Y . For which p-restricted λ ∈ X(TY )+ does X act irreducibly on LY (λ), that is
LY (λ) remains irreducible as a kX-module?

Fix a pair (X,Y ) as in the previous question. In [Dyn52a, Dyn52b], Dynkin solves this question
over an algebraically closed field of characteristic 0 with the additional assumptions that X is
connected. He determines all the dominant weights λ such that X acts on LY (λ) irreducibly. Later
on, Seitz and Testerman extend this classification to fields of arbitrary characteristic, again with
the connectedness hypothesis on X. In [Sei87], Seitz classifies all the triples (X,Y, λ), where Y is
of classical type and in [Tes88], Testerman classifies the triples (X,Y, λ), where Y is of exceptional
type. It should be noted that for Y of type A, the classification was obtained independently by
Suprunenko in [Sup85]. In 2016, while working on this thesis, the author found a triple (X,Y, λ)
which did not appear in the classification of Seitz. By a careful verification of Seitz’s argument,
Testerman spotted a gap in the proof of [Sei87, 8.7] and fixed it along with Cavallin in [CT19].

Question 1 has also been answered in the case ofX disconnected. The corresponding classification,
which will be less relevant for us in this thesis, can be found in the following series of papers
[For96, For99, Gha10, BGMT15, BGT16].

A more detailed overview of Question 1 can be found in [BT17]. In this recent survey, Burness and
Testerman summarize the different approaches and results which lead to the answer of Question 1.
We now state a natural generalization of the previous question.

Question 2. Let Y be a simply connected simple algebraic group over k and let X be a maximal
closed connected simple subgroup of Y . For which p-restricted weight λ ∈ X(TY )+ does X act on
LY (λ) with exactly two composition factors?

Question 2 was first addressed by Cavallin for Y of classical type. In [Cav17b], he classifies
the triples (X,Y, λ), where X = Spin2n(k) and Y = Spin2n+1(k), and in [Cav15, Conjecture 4], he
gives a conjectural answer in the case of X = SO2n(k) and Y = SL2n(k).

In this work, we consider the case where Y is of exceptional type and answer the following
question, excluding small primes for some specific embeddings.

Question 3. Let Y be a simply connected simple algebraic group of exceptional type over k and let
X be a maximal closed connected simple subgroup of Y . For which p-restricted weight λ ∈ X(TY )+

does X act on LY (λ) with exactly two composition factors?

Tackling the problem. — The pairs (X,Y ) as in Question 3 have been classified by Liebeck and
Seitz in [LS04, Theorem 1]. Following [LS04, Theorem 1], we regroup these pairs into two families.
The first one consists of pairs (X,Y ) with X containing a maximal torus of Y , that is the ranks of
X and Y are equal. Apart from known exceptions occurring when (Y, p) ∈ {(G2, 3), (F4, 2)}, such
maximal subgroups X are in bijection with the set of closed subsystems of the root system of Y .
They can easily be deduced using the Borel-de Siebenthal algorithm initially exposed in [BdS49,
Section 7]. The second family of pairs are the ones which correspond to maximal subgroups of
non-maximal rank and the construction of these maximal subgroups spans over the following papers
[Sei91, Tes89, Tes92, LS04].
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For completeness, we retranscribe the list of pairs of maximal rank in Table 2 from [LS04, Table
10.3] and the ones of non-maximal rank in Table 3 from [LS04, Table 1].

Y X simple
G2 A2 (1 class if p 6= 3, 2 classes if p = 3)
F4 B4 (p ≥ 0), C4 (p = 2)
E7 A7 (p ≥ 0)
E8 D8 (p ≥ 0), A8 (p ≥ 0)

Table 2: Maximal closed connected simple subgroups of maximal rank

Y X simple
G2 A1 (p 6= 2, 3, 5)
F4 A1 (p = 0 or p ≥ 13), G2 (p = 7)
E6 A2 (p 6= 2, 3), G2 (p 6= 7), F4 (p ≥ 0), C4 (p 6= 2)
E7 A1 (2 classes, p = 0 or p ≥ 17, 19, resp.), A2 (p 6= 2, 3)
E8 A1 (3 classes, p = 0 or p ≥ 23, 29, 31, resp.), B2 (p 6= 2, 3)

Table 3: Maximal closed connected simple subgroups of non-maximal rank

Fix a pair (X,Y ) as in Question 3. Let BX = UXTX denote a (positive) Borel subgroup of
X and let BY = UY TY denote a (positive) Borel subgroup of Y such that BX = BY ∩ X. Let
Φ(Y ),Φ+(Y ), X(TY ), X(TY )+ denote the set of roots, positive roots, characters and dominant
weights corresponding to the choice of BY . We adopt similar notations for the root datum attached
to X.

In order to solve Question 3, we should first manage to compute weight multiplicities occurring
in simple kY and kX-modules. We achieve this by partially computing the characters of specific
simple modules in terms of characters of Weyl modules. Our main tool to perform such a task is the
Jantzen p-sum formula (JSF). Coupling the JSF with some results from the theory of translation
functors and case-by-case arguments depending on the weights considered, we manage to gain
enough information on the characters of the simple modules involved in order to compute the
desired multiplicities. In particular, we are able to eliminate many p-restricted weights λ ∈ X(TY )+

such that X acts on LY (λ) with more than two composition factors. However, apart from specific
cases for which the dimensions of the modules involved are known, we are not able to prove, at this
point, whether for the remaining p-restricted weights, the subgroup X acts on the corresponding
simple kY -modules with exactly two composition factors. This issue also constitutes the reason for
the conjectural status of Cavallin’s aforementioned result in the classical case for the embedding
SO2n(k) ⊆ SL2n(k).

The main theoretical result in this thesis yields, under some technical hypotheses, a method to
solve the remaining cases. We shall provide here a brief idea of how it can be applied by ignoring the
technical assumptions. For a precise statement of the result, we refer the reader to Corollary 1.4.7.
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By [Tes88, Theorem (B)], we can select λ ∈ X(TY )+ p-restricted such that X acts on LY (λ)
with at least two composition factors. Now LY (λ) is generated by a maximal vector v+ ∈ LY (λ)
for BY of weight λ. Since BX ⊆ BY , we have that v+ is a maximal vector for BX of weight λ|TX .
Hence λ|TX affords the highest weight of a composition factor for X acting on LY (λ). Set µ = λ|TX .
Assume ν ∈ X(TX)+ is maximal, with respect to the usual ordering on the weights, among the
highest weights of the composition factors of LY (λ)|X/LX(µ). Then (under the omitted technical
assumptions) X acts on LY (λ) with more than two composition factors if and only if a weight of
the form µ− α|TX or ν − α|TX for α ∈ Φ+(Y ) \ {α0} affords the highest weight of a composition
factor for X acting on LY (λ). Here, α0 denotes the largest root in Φ+(Y ).

In order to prove that X acts on LY (λ) with exactly two composition factors, we prove that
there is no weight of the form µ−α|TX or ν −α|TX for α ∈ Φ+(Y ) \ {α0} which affords the highest
weight of a composition factor for X acting on LY (λ). This method takes us back to a careful
examination of the weights spaces of LY (λ), LX(µ) and LX(ν), but this time limited to a fixed
range of weights.

Statement of results. — We now give an overview of the main results proved in this thesis,
starting with the main theorem which settles Question 3, for large enough primes. The classification
appears in Table A which can be found at the end of this thesis.

Theorem 1. Let k be an algebraically closed field of characteristic p > 0. Let (X,Y, p) be as
in Table 2 and Table 3. Assume in addition (X,Y, p) 6∈ {(A2, G2, {2, 3}), (B4, F4, {2, 3, 5, 7, 11}),
(C4, F4, 2), (F4, E6, {2, 3, 5, 7, 11})}. Let λ ∈ X(TY )+ be a p-restricted weight. Then X acts on
LY (λ) with exactly two composition factors if and only if λ is listed in Table A up to graph
automorphism. Moreover, LY (λ)|X ∼= LX(µ)⊕ LX(ν) with µ and ν given as in Table A.

A few remarks are in order.

• This result is a combination of Proposition 2.5.1 and Proposition 3.0.1. In Proposition 2.5.1
we only consider the embedding (X,Y ) = (F4, E6) and in Proposition 3.0.1, all the other
embeddings are treated. It is clear, when comparing the number of pages needed for the proof
of both propositions, that the case of (F4, E6) is by far the most difficult one to solve.

• In the statement of Theorem 1, we exclude certain triples (X,Y, p). This is either because
Theorem 1.1.10 does not hold for (Y, p) or because p is smaller than the Coxeter number of
Y . Nevertheless, a complete answer can be obtained using a computer program. Indeed, for
a fixed prime, it is in theory possible to compute the dimension of weight spaces in simple
modules by calculating the rank modulo p of a bilinear form, the so-called contravariant form,
introduced in [Ste16, Chapter 12] and in [Won72]. We have implemented such a program and
by using it, we are able to deduce a complete answer for the excluded triples. However, we
have decided not to include the result in this thesis.

• Even though Theorem 1 is obtained for an algebraically closed field of positive characteristic,
it also holds for an algebraically closed field of characteristic 0. The cases that apply over an
algebraically closed field of characteristic 0 are the ones in Table A which do not contain any
dependence on p in the weight λ.
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• In the course of proving Proposition 2.5.1, we compute precisely many “truncated” characters
and weight multiplicities. The reader interested in this kind of data should have a look at
Table 2.31 on Page 64 and Table 2.104 on Page 117.

We prove Proposition 2.5.1 by an inductive argument based on inclusions of Levi factors of
parabolic subgroups. Solving two of these inductive steps yields the following propositions. Note
that the same remarks as for Theorem 1 about the restrictions on p and the validity of the result in
characteristic 0 also apply.

Proposition 2 (Proposition 2.2.1). Let k be an algebraically closed field of characteristic p ≥ 5.
Let Y be a simply connected simple algebraic group of type A3 over k and let X be the maximal
closed connected subgroup of type C2 of Y given by the fixed points of a graph automorphism of Y .
Let λ ∈ X(TY )+ be a p-restricted weight and set µ = λ|TX . Then X acts on LY (λ) with exactly
two composition factors if and only if λ is listed in Table 2.3 up to graph automorphism. Moreover,
LY (λ)|X = LX(µ)⊕ LX(ν) with ν as in Table 2.3.

Proposition 3 (Proposition 2.3.1). Let k be an algebraically closed field of characteristic p ≥ 7.
Let Y be a simply connected simple algebraic group of type A5 over k and let X be the maximal
closed connected subgroup of type C3 of Y given by the fixed points of a graph automorphism of Y .
Let λ ∈ X(TY )+ be a p-restricted weight and set µ = λ|TX . Then X acts on LY (λ) with exactly
two composition factors if and only if λ is listed in Table 2.5 up to graph automorphism. Moreover,
LY (λ)|X = LX(µ)⊕ LX(ν) with ν as in Table 2.5.

We decided to highlight these two propositions, since they represent the first steps towards
solving Question 2 for the embedding of classical groups Sp2n(K) ⊆ SL2n(K). Finally, we also
prove a general result for this family of embeddings. The proof relies on the techniques we have
introduced, illustrating how they can be used in a more general, i.e. unbounded rank, setting.

Proposition 4 (Proposition 2.3.2). Let p > 2 and n ≥ 2. Let Y be of type A2n−1 and X

be a subgroup of type Cn of Y given by the fixed points of a graph automorphism of Y . If
λ = anλn ∈ X(TY )+ with an ∈ {1, p − 1}, then X acts on LY (λ) with exactly two composition
factors given by the highest weights λ|TX and λ|TX − βn−1 − βn, where {βi}1≤i≤n denotes a basis
of Φ(X). Moreover, LY (λ)|X ∼= LX(λ|TX )⊕ LX(λ|TX − βn−1 − βn).

Use of the computer and external data. — This thesis contains many computations and
we shall provide here an account of how these have been performed. All the computer assisted
calculations were done using GAP [GAP18], Magma [BCP97] or in a negligible way Chevie.

In order to compute multiplicities in Weyl modules, we apply Proposition 1.1.12 on Page 8
along with a computer implementation in GAP of Freudenthal’s formula or the function in Magma
to compute multiplicities. Given two weights λ, µ ∈ X(T)+, these programs return the multiplicity
of µ in the Weyl module of highest weight λ.

All the dimensions of Weyl modules are given by Weyl’s degree formula and all the dimensions
of irreducible modules are taken from the tables in [Lüb07].

We discuss now the calculations related to the JSF. For the notations, we refer to Section 1.3.
We shall always work with the reformulation of the JSF given by Proposition 1.3.6 on Page 12.
Computing the JSF by hand requires meticulous bookkeeping, a task which is prone to producing
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errors. We therefore implemented a computer program to keep track of all the intermediary
computations. It works as follows. The user inputs the type of the group Y considered and a
highest weight λ. The weight may be a function of the prime p and of some other parameters. For
each positive root α in the root system of Y , the program prints the value of 〈λ+ ρ, α∨〉 and the
user inputs the maximal integer which the summation index m can take (where m is as in (1.14)
on Page 12). For each possible value of m, the user then reflects to a weight in D (see Page 11).
Once such a weight is hit, the program outputs the weight in question, the difference in terms of
simple roots between the dominant weight obtained and λ, and the determinant of the product
of reflections which was applied. Note that each of these steps might depend on p and on the
parameters involved in the definition of λ. It would be too long to detail these steps every time,
however we include the final data obtained, so that the readers can verify the rest of the argument
by themselves.

After Proposition 2.3.1 was established, the author’s advisor received from Jantzen unpublished
computations determining almost all of the characters of the p-restricted simple modules for types
A4, B3 and C3. These computations were not used by the author and all the methods used to
compute the characters of simple modules appearing in this thesis come either from [Jan03, II.
8.20], from standard arguments or from case-by-case considerations.

Structure of this thesis. — Chapter 1 focuses on developing the theory which will be used in
order to solve Question 3. Section 1.1 contains an expository background about the representation
theory of reductive algebraic group. Section 1.2 introduces the geometry of alcoves which constitute
the framework in which we shall view the weights. It then discusses the Strong Linkage Principle
and some of its consequences. In Section 1.3, we start by stating and reformulating Jantzen’s p-sum
formula (JSF) which is the main tool at our disposal to study the structure of Weyl modules. We
explain precisely what are the limitations of the JSF and see how, in some cases, we manage to
overcome them. In Subsection 1.3.2, we present a truncated version of the JSF along with an
efficient way of algorithmically computing it. We conclude this lengthy and technical section by an
example. Section 1.4 contains the core ideas to solve Question 3. We start by proving results about
self-duality of modules. We then investigate in Proposition 1.4.4 which weights in the restriction
of a simple kY -module can afford the weight of a maximal vector for BX . In Proposition 1.4.6,
we establish, under certain conditions, the existence of an additional maximal vector for BX in
the restriction of a simple KY -module. Finally, combining the previous results, we obtain in
Corollary 1.4.7 the main method to solve Question 3. In Section 1.5, we introduce an inductive
argument to answer Question 3 by considering Levi factors of parabolic subgroups.

In Chapter 2, we start by answering Question 2 for the pairs (C2, A3), (C3, A5) and partially
investigate the pair (B3, D4). We then use the previous considerations to solve Question 3 for the
pair (F4, E6) in Section 2.5.

In Chapter 3, we solve Question 3 for the remaining cases in Table 2 and Table 3. In Section 3.2
we consider the embeddings of maximal subgroups of non-maximal rank and in Section 3.3, the
embeddings of maximal subgroups of maximal rank.

In Appendix B, we fix an ordering on the set of positive roots for a root system of type A4, B3
and C3.

The classification obtained by solving Question 3 appears in Table A at the end of this thesis.



Chapter 1

Theoretical background

In this chapter, we start by recalling some well-known notions from the theory of algebraic groups
which will be used in this thesis. For most of the concepts in Sections 1.1 and 1.2, we follow the
exposition in [Jan03]. For Section 1.3, we follow the ideas presented in [McN98] and expanded
further in [Cav15]. Based on these ideas, we develop our own approach in Subsection 1.3.2. In
Section 1.4, we introduce the main theoretical methods we will repeatedly use in order to solve
Question 3 and in Section 1.5, we present an inductive approach to solving Question 3 using
inclusions of Levi factors of parabolic subgroups.

1.1 General notions

1.1.1 Characters and cocharacters. — Throughout this thesis, let k be an algebraically closed
field of characteristic p ≥ 0. Let Gm and Ga denote the multiplicative and additive group of k,
respectively. Let G be a simple linear algebraic group over k. Henceforth, we assume all the groups
to be linear. Fix a maximal torus T ⊆ G. By definition T ∼= Gnm for some n and we say G is of
rank n. Set rank(G) = n. Denote by X(T) = Hom(T,Gm) and Y (T ) = Hom(Gm, T ), the group of
characters of T and the group of cocharacters of T , respectively. The composition law on X(T ) and
Y (T ) is written additively since both are abelian groups. Recall that for any λ ∈ X(T ) and φ ∈ Y (T ),
there is a unique integer 〈λ, φ〉 such that the composition λ ◦ φ is the map λ ◦ φ : Gm −→ Gm,
where λ ◦ φ(a) = a〈λ,φ〉. Moreover, recall that the pairing 〈−,−〉 : X(T ) × Y (T ) → Z is bilinear
and nondegenerate.

1.1.2 Root subgroups. — Let Φ⊆ X(T ) denote the root system of G with respect to T . Fix a
set ∆ of simple roots and recall that |∆| = rank(G). Let Φ+ denote the set of positive roots with
respect to ∆. Set Φ− = −Φ+. Let α0∈ Φ+ denote the largest root (i.e. the maximal long root)
and let α̃0 denote the largest short root in Φ+. Let α ∈ Φ. There exists, up to scalar, a unique
morphism of algebraic groups xα : Ga → G which induces an isomorphism onto its image, such that
txα(a)t−1 = xα(α(t)a) for all t ∈ T, a ∈ Ga. We call Uα = im(xα) the root subgroup corresponding
to α. For a ∈ Gm, set nα(a) = xα(a)x−α(−a−1)xα(a) and α∨(a) = nα(a)nα(1)−1. We have
nα(a) ∈ NG(T ) and α∨(a) ∈ T . Note that α∨ ∈ Y (T ). We call α∨ the coroot corresponding to

1
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α and denote by Φ∨ the set of coroots. It turns out that Φ along with the map α 7−→ α∨ is an
abstract root system in X(T )⊗Z R in the sense of Bourbaki [Bou81, ch.VI, §1, n°1]. The set Φ∨
along with the map α∨ 7−→ α is also an abstract root system in Y (T )⊗Z R and for each α ∈ Φ, we
have 〈α, α∨〉 = 2.

1.1.3 Weyl group. — For each α ∈ Φ, denote by sα the reflection corresponding to α on X(T )
given by

sα(λ) = λ− 〈λ, α∨〉α.

We extend sα linearly to a reflection on X(T ) ⊗Z R. Let the Weyl group of Φ, denoted W , be
the subgroup of GL(X(T )⊗Z R) generated by the reflections sα for α ∈ ∆. There is an explicit
relationship between W and the group G we started with. The action by conjugation of g ∈ NG(T )
on T induces an action on X(T ) and on Y (T ) as g.λ(t) = λ(g−1tg) for λ ∈ X(T) and t ∈ T , and
as g.φ(c) = gφ(c)g−1 for φ ∈ Y (T ) and c ∈ Gm, respectively. The element nα(a) ∈ NG(T ) defined
previously acts on X(T ) in the same way as sα, inducing the following isomorphism.

NG(T ) −→ NG(T )/T ∼= W

nα(1) 7−→ n̄α(1) 7−→ sα

Recall that for w ∈W and any representative ẇ ∈ NG(T ), we have

ẇUαẇ
−1 = Uwα. (1.1)

For w ∈W , write w = sαi1 · · · sαit with αir ∈ ∆ and t minimal. We call t the length of w. There
exists a unique element w0∈W such that the length of w0 is maximal. It is also the unique element
in W satisfying w0(Φ+) = Φ−.

1.1.4 Parabolic subgroups. — A subset Φ′ ⊆ Φ is called closed if (Z≥0α + Z≥0β) ∩ Φ ⊆ Φ′
for any α, β ∈ Φ′. It is called unipotent if Φ′ ∩ (−Φ′) = ∅. For Φ′ ⊆ Φ closed and unipotent,
denote by U(Φ′) the closed subgroup generated by all Uα with α ∈ Φ′. For example, if I ⊆ ∆
and ΦI = Φ ∩ ZI, then Φ+ \ ΦI is closed and unipotent. Let U = U(Φ+), U− = U(Φ−) and set
B = UT to be a (positive) Borel subgroup of G and B− = U−T to be the corresponding negative
Borel subgroup of G.

Remark 1.1.1. In [Jan03], the opposite convention is used, that is B denotes a negative Borel
subgroup.

For I ⊆ ∆, set
LI = 〈T, Uα, U−α : α ∈ I〉, UI = U(Φ+ \ ΦI).

We call PI = UILI the standard parabolic subgroup of G corresponding to I, where UI is the
unipotent radical of PI and the subgroup LI is called the standard Levi factor of PI . Note that
LI is a connected reductive subgroup of G with maximal torus T , Borel subgroup BI = LI ∩ B
and root system ΦI . For more details, we refer to [Spr98, 8.4.1]. Let us denote by L′I the derived
subgroup of LI which is equal to 〈Uα, U−α : α ∈ I〉.
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Figure 1.1: Labelled Dynkin diagrams

1.1.5 Dynkin Diagrams. — The labelling of the Dynkin diagrams in Fig. 1.1 fixes the ordering
on the set of simple roots which we will adopt in this thesis.

1.1.6 Weight lattice. — Since X(T )⊗Z Q is generated by Φ, the set ∆ is a basis of X(T )⊗Z Q
and {α∨ | α ∈ ∆} is a basis of Y (T )⊗ZQ. To each αi ∈ ∆, we associate an element λi ∈ X(T )⊗ZQ
satisfying 〈λi, α∨j 〉 = δi,j for all j. We call {λi}1≤i≤n the set of fundamental weights. We say G is
simply connected if λi ∈ X(T ) for all i, in which case {λi}1≤i≤n is a Z-basis of X(T ).

From now on assume that G is simply connected.

The change of basis matrix from the fundamental weights to the simple roots is given by the Cartan
matrix, an integer matrix. However, the inverse matrix has coefficients in Q, therefore X(T ) 6⊆ ZΦ
in general. We call the elements of X(T ) weights. Let λ =

∑n
i=1 aiλi, ai ∈ Z be a weight. We call

λ dominant if ai ≥ 0 for all i and denote the set of all dominant weights by X(T)+. For p > 0, we
call a dominant weight p-restricted if ai < p for all i and for p = 0, a weight is p-restricted if it is
dominant. Moreover, for λ, µ ∈ X(T ), we write λ�µ, if λ− µ =

∑n
i=1 biαi with bi ∈ Z≥0 for all i.

Note that (X(T ),�) is a partially ordered set.

1.1.7 Lie algebra of G. — Let D denote the algebra of derivations of the affine k-algebra of
G equipped with the natural G-action on the left and the right. Let L (G) be the subalgebra
of D made up of the left invariant derivations. The algebra L (G) along with the Lie bracket
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[D,D′] = DD′ −D′D is a Lie algebra (c.f. [Spr98, 4.4]). We call L (G) the Lie algebra of G and
as in [Spr98, 4.8], we identify it with the tangent space of G at the identity.

1.1.8 Rational kG-modules. — A morphism φ of algebraic groups φ : G −→ GL(V ) with
V a finite dimensional vector space over k is called a rational representation of G. Similarly, a
kG-module is called rational if its corresponding representation is. Throughout this thesis, we
assume all the representations of G and the kG-modules to be rational.

Let V be a kG-module and let V = V0 ⊆ V1 ⊆ · · · ⊆ Vr−1 ⊆ Vr = 0 be a composition series
of V . The simple quotients Vi/Vi+1 for 0 ≤ i ≤ r − 1, which do not depend on the choice of
the filtration by the Jordan-Hölder theorem, are called the composition factors of V . We denote
by L(θ1)m1/ · · · /L(θs)ms or simply by θm1

1 / · · · /θmss , the set of composition factors of V , where
θi ∈ X(T)+ and mi is the number of times L(θi) appears as a composition factor of V .

Recall that V decomposes as a kT -module as follows

V =
⊕

λ∈X(T)+

Vλ,

where Vλ = {v ∈ V | tv = λ(t)v, ∀ t ∈ T}. We say λ is a weight of V , if Vλ 6= {0} and we call Vλ
the weight space of λ. Denote the set of weights of V by Λ(V ) and the subset of Λ(V ) consisting of
dominant weights by Λ(V )+. The dimension dimVλ for λ ∈ Λ(V ) is called the multiplicity of λ in
V and is denoted by mV (λ). Recall that the radical of V , denoted radV , is the smallest submodule
W of V such that V/W is semisimple.

The next classical results describes how root subgroups act on weight spaces. A proof of the
lemma can be found in [MT11, Lemma 15.4].

Lemma 1.1.2. Let V be a kG-module, α ∈ Φ and γ ∈ Λ(V ). Then for all v ∈ Vγ , we have

Uαv ⊆ v +
∑

m∈Z>0

Vγ+mα.

1.1.9 Weyl modules. — In order to construct a class of kG-modules called Weyl modules,
we temporarily assume char k = 0. We follow the exposition in [Hum00, Chapter VII]. The
decomposition into weight spaces for the adjoint representation of L (G) is given by

L (G) =
⊕
α∈Φ

L (G)α ⊕L (T ).

Let U denote the universal enveloping algebra of L (G). Recall that the category of finite dimensional
representations of L (G) is semisimple, with simple objects parametrized by the elements of X(T)+.
We denote by VL (G)(λ) the irreducible representation of L (G) of highest weight λ ∈ X(T)+. Fix
λ ∈ X(T)+ and set V = VL (G)(λ). Recall that V is generated by a maximal vector v+ of weight λ,
that is V = Uv+. Denote by κ the Killing form of L (G). Let α ∈ Φ and denote by tα ∈ L (T )
the unique elements in L (T ) such that α(t) = κ(tα, t) for all t ∈ L (T ). Set hα = 2tα

κ(tα,tα) . It is
possible to choose (eα, e−α) ∈ L (G)α ×L (G)−α such that

• [eα, e−α] = hα.
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• If β ∈ Φ, α+ β ∈ Φ, [eα, eβ ] = cα,βeα+β , then cα,β = −c−α,−β .

By definition, the set {eα, e−α, hβ | α ∈ Φ+ and β ∈ ∆} is a Chevalley basis of L (G) [Hum00,
25.2]. For α ∈ Φ+, we denote e−α by fα. Let L (G)Z denote the lattice in L (G) generated by
this Chevalley basis. Fix an ordering (α1, . . . , αm) of Φ+, such that {α1, . . . , αn} = ∆. For any
sequences A = (a1, . . . , am), B = (b1, . . . , bm) ⊆ Zm≥0 and C = (c1, . . . , cn) ⊆ Zn≥0, let EA, FB , HC

denote the following elements of U

EA =
ea1
α1

a1! · · ·
eamαm
am! ,

FB =
f b1α1

b1! · · ·
f bmαm
bm! ,

HC =
(
hα1

c1

)
· · ·
(
hαn
cn

)
,

where
(
hαi
ci

)
= hαi (hαi−1)···(hαi−ci+1)

ci! . Using the PBW Theorem [Hum00, 17.3], we deduce that the
set of all the products EAFBHC together with 1 form a basis of U . Denote by UZ the lattice in U
with this basis and by U−Z the subring of U generated by all FB together with 1. Then U−Z v+ is a
lattice in V which is invariant under UZ. In other words, we view the U -module V as a UZ-module
using this lattice. For an algebraically closed field K of any characteristic, let M(K) = M ⊗Z K

and L (G)Z(K) = L (G)Z ⊗Z K. It is clear that M(K) is an L (G)Z(K)-module.
Let again char k ≥ 0. The algebraic group G can be viewed as a Chevalley group as constructed

in [Ste16, Chapter 3]. With this point of view, M(k) becomes a kG-module called the Weyl module
of highest weight λ, denoted VG(λ). We denote Λ(VG(λ)) by Λ(λ) and for µ ∈ X(T), the multiplicity
mVG(λ)(µ) by mλ(µ).

Definition 1.1.3. Let V be a kG-module. We say v ∈ V is a maximal vector for B of weight
λ ∈ X(T)+, if v ∈ Vλ \ {0} and B stabilizes 〈v〉.

We refer to [Jan03, II.2.13] for more details about the following universal property of Weyl
modules.

Proposition 1.1.4. Any kG-module generated by a maximal vector for B of weight λ ∈ X(T)+ is
a homomorphic image of VG(λ).

1.1.10 Simple modules. — Let V be a simple kG-module. By the Lie-Kolchin theorem [Hum91,
17.6], there exists a maximal vector v ∈ V for B of weight λ ∈ X(T)+. By simplicity, V is generated
by v as a kG-module, and by Lemma 1.1.2, the weight λ is maximal in Λ(V ). In fact, the set of
dominant weights X(T)+ is in bijection with the set of isomorphism classes of simple kG-modules.
That is for λ ∈ X(T)+, there exists up to isomorphism a unique simple kG-module generated by a
maximal vector for B of weight λ. We call this module the simple kG-module of highest weight λ
and denote it by LG(λ). The next result relates the previous construction with Proposition 1.1.4,
for more details see [Jan03, II.2.13].

Proposition 1.1.5. For λ ∈ X(T)+,

VG(λ)/ radVG(λ) ∼= LG(λ).
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Remark 1.1.6. When no confusion is possible, we drop the subscript indicating the group
considered in the notation of the representations, e.g. we denote VG(λ) and LG(λ) by V (λ) and
L(λ), respectively.

The next proposition describes the extensions between two simple kG-modules. We refer to
[Jan03, II.2.12 and II.2.14] for more details about how this group is defined and for a proof of the
proposition.

Proposition 1.1.7. Let λ, µ ∈ X(T)+, then

1) Ext1
G(L(λ), L(λ)) = 0.

2) Ext1
G(L(λ), L(µ)) ∼= Ext1

G(L(µ), L(λ)).

3) If µ 6� λ, then Ext1
G(L(λ), L(µ)) ∼= HomG(radG V (λ), L(µ)).

In this thesis, we will mostly be considering simple modules with p-restricted highest weight.
The next theorem due to Steinberg in [Ste63, Theorem 1.1] justifies this choice. In particular, it
implies that if we know the dimensions of all the simple modules with p-restricted highest weight
or the dimensions of the weight spaces of all the p-restricted simple modules, then we have this
information for all the simple modules. For more details about the next theorem, see [MT11,
Theorem 16.12].

Theorem 1.1.8 (Steinberg’s tensor product theorem). Let λ ∈ X(T)+ and write λ =
∑m
i=0 p

i$i

with $i ∈ X(T)+, p-restricted. Then

L(λ) ∼= L($0)⊗ L($1)(p) ⊗ · · · ⊗ L($m)(pm),

where L($i)(pi) stands for the kG-module obtained by precomposing the irreducible representation
of highest weight λi with the ith power of the Frobenius endomorphism.

The next result tells us that irreducible representations with p-restricted highest weight behave well
with respect to taking their differential. Initially due to Curtis in [Cur60], we refer the reader to
[Jan03, II.3.15], where the theorem is stated and proved in the more general framework of Frobenius
kernels.

Theorem 1.1.9 (Curtis). Let λ ∈ X(T)+. If λ is p-restricted, then the simple kG-module LG(λ)
is simple as a kL (G)-module.

The following result due to Premet in [Pre88, Theorem 1] characterizes the weights of a simple
module under certain weak assumptions on the characteristic.

Theorem 1.1.10 (Premet). Let G be simple and let λ ∈ X(T)+. Assume that (G, p) 6∈ {(Bn, 2),
(Cn, 2), (F4, 2), (G2, 2), (G2, 3)}. If λ is p-restricted, then Λ(L(λ)) = Λ(λ).

1.1.11 Characters of modules. — Let Z[X(T )] denote the group ring of X(T) with standard
basis given by {e(λ)}λ∈X(T). Let V be a kG-module and define the formal character of V as

chV =
∑

θ∈Λ(V )

mV (θ)e(θ).
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The action of W on X(T) induces an action of W on Z[X(T)]. Recall that for w ∈ W and
θ ∈ Λ(V ), we have mV (wθ) = mV (θ), hence chV ∈ Z[X(T )]W . For λ ∈ X(T), denote by kλ the
one-dimensional kB−-module on which B− acts via λ, i.e. U− acts trivially and T acts via λ. Let
Hi(λ) = Ri indGB−(kλ), where Ri indGB− is the ith right derived functor of the induction from B−

to G, see [Jan03, I.3.3] for more details. Set

χ(λ) =
∑
i≥0

(−1)i chHi(λ).

If λ is dominant, then by Kempf’s vanishing theorem, we get that χ(λ) = chV (λ), the character of
the Weyl module of highest weight λ. For a precise statement of Kempf’s vanishing theorem, see
[Jan03, II.4.5]. Recall that {χ(θ)}θ∈X(T)+ and {chL(θ)}θ∈X(T)+ are two Z-bases of Z[X(T )]W . In
particular, for λ ∈ X(T)+

χ(λ) =
∑

θ∈X(T)+

aλ,θ ch L(θ) (1.2)

with aλ,θ ∈ Z≥0 and
ch L(λ) =

∑
θ∈X(T)+

bλ,θχ(θ) (1.3)

with bλ,θ ∈ Z. Let [VG(λ) : LG(θ)] or [λ : θ] denote the coefficient aλ,θ in (1.2) and similarly let
(LG(λ) : VG(θ)) or (λ : θ) denote the coefficient bλ,θ in (1.3). Let S ⊆ X(T) be a finite set. We
define the S-truncated character of V as

chV S =
∑
θ∈S

mV (θ)e(θ).

Fix λ ∈ X(T)+ and define the following condition for S and λ.

Condition 1.1.11.

• The set S satisfies S ⊆ X(T)+.

• For µ ∈ S, if θ ∈ X(T)+ and µ � θ � λ, then θ ∈ S.

Let S ⊆ X(T) and assume Condition 1.1.11 holds for S and λ, then

χ(λ)S =
∑
θ∈S

mλ(θ)e(θ) =
∑
θ∈S

aλ,θ ch L(θ)S (1.4)

with aλ,θ as in (1.2), where the first equality holds by definition of a truncated character and the
second equality holds since S satisfies Condition 1.1.11 and since if µ, θ ∈ X(T)+ with µ 6� θ, then
mθ(µ) = 0. Similarly,

ch L(λ)S =
∑
θ∈S

mL(λ)(θ)e(θ) =
∑
θ∈S

bλ,θχ(θ)S (1.5)

with bλ,θ as in (1.3). For notational simplicity, we will sometimes abbreviate (1.4) by

χ(λ)S =
∑
θ∈S

aλ,θθ, (1.6)

and (1.5) by
ch L(λ)S =

∑
θ∈S

bλ,θθ. (1.7)
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1.1.11.1 Multiplicities in a Weyl module. — We use Freudenthal’s formula to compute
multiplicities in Weyl modules. Most of the weights we consider are given by a linear combination
of fundamental weights whose coefficients are parameters which can be set to a wide range of values.
We therefore need the following result from [Cav17a, Proposition A] which provides a bound on the
values of the parameters for the multiplicity to become uniform. That is, we only need to apply
Freudenthal’s formula for given values of the parameters.

Proposition 1.1.12 (Cavallin). Let λ =
∑n
i=1 aiλi ∈ X(T)+ be a dominant weight and let

µ ∈ X(T) be such that µ = λ−
∑n
i=1 ciαi, for some c1, · · · , cn ∈ Z≥0, so that µ � λ. Also assume

the existence of a non-empty subset J of {1, . . . , n} such that 0 ≤ cj ≤ aj for every j ∈ J and set
λ′ =

∑
i6∈J aiλi +

∑
i∈J ciλi, µ′ = λ′ −

∑n
i=1 ciαi. Then

mλ(µ) = mλ′(µ′).

1.1.11.2 Multiplicities in an irreducible module. — Let λ ∈ X(T)+ and µ ∈ Λ(λ). To
compute mL(λ)(µ), we need to compute (1.5) with S = {θ ∈ X(T)+ | λ � θ � µ}. Then

mL(λ)(µ) =
∑
θ∈S

bλ,θmθ(µ),

and we apply the previous paragraph to compute the multiplicities in the Weyl modules.

1.2 Alcove geometry

1.2.1 Affine Weyl group. — The affine Weyl group (associated to G and p), denoted by Wp, is
the subgroup of AGL(X(T )⊗Z R) generated by all the affine reflections sα,r, for α ∈ Φ and r ∈ Z,
where

sα,r(λ) = sα(λ) + rpα,

for λ ∈ X(T)⊗Z R. Alternatively Wp
∼= pZΦ oW with pZΦ acting on X(T)⊗Z R by translation.

Let ρ denote the half-sum of positive roots or equivalently the sum of fundamental weights. From
now on, we let the affine Weyl group act on X(T) via the dot action, namely

w·λ = w(λ+ ρ)− ρ

for w ∈Wp and λ ∈ X(T ).

1.2.2 Alcoves. — For each tuple (nα)α∈Φ+ ∈ Z|Φ+|, we associate a subset C of X(T) ⊗Z R
defined by

C = {λ ∈ X(T)⊗Z R | (nα − 1)p < 〈λ+ ρ, α∨〉 < nαp, ∀α ∈ Φ+}.

If C is non-empty, we call C an alcove. The upper closure and the closure of C are given, respectively,
by

Ĉ = {λ ∈ X(T)⊗Z R | (nα − 1)p < 〈λ+ ρ, α∨〉 ≤ nαp, ∀α ∈ Φ+},
C = {λ ∈ X(T)⊗Z R | (nα − 1)p ≤ 〈λ+ ρ, α∨〉 ≤ nαp, ∀α ∈ Φ+}.
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We have that Wp acts simply transitively on the set of alcoves and the closure of any alcove is a
fundamental domain for Wp acting on X(T)⊗Z R. Denote by C0 the alcove associated to the tuple
(1, 1, . . . , 1), that is

C0 = {λ ∈ X(T)⊗Z R | 0 < 〈λ+ ρ, α∨〉 < p, ∀α ∈ Φ+}.

We call C0 the fundamental alcove. Define the Coxeter number of Φ, denoted by h, to be equal to
max{〈ρ, α∨〉+ 1 | α ∈ Φ+}, namely h = 〈ρ, α̃∨0 〉+ 1. Indeed, if α∨ =

∑n
i=1 biα

∨
i , then

〈ρ, α∨〉 =
n∑
i=1

bi〈ρ, α∨i 〉 =
n∑
i=1

bi, (1.8)

and a case-by-case verification shows that the value of (1.8) is maximal when α∨ is the largest root
in the dual root system, that is when α = α̃0. Therefore C ∩X(T) 6= ∅ for any alcove C if and only
if C0 ∩X(T) 6= ∅ if and only if 0 ∈ C0 if and only if p ≥ h.

For α ∈ Φ+ and m ∈ Z, the set

Fα,m = {λ ∈ X(T)⊗Z R | 〈λ+ ρ, α∨〉 = mp},

is called a wall. For C an alcove, we say Fα,m is a wall of C if C ∩ Fα,m 6= ∅. We associate to a
wall Fα,m the reflection sF = sα,m. For an alcove C, denote by Σ(C) the set of all reflections sF ,
where F is a wall of C. Observe that

Σ(C0) = {sαi , αi ∈ ∆} ∪ {sα̃0,1}.

We denote sαi by si and sα̃0,1 by s0.

1.2.3 Linkage principle. — For λ, µ ∈ X(T), we say µ is linked to λ if there exists a sequence
of affine reflections sβ1,r1 , . . . , sβt,rt ∈Wp with βi ∈ Φ+ such that

µ � sβ1,r1·µ � · · · � sβt,rt · · · sβ1,r1·µ = λ,

or if µ = λ.
The next crucial proposition was proven by Andersen in [And80], for more details about the

proof see [Jan03, II.6.13].

Proposition 1.2.1 (The Strong Linkage Principle). Let λ, µ ∈ X(T)+. If

[V(λ) : L(µ)] 6= 0,

then µ is linked to λ.

The next result gives a numerical condition to verify the linkage relation. It appears in [Sei87,
(6.2)] in the framework of modules with 1-dimensional weight spaces, but it holds in our setting too.
We normalize the inner product (−,−) on X(T)⊗ R, so that the long roots have length 1.

Proposition 1.2.2 (Seitz). Let G be simple and λ, µ ∈ X(T)+. Assume that p > 2 and that p > 3
if G = G2. Write µ = λ−

∑n
i=1 ciβi, where each ci ≥ 0. If µ is linked to λ, then

2
(
λ+ ρ,

n∑
i=1

ciβi

)
−

(
n∑
i=1

ciβi,

n∑
i=1

ciβi

)
∈

{
(p/2)Z if G 6= G2

(p/6)Z if G = G2.
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The following two results are easy corollaries of Proposition 1.2.1. The first corollary follows
from the fact that the change of basis between the bases {chL(θ)} and {χ(θ)} of Z[X(T)+]W is
unitriangular.

Corollary 1.2.3. Let λ, µ ∈ X(T)+. If (L(λ) : V (µ)) 6= 0, then µ is linked to λ.

Proof. We prove the corollary by induction on |Λ(λ) ∩X(T)+|. If |Λ(λ) ∩X(T)+| = 1, then λ is a
minuscule weight and the result is clear. Assume |Λ(λ) ∩X(T)+| ≥ 2. Note that the result holds
by induction for any ν ∈ X(T)+ with ν ≺ λ, since Λ(ν) ( Λ(λ). Let

χ(λ) = chL(λ) +
∑

ν∈X(T)+\{λ}

aλ,ν chL(ν), (1.9)

with aλ,ν ∈ Z≥0 and
chL(ν) =

∑
µ∈X(T)+

bν,µχ(µ), (1.10)

with bν,µ ∈ Z. Substituting (1.10) in (1.9) and rearranging the terms, we get

chL(λ) = χ(λ)−
∑

µ∈X(T)+

 ∑
ν∈X(T)+\{λ}

aλ,νbν,µ

χ(µ).

By Proposition 1.2.1, if aλ,ν 6= 0, then ν is linked to λ. Moreover the induction hypothesis implies
that if bν,µ 6= 0, then µ is linked to ν. Note that being linked is transitive. Therefore if aλ,νbν,µ 6= 0,
then µ is linked to λ, which finishes the proof.

Corollary 1.2.4. Let λ ∈ X(T)+. Assume λ ∈ Ĉ0, then V (λ) is irreducible.

Proof. Let λ ∈ X(T)+ ∩ Ĉ0. Assume µ ∈ X(T)+ is such that [V (λ) : L(µ)] 6= 0. Then µ � λ and
so by the geometry of alcoves µ ∈ X(T)+ ∩ Ĉ0. Moreover, by Proposition 1.2.1, we have µ ∈Wp·λ.
Since Wp acts simply transitively on {C | C is an alcove}, we get µ = λ and V (λ) is irreducible.

The proof of the following proposition can be found in [Jan03, II.6.24].

Proposition 1.2.5. Let λ ∈ X(T)+. Suppose that µ ∈ X(T) is maximal for the property of being
linked to λ. If µ ∈ X(T)+ and µ 6∈ {λ− pα | α ∈ Φ+}, then

[V (λ) : L(µ)] = 1.

1.3 The Jantzen p-sum formula

The Jantzen p-sum formula, abbreviated JSF, is a powerful tool for studying the composition
factors of Weyl modules. As we will see its limitations can be mitigated by introducing a truncated
version of the sum formula and whenever p ≥ h by using results from the theory of translation
functors.

Let νp(z) for z ∈ Z>0 denote the p-adic valuation of z, that is the exponent of the highest power
of p dividing z. See [Jan03, II.8] for a proof of the next theorem.
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Theorem 1.3.1 (Jantzen p-sum formula). For each λ ∈ X(T)+ there is a filtration of kG-modules

V (λ) = V (λ)0 ⊇ V (λ)1 ⊇ V (λ)2 ⊇ · · · , (1.11)

such that ∑
i>0

chV (λ)i =
∑
α∈Φ+

∑
0<mp<〈λ+ρ,α∨〉

νp(mp)χ(sα,mp·λ) (1.12)

and
V (λ)/V (λ)1 ∼= L(λ). (1.13)

For λ ∈ X(T)+, denote the right-hand side of (1.12) by JSF(λ), that is

JSF(λ) =
∑
α∈Φ+

∑
0<mp<〈λ+ρ,α∨〉

νp(mp)χ(sα,mp·λ).

The reader should keep in mind the following two remarks. In the first one, we explain one of the
benefits of assuming p ≥ h and in the second one, we deduce a straightforward formula for chL(λ)
in terms of the characters of the modules V (λ)i appearing in (1.11).

Remark 1.3.2. Assume λ ∈ X(T)+ is a p-restricted weight. For α ∈ Φ+, we have

〈λ+ ρ, α∨〉 ≤ p
n∑
i=1
〈λi, α∨〉 = p〈

n∑
i=1

λi, α
∨〉 = p〈ρ, α∨〉 ≤ p(h− 1).

Therefore, if p ≥ h, then the p-adic valuation in (1.12) is always equal to 1.

Remark 1.3.3. By (1.13), we have

chL(λ) = χ(λ)− chV (λ)1 = χ(λ)− JSF(λ) +
∑
i>1

chV (λ)i,

since chV (λ)1 = JSF(λ)−
∑
i>1 chV (λ)i.

Recall that X(T)+ is a fundamental domain for the action of W on X(T). Let D = {λ ∈
X(T) | λ+ ρ ∈ X(T)+}, then D is a fundamental domain for the dot action of W on X(T). In the
next lemma, we summarize some properties of the Weyl group and the affine Weyl group acting via
the dot action on X(T).

Lemma 1.3.4. Let λ ∈ X(T).

1) χ(w·λ) = det(w)χ(λ), ∀w ∈W.

2) If λ ∈ D \X(T)+, then χ(λ) = 0.

3) For α ∈ Φ+ and r ∈ Z, sα,r·λ = sα·(λ− rα).

Proof. The first assertion is proved in [Jan03, II.5.9]. If λ ∈ D \X(T)+, there exists α ∈ ∆ with
〈λ+ ρ, α∨〉 = 0. Hence sα·λ = λ and by the first assertion χ(λ) = −χ(λ), which implies the second
assertion. The third assertion follows by developing each side of the equality.
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Let α ∈ ZΦ and write α =
∑n
i=1 aiαi. Define the support of α in ∆ to be

support(α) = {i | ai 6= 0}.

We will often use the next lemma to avoid summing over all the roots in (1.12), whenever we are
interested in computing the JSF up to a given weight. A proof of this lemma can be found in
[McN98, Lemma 4.5.6].

Lemma 1.3.5. Let λ, µ ∈ X(T)+, α ∈ Φ+ and 2 ≤ r ≤ 〈λ+ ρ, α∨〉. If λ− rα and µ are conjugate
by W under the dot action, then α and λ− µ have equal support in ∆.

1.3.1 Computing the Jantzen p-sum formula. — Some of the ideas in this subsection are
taken from [McN98, 4.5]. Let λ ∈ X(T)+. We wish to deduce some information about the character
of L(λ) using Remark 1.3.3. Observe that sα,mp·λ in (1.12) does not necessarily lie in D. Since D
is a fundamental domain for W acting via the dot action on X(T), there exists wα,mp ∈W such
that wα,mp·(λ−mpα) ∈ D. Then, by 1) and 3) of Lemma 1.3.4, we have

χ(sα,mp·λ) = −det(wα,mp)χ(wα,mp·(λ−mpα)),

which shows the following proposition.

Proposition 1.3.6 ([McN98, Remark 4.5.8]). For λ ∈ X(T)+, we have

JSF(λ) = −
∑
α∈Φ+

∑
0<mp<〈λ+ρ,α∨〉

νp(mp) det(wα,mp)χ(wα,mp·(λ−mpα)), (1.14)

with wα,mp ∈W satisfying wα,mp·(λ−mpα) ∈ D.

We can combine the coefficients in (1.14) and apply 2) of Lemma 1.3.4 to get

JSF(λ) =
∑

θ∈X(T)+

cλ,θχ(θ) (1.15)

with cλ,θ ∈ Z. Since JSF(λ) is a sum of characters, namely
∑
i>0 chV (λ)i, we can write it as

JSF(λ) =
∑

θ∈X(T)+

dλ,θ chL(θ), (1.16)

where
dλ,θ =

∑
i>0

[V (λ)i : L(θ)] ∈ Z≥0. (1.17)

Note that obtaining (1.16) is not straightforward and depends upon knowing the decomposition of
χ(θ) in terms of irreducible characters for all θ ≺ λ with cλ,θ 6= 0, i.e. knowing the coefficients in
(1.2). We will see how to perform this in an effective way for a truncated version of the JSF in
Subsection 1.3.2.

Using (1.13), (1.16) and (1.17), we deduce the following proposition.

Proposition 1.3.7. Let µ ∈ X(T)+ \ {λ}. Then L(µ) is a composition factor of V (λ) if and only
if dλ,µ 6= 0 in (1.16).
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Remark 1.3.8. Let µ ∈ X(T)+ \ {λ}. By (1.13),

[V (λ) : L(µ)] = [V (λ)1 : L(µ)]. (1.18)

Hence if dλ,µ = 1, then (1.17) and (1.18) imply [V (λ)2 : L(µ)] = 0 and [V (λ) : L(µ)] = 1. However,
if dλ,µ > 1, then the JSF is not sufficient to determine the value of [V (λ) : L(µ)], since it might be
that [V (λ)2 : L(µ)] 6= 0.

The issue raised in Remark 1.3.8 appears when we try to determine the character of simple
modules using the JSF. We will see, in the remainder of this section, how to solve it in some specific
cases. The first result in this direction comes from the theory of translation functors. For more
details about the proof, see [Jan03, II.7.18]

Proposition 1.3.9. Let λ0 ∈ C0 ∩X(T) and w ∈ Wp with w·λ0 ∈ X(T)+. Let s ∈ Σ(C0) with
w·λ0 � ws·λ0. Then

[V (w1·λ0) : L(w·λ0)] = [V (w1s·λ0) : L(w·λ0)]

for all w1 ∈Wp such that w1·λ0, w1s·λ0 ∈ X(T)+.

The previous proposition does not apply to λ0 ∈ (C0 \C0) ∩X(T), that is to λ0 lying on a wall
of the fundamental alcove. For such weights, we first need to apply the following proposition. For
more details about the proof, see [Jan03, II.7.17].

Proposition 1.3.10. Let λ0, λ
′
0 ∈ C0 and w ∈ Wp with w·λ0 ∈ X(T)+. Suppose that w·λ′0

belongs to the upper closure of the alcove containing w·λ0.

1) For all w1 ∈Wp such that w1·λ0, w1·λ′0 ∈ X(T)+, we have

[V (w1·λ0) : L(w·λ0)] = [V (w1·λ′0) : L(w·λ′0)].

2) If chL(w·λ0) =
∑
w′∈Wp

aw,w′χ(w′·λ0) with almost all aw,w′ = 0, then

chL(w·λ′0) =
∑

w′∈Wp

aw,w′χ(w′·λ′0).

We summarize the data required to apply Propositions 1.3.9 and 1.3.10 and their implications in
tables like Table 2.9 on Page 47. In the next remarks, we explain how to read these tables and the
results they contain. We refer to the different parts of the table by reading it from top to bottom
and use the same notations as in the propositions.

Remark 1.3.11. The first part of the table gives the elements in Wp which reflect the weights
γ, η or γ′, η′ we are considering, to the weight λ0 or λ′0 which lies in the closure of the fundamental
alcove. By looking at λ0 or λ′0, it is straightforward to check if it lies in the interior or on a wall of
the fundamental alcove.

Remark 1.3.12. The second part of the table only exists if the weights we are considering are
linked to a weight which does not lie in the interior of the fundamental alcove, i.e. λ′0 lies on a
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wall. Whenever this occurs, we choose a weight λ0 in the interior of the fundamental alcove in
order to apply Proposition 1.3.10. A generic choice is to pick the trivial weight, but we sometimes
need to pick a more specific weight in the interior of the fundamental alcove. In the notations of
Proposition 1.3.10, we also exhibit the alcove which contains w·λ0 and w·λ′0 in its upper closure
by giving the sequence of integers (nα) as in Subsection 1.2.2.

Remark 1.3.13. In the last part of the table, we provide all the data required to check that the
hypotheses of Proposition 1.3.9 hold and we state the implications of the proposition.

1.3.2 A truncated version of the Jantzen p-sum formula. — We now describe an inductive
process which we will use repeatedly to compute a truncated version of the JSF, thus obtaining
possible candidates for the linear expression of truncated Weyl characters in terms of truncated
characters of simple modules. The idea of truncating the JSF first appeared in [Cav15]. Let
λ ∈ X(T)+. The first version of this process assumes that we have the truncated character of χ(µ)
for each µ appearing in the JSF of λ. We also describe a modified version of the process which
does not assume that the truncated character of χ(µ) is known for each µ appearing in the JSF of
λ, but takes into account various candidates for it. We then prove a result which motivates the use
of the inductive process. Finally, on Page 20, we give an example on how to apply the inductive
process in order to compute a truncated character. The reader may want to follow the example
which could help to understand the theoretical discussion.

Let λ ∈ X(T)+. Recall Remark 1.3.3. For a set S satisfying Condition 1.1.11 for λ, define the
S-truncated JSF(λ) denoted JSF(λ)S to be

JSF(λ)S = χ(λ)S − chL(λ)S +
∑
i>1

(chV i)S . (1.19)

Note that
JSF(λ)S =

∑
θ∈S

cλ,θχ(θ)S =
∑
θ∈S

dλ,θ chL(θ)S , (1.20)

where cλ,θ and dλ,θ are as in (1.15) and (1.16).

Remark 1.3.14. One of the advantages of the truncated version of the JSF is to reduce the
number of roots over which we sum in (1.14) by using the description of the set S along with
Proposition 1.2.2, Corollary 1.2.3, and Lemma 1.3.5.

Fix a set S satisfying Condition 1.1.11 for λ. We refer to Fig. 1.2 for a description of Algorithm 1.
We apply this algorithm which returns a set S1 ⊆ S and for all µ ∈ S1 the JSF(µ)S ,

JSF(µ)S =
∑
θ∈S1

cµ,θχ(θ)S , (1.21)

with cµ,θ ∈ Z known. Note that Algorithm 1 ends, since the set S is finite.
Our goal is to find (L(λ) : V (θ)) for all θ ∈ S1. We proceed inductively using the poset structure

of (S1,�). Note that λ is the maximal element in S1. For a minimal element µ ∈ S1, we have
JSF(µ)S = 0, hence χ(µ)S = chL(µ)S by (1.12) and (1.19).

Fix µ ∈ S1 not minimal. The induction hypothesis is the following.
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Algorithm 1: Computing S1 and some JSF.
1 Define S0 = {λ}, S1 = ∅;
2 while S0 6= S1 do
3 for µ ∈ S0 \ S1 do
4 Compute the (1.14) version of JSF(µ)S using Remark 1.3.14.;
5 S0 = S0 ∪ {θ | cµ,θ 6= 0 in (1.20) for µ};
6 S1 = S1 ∪ {µ};
7 end
8 end
9 Return S1 and (1.21) for all µ ∈ S1;

Figure 1.2: Algorithm 1

Step 0 • For γ with cµ,γ 6= 0 in (1.21), we know the coefficients eγ,θ ∈ Z≥0 appearing in

χ(γ)S =
∑
θ∈S1

eγ,θ chL(θ)S . (1.22)

Note that we have relabelled the coefficients aγ,θ of (1.4) by eγ,θ.
• For γ ∈ S1 with γ ≺ µ, we know the coefficients ebγ,θ ∈ Z appearing in

chL(γ)S =
∑
θ∈S1

ebγ,θχ(θ)S . (1.23)

Similarly as above, note that we have relabelled the coefficients bγ,θ of (1.5) by ebγ,θ .

The inductive step consists in applying Step 1 and Step 2 below.

Step 1 Substituting (1.22) in (1.21) for each γ such that cµ,γ 6= 0 yields

JSF(µ)S =
∑
θ∈S1

dµ,θ chL(θ)S , (1.24)

where dµ,θ =
∑
γ∈S1

cµ,γeγ,θ.

Step 2 Recall Remark 1.3.8 and Remark 1.3.3. Whenever dµ,θ > 1 in (1.24), we deduce multiple
possibilities for chL(µ)S as follows. List all the sequences (eµ,θ)θ∈S1 , denoted by (eµ,θ) for
notational simplicity, with min (1, dµ,θ) ≤ eµ,θ ≤ dµ,θ and θ ∈ S1. We do not understand
V (µ)1 from (1.11) which is the key to determining chL(µ)S by (1.13). Note that each
sequence (eµ,θ) yields a possibility for (chV (µ)1)S given by

(chV (µ)1)S(eµ,θ) = χ(µ)S(eµ,θ) − chL(µ)S(eµ,θ) =
∑
θ∈S1

eµ,θ chL(θ)S . (1.25)

Rewrite (1.25) as
χ(µ)S(eµ,θ) − chL(µ)S(eµ,θ) =

∑
θ∈S1

beµ,θχ(θ)S , (1.26)
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where beµ,θ =
∑
γ∈S1

eµ,γebγ,θ . Formally, we have

χ(µ)S(eµ,θ) = chL(µ)S(eµ,θ) +
∑
θ∈S1

eµ,θ chL(θ)S , (1.27)

chL(µ)S(eµ,θ) = χ(µ)S(eµ,θ) −
∑
θ∈S1

beµ,θχ(θ)S . (1.28)

We refer to (1.27) and (1.28) as the Weyl character, respectively irreducible character,
corresponding to the sequence (eµ,θ).

Remark 1.3.15. One of the sequences this procedure returns is the correct sequence, namely a
sequence (eµ,θ) such that [V (µ) : L(θ)] = eµ,θ for all θ ∈ S1. In practice, we will not determine for
each µ ∈ S1 the correct sequence, since there may exist more than one sequence (eµ,θ) such that
the coefficients beµ,θ in (1.28) satisfy beµ,θ = (L(µ) : V (θ)) for all θ ∈ S1. Examples of sequences
illustrating this situation appear in Lemma 1.3.17.

Let µ ∈ S1. Assume we have applied the previous steps to all θ ∈ S1 satisfying θ ≺ µ. If for
all θ ∈ S1 with θ ≺ µ, the application of Step 2 to θ returned only one sequence (eθ,ν), then we
continue applying the steps above to µ. If for some θ ∈ S1 with θ ≺ µ, the application of Step 2 to
θ returned more than one sequence, then we apply the following modified version of the inductive
process to µ.

Step 0’ For each γ ∈ S1 such that cµ,γ 6= 0 in (1.20), choose a sequence (eγ,θ) coming from Step
2 applied to γ or from Step 2’ described below applied to γ, depending on whether we
applied Step 2 or Step 2’ to γ. Fixing these sequences, we inductively have a sequence
(eν,θ) for any ν ∈ S1 satisfying ν ≺ µ. That is, we have

χ(ν)S(eν,θ) = chL(ν)S(eν,θ) +
∑
θ∈S1

eν,θ chL(θ)S(eθ,η), (1.29)

with eν,θ ∈ Z≥0 known and

chL(ν)S(eν,θ) = χ(ν)S(eν,θ) −
∑
θ∈S1

beν,θχ(θ)S(eθ,η), (1.30)

with beν,θ ∈ Z known from (1.23), (1.26) or (1.33).

We repeat the next two steps for each combination of choices in Step 0’.

Step 1’ Substituting (1.29) for each γ such that cµ,γ 6= 0 in (1.21) yields the following version of
the JSF

JSF(µ)S(eµ,θ) =
∑
θ∈S1

dµ,θ chL(θ)S(eθ,ν), (1.31)

where dµ,θ =
∑
γ∈S1

cµ,γeγ,θ. We overline the coefficients dµ,θ in (1.31) to emphasize their
dependence on the choice of the sequences in Step 0’ compared to the coefficients dµ,θ
appearing in (1.24) which do not depend on any choice.
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Step 2’ Similarly as in Step 2, we index by (eµ,θ) all the possible sequences given by letting eµ,θ
range between min (1, dµ,θ) ≤ eµ,θ ≤ dµ,θ for θ ∈ S1. We get formally

χ(µ)S(eµ,θ) = chL(µ)S(eµ,θ) +
∑
θ∈S1

eµ,θ chL(θ)S(eθ,ν), (1.32)

which we rewrite formally as

chL(µ)S(eµ,θ) = χ(µ)S(eµ,θ) −
∑
θ∈S1

beµ,θχ(θ)S(eθ,ν) (1.33)

where beµ,θ =
∑
γ∈S1

eµ,γbeγ,θ .

We inductively apply this process to every element of S1.

Remark 1.3.16. Let (eλ,θ) be a sequence coming from the inductive process applied to λ. To
every such sequence is attached: An inductive choice of sequences (eγ,θ) from (1.22) or (1.29) along
with the sequences (beγ,θ) from (1.23) or (1.30), a sequence (dλ,θ) or (dλ,θ) from (1.24) or (1.31)
from which (eλ,θ) is constructed, and a sequence (beλ,θ ) from (1.26) or (1.33).

The next result, Lemma 1.3.17, justifies the introduction of the modified inductive process.
It tells us that we do not always need to pinpoint the correct sequence (eλ,θ) in order to find
(L(λ) : V (θ)) for every θ ∈ S1. Before stating the lemma, we introduce some additional notations.
For µ ∈ S, set Sµ = {θ ∈ S | θ � µ}. Note that Sµ also satisfies Condition 1.1.11 for λ. Similarly,
let (S1)µ = {θ ∈ S1 | θ � µ}. Let (eλ,θ) be a sequence coming from the inductive process applied
to λ and let µ ∈ S1. We define three conditions depending on µ for the sequence (eλ,θ).

(C1) If θ ∈ (S1)µ \ {λ}, then beθ,µ = (θ : µ).

(C2) If θ ∈ (S1)µ \ {µ} with (θ : µ) 6= 0, then eλ,θ = [λ : θ].

(C3) If θ ∈ (S1)µ \ {λ} and (θ : µ) 6= 0, then eγ,θ = [γ : θ] for γ ∈ (S1)µ.

The conditions (C1) and (C3) are satisfied if (eλ,θ) comes from the non-modified inductive process
applied to λ, since (C1) and (C3) correspond to the choices made in Step 0 and Step 0’. Denote by
Sµ the following set

Sµ = {(eλ,θ) | (eλ,θ) comes from the inductive process and satisfies (C1) – (C3) for µ}.

Note that the set Sµ is nonempty, since it contains the correct sequence as mentioned in Re-
mark 1.3.15.

Lemma 1.3.17. Let λ ∈ X(T)+ and let S be a set satisfying Condition 1.1.11 for λ. Assume the
output of the inductive process applied to S is available, that is we have the sequences (eγ,ν) and
(beγ,ν ) and (dγ,ν) or (dγ,ν) for every γ ∈ S1. Let µ ∈ S1. If for every sequence (eλ,θ) ∈ Sµ the
sequence (dλ,θ) or (dλ,θ) which is attached to it satisfies dλ,µ ∈ {0, 1} or dλ,µ ∈ {0, 1}, then for
every sequence (eλ,θ) ∈ Sµ, we have beλ,µ = (L(λ) : V (µ)).
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Proof. Note that the Sµ-truncated version of (1.19) is given by

chL(λ)Sµ = χ(λ)Sµ − JSF(λ)Sµ +
∑
i>1

(chV (λ)i)Sµ . (1.34)

Since the non-modified version of the inductive process can be viewed as a special case of the
modified version, i.e. applying Step 0’ with only one possibility for the inductive choice of the
sequence (eγ,θ), assume the modified version was applied to λ. Let (eλ,θ) ∈ Sµ with all the sequences
attached to it as explained in Remark 1.3.16. Note that by (1.31) and (1.32), we can write a formal
version of (1.34) which depends on the choices made in Step 0’ for (eλ,θ) as follows

chL(λ)Sµ(eλ,θ) = χ(λ)Sµ(eλ,θ) − JSF(λ)Sµ(eλ,θ) +
(∑
i>1

chV (λ)i
)Sµ

(eλ,θ)

, (1.35)

where (∑
i>1

chV (λ)i
)Sµ

(eλ,θ)

=
∑

θ∈(S1)µ\{λ}

(dλ,θ − eλ,θ) chL(θ)Sµ(eθ,ν). (1.36)

Substitute (1.30) in (1.36) to obtain(∑
i>1

chV i
)Sµ

(eλ,θ)

=
∑

θ,γ∈(S1)µ\{λ}

(dλ,θ − eλ,θ)beθ,γχ(γ)Sµ(eγ,ν). (1.37)

Using (1.21) and (1.37) to expand (1.35), we get

chL(λ)Sµ(eλ,θ) = χ(λ)Sµ(eλ,θ)−
∑

γ∈(S1)µ

cλ,γχ(γ)Sµ(eγ,ν) +
∑

γ,θ∈(S1)µ\{λ}

(dλ,θ − eλ,θ)beθ,γχ(γ)Sµ(eγ,ν). (1.38)

The coefficient of χ(µ) on the left-hand side of (1.38) is equal to beλ,µ , where beλ,µ is as in (1.30) or
(1.33). Isolating the coefficient corresponding to χ(µ) on the right-hand side of (1.38) yields

beλ,µ = −cλ,µ +
∑

θ∈(S1)µ\{λ}

(dλ,θ − eλ,θ)beθ,µ . (1.39)

Recall that for θ ∈ Sµ, if dλ,θ ∈ {0, 1}, then by definition of eλ,θ, we have dλ,θ = eλ,θ. We assumed
that dλ,µ ∈ {0, 1}, hence dλ,µ − eλ,µ = 0. Thus (1.39) becomes

beλ,µ = −cλ,µ +
∑

θ∈(S1)µ\{λ,µ}

(dλ,θ − eλ,θ)beθ,µ .

By conditions (C1) and (C2), we get

beλ,µ = −cλ,µ +
∑

θ∈(S1)µ\{λ,µ}

(dλ,θ − [V (λ) : L(θ)])(θ : µ).

Moreover, by definition of the sequence (dλ,θ) and (dλ,θ) in (1.24) and (1.31), condition (C3) implies
that for θ ∈ (S1)µ \ {λ} with (θ : µ) 6= 0, we can replace dλ,θ by dλ,θ. Hence

beλ,µ = −cλ,µ +
∑

θ∈(S1)µ\{λ,µ}

(dλ,θ − [V (λ) : L(θ)])(θ : µ). (1.40)
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Note that (1.40) implies that the coefficient beλ,µ does not depend on the choice of the sequence
(eλ,θ) ∈ Sµ. Moreover, the set Sµ contains the correct sequence (e′λ,θ) satisfying be′

λ,µ
= (λ : µ).

Therefore, any sequence (eλ,θ) ∈ Sµ satisfies beλ,µ = be′
λ,µ

= (λ : µ), which proves the lemma.

Remark 1.3.18. If every sequence (eλ,θ) obtained from the inductive process satisfies dλ,µ ∈ {0, 1}
or dλ,µ ∈ {0, 1} then it is in particular true for all the elements in Sµ. Whenever this is the case, it
is enough to pick any sequence lying in Sµ in order to compute (L(λ) : V (µ)).

Definition 1.3.19. We say µ ∈ S1 is a problematic case for λ, if there exists a sequence (eλ,θ)
coming from the inductive process for λ verifying conditions (C1), (C2) and (C3), with dλ,µ > 1.

Remark 1.3.20. Let λ ∈ X(T)+. Observe that once we have applied the inductive process to λ,
determining chL(λ)S is the same as solving the problematic cases for λ.

In the upcoming chapters, we repeatedly use the inductive process in order to compute truncated
characters of simple modules. Whenever the set S1 contains weights different from λ which are non
minimal in S1, we summarize the inductive process in tables like Table 1.3. We explain how these
tables should be read in the following remarks and then give a detailed example.

The table is divided into four clear parts separated by horizontal lines, we refer to its different
parts by reading it from top to bottom.

Remark 1.3.21. The first part of the table contains the information about the group considered
and the weight to which we are applying the inductive process.

Remark 1.3.22. For a summary of the output of the inductive process, one should start by
reading the first column of the third part of the table. It contains the nontrivial outputs (1.21) of
Algorithm 1, that is the truncated JSF of the non minimal elements of S1 in terms of characters of
Weyl modules. The output (1.21) for the minimal elements of S1 is equal to 0, hence omitted. The
elements of S1 are listed in the fourth part of the table.

Remark 1.3.23. Recall that in order to express the JSF in terms of irreducible characters, we
start with minimal elements and apply the steps Step 0 to Step 2 or Step 0’ to Step 2’. The second
column of the third part of the table contains the expressions (1.24) or (1.31) depending on whether
we applied Step 1 or Step 1’. One should be able to reconstruct the process starting towards the
bottom of the column with the second to minimal elements of S1, since again the minimal elements
are omitted. Superscripts and subscripts appear in the expressions whenever we apply Step 1’.
They respectively correspond to the maximal and minimal entries ranging over the sequences (d)
defined in (1.31).

Remark 1.3.24. The second part of the table contains information about the irreducible character
of the weight considered in terms of Weyl modules. The precision of the information depends
on the output of the inductive process, therefore, this part of the table is the most variable. It
sometimes contains more than one possibility with the correct character specified in order to help
the reader follow an argument appearing in the text and sometimes the correct character is not
determined, but we use the different possibilities to bound the multiplicity of a weight. In any case,
the corresponding argument appearing in the text should clarify any confusion.
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µ = (0, 0, p− 1, 0)F4

ch L(µ)2473 = µ− A+ B −D + E − F

See argument in Subsection 2.5.1.3

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)2473 = A− B + C +D − E + F JSF(µ)2473 = A+ 2C +D +1
0 F

JSF(A)2473 = B + C + E JSF(A)2473 = B + C + E + 2F

JSF(B)2473 = F JSF(B)2473 = F

JSF(E)2473 = F JSF(E)2473 = F

A = µ− 0131 = (1, 1, p− 4, 1) D = µ− 2460 = (0, 0, p− 5, 6),

B = µ− 1251 = (0, 2, p− 6, 3) E = µ− 0241 = (2, 0, p− 4, 2),

C = µ− 0363 = (3, 0, p− 4, 0) F = µ− 1361 = (1, 1, p− 6, 4)

Table 1.3: An example of the inductive process for the group F4

Example 1.3.25. Assume p ≥ 13. Let us consider in detail the example covered in Table 1.3,
that is let us show how to apply the inductive process in order to compute the truncated character
chL(µ)S for µ = (0, 0, p− 1, 0) = (p− 1)λ3 ∈ X(TF4)+ and S = {θ ∈ X(TF4)+ | µ � θ � µ− 2473}.
Here, µ− 2473 is a shorthand for µ− 2α1 − 4α2 − 7α3 − 3α4, where {αi}4i=1 is a set of simple roots
of a root system of type F4. We use the notations defined in (1.6) and (1.7). Moreover, we denote
chL(µ)S by chL(µ)2473 and for γ ∈ S, we denote JSF(γ)S by JSF(γ)2473.

We start by applying Algorithm 1 to S0 = {µ} and S. The output consists in the set
S1 = {µ,A,B,C,D,E, F} described in the last part of Table 1.3 and the truncated character
JSF(θ)2473 in terms of characters of Weyl modules, for each θ ∈ S1. These truncated characters
are listed in the first column of the third part of Table 1.3. We have that JSF(θ)2473 = 0 for
θ ∈ {C,D, F}, hence we omit them in the table and we deduce that the weights C,D, F are minimal
in S1. Thus, we get χ(θ)2473 = chL(θ)2473 for θ ∈ {C,D, F} and we can apply the non-modified
inductive process to the weights B and E.

Let θ ∈ {B,E}. Note that the sequence (dθ,ν) can be read off from the second column of the third
part of Table 1.3. Since dθ,ν ∈ {0, 1} for ν ∈ S1, we get only one possibility for the sequence (eθ,ν)
which yields chL(θ)2473 = χ(θ)2473 − χ(F )2473. We now have chL(θ)2473 for θ ∈ {B,C,D,E, F},
hence we can apply the non-modified inductive process to A. We get dA,ν ∈ {0, 1} for ν ∈ S1 \ {F}
and dA,F = 2 which implies that we get two sequences (eA,ν), one with eA,F = 1 and the other
one with eA,F = 2. These two sequences yield two possibilities for chL(A)2473 in terms of Weyl
characters. Indeed, recall that by Remark 1.3.3, we have

chL(A)2473 = χ(A)2473 − chV (A)1
2473 = χ(A)2473 − JSF(A)2473 +

∑
i>1

chV (A)i2473, (1.41)

where the V (A)i are the submodules occurring in the filtration of V (A) given in Theorem 1.3.1.
Moreover, by (1.17), we have

dA,F =
∑
i>0

[V (A)i : L(F )].
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Our current understanding is not enough to establish the value of [V (A)1 : L(F )], nor consequently
the value of (L(A) : V (F )) = dA,F − [V (A)1 : L(F )]. Since V (A)0 ⊇ V (A)1 ⊇ V (A)2 ⊇ · · · and
dA,F = 2, we have either [V (A)1 : L(F )] = 1 and

∑
i>1[V (A)i : L(F )] = 1, or [V (A)1 : L(F )] = 2

and
∑
i>1[V (A)i : L(F )] = 0. The sequence with eA,F = 1 corresponds to the case [V (A)1 :

L(F )] = 1 and the sequence with eA,F = 2 corresponds to the case [V (A)1 : L(F )] = 2. Considering
each case separately in (1.41), we get the following possibilities for the partial irreducible character
chL(A)2473.

chL(A)2473 =
{
A−B − C − E + F for the sequence with eA,F = 1
A−B − C − E for the sequence with eA,F = 2

We thus need to apply twice the modified inductive process to µ, taking into account the two
possibilities we have obtained for chL(A)2473 when applying Step 0’. Make S1 into an ordered set
S1 = (µ,A,B,C,D,E, F ). We deduce from Table 1.3 that

(dµ,θ)θ∈S1 =
{

(0, 1, 0, 2, 1, 0, 0) for the sequence with eA,F = 1
(0, 1, 0, 2, 1, 0, 1) for the sequence with eA,F = 2,

which yields the following four possibilities for the sequences (eµ,θ)θ∈S1 as in (1.32).

(eµ,θ)θ∈S1 =


(0, 1, 0, 1, 1, 0, 0) for the sequence with eµ,C = 1 and eA,F = 1
(0, 1, 0, 2, 1, 0, 0) for the sequence with eµ,C = 2 and eA,F = 1
(0, 1, 0, 1, 1, 0, 1) for the sequence with eµ,C = 1 and eA,F = 2,
(0, 1, 0, 2, 1, 0, 1) for the sequence with eµ,C = 2 and eA,F = 2,

Note that F 6� C, hence we do not need to determine [µ : C] in order to determine (µ : F ). By
Remark 1.3.18, the value of (µ : F ) does not depend on the choice of the sequence (eA,θ) and we
can deduce the value of (µ : F ) by taking the opposite of the coefficient of F in the JSF(µ)2473 in
Table 1.3, thus (µ : F ) = −1. Therefore, the inductive process yields two possibilities for chL(µ)2473
depending on the value of eµ,C , namely

chL(µ)2473 =
{
µ−A+B −D + E − F if [µ : C] = 1
µ−A+B − C −D + E − F if [µ : C] = 2.

The problematic case C for µ is solved in Subsection 2.5.1.3 on Page 73.

1.4 Composition factors for the restriction

Let Y be a simply connected simple algebraic group over k. Fix a Borel subgroup BY = UY TY with
UY the unipotent radical of BY and TY a maximal torus of Y . Let ∆(Y ) = {α1, . . . , αn} denote a
base of Φ(Y ) compatible with the choice of BY . Recall that {eα, fα, hαi | α ∈ Φ+(Y ), αi ∈ ∆(Y )}
denotes a Chevalley basis of L (Y ). For α, α′ ∈ Φ(Y ), let N(α,α′) be the structure constant of L (Y )
corresponding to eα and e′α. It satisfies [eα, eα′ ] = N(α,α′)eα+α′ , if α+ α′ ∈ Φ(Y ) and N(α,α′) = 0
otherwise.
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The next two lemmas are important, as they will imply, whenever needed, self-duality for the
modules we will be considering. The first lemma is a well-known fact about restrictions and the
second one is a more general version of [CT19, Lemma 3.1].

Lemma 1.4.1. Let X ≤ Y be a reductive subgroup of Y . Let V be a kY -module. If V is self-dual
as a kY -module, then V is self-dual as a kX-module.

Lemma 1.4.2. Let X ≤ Y be the subgroup of fixed points of a graph automorphism σ of order two
stabilizing TY . If V is an irreducible kY -module, then V is self-dual as a module for X.

Proof. Let w0 denote the longest element in WY , the Weyl group of Y . If w0 = −1, then V ∼= V ∗

and the result holds by Lemma 1.4.1. If not, we have σV ∼= V ∗ and

(V |X)∗ = (V ∗)|X ∼= (σV )|X = V |X ,

which proves the lemma.

Lemma 1.4.3. Let V be a self-dual kX-module such that V has two composition factors, that is
V ∼= LX(µ)/LX(ν) for some µ, ν ∈ X(TX)+, then

V ∼= LX(µ)⊕ LX(ν). (1.42)

Proof. If µ = ν, then by Proposition 1.1.7, we have Ext1
X(LX(µ), LX(µ)) = 0, which implies (1.42).

Assume µ 6= ν and without loss of generality that ν 6� µ. Denote by w0 the longest element
in the Weyl group of X. If −w0ν = µ, a case-by-case verification depending on the type of
Φ(X) implies that ν 6∈ Λ(µ)+ and so [VX(µ) : LX(ν)] = 0. By Proposition 1.1.7, we get that
Ext1

X(LX(µ), LX(ν)) = 0 and the result follows. If −w0ν 6= µ, then both LX(µ) and LX(ν) are
submodules of V , since V ∼= V ∗. The lemma follows.

Let X ≤ Y be a maximal closed connected simple subgroup of Y . Let BX = UXTX be
a Borel subgroup of X with UX = UY ∩ X and TX = TY ∩ X, so that BX = BY ∩ X. Let
∆(X) = {β1, . . . , βm} denote a base of Φ(X) compatible with the choice of BX . Let {eβ , fβ , hβi | β ∈
Φ+(X), βi ∈ ∆(X)} denote a Chevalley basis of L (X). Note that L (X) ⊆ L (Y ).

We solve Question 3 in two steps. The first one consists in eliminating all the cases for which
we can establish the existence of a third composition factor for X acting on LY (λ). The second
one consists in proving that X acts on the remaining cases with exactly two composition factors.
The second step turns out to be more difficult than the first one. Under some assumptions on the
embedding of X in Y , the next proposition provides a framework to solve the general problem of
determining the composition factors of the restriction to X of a simple kY -module. It combines
two ideas which have already been applied in [Sei87, Tes88, For96, Cav15, Cav17b], under specific
assumptions on the embedding of X into Y , in order to determine if the restriction to X of an
irreducible kY -module stays irreducible or has exactly two composition factors.

The first idea from [Sei87, §8] and [Tes88, (5.4)] is that if one is looking for the highest weight
of an additional composition factor for the restriction of an irreducible module, then it does not lie
“too far” away from the highest weights of the other composition factors. In fact, both weights will
be at most separated by the restriction to TX of the highest root in Φ+(Y ).
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The second idea from [For96, Section 3] and developed in [Cav15, Cav17b] is that the possible
candidates for the highest weight of an additional composition factor are in close relationship with
the weights which are separated from the highest weights of other composition factors by the
restriction to TX of a positive root in Φ+(Y ).

Proposition 1.4.4. Let X,Y be as above. Let α0 and β0 denote the largest root of Φ(Y ) and
Φ(X), respectively. Assume eβ0 ∈ 〈eα0〉. Let λ ∈ X(TY )+ be a p-restricted weight and let v+ be
a maximal vector of weight λ in LY (λ) for BY . If w+ ∈ LY (λ) \ 〈v+〉 is a maximal vector for
L (BX) of weight θ ∈ X(TX)+, then there exists a maximal vector in LY (λ) for L (BX) of weight
ν ∈ X(TX)+ and a positive root α ∈ Φ+(Y ) \ {α0} satisfying θ = ν − α|TX .

Proof. By Theorem 1.1.9, since λ is p-restricted, the simple kY -module LY (λ) remains irreducible
when viewed as a module for L (Y ). Moreover, there exists αj ∈ ∆(Y ) such that eαjw+ 6= 0, since
w+ 6∈ 〈v+〉. Consider the non-empty set

S =
{
s = eβb1 · · · eβb` eαjw

+ | ` ∈ Z≥0, βbi ∈ ∆(X), 1 ≤ i ≤ ` and s 6= 0
}
.

We first establish the following claim.

Claim: Any s ∈ S is a weight vector for TX . Moreover, if γ ∈ X(TX) denotes the weight of
s ∈ S, then θ = γ − β|TX for some β ∈ Φ+(Y ) \ {α0}.

Proof of the claim. Let s ∈ S with s = eβb1 · · · eβb` eαjw
+ and ` ∈ Z≥0. It is clear that s is a

weight vector for TX . For the second part of the claim, we prove a more technical statement,
namely that

s =
∑

α∈Φ+(Y )

rαeαw
+, where rα ∈ k and rα0 = 0. (1.43)

Note that if (1.43) holds, then the claims follows. Indeed, recall that w+ is of TX -weight θ.
Now, we have that s is a TX -weight vector of weight α|TX + θ for any α ∈ Φ+(Y ) with rα 6= 0
in (1.43). In particular, if rαrα′ 6= 0, then α|TX = α′|TX .

Recall that s = eβb1 · · · eβb` eαjw
+ for ` ∈ Z≥0. We prove that (1.43) holds by induction on

`. The case ` = 0 is straightforward. Assume the result holds for a fixed ` ≥ 0 and let us prove
it for `+ 1. Let s = eβb1 · · · eβb`+1

eαjw
+ ∈ S. By the induction hypothesis we have

eβb2 · · · eβb`+1
eαjw

+ =
∑

α∈Φ+(Y )

rαeαw
+

with rα0 = 0. Let eβb1 =
∑
γ∈Φ+(Y ) dγeγ with dγ ∈ k, then

s = eβb1

∑
α∈Φ+(Y )

rαeαw
+ =

∑
γ∈Φ+(Y )

∑
α∈Φ+(Y )

rαdγeγeαw
+

=
∑

γ,α∈Φ+(Y )

rαdγ [eγ , eα]w+ +
∑

γ,α∈Φ+(Y )

rαdγeαeγw
+

=
∑

γ,α∈Φ+(Y )

rαdγN(γ,α)eγ+αw
+ +

∑
α∈Φ+(Y )

rαeα eβb1w
+︸ ︷︷ ︸

=0
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=
∑

γ,α∈Φ+(Y )

rαdγN(γ,α)eγ+αw
+.

Note that if α + γ 6∈ Φ+(Y ), then N(γ,α) = 0. Moreover, if α + γ = α0, then eα0w
+ =

1
d0
eβ0w

+ = 0 for some d0 ∈ k∗. Therefore (1.43) holds and the claim follows. �

Consider the following set.

Λ(S) = {γ ∈ X(TX) | ∃ s ∈ S, a TX -weight vector, with TX -weight(s) = γ}

It is a poset with the partial order inherited from X(TX). The claim implies that

Λ(S) ⊆ {θ + α|TX | α ∈ Φ+(Y ) \ {α0}}. (1.44)

Recall that eαjw+ ∈ S, hence (Λ(S),�) is a non-empty finite poset. Therefore, the set Λ(S) admits
a maximal element ν ∈ Λ(S) and there exists s ∈ S such that the TX -weight of s equals ν. By
definition of S, we have that s 6= 0 and by maximality of ν, we have eβis = 0 for all βi ∈ ∆(X).
Thus s is a maximal vector for L (BX). Since kL (X)s ⊆ LY (λ) is finite dimensional, the weight
ν ∈ X(TX)+ and by (1.44), it is of the desired form. The proposition follows.

The next corollary reformulates Proposition 1.4.4 in the setting we will be considering, by
relating the action of L (X) and the action of X on a simple kY -module.

Corollary 1.4.5. Let X,Y be as above. Let λ ∈ X(TY )+ be p-restricted and let θ ∈ X(TX)+.
Let ν1, . . . , νr denote the highest weights of the composition factors (with possible repetitions) of
LY (λ)|X with νi � θ. Assume ν1, . . . , νr are p-restricted. Then LX(θ) is a composition factor
for L (X) acting on LY (λ) if and only if LX(θ) is a composition factor for X acting on LY (λ).
Moreover, if eβ0 ∈ 〈eα0〉 and θ affords the weight of a maximal vector for L (BX), then there exists
νi with 1 ≤ i ≤ r which affords the weight of a maximal vector for L (BX) and α ∈ Φ+(Y ) \ {α0}
such that θ = νi − α|TX .

Proof. Clearly, the weight θ affords the highest weight of a composition factor for X acting on LY (λ)
if and only if mL(λ)|X (θ) >

∑r
i=1mL(νi)(θ). By Theorem 1.1.9, since ν1, . . . , νr are p-restricted, the

irreducible kX-module LX(νi) is irreducible as a module for L (X). That is, the weights νi also
yield the highest weights of the composition factors for the action of L (X) on LY (λ) which are
strictly greater than θ . Therefore, θ affords the highest weight of a composition factor for L (X)
acting on LY (λ) if and only if mL(λ)|X (θ) >

∑r
i=1mL(νi)(θ), which finishes the proof of the first

part of the corollary. The second part of the corollary follows directly from Proposition 1.4.4.

One of the hypotheses of Proposition 1.4.4 is the existence of a maximal vector for L (BX).
Recall that a maximal vector for BX is also a maximal vector for L (BX). The following proposition
ensures the existence of a maximal vector for BX . Its statement and its proof generalize [Tes88,
(5.5)] and [Cav15, 7.7.18].

Proposition 1.4.6. Let X,Y be as above and let V = LY (λ)|X for λ ∈ X(TY )+. Assume V
admits r composition factors generated by maximal vectors w+

1 , . . . , w
+
r ∈ V for BX with highest

weights µ1, µ2, . . . , µr ∈ X(TX)+ satisfying
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1) [VX(µj) : LX(µi)] = 0 for i 6= j.

2) For all γ ∈ Λ(V )+, if µi � γ for some 1 ≤ i ≤ r, then dimVγ =
∑r
j=1 dimLX(µj)γ .

If V is self-dual and has more than r composition factors, then there exists an additional maximal
vector w+

r+1 ∈ V \ 〈w
+
1 , . . . , w

+
r 〉 for BX .

Proof. First observe that µ1, . . . , µr are distinct by hypothesis 1). Assume 〈Xw+
i 〉 is reducible for

some i = 1, . . . , r. Observe that 〈Xw+
i 〉 is an image of VX(µi) by Proposition 1.1.4. Moreover, any

irreducible proper submodule of 〈Xw+
i 〉 is generated by a maximal vector w+

r+1 ∈ 〈Xw
+
i 〉\〈w

+
i 〉 and

w+
r+1 6∈ 〈w

+
1 , . . . , w

+
i−1, w

+
i+1, . . . , w

+
r 〉, since otherwise w+

r+1 ∈ 〈w
+
j 〉 for some j 6= i and [VX(µi) :

LX(µj)] 6= 0 contradicting hypothesis 1). Hence the proposition holds if 〈Xw+
i 〉 is reducible for

some 1 ≤ i ≤ r. We can therefore assume 〈Xw+
i 〉 ∼= LX(µi) for i = 1, . . . , r.

Set
W = 〈Xw+

1 〉+ · · ·+ 〈Xw+
r 〉.

Since all the modules in the sum are simple, it is a direct sum of kX-modules. Therefore, we can
assume up to isomorphism that W =

⊕r
i=1 LX(µi). Since V has more than r composition factors,

the submodule W is proper in V . Let w0 denote the longest element of the Weyl group of X and
choose a coset representative ẇ0 of w0 in NX(TX). Write V as a direct sum of TX -modules as
follows.

V =
r⊕
j=1
〈w+

j 〉 ⊕ V0

Define r vectors f1, . . . , fr in V ∗ by

fi(v) =
{

1 if v = w+
i

0 if v ∈
⊕

j 6=i〈w
+
j 〉 ⊕ V0.

(1.45)

Recall that the kX-module structure of V ∗ is given by (xf)(v) = f(x−1v) for x ∈ X, f ∈
V ∗ and v ∈ V .

Claim: ẇ−1
0 fi ∈ V ∗ is a maximal vector for BX of TX-weight −w0µi for 1 ≤ i ≤ r.

Proof of the claim. Fix i ∈ {1, . . . , r}, a root β ∈ Φ+(X) and xβ(c) ∈ Uβ ⊆ BX . Let γ ∈ Λ(V )
and v ∈ V be a TX -weight vector of weight γ. Note that the TX -weight of ẇ0v is given by w0γ.
Moreover, by (1.1) there is c′ ∈ k and β′ ∈ Φ+(X) such that xβ(−c) = ẇ−1

0 x−β′(c′)ẇ0. By
Lemma 1.1.2, we have

(xβ(c)ẇ−1
0 fi)(v) = fi (ẇ0xβ(−c)v)

= fi (x−β′(c′)ẇ0v)

= fi

ẇ0v +
∑
j∈Z>0

vw0γ−jβ′

 ,

for some TX -weight vectors vw0γ−jβ′ of weight w0γ − jβ′ with j ∈ Z>0. Note that w0γ− jβ′ ≺
w0γ. On the one hand, if w0γ 6� µi or w0γ = µi, then we have fi

(∑
j∈Z>0

vw0γ−jβ′
)

= 0
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by (1.45). On the other hand if w0γ � µi, then ẇ0v ∈
⊕

j 6=i LX(µj) by hypothesis 2) and
so fi

(∑
j∈Z>0

vw0γ−jβ′
)

= 0. We thus get fi
(∑

j∈Z>0
vw0γ−jβ′

)
= 0 and (uβ(c)ẇ−1

0 fi)(v) =
(ẇ−1

0 fi)(v), which proves that ẇ−1
0 fi is fixed by UX . Let us compute the TX -weight of ẇ−1

0 fi.
For t ∈ TX , we have

(tfi)(v) = fi(t−1v) =
{
−µi(t)fi(v) if v = w+

i

0 if v ∈
⊕

j 6=i〈w
+
j 〉 ⊕ V0

,

so fi is of weight −µi. Therefore, ẇ−1
0 fi is a maximal vector of weight −w0µi and the claim

follows. �

We can now complete the proof of the proposition. Denote the annihilator in V ∗ ofW by Ann(W ).
Note that (ẇ−1

0 fi)(ẇ−1
0 w+

i ) 6= 0 and ẇ−1
0 w+

i ∈ W for all i ∈ {1, . . . , r}. Hence ẇ−1
0 fi 6∈ Ann(W )

for all i ∈ {1, . . . , r} and Ann(W ) is a non-zero submodule of V ∗. Therefore, there is an additional
maximal vector for BX in Ann(W ), that is V ∗ contains r + 1 maximal vectors. By the self-duality
of V , we get the desired result.

The next corollary constitutes the main tool we will use in order to solve Question 3.

Corollary 1.4.7. Let λ ∈ X(TY )+ be p-restricted. Assume LY (λ)|X is not irreducible. Let µ be
a maximal element in Λ(LY (λ)|X)+ and let ν ∈ X(TX)+ be such that for all γ ∈ Λ(LY (λ)|X)+

with γ � ν, mLY (λ)|X (γ) = mLX(µ)(γ) and mLY (λ)|X (ν) > mLX(µ)(ν). Let ν1, ν2, . . . , νr denote all
the highest weights of composition factors (with possible repetitions) of LY (λ)|X which are greater
than or equal to µ, ν, µ− α|TX or ν − α|TX for some α ∈ Φ+(Y ) \ {α0}. Then µ, ν ∈ {ν1, . . . , νr}.
Without loss of generality, set ν1 = µ and ν2 = ν. Assume the following.

1) LY (λ)|X is self-dual,

2) ν 6= νi for i ∈ {3, . . . , r},

3) [VX(µ) : LX(ν)] = 0,

4) eβ0 ∈ 〈eα0〉,

5) νi is p-restricted for 1 ≤ i ≤ r.

If LY (λ)|X has more than two composition factors, then r ≥ 3 and there is i ∈ {3, . . . , r} such that
νi = µ− α|TX or νi = ν − α|TX for some α ∈ Φ+(Y ) \ {α0}.

Proof. Note that the choice of µ implies that µ affords the weight of a maximal vector for BX .
Moreover, it also implies that either ν = µ or ν 6� µ. By hypothesis 3), the latter holds. By
hypotheses 1) to 3), and the choice of µ and ν, we can apply Proposition 1.4.6 in order to establish
the existence of a maximal vector w+ ∈ LY (λ) for BX of TX -weight different from the weights
µ and ν. Indeed, either ν affords the weight of a maximal vector for BX and Proposition 1.4.6,
applied to {µ, ν}, establishes the existence of a third maximal vector for BX or ν does not afford the
weight of a maximal vector for BX and Proposition 1.4.6, applied only to µ, implies the existence
of a second maximal vector for BX in LY (λ)|X .
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Let θ ∈ X(TX)+ be maximal among the weights γ ∈ X(TX)+ for which there exists a maximal
vector for L (BX) in LY (λ) of TX -weight γ different from µ and ν. By the previous paragraph,
such a weight θ exists since a maximal vector for BX is also a maximal vector for L (BX). By
hypothesis 4) and the considerations so far, the hypotheses of Proposition 1.4.4 hold. Therefore, by
maximality of θ and Proposition 1.4.4, there exists α ∈ Φ+(Y ) \ {α0} such that θ = µ− α|TX or
θ = ν −α|TX . Applying Corollary 1.4.5 using hypotheses 4) and 5), we deduce that θ = νi for some
i ∈ {3, . . . , r}. The result follows.

Remark 1.4.8. The contrapositive of Corollary 1.4.7 gives us a way to prove that X acts on a given
simple kY -module with exactly two composition factors. Recall the notations of Corollary 1.4.7
and assume hypothesis 1) to 5) hold. If for all i ∈ {3, . . . , r} and for all α ∈ Φ+(Y ) \ {α0}, we
have νi 6= µ − α|TX and νi 6= ν − α|TX , then by Corollary 1.4.7, r = 2 and X acts on LY (λ)
with exactly two composition factors. Now, in order to check that for all i ∈ {3, . . . , r} we have
νi 6= µ − α|TX and νi 6= ν − α|TX for all α ∈ Φ+(Y ) \ {α0}, let ν1, ν2, ν3, . . . , νs with 2 ≤ s ≤ r

denote the highest weights of the composition factors which are not of the form µ−α|TX or ν−α|TX
for α ∈ Φ+(Y ) \ {α0}. We then show

mLY (λ)|X (µ− α|TX ) =
2∑
i=1

mLX(νi)(µ− α|TX ) (1.46)

and

mLY (λ)|X (ν − α|TX ) =
2∑
i=1

mLX(νi)(ν − α|TX ) (1.47)

for all α ∈ Φ+(Y ) \ {α0}. Therefore, s = r = 2 and X acts on LY (λ) with exactly two composition
factors.

By the next lemma, we can usually considerably reduce the number of weights for which we
have to compute (1.46) and (1.47).

Lemma 1.4.9. Let λ ∈ X(TY )+, let µ be a maximal element in Λ(LY (λ)|X)+ and let ν ∈
X(TX)+ be such that for all γ ∈ Λ(LY (λ)|X)+ with γ � ν, mLY (λ)|X (γ) = mLX(µ)(γ) and
mLY (λ)|X (ν) > mLX(µ)(ν). Let ν1, ν2, . . . , νs denote all the highest weights of composition factors
(with possible repetitions) for X acting on LY (λ) which are different from µ− α|TX and ν − α|TX
for all α ∈ Φ+(Y ) \ {α0}. Let

S = X(TX)+ ∩ {µ− α|TX , ν − α|TX for α ∈ Φ+(Y ) \ {α0}}.

Assume all the weights in S are p-restricted and (X, p) 6∈ {(B2, 2), (C2, 2), (F4, 2), (G2, 2), (G2, 3)}.
Then the equality

mLY (λ)|X (θ) =
s∑
i=1

mLX(νi)(θ), (1.48)

holds for all θ ∈ S if it holds for all the minimal elements θ ∈ S with respect to �.

Proof. By Theorem 1.1.10 and the general theory of weights, if γ1, γ2 ∈ S satisfies γ1 � γ2, then
γ2 ∈ Λ(LX(γ1)). Therefore, if (1.48) holds for θ = γ2, then it also holds for θ = γ1. The result
follows.
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1.5 Restriction to Levi subgroups

It this section, we study the restriction of an irreducible representation to a Levi factor of a parabolic
subgroup. We will see how these restrictions relate to restrictions to maximal subgroups in order to
solve Question 3 more efficiently.

Let I ⊆ ∆ and recall from Subsection 1.1.4 the definition of the Levi factor LI of PI . The next
proposition tells us how to obtain a simple kLI -module from a simple kG-module. For a proof of
the proposition, see [Jan03, II.2.11].

Proposition 1.5.1. Let I ⊆ ∆ and λ ∈ X(T)+. Then⊕
ν∈ZI

LG(λ)λ−ν ,

is the simple LI-module with highest weight λ.

For λ ∈ X(T)+, we denote by LLI (λ) the simple kLI-module of highest weight λ given by
Proposition 1.5.1. Set TL′

I
= T ∩ L′I . In the next proposition, we state without proof a few

properties relating simple modules for L′I , LI and G. The second and the third assertions follow
from Proposition 1.5.1.

Proposition 1.5.2. Let I ⊆ ∆ and λ ∈ X(T)+ with λ =
∑n
i=1 aiλi. The following holds.

1) The restriction of the simple kLLI -module LLI (λ) to L′I is given by

LLI (λ)|L′
I

= LL′
I
(λ|TL′

I

),

where λ|TL′
I

=
∑
i∈I aiλi.

2) The weights of LL′
I
(λ|TL′

I

) are given by

Λ(LL′
I
(λ|TL′

I

)) = {(λ− ν)|TL′
I

| ν ∈ ZI and λ− ν ∈ Λ(L(λ))}.

3) For ν ∈ ZI, we have mLG(λ)(λ− ν) = mLL′
I
(λ|T

L′
I

)((λ− ν)|TL′
I

).

We will use the next proposition in order to recursively answer Question 3 using inclusions of
Levi factors of parabolic subgroups. The setup is as follows. Let Y be a simply connected simple
algebraic group and let X be a closed connected simple subgroup of Y . Let BY = UY TY be a
Borel subgroup of Y , with UY the unipotent radical of BY and TY a maximal torus of Y . Let
BX = UXTX be a Borel subgroup of X with UX = UY ∩X and TX = TY ∩X.

Proposition 1.5.3. Let I ⊆ ∆(Y ), J ⊆ ∆(X). Assume

1) L′J = L′I ∩X,

2) for α ∈ Φ(Y ), α ∈ ZI if and only if α|TX ∈ ZJ .
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Let λ ∈ X(TY )+. If
LY (λ)|X = LX(ν1)mν1 / · · · /LX(νk)mνk

for νi ∈ X(TX)+ distinct, then

LL′
I
(λ|TL′

I

)|L′
J

= LL′
J
(ν̃1|TL′

J

)mν̃1/ · · · /LL′
J
(ν̃`|TL′

J

)mν̃` ,

where {ν̃1, . . . , ν̃`} = {νi such that λ|TX − νi ∈ ZJ}. In particular, if L′J acts with r composition
factors on LL′

I
(λ|TL′

I

), then X acts with at least r composition factors on LY (λ).

Proof. Let V be a kX-module. Let V0 denote the TX -module

V0 =
⊕
β∈ZJ

Vλ|TX−β ,

and let V1 be a TX -complement of V0 in V . Note that V0 and V1 are LJ modules, hence

V |LJ = V0 ⊕ V1.

Claim: Assume V = LX(γ1)mγ1 / · · · /LX(γr)mγr with γi ∈ X(TX)+ distinct, then

V0|LJ = LLJ (γ̃1)mγ̃1 / · · · /LLJ (γ̃s)mγ̃s

with {γ̃1, . . . , γ̃s} = {γi such that λ|TX − γi ∈ ZJ}.

Proof of the claim. We prove the claim by induction on r. If r = 1, then V is irreducible and
so V = LX(γ) for some γ ∈ X(TX)+. Note that

{λ|TX − β | β ∈ ZJ} ∩ {γ − β | β ∈ ZJ} 6= ∅

if and only if λ|TX − γ ∈ ZJ if and only if {λ|TX − β | β ∈ ZJ} = {γ − β | β ∈ ZJ}. By
definition of V0 and LLJ (γ), we have

V0|LJ =
{
LLJ (γ) if λ|TX − γ ∈ ZJ
0 otherwise.

Therefore, the base case of the induction holds. Let r > 1 and assume the result holds for any
kX-module with at most r − 1 composition factors. Let W be a maximal submodule of V .
Assume without loss of generality that V/W ∼= LX(γ1). By the induction hypothesis, we have
W |LJ = W0|LJ ⊕W1|LJ , where W0|LJ = LLJ (γ̃1)mγ̃1−δγ̃1,γ1 /.../LLJ (γ̃s)mγ̃s−δγ̃s,γ1 . We have

Wi ⊆ Vi and Vi/Wi
∼= LX(γ1)i. (1.49)

Since

LX(γ1)0|LJ =
{
LLJ (γ1) if λ|TX − γ1 ∈ ZJ
0 otherwise,
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restricting (1.49) to LJ implies the claim. �

We apply the claim to V = LY (λ)|X and get

(LY (λ)|X)0|LJ = LLJ (ν̃1)mν̃1 / · · · /LLJ (ν̃`)mν̃` ,

hence by 1) of Proposition 1.5.2,

(LY (λ)|X)0|L′
J

= LL′
J
(ν̃1|TL′

J

)mν̃1 / · · · /LL′
J
(ν̃`|TL′

J

)mν̃` . (1.50)

Now, since for α ∈ Φ(Y ), α ∈ ZI if and only if α|TX ∈ ZJ , we have(⊕
α∈ZI

LY (λ)λ−α

)∣∣∣∣∣
TX

=
⊕
β∈ZJ

LY (λ)λ|TX−β .

Moreover, LLI (λ) =
⊕

α∈ZI LY (λ)λ−α and (LY (λ)|X)0 =
⊕

β∈ZJ LY (λ)λ|TX−β . Since additionally,
L′J = L′I ∩X, we get

LLI (λ)|L′
J

= (LY (λ)|X)0|L′
J
. (1.51)

Applying 1) of Proposition 1.5.2, to the left-hand side (1.51) and expanding the right-hand side of
(1.51) using (1.50), we obtain

LL′
I
(λ|TL′

I

)|L′
J

= LL′
J
(ν̃1|TL′

J

)mν̃1 / · · · /LL′
J
(ν̃`|TL′

J

)mν̃`

which proves the lemma.

Remark 1.5.4. Recall Definition 1.3.19 of a problematic case. Suppose that L′J acts on LL′
I
(λ|TL′

I

)
with exactly r composition factors known by the induction step, that is X acts on LY (λ) with at least
r composition factors by Proposition 1.5.3, let us say ν1, ν2, . . . , νr ∈ X(TX)+ with λ|TX − νi ∈ ZJ .
Let θ ∈ X(TX)+ be a problematic case for νi for some i ∈ {1, . . . , r}. If λ|TX − θ ∈ ZJ , then we
can use the following equality in order to solve the problematic case.

mLY (λ)|X (θ) =
r∑
i=1

mLX(νi)(θ).

A similar reasoning holds if θ ∈ X(TY )+ is a problematic case for λ by taking the restriction of θ
to TX . For an example of how this remark is applied, we refer to Subsection 2.5.1.3 on Page 73.



Chapter 2

The embedding (F4, E6)

The goal of this chapter is to prove the main result of this thesis, namely to answer Question 3 for
the embedding F4 < E6. The answer can be found in Proposition 2.5.1.

2.1 Preliminaries

Let Y be a simply connected simple algebraic group of type E6. Let BY = UY TY be a Borel
subgroup of Y . Following [Sei91, Theorem (15.1)], let X be the closed connected simple subgroup
of type F4 given by the fixed point subgroup of a graph automorphism of Y . Let BX = X ∩BY
be a Borel subgroup of X, with BX = UXTX , where TX = X ∩ TY is a maximal torus of X and
UX = UY ∩ X is the unipotent radical of BX . Let ∆(Y ) = {α1, α2, . . . , α6} be a base of Φ(Y )
corresponding to BY and ∆(X) = {β1, β2, β3, β4} be a base of Φ(X) corresponding to BX , where
we label the Dynkin diagrams as in Subsection 1.1.5. Then L (X) embeds into L (Y ) as follows

eβ1 = eα2 , eβ2 = eα4 , eβ3 = eα3 + eα5 , eβ4 = eα1 + eα6 ,

where eαi ∈ L (Y )αi and eβi ∈ L (X)βi . We thus get the following restriction to TX of the simple
roots in Φ(Y )

β1 = α2|TX , β2 = α4|TX , β3 = α3|TX = α5|TX , β4 = α1|TX = α6|TX . (2.1)

Denote by {λ1, λ2, . . . , λ6} the set of fundamental weights in X(TY ) corresponding to ∆(Y ) and by
{µ1, µ2, µ3, µ4} the set of fundamental weights in X(TX) corresponding to ∆(X). The change of
basis from simple roots to fundamental weights and (2.1) imply that

µ1 = λ2|TX , µ2 = λ4|TX , µ3 = λ3|TX = λ5|TX , µ4 = λ1|TX = λ6|TX .

Consider a pair (I, J) with (I, J) = ({α3, α4, α5}, {β2, β3}), ({α2, α3, α4, α5}, {β1, β2, β3}) or
({α1, α3, α4, α5, α6}, {β2, β3, β4}). For each pair (I, J), note that L′J = L′I ∩X and for α ∈ ZΦ(Y ),
α ∈ ZI if and only if α|TX ∈ ZJ . Therefore, we can solve Question 3 by recursively applying
Proposition 1.5.3 to the Levi factors LI and LJ of the standard parabolic subgroups PI of Y and
PJ of X. The inclusions of pairs of subgroups are drawn in Fig. 2.1, where Ytype(LI) = L′I and

31
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(XC3 , YA5)

(XC2 , YA3) (X,Y ) = (XF4 , YE6)

(XB3 , YD4)

Figure 2.1: Inclusions of pairs of subgroups

Xtype(LJ ) = L′J denote the derived subgroup of LI and LJ , respectively. For a pair (H,G) as in
Fig. 2.1, let BG = TGUG = BY ∩G and BH = THUH = BX ∩H.

For a pair (H,G) as in Fig. 2.1, the next result, from [Sei87, Tes88, CT19] and independently
from [Sup85] for G of type A, tells us when H acts irreducibly on an irreducible kG-module.

Theorem 2.1.1. Let (H,G) be as in Fig. 2.1 and λ ∈ X(TG)+ be a p-restricted non trivial weight.
Then H acts irreducibly on LG(λ) if and only if λ is listed in Table 2.2 up to graph automorphism.

Type of (H,G) λ ∈ X(TG)+ Conditions
(C2, A3) aλ1 1 ≤ a ≤ p− 1

aλ1 + bλ2 a+ b = p− 1, ab 6= 0
(C3, A5) aλ1 1 ≤ a ≤ p− 1

aλi + bλi+1, i ∈ {1, 2} a+ b = p− 1, a 6= 0 if i = 2
(B3, D4) cλ3 c 6= 0

aλ1 + cλ3 a+ c+ 2 ≡ 0 mod p, ac 6= 0
bλ2 + cλ3 b+ c = p− 1, bc 6= 0
aλ1 + bλ2 + cλ3 a = c, a+ b = p− 1, ab 6= 0

(F4, E6) λ1 + (p− 2)λ3

(p− 3)λ1

Table 2.2: Irreducible cases

Let (H,G) be as in Fig. 2.1. Let λ ∈ X(TG)+ be p-restricted and assume H does not act
irreducibly on LG(λ), that is λ does not appear in Table 2.2 up to graph automorphism. Set
µ = λ|TH . The TH -weight µ affords the highest weight of a composition factor for H acting on
LG(λ) since BH ⊆ BG. We choose the highest weight ν of a second composition factor for H acting
on LG(λ) as follows. By (2.1), any weight γ ∈ Λ(LG(λ)|H))+ different from µ satisfies γ 6� µ and µ
appears in LG(λ)|H with multiplicity 1. We will thus select ν as in Corollary 1.4.7. That is, in the
context of Corollary 1.4.7, µ = µ1 and ν is such that for all γ ∈ Λ(LG(λ)|H)+ with γ � ν, we have

mL(λ)|H (γ) = mL(µ)(γ)
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and
mL(λ)|H (ν) > mL(µ)(ν).

Note that in the computations previously performed to find ν, we calculate chL(µ)S , where

S = {γ ∈ X(TH)+ | γ ∈ Λ(LG(λ)|H)+ and γ � ν}.

In most cases, we also compute [µ : ν] along the way, which allows us to check if hypothesis 3) of
Corollary 1.4.7 is satisfied. Assume it is, that is [µ : ν] = 0. Additionally, we check that for the
given embeddings, we have eβ0 ∈ 〈eα0〉 for α0 and β0 the largest root in Φ+(G),Φ+(H) respectively.
The next remark implies that LG(λ)|H is self-dual and so we can apply Corollary 1.4.7 whenever it
is needed.

Remark 2.1.2. Let (H,G) be as Fig. 2.1. The restriction to H of a simple kG-module is self-dual
by Lemma 1.4.2, since H is obtained from G as the fixed-point subgroup of a graph automorphism
of G.

Let us introduce some notations for the rest of this thesis.

Notation 2.1.3. Let (H,G) be as in Fig. 2.1. Let λ ∈ X(TG)+. Set µ = λ|TH and let β ∈
Z≥0Φ+(H). Consider the set Sλ,β ⊆ X(TG)+ given by

Sλ,β = {γ ∈ Λ(λ) ∩X(TG)+ | γ|TH � µ− β}.

Note that the set Sλ,β satisfies Condition 1.1.11 for λ by (2.1). We denote chL(λ)Sλ,β by chL(λ)β .
For θ ∈ X(TH)+, consider the set Sθ,β ⊆ X(TH)+ given by

Sθ,β = {γ ∈ Λ(θ) ∩X(TH)+ | γ � µ− β}.

Note that Sθ,β satisfies Condition 1.1.11 for θ and we denote chL(θ)Sθ,β by chL(θ)β .
For λ =

∑n
i=1 aiλi ∈ X(TG), we also denote λ = (a1, . . . , an). If α =

∑n
i=1 riαi ∈ Z≥0Φ+(G),

we denote λ− α by λ− r1r2 · · · rn. Finally, set chL(λ) = 0 if λ+ ρ is dominant but λ is not. We
adopt the same notations and conventions for the weights in X(TH).

We now present general results which we will apply repeatedly in this chapter. We start with
an easy lemma describing for a group of type A2 the structure of p-restricted Weyl modules.

Lemma 2.1.4. Let G be of type A2. Let λ = (a, b) ∈ X(T)+ be a p-restricted weight. Then

• V (λ) is irreducible if a+ b+ 1 < p, or a = p− 1, or b = p− 1,

• V (λ) = L(λ)/L(λ− r(α1 + α2)) with r = a+ b+ 2− p otherwise.

Proof. Let λ ∈ X(T)+ be a p-restricted weight. In type A2, there are only two p-restricted alcoves
given by (1, 1, 1) and (1, 1, 2), where the positive roots are ordered as in Appendix B. Note that the
intersection of these two alcoves corresponds to the wall Fα1+α2,1. By Corollary 1.2.4, if λ belongs
to the upper closure of the fundamental alcove, that is a + b + 2 ≤ p, then V (λ) is irreducible.
Assume λ belongs to the upper closure of the alcove given by (1, 1, 2), that is p+ 1 ≤ a+ b+ 2 ≤ 2p.
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By Proposition 1.2.1 the only weight apart from λ which could afford the highest weight of a
composition factor for V (λ) is

s11,1·λ = λ− (a+ b+ 2− p)11.

If a = p − 1 or b = p − 1, then s11,1·λ ∈ X(T) \X(T)+, which implies that V (λ) is irreducible.
Assume a, b 6= p− 1. We show that if µ = s11,1·λ, then the hypotheses of Proposition 1.2.5 are
satisfied. The only hypothesis which is not clear is that µ is maximal with the property of being
linked to λ. Any weight ν ∈ X(T) linked to λ has to be linked to one of the following weights

s11,r1·λ = λ− (a+ b+ 2− r1p)11,
s10,r2·λ = λ− (a+ 1− r2p)10,
s01,r3·λ = λ− (b+ 1− r3p)01,

with r1, r2, r3 ∈ Z. Note that there is no value of r2 such that s10,r2·λ � s11,1·λ and similarly for
r3. The condition ν � λ forces a + b + 2 ≥ r1p, hence r1 ≤ 1. Moreover, if µ � ν, then r1 ≥ 1.
Thus r1 = 1 and µ is maximal among the weights linked to λ. Therefore, we get [V (λ) : L(µ)] = 1
and the lemma follows.

The next lemma is a basic result and a proof of it can be found in [Tes88, (1.30)].

Lemma 2.1.5. Let λ =
∑n
i=1 aiλi ∈ X(T)+ be p-restricted. For 1 ≤ i ≤ n,

mL(λ)(λ− rαi) =
{

1 if 0 ≤ r ≤ ai,
0 otherwise.

The next two lemmas give some information about a specific weight space in irreducible modules
for a simple group G of rank 2 or of type B3. For a proof of Lemma 2.1.6, see [Tes88, (1.35)]. Note
that for G of type A2, the next result is a particular case of Lemma 2.1.4.

Lemma 2.1.6. Let G be a simple group of rank two. Let λ = (a, b) ∈ X(T)+ be p-restricted, with
a, b > 0.

1) If G is of type A2, then

mL(λ)(λ− 11) =
{

1 if a+ b+ 1 = p

2 otherwise.

2) If G is of type B2, then

mL(λ)(λ− 11) =
{

1 if 2a+ b+ 2 ≡ 0 mod p

2 otherwise.

3) If G is of type G2, then

mL(λ)(λ− 11) =
{

1 if a+ 3b+ 3 ≡ 0 mod p

2 otherwise.
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Lemma 2.1.7. Let G be of type B3. If µ = (a, 0, c) ∈ X(T)+ satisfies 2a+ c+ 4 ≡ 0 mod p, then
[V (µ) : L(µ− 111)] = 1.

Proof. Assume 2a+c+4 ≡ 0 mod p. Let 2a+c+4 = rp for some r > 0, then s111,r·(µ−111) = µ,
hence µ − 111 is linked to µ. Moreover, if a 6= p − 1, then µ − 111 is maximal with respect to
the weights linked to µ. Therefore by Proposition 1.2.5, [V (µ) : L(µ − 111)] = 1. If a = p − 1,
then c = p − 2 and both µ − 110, µ − 011 are linked to µ. Using the JSF, we deduce that
[V (µ) : L(µ− 111)] = 1 in this case too.

The following result will be used extensively. It is a consequence of the description for A3 of the
characters of p-restricted Weyl modules.

Lemma 2.1.8. Assume p > 3. Let G be of type A3. Let λ ∈ X(T)+ be a p-restricted weight. For
θ ∈ Λ(λ), if [V (λ) : L(θ)] 6= 0, then [V (λ) : L(θ)] = 1.

Proof. If λ 6� θ, then [V (λ) : L(θ)] = 0. Assume λ � θ and λ ∈ Wp·θ, since otherwise [V (λ) :
L(θ)] = 0 by Proposition 1.2.1. Let λ = w·θ for w ∈Wp. Let θ′ ∈ X(TA3)+ be a weight lying in
the interior of the alcove containing θ in its upper closure and replace λ by λ′ = w·θ′. Since Wp

acts simply transitively on the set of closure of alcoves, we get that λ′ lies in the interior of an
alcove. By Proposition 1.3.10 we have [V (λ) : L(θ)] = [V (λ′) : L(θ′)] and we can assume without
loss of generality that λ, θ lie in the interior of alcoves. Using the description of the composition
factors for V (λ) in [Jan03, II. 8.20], we deduce that [V (λ) : L(θ)] ≤ 1, which proves the result.

The next lemma gives a first exposition to reasonings used in the proof of Proposition 2.2.1.

Lemma 2.1.9. Let G be of type A2n−1 and H be a subgroup of type Cn of G given by the fixed
points of a graph automorphism of G. Let {αi} denote the set of simple roots in Φ(G). Let
λ =

∑n
i=1 aiλi ∈ X(TG)+ be p-restricted. If there is i ∈ {1, . . . , n− 1} such that aia2n−i 6= 0, then

(λ − αi)|TH affords the highest weight of composition factor for H acting on G. Moreover, if H
acts on LG(λ) with exactly two composition factors, then either ai = 1 or a2n−i = 1.

Proof. Let {βi} denote the simple roots in Φ(H). Set µ = λ|TH . Note that αi|TH = α2n−i|TH = βi.
Therefore by Lemma 2.1.5, we have

mLG(λ)|H (µ− βi) = mLG(λ)(λ− αi) +mLG(λ)(λ− α2n−i) = 2,

and mLH(µ)(µ−βi) ≤ 1. Hence a second composition factor for H on LG(λ) is given by the highest
weight ν = µ− βi. Similarly, if both ai, a2n−i > 1, then

mLG(λ)|H (µ− 2βi) = mLG(λ)(λ− 2αi) +mLG(λ)(λ− 2α2n−i) +mLG(λ)(λ− αi − α2n−i) = 3,

whereas
mµ(µ− 2βi) +mν(µ− 2βi) ≤ 1 + 1 = 2.

Hence X acts on LY (λ) with more than two composition factors.

The following powerful result proved by Jantzen in his thesis [Jan73, p. 113], tells us precisely
when a p-restricted Weyl module in type A is simple.
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Proposition 2.1.10 (Jantzen). Let G be of type An. Let λ ∈ X(T)+ be a p-restricted weight.
Then V (λ) is simple if and only if for each positive root α = αi + αi+1 + · · ·+ αj (1 ≤ i ≤ j ≤ n)
with 〈λ+ ρ, α∨〉 = aps + bps+1 where a, b, s ∈ Z≥0 and 0 < a < p, there exist integers i0 = i < i1 <

i2 < · · · < ib ≤ j < ib+1 = j + 1 such that

〈λ+ ρ, (αiν + αiν+1 + · · ·+ αiν+1−1)∨〉 =
{
ps+1 for 1 ≤ ν ≤ b− 1 and for one ν ∈ {0, b}
aps for the other ν ∈ {0, b}.

Corollary 2.1.11. Assume p > 2 and let G be of type An with n ≥ 2. Let λ ∈ X(T)+ be such that
λ = cλ1 + λ2 for 1 ≤ c ≤ p− 1. Then V (λ) is simple if and only if c 6= p− 2.

Proof. Let λ = cλ1 +λ2. If c = p−2, then VY (λ) is reducible by Lemma 2.1.4 and Proposition 1.5.1.
Assume c 6= p − 2. Recall the notations of Proposition 2.1.10. Let α ∈ Φ+(An) with α =
αi + αi+1 + · · ·+ αj , where 1 ≤ i ≤ j ≤ n. Assume i ≥ 3, then the condition of Proposition 2.1.10
holds for λ and α, since the trivial Weyl module for Aj−i+1 is irreducible. Similarly, the condition
holds for i = 2, since the Weyl module with highest weight given by the first fundamental weight for
Aj−i+1 is irreducible. If i = 1 and j = 1, then the Weyl module with highest weight cλ1 for A1 is
irreducible, hence the condition of Proposition 2.1.10 holds. Let i = 1 and j ≥ 2. Write j = qp+ r

with 0 ≤ r < p and q ∈ Z≥0. Note that 〈λ+ ρ, α∨〉 = j + c+ 1 = qp+ r + c+ 1. The tuple (a, b, s)
of Proposition 2.1.10 is given as follows.

(a, b, s) =


((q + 1)p, 0, 0) if r + c+ 1 = p

(r + c+ 1, q, 0) if r + c+ 1 < p

(r + c+ 1− p, q + 1, 0) if r + c+ 1 > p

If c = p− 1, let

(i0, i1, i2, i3, . . . , ib, ib+1) = (1, 2, p+ 1, 2p+ 1, . . . , bp+ 1, bp+ r + 1),

If c 6= p− 1, let

(i0, i1, . . . , ib+1) =


(1, p− c, 2p− c, . . . , bp− c, (b− 1)p+ r + 1) if r + c+ 1 > p

(1, p− c, 2p− c, . . . , bp− c, bp+ r + 1) if r + c+ 1 < p

(1, j + 1) if r + c+ 1 = p.

The previous sequences of integers satisfy the condition of Proposition 2.1.10 and so V (λ) is
irreducible.

The last result of this section is taken from [McN98, Proposition 4.2.2. (h)].

Lemma 2.1.12. Let G be of type Cn, then V (aλ1) is simple for 0 ≤ a ≤ p− 1.

Proof. Combining [Sei87, (1.14)] with [Sei87, (8.1) (c)] proves the lemma.

The rest of this chapter is devoted to solving Question 3 for the embedding (F4, E6). The reader
can see the methods we have presented so far applied in detail in Subsection 2.3.1.4.1 on Page 44.
The rest of the time, we may omit some details, since the arguments are repetitive.
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2.2 (X,Y ) = (C2, A3)

The goal of this section is to prove the following proposition.

Proposition 2.2.1. Let k be an algebraically closed field of characteristic p ≥ 5. Let Y be
a simply connected simple algebraic group of type A3 over k and let X be the maximal closed
connected subgroup of type C2 of Y given by the fixed points of a graph automorphism of Y . Let
λ ∈ X(TY )+ be a p-restricted weight and set µ = λ|TX . Then X acts on LY (λ) with exactly two
composition factors if and only if λ is listed in Table 2.3 up to graph automorphism. Moreover,
LY (λ)|X = LX(µ)⊕ LX(ν) with ν as in Table 2.3.

λ Conditions
ν

(a, b, c) abc 6= 0

(0, b, 0) b = 1, p− 1 µ− 11 = (0, b− 1)
(a, b, 0) a 6= p− 2, p− 4, b = 1 µ− 11 = (a, 0)

a+ b = p, 3 ≤ a ≤ p− 2 µ− 11 = (a, b− 1)
(a, 0, c) a = 1, c 6= p− 1 µ− 10 = (c− 1, 1)
(a, b, c) a = 1, b+ c = p− 1, c 6= 1 µ− 10 = (c− 1, b+ 1)

Table 2.3: The case C2 ≤ A3

Note that the decomposition into a direct sum follows directly from Lemmas 1.4.2 and 1.4.3.
The rest of the proof of Proposition 2.2.1 can be found in Subsection 2.2.1.

2.2.1 Proof of proposition 2.2.1. — Recall the notations introduced in Notation 2.1.3, (1.6)
and (1.7) related to the truncated characters of simple or Weyl modules. Let {α1, α2, α3} be a set
of simple roots in Φ(Y ) and {λ1, λ2, λ3} be the corresponding set of fundamental weights in X(TY ).
Similarly, let {β1, β2} be a set of simple roots in Φ(X) and {µ1, µ2} be the corresponding set of
fundamental weights in X(TX). Let λ = aλ1 + bλ2 + cλ3 = (a, b, c) ∈ X(TY )+ be a p-restricted
weight. Set λ|X = µ ∈ X(TX)+, then µ = (a + c)µ1 + bµ2 = (a + c, b). We record important
information about the composition factors and the multiplicities in Table 2.4. It should be read as
follows. Under the column ν lies the linear combination of simple roots in Φ(X) which we need to
subtract from λ|TX in order to get the highest weight of a second composition factor for X acting
on LY (λ). Similarly, the column under θ gives the linear combination of simple roots in Φ(X) we
need to subtract from λ|TX in order to get a weight θ satisfying

mLY (λ)|X (θ) > mLX(µ)(θ) +mLX(ν)(θ).

The multiplicities appear in the columns labelled as follows.

λ(−) = mLY (λ)|X (−) µ(−) = mLX(µ)(−) ν(−) = mLX(ν)(−)

Whenever a multiplicity is preceded by an inequality indexed by V (i.e. ≤V ), we indicate the
multiplicity in the corresponding Weyl module instead of the irreducible module. This provides a
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bound on the multiplicity in the irreducible module, since the multiplicity of a weight in the Weyl
module is always greater than or equal to its multiplicity in the corresponding irreducible module.
The last column of the table refers to the subsection in which the corresponding case is solved. Note
that (C2, A3) corresponds to the first pair of subgroups in Fig. 2.1, hence to the base case of the
inductive argument relying on Proposition 1.5.3. We therefore need to consider all the p-restricted
weights λ ∈ X(TY )+ up to graph automorphism. In what follows, whenever λ is written as a linear
combination of parameters (i.e. a, b, c), we assume these parameters to be nonzero.

2.2.1.1 λ = aλ1. — Since λ appears in Table 2.2, X acts irreducibly on LY (λ).

2.2.1.2 λ = bλ2. — Note that neither µ− 10 nor µ− 01 afford the highest weight of a second
composition factor for X acting on LY (λ). Moreover, we have (mL(λ)|X ,mL(µ))(µ− 11) = (2, 1),
hence a second composition factor for X acting on LY (λ) is given by ν = µ− 11 = (0, b− 1).

Let b 6= 1, p− 1. Applying the JSF to λ yields ch L(λ)22 = λ, hence we have (mL(λ)|X ,mL(µ),

mL(ν))(µ− 22) = (4,≤V 2,≤V 1) and X acts on LY (λ) with more than two composition factors.
If b = 1, we have dim(L(λ), L(µ), L(ν)) = (6, 5, 1), which proves that X acts on LY (λ) with

exactly two composition factors.
If b = p− 1, we prove that X acts on LY (λ) with exactly two composition factors by applying

Corollary 1.4.7. That is, we have to show that none of the following weights affords the highest
weight of an additional composition factor for X acting on LY (λ).

µ− 11 = (0, p− 2) µ− 12 = (2, p− 4) µ− 22 = (0, p− 3)

By Lemma 1.4.9, it is enough to consider µ− 22. Applying the JSF to λ, µ and ν yields chL(λ)22 =
λ − (λ − 121), chL(µ)22 = µ and chL(ν)11 = ν, respectively. Therefore (mL(λ)|X ,mL(µ),mL(ν))
(µ− 22) = (3, 2, 1), which proves that X acts on LY (λ) with exactly two composition factors.

2.2.1.3 aλ1 + bλ2. — If a+ b = p− 1, then λ appears in Table 2.2 and so X acts irreducibly on
LY (λ). Henceforth assume a + b 6= p − 1. Note that ν = µ − 11 = (a, b − 1) affords the highest
weight of a second composition factor for X acting on LY (λ). We solve this case by separating it
into two subcases depending on whether b = 1 or b 6= 1.

2.2.1.3.1 b = 1. — If a = p − 4, Lemma 2.1.6 implies that ν affords the highest weight of
a composition factor for VX(µ). Hence (mL(λ)|X ,mL(µ))(µ − 11) = (3, 1) and ν also affords the
highest weight of a third composition factor for X acting on LY (λ).

Assume a 6= p− 4. We prove that X acts on LY (λ) with exactly two composition factors. Let
a = 1 (so that p 6= 5), then dim(L(λ), L(µ), L(ν)) = (20, 16, 4) and X acts on LY (λ) with exactly
two composition factors. Let a 6= 1. We apply Corollary 1.4.7 and show that none of the following
weights affords the highest weight of an additional composition factor for X acting on LY (λ).

µ− 11 = (a, 0) µ− 21 = (a− 2, 1)

By Lemma 1.4.9, it is enough to consider the weight µ − 21. Moreover by Lemma 2.1.4, we
deduce that chL(λ)21 = λ and by Proposition 1.2.2, that chL(µ)21 = µ and chL(ν)10 = ν. Hence
(mL(λ)|X ,mL(µ),mL(ν))(µ− 21) = (4, 3, 1), which proves that X acts on LY (λ) with exactly two
composition factors.
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2.2.1.3.2 b > 1. — Let a + 2b + 2 6≡ 0 mod p and additionally a + b 6= p if a > 1. By
Proposition 1.2.2, we get that chL(λ)22 = λ. Therefore (mL(λ)|X ,mL(µ),mL(ν))(µ − 22) = (7 −
δa,1,≤V 4− δa,1,≤V 2) and X acts on LY (λ) with more than two composition factors.

If a+ 2b+ 2 ≡ 0 mod p, then by Lemma 2.1.6 the weight ν affords the highest of a composition
factor for VX(µ). Moreover, by Lemma 2.1.4 we have chL(λ)11 = λ. Hence (mL(λ)|X ,mL(µ))
(µ− 11) = (3, 1) and ν also affords the highest weight of a third composition factor for X acting on
LY (λ).

Let a+ b = p and a ≥ 3. Note that we have excluded a = 2, since a+ b = p and a = 2 implies
that a+ 2b+ 2 ≡ 0 mod p. We prove that X acts on LY (λ) with exactly two composition factors
by applying Corollary 1.4.7. That is, we prove that none of the following weights affords the highest
weight of an additional composition factor for X acting on LY (λ).

µ− 11 = (a, p− a− 1)
µ− 21 = (a− 2, p− a)
µ− 12 = (a+ 2, p− a− 3)
µ− 22 = (a, p− a− 2)

By Lemma 1.4.9, it is enough to consider the weight µ− 22. Note that the JSF applied to λ, µ
and ν yields the truncated characters chL(λ)22 = λ− (λ− 220), chL(µ)22 = µ and chL(ν)11 = ν,
respectively. Therefore (mL(λ)|X ,mL(µ),mL(ν))(µ − 22) = (6, 4, 2), which proves that X acts on
LY (λ) with exactly two composition factors.

2.2.1.4 λ = aλ1 + cλ3. — By Lemma 2.1.9, the highest weight of a second composition factor
for X acting on LY (λ) is given by ν = µ− 10 = (a+ c− 2, 1) and either a = 1 or c = 1. Henceforth,
assume without loss of generality that a = 1.

If c = p− 1, the weight µ is not p-restricted and ν affords the highest weight of a composition
factor for VX(µ). Therefore (mL(λ)|X ,mL(µ),mL(ν))(µ− 10) = (2, 0,≤V 1) and ν also affords the
highest weight of a third composition factor for X acting on LY (λ).

If c 6= p− 1, we prove that X acts on LY (λ) with exactly two composition factors by applying
Corollary 1.4.7. That is, we prove that none of the following weights affords the highest weight of
an additional composition factor for X acting on LY (λ).

µ− 10 = (c− 1, 1)
µ− 20 = (c− 3, 2)
µ− 21 = (c− 1, 0)

By Lemma 1.4.9 it is enough to consider the weight µ− 21. Applying the JSF to λ, µ and ν yields
chL(λ)21 = λ− δc,p−3(λ− 111), chL(µ)21 = µ and chL(ν)11 = ν − δc,p−3(ν − 11). Therefore

(mL(λ)|X ,mL(µ),mL(ν))(µ− 21) = (4− δc,p−3 − δc,1, 2, 2− δc,p−3 − δc,1)

and X acts on LY (λ) with exactly two composition factors.
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2.2.1.5 λ = aλ1 + bλ2 + cλ3. — Repeating the argument appearing at the beginning of
Subsection 2.2.1.4, a second composition factor for X acting on LY (λ) is given by ν = µ− 10 =
(a+ c− 2, b+ 1) and we can assume without loss of generality that a = 1 and c < p− 1.

If b 6= p− 2 and b 6= p− c− 1, then by Proposition 1.2.2, we have chL(λ)11 = λ. Thus (mL(λ)|X ,

mL(µ),mL(ν))(µ − 11) = (4,≤V 2,≤V 1) and X acts on LY (λ) with more than two composition
factors.

If b = p− 2, the JSF applied to λ and µ yields chL(λ)21 = λ− (λ− 110)− δc,1(λ− 011) and
chL(µ)21 = µ− δc,1(µ− 11), respectively. Hence (mL(λ)|X ,mL(µ),mL(ν))(µ− 21) = (6− 2δc,1, 3−
δc,1,≤V 2− δc,1) and X acts on LY (λ) with more than two composition factors.

If b+ c = p− 1 and c 6= 1, we prove that X acts on LY (λ) with exactly two composition factors
by applying Corollary 1.4.7. That is, we prove that none of the following weights affords the highest
weight of a composition factor for X acting on LY (λ).

µ− 01 = (c+ 3, p− c− 3)
µ− 10 = (c− 1, p− c)
µ− 11 = (c+ 1, p− c− 2)
µ− 20 = (c− 3, p− c+ 1)
µ− 21 = (c− 1, p− c− 1)

Note that µ− 01 is not always p-restricted. Hence, we cannot include it in the usual argument
which consists in applying Lemma 1.4.9. By comparing multiplicities, we get that µ− 01 does not
afford the highest weight of a third composition factor for X acting on LY (λ). For the remaining
weights, it is enough to consider the weight µ − 21 by Lemma 1.4.9. The JSF applied to λ, µ
and ν yields chL(λ)21 = λ− (λ− 011), chL(µ)21 = µ and chL(ν)11 = ν, respectively. Therefore,
(mL(λ)|X ,mL(µ),mL(ν))(µ − 21) = (5, 3, 2) and X acts on LY (λ) with exactly two composition
factors.
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Table 2.4: Multiplicities for the proof of Proposition 2.2.1

λ Multiplicities

abc 6= 0 Conditions ν θ λ(θ) µ(θ) ν(θ) Details

(a, 0, 0) irreducible Table 2.2
(0, b, 0) b 6= 1, p− 1 11 22 4 ≤V 2 ≤V 1 Subsection 2.2.1.2

b = 1 11 two composition factors Subsection 2.2.1.2
b = p− 1 11 two composition factors Subsection 2.2.1.2

(a, b, 0) b = 1 a = p− 4 11 11 3 1 ≤V 1 Subsection 2.2.1.3.1
a 6= p− 4, p− 2 11 two composition factors Subsection 2.2.1.3.1
a = p− 2 irreducible Table 2.2

b > 1 a+ b = p, a ≥ 3 11 two composition factors Subsection 2.2.1.3.2
a+ 2b+ 2 ≡ 0 mod p 11 11 3 1 ≤V 1 Subsection 2.2.1.3.2
a+ b = p− 1 irreducible Table 2.2
otherwise 11 22 7− δa,1 ≤V 4− δa,1 ≤V 2 Subsection 2.2.1.3.2

(a, 0, c) a, c > 1 10 20 3 ≤V 1 ≤V 1 Subsection 2.2.1.4
a = 1 c 6= p− 1 10 two composition factors Subsection 2.2.1.4
a = 1 c = p− 1 10 10 2 0 ≤V 1 Subsection 2.2.1.4

(a, b, c) a, c > 1 10 20 3 ≤V 1 ≤V 1 Subsection 2.2.1.5
a = 1 c = p− 1 10 10 2 0 ≤V 1 Subsection 2.2.1.5
a = 1, b = p− 2 c 6= 1, p− 1 10 21 6 ≤V 3 ≤V 2 Subsection 2.2.1.5

c = 1 10 21 4 2 ≤V 1 Subsection 2.2.1.5
a = 1, b = p− c− 1 c 6= 1 10 two composition factors Subsection 2.2.1.5
otherwise 10 11 4 ≤V 2 ≤V 1 Subsection 2.2.1.5
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2.3 (X,Y ) = (C3, A5)

The goal of this section is to prove the following proposition.

Proposition 2.3.1. Let k be an algebraically closed field of characteristic p ≥ 7. Let Y be
a simply connected simple algebraic group of type A5 over k and let X be the maximal closed
connected subgroup of type C3 of Y given by the fixed points of a graph automorphism of Y . Let
λ ∈ X(TY )+ be a p-restricted weight and set µ = λ|TX . Then X acts on LY (λ) with exactly two
composition factors if and only if λ is listed in Table 2.5 up to graph automorphism. Moreover,
LY (λ)|X = LX(µ)⊕ LX(ν) with ν as in Table 2.5.

λ Conditions
ν

(a, b, c, d, e) abcde 6= 0

(0, b, 0, 0, 0) b = 1 µ− 121
(0, 0, c, 0, 0) c = 1, p− 1 µ− 011
(a, b, 0, 0, 0) a 6= p− 2, p− 6, b = 1 µ− 121

a+ b = p, a 6= 4, b > 1 µ− 121
(a, 0, c, 0, 0) a = p− 3, c = 1 µ− 011
(a, 0, 0, d, 0) a = 1, d = p− 1 µ− 110

a = p− 4, d = 1 µ− 110
(a, 0, 0, 0, e) a 6= p− 1, e = 1 µ− 100
(a, b, c, 0, 0) a = 1, b+ c = p− 1, b 6= 2 µ− 111
(a, b, 0, d, 0) a = 2, b = p− 3, d = 1 µ− 010
(a, b, 0, 0, e) a+ b = p− 1, e = 1 µ− 100
(a, 0, c, d, 0) a = 1, c+ d = p− 1, d 6= 1, p− 2 µ− 110

Table 2.5: The case C3 ≤ A5

Note that the decomposition into a direct sum follows directly from Lemmas 1.4.2 and 1.4.3.
The rest of the proof of the proposition can be found in Subsection 2.3.1.

2.3.1 Proof of Proposition 2.3.1. — Recall the notations introduced in Notation 2.1.3 and (1.6)
and (1.7) related to the truncated characters of simple or Weyl modules. Let {α1, . . . , α5} be a set
of simple roots in Φ(Y ) and {λ1, . . . , λ5} be the corresponding set of fundamental weights in X(TY ).
Similarly, let {β1, β2, β3} be a set of simple roots in Φ(X) and {µ1, µ2, µ3} be the corresponding
set of fundamental weights in X(TX). Let λ = (a, b, c, d, e) ∈ X(TY )+ be a p-restricted weight. Set
λ|TX = µ, then µ = (a+ e, b+ d, c). As for the proof of Proposition 2.2.1, we record information
about the multiplicities and the composition factor in Table 2.31. Whenever a multiplicity in
Table 2.31 appears with an inequality with subscript BS (i.e ≤BS), it means we did not determine
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the exact character of the corresponding irreducible module, but we can bound the multiplicity
in the irreducible module. In this proof, we use for the first time the tables which summarize the
inductive process described in Subsection 1.3.2 and the application of Propositions 1.3.9 and 1.3.10.
Recall Remarks 1.3.11 to 1.3.13 and Remarks 1.3.21 to 1.3.24 which explain how they should be
read.

By Propositions 1.5.3 and 2.2.1 and Theorem 2.1.1, if X acts on LY (λ) with exactly two
composition factors, then up to graph automorphism, λ appears in Table 2.6. Note that the
coefficients a and e in Table 2.6 satisfy 0 ≤ a, e ≤ p − 1 and by Lemma 2.1.9, a = 1 or e = 1
if ae 6= 0. In what follows, whenever λ is written as a linear combination of parameters (i.e.
a, b, c, d, e), we assume these parameters to be nonzero.

λ Conditions 2nd factor
(a, b, c, d, e) bcd 6= 0 for LY (λ)|X

(a, 0, 0, 0, e) not determined
(a, b, 0, 0, e) 1 ≤ b ≤ p− 1 not determined
(a, 0, c, 0, e) c = 1, p− 1 µ− 011
(a, b, c, 0, e) b 6= p− 2, p− 4, c = 1 µ− 011

b+ c = p, 3 ≤ b ≤ p− 2 µ− 011
b+ c = p− 1 not determined

(a, b, 0, d, e) b = 1, d 6= p− 1 µ− 010
b 6= p− 1, d = 1 µ− 010

(a, b, c, d, e) b = 1, c+ d = p− 1, d 6= 1 µ− 010
b 6= 1, b+ c = p− 1, d = 1 µ− 010

Table 2.6: The weights to consider inductively

2.3.1.1 λ = aλ1. — The weight λ appears in Table 2.2, hence X acts on LY (λ) irreducibly.

2.3.1.2 λ = bλ2. — If b = p − 1, then λ appears in Table 2.2 and so X acts irreducibly on
LY (λ). Henceforth assume b 6= p− 1. It is not hard to check that the highest weight of a second
composition factor for X acting on LY (λ) is given by ν = µ− 121 = (0, b− 1, 0).

If b = 1, then (dimLY (λ),dimLX(µ),dimLX(ν)) = (15, 14, 1) and X acts on LY (λ) with
exactly two composition factors. If b 6= 1, then the JSF applied to λ yields chL(λ)242 = λ and the
multiplicities in Table 2.31 imply that X acts on LY (λ) with more than two composition factors.

2.3.1.3 λ = cλ3. — By Table 2.6, either c = 1 or c = p− 1 and a second composition factor for
X acting on LY (λ) is given by ν = µ− 011 = (1, 0, c− 1). By Proposition 2.3.2, we have that X
acts on LY (λ) with exactly two composition factors.
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2.3.1.4 λ = aλ1 + bλ2. — The case a + b = p − 1 appears in Table 2.2, hence assume
a+ b 6= p− 1. It is easy to see that a second composition factor for X acting on LY (λ) is given by
ν = µ− 121 = (a, b− 1, 0).

Assume b = 1. Using Weyl’s degree formula, we get the following.

dimVY (λ) = 1
24a

5 + 19
24a

4 + 137
24 a

3 + 461
24 a

2 + 117
4 a+ 15

dimVX(µ) = 1
30a

5 + 2
3a

4 + 5a3 + 52
3 a

2 + 809
30 a+ 14

dimVX(ν) = 1
120a

5 + 1
8a

4 + 17
24a

3 + 15
8 a

2 + 137
60 a+ 1

Hence dimVY (λ) = dimVX(µ) + dimVX(ν). Moreover, by Corollary 2.1.11, we have that VY (λ) is
irreducible and by Lemma 2.1.12, we have that VX(ν) is irreducible. Thus X acts on LY (λ) with
exactly two composition factor if and only if VX(µ) is irreducible. Applying the JSF to µ we get
that chL(µ) = µ if a 6= p− 6 and chL(µ)121 = µ− (µ− 121) if a = p− 6. Therefore, X acts on
LY (λ) with exactly two composition factors if and only if a 6= p− 6.

Assume b > 1 and a+ b 6= p. Let θ ∈ X(TY )+ be a weight such that µ � θ|TX � µ− 242. If θ
affords the highest weight of a composition factor for VY (λ), then θ has to be dominant and thus
of the form λ− r1r2r300, with ri ∈ Z≥0. Computing the truncated JSF of λ up to µ− 242 using
Lemma 1.3.5, we get that chL(λ)242 = λ. Comparing the multiplicities listed in Table 2.31 implies
that X acts on LY (λ) with more than two composition factors.

2.3.1.4.1 a+ b = p, b > 1. — We give a detailed explanations for this case. It is interesting,
since it includes a subcase appearing in Table 2.5.

The weight λ we are considering comes from an irreducible case in Table 2.6. Hence by
Proposition 1.5.2,

mL(λ)|X (µ− β) = mL(µ)(µ− β), (2.2)

for all β ∈ {Z≥0β2 + Z≥0β3} or using our abbreviated notations for roots, for all β of the form
β = 0xy with x, y ∈ Z≥0. Let v+ ∈ LY (λ)λ be a maximal vector for BY of weight λ. Since
BX ⊆ BY , the maximal vector v+ is also a maximal vector for BX of weight µ = λ|TX . Hence
LX(µ) is a composition factor of LY (λ)|TX . Note that λ does not appear in Table 2.2, so X does
not act irreducibly on LY (λ). We start by finding a second composition factor for the action of
X on LY (λ). By (2.2), the highest weight of a second composition factor has to be of the form
µ− xyz with x, y, z ∈ Z≥0 and x 6= 0. We show that µ− 121 affords the highest weight of a second
composition factor for X acting on LY (λ). The dominant weights of the form µ � µ−xyz � µ−121
with x 6= 0 are as follows.

µ− 100 = (a− 2, p− a+ 1, 0)
µ− 110 = (a− 1, p− a− 1, 1)
µ− 120 = (a, p− a− 3, 2)
µ− 111 = (a− 1, p− a+ 1,−1)
µ− 121 = (a, p− a− 1, 0)

We compute the multiplicity of each of these weights in LY (λ)|X and LX(µ) in order to determine
which one of them affords the highest weight of a second composition factor for X acting on LY (λ).
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Recall the following formula which gives the multiplicity of θ ∈ X(TX)+ in LY (λ)|X .

mL(λ)|X (θ) =
∑
γ∈Λ(λ)
γ|TX=θ

mL(λ)(γ)

µ− 100 There is only one weight in Λ(λ) which restricts to µ − 100, namely λ − 10000. By
Lemma 2.1.5, we have (mL(λ)|X ,mL(µ))(µ− µ− 100) = (1, 1), hence µ− 100 does not afford
the highest weight of a second composition factor.

µ− 110, µ− 120 Both cases are similar. We apply Lemma 2.1.4 to prove that chL(λ)120 = λ

and chL(µ)120 = µ. Moreover, there is only one weight in Λ(λ) which restricts to µ− 110
and similarly for µ− 120. We have (mL(λ)|X ,mL(µ))(µ− 110) = (2, 2) and (mL(λ)|X ,mL(µ))
(µ− 120) = (2, 2), which implies that µ− 110 and µ− 120 do not afford the highest weight of
composition factors for X acting on LY (λ).

µ− 111 The only weight in Λ(λ) which restricts to µ− 111 is λ− 11100. We proceed as follows
in order to compute the multiplicity of λ − 11100 in LY (λ). The weights in θ ∈ Λ(λ)+

with λ − 11100 ∈ Λ(θ) are the dominant weights satisfying λ − xyz00 with 0 ≤ x, y, z ≤
1. We want to find out if θ affords the highest weight of a composition factor for V (λ).
We apply Proposition 1.2.2 for each θ and find that none of them is linked to λ. Hence
mL(λ)|X)(µ − 111) = mV (λ)|X (µ − 111) = 2. Applying a similar argument to the weights
θ ∈ Λ(µ)+ such that µ−111 ∈ Λ(θ) implies that mL(µ)(µ−111) = mµ(µ−111) = 2. Therefore
µ− 111 does not afford the highest weight of a second composition factor for X acting on
LY (λ).

µ− 121 We apply the JSF to λ and µ with the goal of computing the truncated character
of LY (λ) and LX(µ) for the set {θ ∈ Λ(λ) ∩ X(TY )+ | θ|TX � µ − 121} and the set
{θ ∈ Λ(µ) ∩ X(TX)+ | θ � µ − 121}, respectively. We apply the process explained in
Subsection 1.3.2 to λ and µ with the sets above. We get the following truncated characters
chL(λ)121 = λ and

chL(µ)121 = µ− δa,4(µ− 121).

The weights in Λ(λ) which restrict to µ− 121 are λ− 11110, λ− 12100 and λ− 01111. Using
Proposition 1.1.12 and the truncated character formula just computed, we get

mL(λ)|X (µ− 121) = mV (λ)|X (µ− 121)
= mλ(λ− 12100) +mλ(λ− 11110) +mλ(λ− 01111)
= 3− δb,1 + 2 + 1
= 6− δb,1.

Similarly,

mL(µ)(µ− 121) = mµ(µ− 121)− δa,4mA(µ− 121) = 5− δb,1 − δa,4.

Hence ν = µ− 121 = (a, p− a− 1, 0) affords the highest weight of a second composition factor
for X acting on LY (λ).
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If a = 4, then ν also affords the highest weight of a third composition factor for X acting on
LY (λ). Assume from now on that a 6= 4. We are going to prove that X acts on L(λ) with exactly
two composition factors by applying Corollary 1.4.7. That is, if no weight of the form µ− α|TX or
ν − α|TX with α ∈ Φ+(Y ) \ {α0} affords the highest weight of a composition factor for X acting
on LY (λ), then X acts on LY (λ) with exactly two composition factors. We have already shown
that the weights µ− α|TX with α ∈ Φ+(Y ) \ {α0} different from µ− 121 do not afford the highest
weight of a third composition factor. The remaining possibilities are listed below.

µ− 131 = (a+ 1, p− a− 3, 1)
µ− 221 = (a− 2, p− a, 0)
µ− 142 = (a+ 2, p− a− 3, 0)
µ− 231 = (a− 1, p− a− 2, 1)
µ− 242 = (a, p− a− 2, 0)

By Lemma 1.4.9, it is enough to consider µ− 242. Let us compute the multiplicity of µ− 242 in
LY (λ)|X , LX(µ) and LX(ν). The JSF applied to λ yields the following truncated character

chL(λ)242 = λ− δa,1(λ− 22000)− δa,1(λ− 23100),

where δi,j= (1−δi,j). The computations of the JSF applied to µ and ν are summarized in Tables 2.7
and 2.8, respectively. They yield the truncated character of L(µ) up to µ− 242 for a 6= 3 and of
L(ν) up to ν − 121 for a 6= 2. We have two problematic cases, namely [µ(3) : C] and [ν(2) : E],
where µ(3) stands for µ with a = 3 and ν(2) for ν with a = 2.

[µ(3) : C] Set [V (µ(3)) : L(C)] = 2− ζ with ζ ∈ {0, 1}. By Table 2.9, we have

[V (µ(3)) : L(C)] = [V ((4, p− 5, 0)) : L((3, p− 6, 1))]C3 .

Note that in C3, we have (4, p − 5, 0) − (3, p − 6, 1) = 110. Therefore by Proposition 1.5.1
and Lemma 2.1.4, we get ζ = 1.

[ν(2) : E] Note that ν(2) = s0s2s3s2s1·(0,−1, 0) and E = s0s2s3·(0,−1, 0). Moreover, the
weight E belongs to the upper closure of the alcove defined by (1, 1, 1, 1, 1, 2, 1, 2, 2). Note
that C, the weight in the previous problematic case, also belongs to the upper closure of the
alcove (1, 1, 1, 1, 1, 2, 1, 2, 2). We have µ(3) = s0s2s3s2s1·(1,−1, 0) and C = s0s2s3·(1,−1, 0).
Therefore, by Proposition 1.3.10 and the resolution of the previous problematic case we have
that [V (ν(2)) : L(E)] = 1.

We compute the multiplicities using Proposition 1.1.12 and obtain

(mL(λ)|X ,mL(µ),mL(ν))(µ− 242) = (17− 2δb,2, 14− 2δb,2, 3).

Thus X acts on LY (λ) with exactly two composition factors if a 6= 4.
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µ = (a, p− a, 0)C3

ch L(µ)242 = µ− δa,1A− δa,1B

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)242 = δa,1A+ δa,1B + δa,3C JSF(µ)242 = δa,1A+ δa,1B + 2δa,3C

JSF(A)242 = δa,3C JSF(A)242 = δa,3C

A = µ− 220 = (a− 2, p− a− 2, 2) C = µ− 242 = (a, p− a− 2, 0)

B = µ− 241 = (a, p− a− 4, 2)

Table 2.7: JSF of µ up to µ− 242

ν = (a, p− a− 1, 0)C3

ch L(ν)121 = ν −D

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(ν)121 = D + δa,2E JSF(ν)121 = D + 2δa,2E

JSF(D)121 = δa,2E JSF(D)121 = δa,2E

D = ν − 110 = (a− 1, p− a− 2, 1) E = ν − 121 = (a, p− a− 2, 0)

Table 2.8: JSF of ν up to ν − 121

λ′0 = (1,−1, 0) 6∈ C0

γ′ = w1·λ′0 = (3, p− 3, 0) η′ = w·λ′0 = (3, p− 5, 0)

w1 = s0s2s3s2s1 w = s0s2s3

λ0 = (0, 0, 0) ∈ C0

γ = w1·λ0 = (4, p− 4, 0) η = w·λ0 = (3, p− 6, 1)

Cη′ = (1, 1, 1, 1, 1, 2, 1, 2, 2) Cη = (1, 1, 1, 1, 1, 2, 1, 2, 2)

Proposition 1.3.10 =⇒ [γ′ : η′] = [γ : η]

s = s1

ws·λ0 = (2, p− 6, 2)

ws·λ0 − w·λ0 = 011

Proposition 1.3.9 =⇒ [w1s·λ0 : η] = [γ : η], where w1s·λ0 = (4, p− 5, 0)

Table 2.9: Computing [(3, p− 3, 0) : (3, p− 5, 0)]C3
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2.3.1.5 λ = aλ1 + cλ3. — By Table 2.6, either c = 1 or c = p − 1 and the TX -weight
ν = µ − 011 = (a + 1, 0, c − 1) affords the highest weight of a second composition factor for X
acting on LY (λ). If a+ c+ 2 6≡ 0 mod p, then chL(λ)111 = λ and (mL(λ)|X ,mL(µ),mL(ν))(µ−111)
= (5,≤V 3,≤V 1), hence X acts on LY (λ) with more than two composition factors. Henceforth,
assume a+ c+ 2 ≡ 0 mod p.

If a, c = p− 1, then applying the JSF we get chL(λ)111 = λ− (λ− 11100) and chL(µ)111 =
µ− (µ− 111). The multiplicities in Table 2.31 imply that X acts on LY (λ) with more than two
composition factors.

If a = p− 3 and c = 1, we prove that X acts on LY (λ) with exactly two composition factors by
applying Corollary 1.4.7. We prove that none of the following weights affords the highest weight of
a composition factor for X acting on LY (λ).

µ− 100 = (p− 5, 1, 1) µ− 111 = (p− 4, 1, 0)

By Lemma 1.4.9, it is enough to consider µ − 111. Applying the JSF, we get chL(λ)111 =
λ−(λ−11100) and chL(µ)111 = µ. Moreover, the Weyl module VX(ν) is irreducible by Lemma 2.1.12.
Therefore, we have

(mL(λ)|X ,mL(µ),mL(ν))(µ− 111) = (4, 3, 1)

and X acts on LY (λ) with exactly two composition factors.

2.3.1.6 λ = aλ1 + dλ4. — It is easy to check that a second composition factor for X acting on
LY (λ) is given by ν = µ− 110 = (a− 1, d− 1, 1).

If a, d > 1, then (λ− α)|TX = µ− 220 and λ− α ∈ Λ(λ) for α ∈ {22000, 00022, 21010, 10021,
11011, 20020}. Hence by Theorem 1.1.10 and Lemma 2.1.5, we get (mL(λ)|X ,mL(µ),mL(ν))(µ− 220)
= (6,≤V 3,≤V 2) and X acts on LY (λ) with more than two composition factors. Henceforth,
assume a = 1 or d = 1.

If a+ d 6= p− 3 or d 6= p− 1, then chL(λ)121 = λ and comparing the multiplicities appearing in
Table 2.31 implies that X acts on LY (λ) with more than two composition factors.

If d = p− 1, we prove that X acts on LY (λ) with exactly two composition factors by applying
Corollary 1.4.7. We prove that none of the weights below affords the highest weight of a composition
factor for X acting on LY (λ).

µ− 120 = (1, p− 4, 2)
µ− 121 = (1, p− 2, 0)
µ− 131 = (2, p− 4, 1)
µ− 231 = (0, p− 3, 1)

By Lemma 1.4.9, it is enough to consider µ − 231. Applying the JSF, we get chL(λ)231 =
λ − (λ − 00121), chL(µ)231 = µ and chL(ν)121 = ν − (ν − 021). Therefore, we have (mL(λ)|X ,

mL(µ),mL(ν))(µ− 231) = (11, 8, 3) and X acts on LY (λ) with exactly two composition factors.
If d = p−4, then by the JSF, we have chL(λ)231 = λ−(λ−11110). Comparing the multiplicities

appearing in Table 2.31 implies that X acts on LY (λ) with more than two composition factors.
If a = p− 4, we prove that X acts on LY (λ) with exactly two composition factors. The weights

which could afford the highest weight of a third composition factor generated by a maximal vector



(X,Y ) = (C3, A5) 49

for BX are given as follows.
µ− 210 = (p− 7, 1, 1)
µ− 121 = (p− 4, 0, 0)
µ− 221 = (p− 6, 1, 0)

By Lemma 1.4.9, it is enough to consider µ− 221. Applying the JSF to λ, we obtain chL(λ)221 =
λ− (λ−11110). Applying the JSF to µ and ν, yields chL(µ)221 = µ and chL(ν)111 = ν− (ν−111),
respectively. Hence,

(mL(λ)|X ,mL(µ),mL(ν))(µ− 221) = (8, 6, 2)

and X acts on LY (λ) with exactly two composition factors.

2.3.1.7 λ = aλ1 + eλ5. — By Lemma 2.1.9, we have that the highest weight of a second
composition factor for X acting on LY (λ) is given by ν = µ− 100 = (a+ e− 2, 1, 0) and that either
a = 1 or e = 1. Assume without loss of generality that e = 1.

If a = p− 1, we have mLY (λ)|X (µ− 100) = 2 by Theorem 1.1.10 and Lemma 2.1.5. Moreover,
we have mLX(µ)(µ− 100) = 0 by Theorem 1.1.8. Thus ν also affords the highest weight of a third
composition factor for X acting on LY (λ).

If a 6= p− 1, we prove that X acts on LY (λ) with exactly two composition factors by applying
Corollary 1.4.7. We prove that none of the weights listed below affords the highest weight of a
composition factor for X acting on LY (λ).

µ− 200 = (a− 3, 2, 0)
µ− 210 = (a− 2, 0, 1)
µ− 221 = (a− 1, 0, 0)

By Lemma 1.4.9, it is enough to consider µ− 221. Applying the JSF to λ, we get chL(λ)221 =
λ− δa,p−5(λ− 11111). Moreover, by Lemma 2.1.12, the Weyl module VX(µ) is irreducible and the
JSF applied to ν yields chL(ν)121 = ν − δa,p−5(ν − 121). Therefore

(mL(λ)|X ,mL(µ),mL(ν))(µ− 221) = (7− δa,p−5 − 2δa,1, 3, 4− δa,p−5 − 2δa,1),

which proves that X acts on LY (λ) with exactly two composition factors.

2.3.1.8 λ = bλ2 + cλ3. — If b+ c = p−1, then λ appears in Table 2.2 and so X acts irreducibly
on LY (λ). Assume b+ c 6= p− 1 and λ is as in Table 2.6. Then by Table 2.6, a second composition
factor for X acting on LY (λ) is given by ν = µ− 011 = (1, b, c− 1). The JSF applied to λ yields
chL(λ)121 = λ. Comparing the multiplicities appearing in Table 2.31 implies that X acts on LY (λ)
with more than two composition factors.

2.3.1.9 λ = bλ2 + dλ4. — By Table 2.6 we can assume b 6= p − 1 and d = 1 and a second
composition factor for X acting on LY (λ) is given by ν = µ− 010 = (1, b− 1, 1).

If b 6= p− 3, the JSF yields chL(λ)121 = λ. If b = p− 3, then chL(λ)121 = λ− (λ− 01110) and
chL(µ)121 = µ− (µ− 121). In both cases, the multiplicities in Table 2.31 imply that X acts on
LY (λ) with more than two composition factors.
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2.3.1.10 λ = aλ1 + bλ2 + cλ3. — We have three cases to consider by Table 2.6. We solve all
three of them in different subsections.

2.3.1.10.1 b 6= p− 2, p− 4, c = 1. — By Table 2.6, a second composition factor is given by
the highest weight ν = µ− 011 = (a+ 1, b, 0).

If a+b+3 6≡ 0 mod p and a+b 6= p−1, the JSF applied to λ yields chL(λ)111 = λ. If a+b = p−1,
the JSF applied to λ and µ yields chL(λ)111 = λ− (λ− 11000) and chL(µ)111 = µ− (µ− 110),
respectively. If a+ b+ 3 ≡ 0 mod p, then JSF applied to λ yields chL(λ)132 = λ− (λ− 11100).
In all three cases, the multiplicities in Table 2.31 imply that X acts on LY (λ) with more than two
composition factors.

2.3.1.10.2 b+ c = p, 3 ≤ b ≤ p− 2. — By Table 2.6, a second composition factor is given by
the highest weight µ− 011 = (a+ 1, b, p− b− 1).

Let a 6= p − 2 and a + b 6= p − 1, the JSF yields chL(λ)111 = λ. Let a + b = p − 1, the JSF
yields chL(λ)111 = λ− (λ− 11000) and chL(µ)111 = µ− (µ− 110). Let a = p− 2, the truncated
character chL(λ)122 is computed in Table 2.10, where we apply Lemma 2.1.8 in order to determine
[λ : C]. In all these cases, comparing the multiplicities appearing in Table 2.31, we get that X acts
on LY (λ) with more than two composition factors.

λ = (p− 2, b, p− b, 0, 0)A5

ch L(λ)122 = λ− A− B + C

Lemma 2.1.8

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)122 = A+ B JSF(λ)122 = A+ B + 2C

JSF(A)122 = C JSF(A)122 = C

JSF(B)122 = C JSF(B)122 = C

A = λ− 02200 = (p, b− 2, p− b− 2, 2, 0) 022 C = λ− 12200 = (p− 2, b− 1, p− b− 2, 2, 0) 122

B = λ− 11100 = (p− 3, b, p− b− 1, 1, 0) 111

Table 2.10: JSF of λ up to µ− 122

2.3.1.10.3 b+ c = p− 1. — We first find the highest weight of a second composition factor for
X acting on LY (λ). The truncated character chL(λ)111 is computed in Table 2.11 and the JSF
applied to µ yields

chL(µ)111 = µ− δa,p−b−1(µ− 110)− δa,b−1(µ− 111).

We deduce the following multiplicities.

(mLY (λ)|X ,mL(µ))(µ− 110) =
{

(1, 1) if a+ b = p− 1
(2, 2) otherwise
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(mLY (λ)|X ,mL(µ))(µ− 111) =


(4, 3) if a+ b = p− 1
(5, 3) if a = b− 1
(5, 4) otherwise

Therefore, a second composition factor is given by the highest weight ν = µ−111 = (a−1, p−c, c−1).
Note that if a = b− 1, then ν also affords the highest weight of a third composition factor for X
acting on LY (λ). Henceforth, assume a 6= b− 1.

This case is complicated. In order to solve it, we split it into several subcases.

λ = (a, b, p− b− 1, 0, 0)A5

ch L(λ)111 = λ− A− δa,p−b−1B

Lemma 2.1.8

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)111 = A+ δa,p−b−1B + δa,p−1C JSF(λ)111 = A+ δa,p−b−1B + 2δa,p−1C

JSF(A)111 = δa,p−1C JSF(A)111 = δa,p−1C

A = λ− 01100 = (a+ 1, b− 1, p− b− 2, 1, 0) 011 C = λ− 11100 = (a− 1, b, p− b− 2, 1, 0) 111

B = λ− 11000 = (a− 1, b− 1, p− b, 0, 0) 110

Table 2.11: JSF of λ up to µ− 111

a 6= 1, c 6= 1

Recall that we assume a 6= b− 1. If a 6= c, c+ 1, the truncated character chL(λ)222 is computed
in Table 2.12, where the value of [λ : B] is determined by applying Lemma 2.1.8. The output of
JSF applied to µ appears in Table 2.13. Note that it yields multiple possibilities for the truncated
character chL(µ)222. We select the first one, since it maximizes the multiplicity of µ − 222 in
LX(µ). Comparing the multiplicities in Table 2.31 implies that X acts on LY (λ) with more than
two composition factors.

If a = c, the truncated character chL(λ)222 is computed in Table 2.14, where we apply
Lemma 2.1.8 in order to determine [λ : C]. Applying the JSF to µ and ν yields the following
truncated characters.

chL(µ)222 = µ− (µ− 110)− δa,p−2(µ− 021)− δa,p−2(µ− 121)− δa,b(µ− 222)
chL(ν)111 = ν − (ν − 110)

The multiplicities in Table 2.31 imply that X acts on LY (λ) with more than two composition
factors.

If a = c + 1, the truncated character chL(λ)222 is computed in Table 2.15, where we apply
Lemma 2.1.8 in order to determine [λ : B]. The JSF applied to µ for a = p − 2 is computed in
Table 2.16. We obtain two possibilities for the truncated character chL(µ)222 and we use the first
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one to bound the multiplicity of µ− 222 in chLX(µ). For a 6= p− 2, the JSF yields the following
truncated character.

chL(µ)222 = µ− δa,p−1(µ− 220)− δa,p−1(µ− 021)− δa,p−1(µ− 221).

The multiplicities in Table 2.31 imply that X acts on LY (λ) with more than two composition
factors.

λ = (a, p− c− 1, c, 0, 0)A5

ch L(λ)222 = λ− A

Lemma 2.1.8

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)222 = A+ δa,p−1B JSF(λ)222 = A+ 2δa,p−1B

JSF(A)222 = δa,p−1B JSF(A)222 = δa,p−1B

A = λ− 01100 = (a+ 1, p− c− 2, c− 1, 1, 0) 011 B = λ− 11100 = (a− 1, p− c− 1, c− 1, 1, 0) 111

Table 2.12: JSF of λ up to µ− 222

µ = (a, p− c− 1, c)C3

Possibilities

ch L(µ)222 = µ− A− δa,bD

ch L(µ)222 = µ− A− δa,p−2B − δa,bD

ch L(µ)222 = µ− A− δa,p−1C − δa,bD

ch L(µ)222 = µ− A− δa,p−2B − δa,p−1C − δa,bD

Multiplicity bounded above by the first possibility

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)222 = A+ δa,p−2B + δa,p−1C + δa,bD JSF(µ)222 = A+ 2δa,p−2B + 2δa,p−1C + δa,bD

JSF(A)222 = δa,p−2B + δa,p−1C JSF(A)222 = δa,p−2B + δa,p−1C

A = µ− 021 = (a+ 2, p− c− 3, c) C = µ− 221 = (a− 2, p− c− 1, c),

B = µ− 121 = (a, p− c− 2, c) D = µ− 222 = (a− 2, p− c+ 1, c− 2)

Table 2.13: JSF of µ up to µ− 222

c = 1, a 6= 1

Note that a 6= p− 3, since a 6= b− 1. If a 6= p− 2, p− 1, the truncated characters chL(λ)232 and
chL(µ)232 are computed in Tables 2.17 and 2.18 for a 6= 2 and in Tables 2.19 and 2.20 for a = 2.
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λ = (a, p− a− 1, a, 0, 0)A5

ch L(λ)222 = λ− A− B + δa,p−2C

Lemma 2.1.8

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)222 = A+ B JSF(λ)222 = A+ B + 2δa,p−2C

JSF(A)222 = δa,p−2C JSF(A)222 = δa,p−2C

JSF(B)222 = δa,p−2C JSF(B)222 = δa,p−2C

A = λ− 01100 = (a+ 1, p− a− 2, a− 1, 1, 0) 011 C = λ− 12100 = (a, p− a− 3, a, 1, 0) 121

B = λ− 11000 = (a− 1, p− a− 2, a+ 1, 0, 0) 110

Table 2.14: JSF of λ up to µ− 222

λ = (a, p− a, a− 1, 0, 0)A5

ch L(λ)222 = λ− A− δa,p−1C − δa,p−1D

Lemma 2.1.8

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)222 = A+ δa,p−1B + δa,p−1C JSF(λ)222 = A+ 2δa,p−1B + δa,p−1C + δa,p−1D

JSF(A)222 = δa,p−1B − δa,p−1D JSF(A)222 = δa,p−1B

JSF(B)222 = δa,p−1D JSF(B)222 = δa,p−1D

A = λ− 01100 = (a+ 1, p− a− 1, a− 2, 1, 0) 011 C = λ− 22000 = (a− 2, p− a− 2, a+ 1, 0, 0) 220

B = λ− 11100 = (a− 1, p− a, a− 2, 1, 0) 111 D = λ− 22100 = (a− 2, p− a− 1, a− 1, 1, 0) 221

Table 2.15: JSF of λ up to µ− 222

In both cases, the multiplicities in Table 2.31 imply that X acts on LY (λ) with more than two
composition factors.

If a = p− 2, the truncated character chL(λ)232 is computed in Table 2.21 using Remark 1.3.18.
The JSF of µ is computed in Table 2.22. We have two problematic cases, namely C and D. We
do not determine [µ : C] nor [µ : D], but we use the first possibility for chL(µ)232 to bound the
multiplicity of µ− 232 in LX(µ). The multiplicities in Table 2.31 imply that X acts on LY (λ) with
more than two composition factors.

If a = p − 1, the truncated character chL(λ)232 is computed in Table 2.23 by applying
Lemma 2.1.8 and Remark 1.3.18. We bound the possibilities for the truncated character chL(µ)232
appearing in Table 2.24 by the possibility maximizing the multiplicity of µ − 232 in LX(µ).
Comparing the multiplicities in Table 2.31 implies that X acts on LY (λ) with more than two
composition factors.
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µ = (p− 2, 2, p− 3)C3

Possibilities

ch L(µ)222 = µ− A− B

ch L(µ)222 = µ− A− B − C

Multiplicity bounded above by the first possibility

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)222 = A+ B + C JSF(µ)222 = A+ B + 2C

JSF(B)222 = C JSF(B)222 = C

A = µ− 220 = (p− 4, 0, p− 1) C = µ− 121 = (p− 2, 1, p− 3)

B = µ− 021 = (p, 0, p− 3)

Table 2.16: JSF of µ up to µ− 222

λ = (a, p− 2, 1, 0, 0)A5

ch L(λ)232 = λ− A+ B

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)232 = A− B JSF(λ)232 = A

JSF(A)232 = B JSF(A)232 = B

A = λ− 01100 = (a+ 1, p− 3, 0, 1, 0) 011 B = λ− 02210 = (a+ 2, p− 4, 0, 0, 1) 032

Table 2.17: JSF of λ up to µ− 232

µ = (a, p− 2, 1)C3

ch L(µ)232 = µ− A+ B

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)232 = A− B JSF(µ)232 = A

JSF(A)232 = B JSF(A)232 = B

A = µ− 021 = (a+ 2, p− 4, 1) B = µ− 032 = (a+ 3, p− 4, 0)

Table 2.18: JSF of µ up to µ− 232

a = 1
Note that b 6= 2, since a 6= b− 1. We prove that X acts on LY (λ) with exactly two composition

factors by applying Corollary 1.4.7. Let us distinguish between the cases c = 1 and c 6= 1.
Let c = 1. We prove that none of the following weights affords the highest weight of a composition
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λ = (2, p− 2, 1, 0, 0)A5

ch L(λ)232 = λ− A− B + C +D

Lemma 2.1.8

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)232 = A+ B − C JSF(λ)232 = A+ B + 2D

JSF(A)232 = D JSF(A)232 = D

JSF(B)232 = C +D JSF(B)232 = C +D

A = λ− 22000 = (0, p− 4, 3, 0, 0) 220 C = λ− 02210 = (4, p− 4, 0, 0, 1) 032

B = λ− 01100 = (3, p− 3, 0, 1, 0) 011 D = λ− 23100 = (1, p− 5, 2, 1, 0) 231

Table 2.19: JSF of λ up to µ− 232

µ = (2, p− 2, 1)C3

ch L(µ)232 = µ− A+ B − C

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)232 = A− B + C JSF(µ)232 = A+ C

JSF(C)232 = B JSF(C)232 = B

A = µ− 220 = (0, p− 4, 3) C = µ− 021 = (4, p− 4, 1)

B = µ− 032 = (5, p− 4, 0)

Table 2.20: JSF of µ up to µ− 232

λ = (p− 2, p− 2, 1, 0, 0)A5

ch L(λ)232 = λ− A+ B

Remark 1.3.18

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)232 = A− B JSF(λ)232 = A+1
0 C

JSF(A)232 = B + C JSF(A)232 = B + 2C

JSF(B)232 = C JSF(B)232 = C

A = λ− 01100 = (p− 1, p− 3, 0, 1, 0) 011 C = λ− 12210 = (p− 2, p− 3, 0, 0, 1) 132

B = λ− 02210 = (p, p− 4, 0, 0, 1) 032

Table 2.21: JSF of λ up to µ− 232

factor for X acting on LY (λ).
µ− 121 = (1, p− 3, 1)
µ− 132 = (2, p− 3, 0)
µ− 232 = (0, p− 2, 0)
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µ = (p− 2, p− 2, 1)C3

Possibilities

ch L(µ)232 = µ+ A− B

ch L(µ)232 = µ+ A− B − C

ch L(µ)232 = µ+ A− B −D

ch L(µ)232 = µ+ A− B − C +D

Multiplicity bounded above by the first possibility

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)232 = −A+ B + C JSF(µ)232 = B + 2C +2
1 D

JSF(A)232 = D JSF(A)232 = D

JSF(B)232 = A+ C JSF(B)232 = A+ C + 2D

JSF(C)232 = D JSF(C)232 = D

A = µ− 032 = (p+ 1, p− 4, 0) C = µ− 121 = (p− 2, p− 3, 1),

B = µ− 021 = (p, p− 4, 1) D = µ− 232 = (p− 3, p− 2, 0)

Table 2.22: JSF of µ up to µ− 232

λ = (p− 1, p− 2, 1, 0, 0)A5

ch L(λ)232 = λ− A+ C

Lemma 2.1.8 and Remark 1.3.18

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)232 = A+ B − C −D JSF(λ)232 = A+ 2B +1
0 D

JSF(A)232 = B + C JSF(A)232 = B + C + 2D

JSF(B)232 = D JSF(B)232 = D

JSF(C)232 = D JSF(C)232 = D

A = λ− 01100 = (p, p− 3, 0, 1, 0) 011 C = λ− 02210 = (p+ 1, p− 4, 0, 0, 1) 032

B = λ− 11100 = (p− 2, p− 2, 0, 1, 0) 111 D = λ− 22210 = (p− 3, p− 2, 0, 0, 1) 232

Table 2.23: JSF of λ up to µ− 232

By Lemma 1.4.9, it is enough to consider µ− 232. The truncated character chL(λ)232 is computed
in Table 2.25 using Lemma 2.1.8. The JSF of µ is computed in Table 2.26 and yields two possibilities
for the truncated character chL(µ)232 depending on the value of [µ : D]. By Table 2.27, we have
that [µ : D] = [A : D] and by Table 2.26, we have [A : D] = 1. The JSF applied to ν yields
chL(ν)121 = ν. Hence (mL(λ)|X ,mL(µ),mL(ν))(µ − 232) = (12, 9, 3) and X acts on LY (λ) with
exactly two composition factors.

Let c 6= 1. The weights which could afford the highest weight of a third composition factor
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µ = (p− 1, p− 2, 1)C3

Possibilities

ch L(µ)232 = µ+ A− B

ch L(µ)232 = µ+ A− B − C

Multiplicity bounded above by the first possibility

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)232 = −A+ B + C JSF(µ)232 = B + 2C

JSF(B)232 = A+ C JSF(B)232 = A+ C

A = µ− 032 = (p+ 2, p− 4, 0) C = µ− 221 = (p− 3, p− 2, 1)

B = µ− 021 = (p+ 1, p− 4, 1)

Table 2.24: JSF of µ up to µ− 232

generated by a maximal vector for BX are given by the following weights.

µ− 112 = (0, p− c+ 2, c− 3)
µ− 121 = (1, p− c− 2, c)
µ− 122 = (1, p− c, c− 2)
µ− 132 = (2, p− c− 2, c− 1)
µ− 232 = (0, p− c− 1, c− 1)

It is enough to consider µ− 232. The truncated character chL(λ)232 is computed in Table 2.28
and the JSF applied to µ and ν yields chL(µ)232 = µ− (µ− 021) and chL(ν)121 = ν − (ν − 021),
respectively. Therefore, (mL(λ)|X ,mL(µ),mL(ν))(µ− 232) = (17, 14, 3) and X acts on LY (λ) with
exactly two composition factors.

2.3.1.11 λ = aλ1 + bλ2 + dλ4. — By Table 2.6, we have that either b = 1 and d 6= p − 1
or b 6= p − 1 and d = 1, and a second composition factor for X acting on LY (λ) is given by
ν = µ− 010 = (a+ 1, b+ d− 2, 1).

Note that for α ∈ {11000, 10010, 00011}, we have α|TX = 110. If a + b 6= p − 1, then by
Lemma 2.1.4 and Theorem 1.1.10 (mL(λ)|X ,mL(µ),mL(ν))(µ − 110) = (4, 2, 1), hence X acts on
LY (λ) with more than two composition factors. Henceforth assume a+ b = p− 1.

If b = 1 and d 6= 1 (recall d 6= p− 1 too), then JSF yields chL(λ)120 = λ− (λ− 11000). The
multiplicities listed in Table 2.31 imply that X acts on LY (λ) with more than two composition
factors.

If d = 1 and a 6= 2, then the JSF yields chL(λ)121 = λ−(λ−11000) and chL(ν)111 = ν−(ν−110).
Comparing the multiplicities in Table 2.31 implies that X acts on LY (λ) with more than two
composition factors.

If d = 1 and a = 2, we prove that X acts on LY (λ) with exactly two composition factors by
applying Corollary 1.4.7. We prove that none of the weights listed below affords the highest weight
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λ = (1, p− 2, 1, 0, 0)A5

ch L(λ)232 = λ− A− B − 2C +D + E

Lemma 2.1.8

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)232 = A+ B + C −D JSF(λ)232 = A+ B + C + 2E

JSF(A)232 = −C + E JSF(A)232 = E

JSF(B)232 = −C +D + E JSF(B)232 = D + E

JSF(E)232 = C JSF(E)232 = C

A = λ− 11000 = (0, p− 3, 2, 0, 0) 110 D = λ− 02210 = (3, p− 4, 0, 0, 1) 032

B = λ− 01100 = (2, p− 3, 0, 1, 0) 011 E = λ− 12100 = (1, p− 4, 1, 1, 0) 121

C = λ− 23200 = (0, p− 4, 0, 2, 0) 232

Table 2.25: JSF of λ up to µ− 232

µ = (1, p− c− 1, c)C3

ch L(µ)232 = µ− A+ B − C +D

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)232 = A− B + C JSF(µ)232 = A+ C + 2D

JSF(A)232 = D JSF(A)232 = D

JSF(C)232 = B +D JSF(C)232 = B +D

A = µ− 110 = (0, p− c− 2, c+ 1) C = µ− 021 = (3, p− c− 3, c),

B = µ− 032 = (4, p− c− 3, c− 1) D = µ− 131 = (2, p− c− 4, c+ 1)

Table 2.26: JSF of µ up to µ− 232

λ0 = (0, 0, 0) ∈ C0

γ = w1·λ0 = (1, p− 2, 1) η = w·λ0 = (2, p− 5, 2)

w1 = s0s2s3s2s1s2s3 w = s0s2s3s1s2

s = s1

ws·λ0 = (3, p− 4, 1)

ws·λ0 − w·λ0 = 110

Proposition 1.3.9 =⇒ [w1s·λ0 : η] = [γ : η], where w1s·λ0 = (0, p− 3, 2)

Table 2.27: Computing [(1, p− 2, 1) : (2, p− 5, 2)]C3
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λ = (1, p− c− 1, c, 0, 0)A5

ch L(λ)232 = λ− A+ B

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)232 = A− B JSF(λ)232 = A

JSF(A)232 = B JSF(A)232 = B

A = λ− 01100 = (2, p− c− 2, c− 1, 1, 0) 011 B = λ− 02210 = (3, p− c− 3, c− 1, 0, 1) 032

Table 2.28: JSF of λ up to µ− 232

of a composition factor for X acting on LY (λ).

µ− 100 = (0, p− 1, 0)
µ− 110 = (1, p− 3, 1)
µ− 020 = (4, p− 6, 2)
µ− 120 = (2, p− 5, 2)
µ− 121 = (2, p− 3, 0)
µ− 131 = (3, p− 5, 1)

By Lemma 1.4.9, it is enough to consider µ−131. The JSF applied to µ and ν yields chL(µ)131 = µ

and chL(ν)121 = ν − (ν − 110)− (ν − 011), respectively. Moreover, the output of the JSF applied
to λ appears in Table 2.29. There are two possibilities for the truncated character chL(λ)131
depending on the value of [λ : C]. Let [λ : C] = 2− ζ with ζ ∈ {0, 1}. Note that (mL(λ)|X ,mL(µ),

mL(ν))(µ − 131) = (8 + ζ, 6, 3). Thus ζ = 1, since the multiplicity of µ − 131 in the direct sum
LX(µ)⊕ LX(ν) cannot be greater than the multiplicity of µ− 131 in LY (λ)|X . Therefore X acts
on LY (λ) with exactly two composition factors.

λ = (2, p− 3, 0, 1, 0)A5

ch L(λ)131 = λ− A− B + C

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)131 = A+ B JSF(λ)131 = A+ B + 2C

JSF(A)131 = C JSF(A)131 = C

JSF(B)131 = C JSF(B)131 = C

A = λ− 11000 = (1, p− 4, 1, 1, 0) 110 C = λ− 12110 = (2, p− 5, 1, 0, 1) 131

B = λ− 01110 = (3, p− 4, 0, 0, 1) 021

Table 2.29: JSF of λ up to µ− 131
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2.3.1.12 λ = aλ1 + bλ2 + eλ5. — By Lemma 2.1.9, a second composition factor for X acting
on LY (λ) is given by ν = µ− 100 = (a+ e− 2, b+ 1, 0) and either a = 1 or e = 1. If a+ b 6= p− 1,
then a similar argument as in Subsection 2.3.1.11 implies that (mL(λ)|X ,mL(µ),mL(ν))(µ − 110)
= (4,≤V 2,≤V 1) and X acts on LY (λ) with more than two composition factors. Henceforth
assume a+ b = p− 1 and a = 1 or e = 1.

If a = 1 and e 6= 1, then the JSF applied to λ yields chL(λ)210 = λ− (λ−11000) and comparing
the multiplicities in Table 2.31 implies that X acts on LY (λ) with more than two composition
factors.

If e = 1, we prove that X acts on LY (λ) with exactly two composition factors by applying
Corollary 1.4.7. We prove that none of the weights below affords the highest weight of a composition
factor for X acting on LY (λ).

µ− 110 = (a, p− a− 2, 1)
µ− 121 = (a+ 1, p− a− 2, 0)
µ− 200 = (a− 3, p− a+ 1, 0)
µ− 210 = (a− 2, p− a− 1, 1)
µ− 221 = (a− 1, p− a− 1, 0)

By Lemma 1.4.9, it is enough to consider µ− 221. We consider two separate cases depending on
whether a 6= 3 or a = 3.

Assume a 6= 3. The truncated character chL(λ)221 is computed in Table 2.30. Moreover the
JSF applied to µ and ν yields chL(µ)221 = µ − (µ − 220) and chL(ν)121 = ν − δa,1(ν − 110),
respectively. Hence (mL(λ)|X ,mL(µ),mL(ν))(µ− 221) = (9, 6, 3) and X acts on LY (λ) with exactly
two composition factors.

Assume a = 3. The truncated character chL(λ)221 is computed in Table 2.30. The partial
character chL(ν)121 appears in Table 2.8. The JSF applied to µ yields chL(µ)221 = µ − (µ −
220)− (µ− 121). Therefore

(mL(λ)|X ,mL(µ),mL(ν))(µ− 221) = (8, 5, 3),

which proves that X acts on LY (λ) with exactly two composition factors.

λ = (a, p− a− 1, 0, 0, 1)A5

ch L(λ)221 = λ− A+ δa,1B − δa,3C

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)221 = A− δa,1B + δa,3C JSF(λ)221 = A+ δa,3C

JSF(A)221 = δa,1B JSF(A)221 = δa,1B

A = λ− 11000 = (a− 1, p− a− 2, 1, 0, 1) 110 C = λ− 01111 = (a+ 1, p− a− 2, 0, 0, 0) 121

B = λ− 22100 = (a− 2, p− a− 2, 0, 1, 1) 221

Table 2.30: JSF of λ up to µ− 221
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2.3.1.13 λ = aλ1 + cλ3 + dλ4. — It is easy to check that µ − 110 = (a − 1, d − 1, c + 1)
affords the highest weight of a composition factor for X acting on LY (λ). We can assume that λ
corresponds to an irreducible case in Table 2.2, since otherwise X acts on LY (λ) with more than
two composition factors by Proposition 1.5.3 and Table 2.6. Therefore, assume from now on that
c+ d = p− 1 and set ν = µ− 110.

If a, d > 1, then applying the same argument as in Subsection 2.3.1.6 implies that (mL(λ)|X ,

mL(µ),mL(ν))(µ − 220) = (6,≤V 3,≤V 2) and X acts on LY (λ) with more than two factors.
Henceforth assume either a = 1 or d = 1.

If a+d = p−1, the JSF applied to λ and to µ yields chL(λ)110 = λ and chL(µ)110 = µ−(µ−110),
respectively. The multiplicities in Table 2.31 imply that X acts on LY (λ) with more than two
composition factors.

If d = 1 and a 6= p− 2, the JSF applied to λ yields chL(λ)121 = λ− (λ− 00110) and comparing
the multiplicities in Table 2.31 implies that X acts on LY (λ) with more than two composition
factors.

If a = 1 and d 6= 1, p− 2, we prove that X acts on LY (λ) with exactly two composition factors
by applying Corollary 1.4.7. We prove that none of the following weights affords the highest weight
of a composition factor for X acting on LY (λ).

µ− 111 = (0, p− c, c− 1)
µ− 120 = (1, p− c− 4, c+ 2)
µ− 121 = (1, p− c− 2, c)
µ− 131 = (2, p− c− 4, c+ 1)
µ− 231 = (0, p− c− 3, c+ 1)

By Lemma 1.4.9, it is enough to consider µ − 231. The JSF applied to λ yields chL(λ)231 =
λ − (λ − 00110) − δc,p−3(λ − 11100). Moreover the JSF applied to µ and ν yields chL(µ)231 =
µ− (µ−021)− δc,p−3(µ−111) and chL(ν)121 = ν− (ν−021), respectively. Hence (mL(λ)|X ,mL(µ),

mL(ν))(µ− 231) = (11− δc,p−3, 8− δc,p−3, 3) and X acts on LY (λ) with exactly two composition
factors.

2.3.1.14 λ = aλ1 + cλ3 + eλ5. — By Table 2.6, we get that X acts on LY (λ) with at least
two composition factors. Moreover, Lemma 2.1.9 implies the existence of a third composition factor
for X acting on LY (λ).

2.3.1.15 λ = bλ2 + cλ3 + dλ4. — By Table 2.6, we must have b + c = p − 1, b 6= 1 and
d = 1 and a second composition factor for X acting on LY (λ) is given by the highest TX -weight
ν = µ − 010 = (1, b + d − 2, c + 1). The JSF applied to λ yields chL(λ)121 = λ − (λ − 01100)
and comparing the multiplicities in Table 2.31 implies that X acts on LY (λ) with more than two
composition factors.

2.3.1.16 λ = aλ1 + bλ2 + cλ3 + dλ4. — By Table 2.6, we must have b+ c = p− 1, b 6= 1 and
d = 1 or c+ d = p− 1, d 6= 1 and b = 1 and the weight ν = µ− 010 = (a+ 1, b+ d− 2, c+ 1) affords
the highest weight of a second composition factor for X acting on LY (λ).
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If a + b 6= p − 1, then (mL(λ)|X ,mL(µ),mL(ν))(µ − 110) = (4,≤V 2,≤V 1) and X acts on
LY (λ) with more than two composition factors. Assume from now on that a + b = p − 1. If
b+c = p−1, b 6= 1 and d = 1, the JSF applied to λ yields chL(λ)111 = λ− (λ−11000)− (λ−01100).
If c + d = p − 1, d 6= 1 and b = 1, the JSF applied to λ yields chL(λ)120 = λ − (λ − 11000). In
both cases, the multiplicities listed in Table 2.31 imply that X acts on LY (λ) with more than two
composition factors.

2.3.1.17 λ = aλ1 + bλ2 + cλ3 + eλ5. — By Lemma 2.1.9, the TX -weights µ − 100 =
(a+ e− 2, p− c, c) affords the highest weight of a composition factor for X acting on LY (λ) and
either a = 1 or e = 1. Therefore, if λ comes inductively from a case with two composition factors,
then X acts on LY (λ) with more than two composition factors. Assume λ comes from an irreducible
case appearing in Table 2.6, that is b+ c = p− 1 and set ν = µ− 100.

If a 6= c, then a similar argument as in Subsection 2.3.1.11 implies that (mL(λ)|X ,mL(µ),mL(ν))
(µ − 110) = (4,≤V 2,≤V 1) and X acts on LY (λ) with more than two composition factors.
Henceforth, assume a = c.

If a = 1 and e = p − 3, then the JSF applied to λ yields chL(λ)210 = λ − (λ − 11000). If
a = p− 3 and e = 1, then the JSF applied to λ and ν yields chL(λ)211 = λ− (λ− 11000)− (λ−
01100)− (λ− 00111) and chL(ν)111 = ν − (ν − 110), respectively. If a 6= p− 3 and e 6= p− 3, then
the JSF applied to λ yields chL(λ)111 = λ − (λ − 11000) − (λ − 01100). In all three cases, the
multiplicities in Table 2.31 imply that X acts on LY (λ) with more than two composition factors.

2.3.1.18 λ = aλ1 + bλ2 + cλ3 + dλ4 + eλ5. — It is clear by Lemma 2.1.9 that µ− 100 and
µ− 010 afford the highest weight of a composition factor. Hence X acts on LY (λ) with more than
two composition factors.

2.3.2 An additional result. —

Proposition 2.3.2. Let p > 2 and n ≥ 2. Let G be of type A2n−1 and H be a subgroup of type
Cn of G given by the fixed points of a graph automorphism of G. If λ = anλn ∈ X(TG)+ with
an ∈ {1, p− 1}, then H acts on LG(λ) with exactly two composition factors given by the highest
weights λ|TH and λ|TH − βn−1 − βn.

Proof. Let λ = anλn for an ∈ {1, p−1} and set µ = λ|TH . Let n = 2. By Table 2.3 for p > 3 and by
the tables in [Lüb07] for p = 3, we have that H acts on LG(λ) with exactly two composition factors
and the second composition factor is given by ν = µ− β2 − β3. Let n ≥ 2. By Proposition 1.5.3,
we have that ν = µ − βn−1 − βn affords the highest weight of a second composition factor for
H acting on LG(λ). We prove that H acts on LG(λ) with exactly two composition factors by
applying Corollary 1.4.7. That is, we prove that the weights of the form µ− α|TH or ν − α|TH for
α ∈ Φ+(G) \ {α0} do not afford the highest weight of a composition factor for H acting on LG(λ).

Let an = p − 1. The weights of the form µ − α|TH or ν − α|TH for α ∈ Φ+(G) \ {α0} which
are dominant are given by µ − bn−2βn−2 − bn−1βn−1 − bnβn with either bn−2 = 0, bn−1 ≤ bn,
bn−1 ∈ {0, 1, 2} and bn ∈ {0, 1, 2} or bn−2 = 1, bn−1 = 2 and bn = 2. By Proposition 1.5.3 and
the case n = 2, the weights with bn−2 = 0 do not afford the highest weight of a third composition
factor. We verify that the multiplicity of the weights with bn−2 6= 0 are equal in LG(λ)|H and
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LH(µ)⊕ LH(ν). Note that by Proposition 1.5.2, we can set n = 3 and compute these multiplicities
assuming H is of type C3 and G of type A5. By [Sei87, (6.1)], all the weight spaces of LG(λ) are of
dimension 1, therefore mLG(λ)|H (µ− 122) = 4. The JSF applied to µ and ν yields chL(µ)122 = µ

and chL(ν)111 = ν − (ν − 111), respectively. We have (mL(µ),mL(ν))(µ− 122) = (2, 2), hence the
result follows for an = p− 1.

Let an = 1. Reasoning as in the case an = p − 1, the only candidate for the highest weight
of a third composition factor is µ− 011 and by Proposition 1.5.3 and the case n = 2 it does not
afford the highest weight of a third composition factor for H acting on LG(λ). The proposition
follows.
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Table 2.31: Multiplicities for the proof of Proposition 2.3.1

λ Conditions Multiplicities

abcde 6= 0
ν θ λ(θ) µ(θ) ν(θ) Details

(a, 0, 0, 0, 0) irreducible Table 2.2

(0, b, 0, 0, 0) b = 1 121 two composition factors Subsection 2.3.1.2

b = p− 1 irreducible Table 2.2

b 6= 1, p− 1 121 242 13− δb,3 − 4δb,2 ≤V 9− δb,3 − 3δb,2 ≤V 3− δb,2 Subsection 2.3.1.2

(0, 0, c, 0, 0) c = 1 011 two composition factors Subsection 2.3.1.3

c = p− 1 011 two composition factors Subsection 2.3.1.3

(a, b, 0, 0, 0) a + b = p− 1 irreducible Table 2.2

b = 1 a 6= p− 2, p− 6 121 two composition factors Subsection 2.3.1.4

a = p− 6 121 121 5 3 ≤V 1 Subsection 2.3.1.4

b > 1 a + b 6= p− 1, p 121 242
24− δb,3 − 3δa,1 ≤V 18− δb,3 − 3δa,1 ≤V 5 Subsection 2.3.1.4

24− 5δb,2 − 3δa,1 ≤V 18− 4δb,2 − 3δa,1 ≤V 5− δb,2 Subsection 2.3.1.4

a = 4, b = p− 4 121 121 6 4 ≤V 1 Subsection 2.3.1.4

a + b = p, a 6= 4 121 two composition factors Subsection 2.3.1.4

(a, 0, c, 0, 0) c = 1, p− 1 a + c + 2 6≡ 0 mod p 011 111 5 ≤V 3 ≤V 1 Subsection 2.3.1.5

c = p− 1 a = p− 1 011 111 4 2 ≤V 1 Subsection 2.3.1.5

c = 1 a = p− 3 011 two composition factors Subsection 2.3.1.5

(a, 0, 0, d, 0) a, d > 1 110 220 6 ≤V 3 ≤V 2 Subsection 2.3.1.6

a + d 6= p− 3, d 6= p− 1 a = 1 or d = 1 110 121 8− 2δd,1 ≤V 5− δd,1 ≤V 2− δd,1 Subsection 2.3.1.6

a = 1, d = p− 1 110 two composition factors Subsection 2.3.1.6

a + d = p− 3 a = 1 110 231 13 ≤V 8 ≤V 4 Subsection 2.3.1.6

d = 1 110 two composition factors Subsection 2.3.1.6

(a, ∗, ∗, ∗, e) a, e > 1 100 200 3 ≤V 1 ≤V 1 Lemma 2.1.9

(a, 0, 0, 0, e) a = p− 1, e = 1 100 100 2 0 ≤V 1 Subsection 2.3.1.7

a 6= p− 1, e = 1 100 two composition factors Subsection 2.3.1.7

(0, b, c, 0, 0) b + c = p− 1 irreducible Table 2.2
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b 6= p− 1, p− 2, p− 4 c = 1 011 121 7− δb,1 ≤V 4− δb,1 ≤V 2 Subsection 2.3.1.8

b + c = p, b ≥ 3 011 121 7 ≤V 4 ≤V 2 Subsection 2.3.1.8

(0, b, 0, d, 0) b 6= p− 3, p− 1, d = 1 010 121 9− δb,1 ≤V 3 ≤V 4− δb,1 Subsection 2.3.1.9

b = p− 3, d = 1 010 121 7 2 ≤V 4 Subsection 2.3.1.9

(a, b, c, 0, 0) b 6= p− 2, p− 4, c = 1 a + b 6= p− 1, p− 3, 2p− 3 011 111 6 ≤V 4 ≤V 1 Subsection 2.3.1.10

a + b = p− 1 011 111 5 3 ≤V 1 Subsection 2.3.1.10

a + b + 3 ≡ 0 mod p 011 132 18− δb,2 − 5δb,1 ≤V 12− δb,2 − 4δb,1 ≤V 5− δb,1 Subsection 2.3.1.10

b + c = p and 3 ≤ b ≤ p− 2 a + b 6= p− 1, a 6= p− 2 011 111 6 ≤V 4 ≤V 1 Subsection 2.3.1.10

a + b = p− 1 011 111 5 3 ≤V 1 Subsection 2.3.1.10

a = p− 2 011 122 14 ≤V 9 ≤V 4 Subsection 2.3.1.10

b + c = p− 1, a = b− 1 111 111 5 3 ≤V 1 Subsection 2.3.1.10

b + c = p− 1, a 6= b− 1 a = c, a 6= 1 111 222 12 8− δa,b 3 Subsection 2.3.1.10

a = c + 1, a, c 6= 1 111 222 16 ≤BS 11 ≤V 4 Subsection 2.3.1.10

a 6= 1, c, c + 1 and c 6= 1 111 222 17 ≤BS 12− δa,b ≤V 4 Subsection 2.3.1.10

c = 1, a 6= 1, p− 2, p− 1 111 232 23− 2δa,2 17− 2δa,2 ≤V 5 Subsection 2.3.1.10

c = 1, a = p− 2, p− 1 111 232 23 ≤BS 17 ≤V 5 Subsection 2.3.1.10

a = 1 111 two composition factors Subsection 2.3.1.10

(a, b, 0, d, 0) a + b 6= p− 1 010 110 4 ≤V 2 ≤V 1 Subsection 2.3.1.11

a + b = p− 1 a 6= 2, d = 1 010 121 9 ≤V 5 3 Subsection 2.3.1.11

a = 2, d = 1 010 two composition factors Subsection 2.3.1.11

b = 1, d 6= 1, p− 1 010 120 5 ≤V 2 ≤V 2 Subsection 2.3.1.11

(a, b, 0, 0, e) a + b 6= p− 1 100 110 4 ≤V 2 ≤V 1 Subsection 2.3.1.12

a + b = p− 1 e = 1 100 two composition factors Subsection 2.3.1.12

a = 1, e 6= 1 100 210 5 ≤V 2 ≤V 2 Subsection 2.3.1.12

(a, 0, c, d, 0) c + d = p− 1 a, d > 1 110 220 6 ≤V 3 ≤ 2 Subsection 2.3.1.13

a + d = p− 1, a = 1 or d = 1 110 110 3 1 ≤V 1 Subsection 2.3.1.13

a = 1, d 6= 1, p− 2 110 two composition factors Subsection 2.3.1.13

a 6= p− 2, d = 1 110 121 8 ≤V 6 ≤V 1 Subsection 2.3.1.13

c + d 6= p− 1 011 110 3 ≤V 2 ≤V 0 Subsection 2.3.1.13
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(a, 0, c, 0, e) c = 1, p− 1 011 100 2 ≤V 1 ≤V 0 Subsection 2.3.1.14

(0, b, c, d, 0) b + c = p− 1, b 6= 1, d = 1 010 121 9 ≤V 4 ≤V 4 Subsection 2.3.1.15

(a, b, c, d, 0) b + c = p− 1, b 6= 1, d = 1 a + b 6= p− 1 010 110 4 ≤V 2 ≤V 1 Subsection 2.3.1.16

a + b = p− 1 010 111 6 ≤V 4 ≤V 1 Subsection 2.3.1.16

b = 1, c + d = p− 1, d 6= 1 a 6= p− 2 010 110 4 ≤V 2 ≤V 1 Subsection 2.3.1.16

a = p− 2 010 120 5 ≤V 2 ≤V 2 Subsection 2.3.1.16

(a, b, c, 0, e) b + c = p− 1 a 6= c and a = 1 or e = 1 100 110 4 ≤V 2 ≤V 1 Subsection 2.3.1.17

a = c, e 6= p− 3, a = 1 100 111 7 ≤V 4 ≤V 2 Subsection 2.3.1.17

a = c, a 6= p− 3, e = 1 100 111 7 ≤V 4 ≤V 2 Subsection 2.3.1.17

a = c, a = p− 3, e = 1 100 211 8 ≤V 4 3 Subsection 2.3.1.17

a = c = 1, e = p− 3 100 210 5 ≤V 2 ≤V 2 Subsection 2.3.1.17

b + c 6= p− 1 011 100 2 ≤V 1 0 Subsection 2.3.1.17

(a, b, c, d, e) 010 100 2 ≤V 1 0 Subsection 2.3.1.18
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2.4 (X,Y ) = (B3, D4)

Recall the notations of Notation 2.1.3 and (1.6) and (1.7). In this section, we consider the pair
of groups (X,Y ) = (B3, D4) with the embedding of X into Y fixed in the beginning of this
chapter. It constitutes the last step in the inductive argument we have to carry out before
considering the embedding (F4, E6). Let {αi}4i=1 be a set of simple roots in Φ(Y ) and {λi}4i=1 be
the corresponding set of fundamental weights in X(TY ). Similarly, let {βi}3i=1 be a set of simple
roots in Φ(X) and {µi}3i=1 be the corresponding set of fundamental weights in X(TX). Note that
for λ = (a, b, c, d) ∈ X(TY )+, we have λ|TX = (a, b, c+ d).

2.4.1 Deducing information. — The goal of this section is to deduce the information listed in
Table 2.32 about the action of X on specific irreducible representations of Y . Let λ ∈ X(TY )+. We
write “yes” in the last column of Table 2.32 to indicate that X acts on LY (λ) with more than two
composition factors. In case we do not determine whether or not X acts on LY (λ) with more than
two composition factors, we write n.d. for not determined. In what follows, whenever λ is written
as a linear combination of parameters (i.e. a, b, c, d), we assume these parameters to be nonzero.

λ Conditions 2nd factor 3rd

(a, b, c, d) abcd 6= 0 for LY (λ)|X

(a, 0, 0, 0) a 6= 1, p− 2 λ|TX − 111 yes
a = 1, p− 2 λ|TX − 111 n.d.

(a, b, 0, 0) b = 1, p− 1 λ|TX − 011 yes
(a, 0, c, 0) a 6= 1, p− 1, c = p− 1 λ|TX − 111 yes

a = 1, c = p− 1 λ|TX − 111 n.d.
a+ c+ 2 6≡ 0 mod p, 2a+ c+ 4 ≡ 0 mod p λ|TX − 111 yes
a+ c+ 2 6≡ 0 mod p, 2a+ c+ 4 6≡ 0 mod p λ|TX − 111 n.d.

(a, b, c, 0) b+ c = p− 1, 2a+ b+ 3 ≡ 0 mod p, a 6= c λ|TX − 111 yes
b+ c = p− 1, 2a+ b+ 3 6≡ 0 mod p, a 6= c λ|TX − 111 n.d.

(a, 0, c, d) a = 1, c = p− 3, d = 1 λ|TX − 001 n.d.
a 6= 1, c = p− 3, d = 1 λ|TX − 001 yes

Table 2.32: Action of X on LY (λ)

2.4.1.1 λ = aλ1. — We have (mL(λ)|X ,mL(µ))(µ−100) = (1, 1), (mL(λ)|X ,mL(µ),mL(ν))(µ−110)
= (1, 1, 0) and (mL(λ)|X ,mL(µ))(µ− 111) = (2,≤V 1,). Hence ν = µ− 111 = (a− 1, 0, 0) affords
the highest weight of a second composition factor for X acting on VY (λ).

Let a 6= 1, p− 2. The JSF applied to λ yields chL(λ)222 = λ. Comparing the multiplicities in
Table 2.33 implies that X acts on LY (λ) with more than two composition factors.
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2.4.1.2 aλ1 + bλ2. — By Table 2.3, a second composition factor for X acting on LY (λ) is given
by ν = µ− 011 = (a+ 1, b− 1, 0). If b = 1 and a 6= p− 2 or b = p− 1 and 1 ≤ a ≤ p− 1, then the
JSF applied to λ yields chL(λ)111 = λ. If a = p− 2 and b = 1, then the JSF applied to λ and µ
yields chL(λ)122 = λ− (λ− 1100) and chL(µ)122 = µ− (µ− 110). In both cases, comparing the
multiplicities appearing in Table 2.33 implies that X acts on LY (λ) with more than two composition
factors.

2.4.1.3 aλ1 + cλ3. — Assume a+ c+ 2 6≡ 0 mod p, since otherwise X acts irreducibly on LY (λ)
by Table 2.2. The JSF applied to λ yields chL(λ)111 = λ. We get the following multiplicities
(mL(λ)|X ,mL(µ))(µ − 100) = (1, 1), (mL(λ)|X ,mL(µ))(µ − 110) = (1, 1) and (mL(λ)|X ,mL(µ))(µ −
111) = (4,≤V 3). Hence a second composition factor for X acting on LY (λ) is given by the
weight ν = µ − 111 = (a − 1, 0, c). If 2a + c + 4 ≡ 0 mod p, then we have mL(µ)(µ − 111) = 2
by Lemma 2.1.7 and ν also affords the highest weight of a third composition factor. If c = p− 1
and a ≥ 2, then the JSF to λ yields chL(λ)222 = λ and comparing the multiplicities appearing in
Table 2.33 implies that X acts on LY (λ) with more than two composition factors.

2.4.1.4 aλ1 + bλ2 + cλ3. — Assume b+ c = p− 1 and a 6= c. Applying the JSF to λ along with
Lemma 2.1.8 yields chL(λ)111 = λ− (λ− 0110). We get (mL(λ)|X ,mL(µ))(µ− 111) = (5,≤V 4) and
ν = µ−111 = (a−1, b, p−b−1) affords the highest weight of second composition factor for X acting
on LY (λ). If 2a+b+3 ≡ 0 mod p, then the JSF applied to µ implies that chL(µ)111 = µ−(µ−111)
and ν affords the highest weight of a third composition factor for X acting on L(λ).

2.4.1.5 aλ1 + cλ3 + dλ4. — Assume c = p − 3 and d = 1. By Table 2.3, we have that
ν = µ− 001 = (a, 1, p− 4) affords the highest weight of a second composition factor for X acting on
LY (λ). If a 6= 1, p− 3, then by Proposition 1.2.2 and the JSF applied to λ, we get chL(λ)111 = λ.
The multiplicities listed in Table 2.33 imply that X acts on LY (λ) with more than two composition
factors. If a = p− 3, then the JSF applied to λ yields

chL(λ)112 = λ− (λ− 1101)− (λ− 0111)

and the JSF applied to ν yields chL(ν)111 = ν− (ν−011). Comparing the dimensions in Table 2.33
implies that X acts on LY (λ) with more than two composition factors.
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λ Conditions Multiplicities

a b
c

d ν θ λ(θ) µ(θ) ν(θ) Details
abcd 6= 0

(a, 0, 0, 0) a 6= 1, p− 2 111 222 5 ≤V 3 ≤V 1 Subsection 2.4.1.1
a = 1, p− 2 111 Subsection 2.4.1.1

(a, b, 0, 0) b = 1 a 6= p− 2 011 111 4 ≤V 2 ≤V 1 Subsection 2.4.1.2
a = p− 2 011 122 5 3 ≤V 1 Subsection 2.4.1.2

b = p− 1 011 111 4 ≤V 2 ≤V 1 Subsection 2.4.1.2
(a, 0, c, 0) a 6= 1, p− 1, c = p− 1 111 222 13 ≤V 9 ≤V 3 Subsection 2.4.1.3

a = 1, c = p− 1 111 Subsection 2.4.1.3
2a+ c+ 4 ≡ 0 mod p, a 6= p− 2 111 111 4 2 ≤V 1 Subsection 2.4.1.3
a+ c+ 2 6≡ 0 mod p, 2a+ c+ 4 6≡ 0 mod p 111 Subsection 2.4.1.3

(a, b, c, 0) b+ c = p− 1, a 6= c 2a+ b+ 3 ≡ 0 mod p 111 111 5 3 ≤V 1 Subsection 2.4.1.4
otherwise 111 Subsection 2.4.1.4

(a, 0, c, d) c = p− 3, d = 1 a = 1 001 Subsection 2.4.1.5
a = p− 3 001 112 9 ≤V 5 3 Subsection 2.4.1.5
a 6= 1, p− 3 001 111 6 ≤V 3 ≤V 2 Subsection 2.4.1.5

Table 2.33: Multiplicities in order to deduce Table 2.32
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2.5 (X,Y ) = (F4, E6)

In this section, we solve Question 3 for the case (X,Y ) = (F4, E6). We assume p ≥ 13.

Proposition 2.5.1. Let k be an algebraically closed field of characteristic p ≥ 13. Let Y be
a simply connected simple algebraic group of type E6 over k and let X be the maximal closed
connected subgroup of type F4 of Y given by the fixed points of a graph automorphism of Y . Let
λ ∈ X(TY )+ be a p-restricted weight and set µ = λ|TX . Then X acts on LY (λ) with exactly two
composition factors if and only if λ is listed in Table 2.34 up to graph automorphism. Moreover,
LY (λ)|X ∼= LX(µ)⊕ LX(ν) with ν given as in Table 2.34.

λ Conditions
ν

(a, b, c, d, e, f) abcdef 6= 0

(a, 0, 0, 0, 0, 0) a = 1, p− 2 µ− 1232
(0, b, 0, 0, 0, 0) b = 1, p− 2 µ− 1110
(0, 0, c, 0, 0, 0) c = p− 1 µ− 1231
(0, 0, 0, d, 0, 0) d = p− 1 µ− 0110
(a, b, 0, 0, 0, 0) a = p− 4, b = 1 µ− 1110
(a, 0, 0, 0, e, 0) a = p− 4, e = 1 µ− 0011
(a, b, c, 0, 0, 0) a = 2, b = 1, c = p− 3 µ− 1111
(a, 0, c, 0, e, 0) a = 2, c = p− 3, e = 1 µ− 0010

Table 2.34: Two-composition factors weights

Note that the statement about the decomposition into a direct sum follows directly from
Lemmas 1.4.2 and 1.4.3. The rest of the proof is given in Subsection 2.5.1.

2.5.1 Proof of Proposition 2.5.1. — Recall the notations introduced in Notation 2.1.3 and
(1.6) and (1.7) related to the truncated characters of simple or Weyl modules. Let {αi}6i=1 be a set
of simple roots in Φ(Y ) and {λi}6i=1 be the corresponding set of fundamental weights in X(TY ).
Similarly, let {βi}4i=1 be a set of simple roots in Φ(X) and {µi}4i=1 be the corresponding set of
fundamental weights in X(TX). Let λ = (a, b, c, d, e, f) ∈ X(TY )+ be a p-restricted weight. Set
µ = λ|TX , then µ = (b, d, c+ e, a+ f). As for the proofs of the previous cases, we record information
about the multiplicities and the composition factors in Table 2.104. Recall the notations ≤V and
≤BS which we introduced at the beginning of Sections 2.2 and 2.3. We define an additional notation.
It sometimes happens that we know the precise decomposition of the partial irreducible character
for a set of weights, but we only need a bound on a multiplicity in our argument. Whenever this is
the case, we bound the multiplicity by the irreducible character which gives the greatest multiplicity
and indicate it in Table 2.104 by a subscript BC (i.e ≤BC). For example, in Table 2.51 on Page 85,
we obtain the truncated irreducible character in the case a = p−5

2 , but in Table 2.104, we include
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this case in the case a ≤ p − 4, a 6= 1, 3, 7, where we bound the multiplicity by the truncated
irreducible character obtained for a ≤ p− 4, a 6= 1, 3, 7, p−5

2 .
The argument to prove that X acts on LY (λ) with more than two composition factors sometimes

relies on computing the multiplicities for more than just one weight. In these cases, we indicate the
different weights considered along with their multiplicities in Table 2.104. For example in the case
λ = aλ1 + cλ3, a+ c = p− 1 and a = 7.

We start the proof by combining the results we have obtained in Sections 2.3 and 2.4 and The-
orem 2.1.1 using Proposition 1.5.3. Let λ ∈ X(TY )+ be p-restricted. Recall the notations of the
pairs (XC3 , YA5) and (XB3 , YD4) from the beginning of Chapter 2. Assume XC3 does not act
irreducibly on LYA5

(λ|TYA5
) and denote by µ1 ∈ X(TX)+ \ {µ} the highest weight of a second

composition factor for X acting of LY (λ) given by Proposition 1.5.3. Similarly, assume XB3 does
not act irreducibly on LYD4

(λ|TYD4
) and denote by µ2 ∈ X(TX)+ \ {µ} the highest weight of a

second composition factor for X acting of LY (λ) given by Proposition 1.5.3. If µ1 6= µ2, then X
acts on LY (λ) with more than two composition factors.

With the previous considerations in mind, by carefully combining Tables 2.2, 2.5 and 2.32, we
get that if X acts on LY (λ) with at most two composition factors, then λ appears up to graph
automorphism in Table 2.35. In what follows, whenever λ is written as a linear combination of
parameters (i.e. a, b, c, d, e, f), we assume these parameters to be nonzero.

Remark 2.5.2. We will apply Lemma 1.3.17 and Remark 1.3.18 without any explicit reference.

2.5.1.1 λ = aλ1. — Assume a 6= p − 3, since otherwise X acts irreducibly on LY (λ) by
Theorem 2.1.1. The JSF applied to λ yields chL(λ)1232 = λ. Applying the JSF to µ along with
Proposition 1.2.2, we get chL(µ)1232 = µ. Computing multiplicities in LY (λ) and LX(µ), we get
that the highest weight of a second composition factor for X acting on LY (λ) is given by µ− 1232.
Set ν = µ− 1232 = (0, 0, 0, a− 1).

If a = 1, 2, 3, then

dim(L(λ), L(µ), L(ν)) =


(27, 26, 1) if a = 1
(351, 324− δp,13, 26) if a = 2
(3003, 2652, 324) if a = 3

and X acts on LY (λ) with exactly two composition factors if and only if a = 1. Assume now
a 6= 1, 2, 3.

If a 6= p− 2, then the JSF applied to λ yields chL(λ)2464 = λ and the multiplicities listed in
Table 2.104 imply that X acts on LY (λ) with more than two composition factors.

If a = p− 2, we prove that X acts on LY (λ) with exactly two composition factors by applying
Corollary 1.4.7. By Propositions 1.5.3 and 2.3.1, it is sufficient to prove that none of the weights
listed below affords the highest weight of a third composition factor for X acting on LY (λ).

µ− 1232 = (0, 0, 0, p− 3)
µ− 1233 = (0, 0, 1, p− 5)
µ− 1354 = (1, 0, 0, p− 5)
µ− 2464 = (0, 0, 0, p− 4)
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λ = (a, b, c, d, e, f) Conditions with abcdef 6= 0 2nd factor for LY (λ)|X

(a, 0, 0, 0, 0, 0) 1 ≤ a ≤ p− 1 undetermined
(0, b, 0, 0, 0, 0) b = 1, p− 2 µ− 1110
(0, 0, c, 0, 0, 0) c = 1 µ− 0121

c = p− 1 undetermined
(0, 0, 0, d, 0, 0) d = 1, p− 1 µ− 0110
(a, b, 0, 0, 0, 0) b ∈ {1, p− 2}, a ∈ {1, . . . , p− 1} µ− 1110
(a, 0, c, 0, 0, 0) a 6= p− 2, p− 6, c = 1 µ− 0121

a+ c = p, a 6= 4, p− 1 µ− 0121
a+ c = p− 1 undetermined

(a, 0, 0, d, 0, 0) a = p− 3, d = 1 µ− 0110
(a, 0, 0, 0, e, 0) a = 1, e = p− 1 µ− 0011

a = p− 4, e = 1 µ− 0011
(a, 0, 0, 0, 0, f) a 6= p− 1, f = 1 µ− 0001
(0, b, c, 0, 0, 0) b = 1, c = p− 1 µ− 1110

b = p− 1, c = p− 1 undetermined
b = p− 3, c = 1 µ− 0121

(0, 0, c, d, 0, 0) c+ d = p− 1 undetermined
(a, b, c, 0, 0, 0) a+ c = p− 1, b = a− 1 undetermined

a+ c = p− 1, b 6= a− 1, 2b+ c+ 4 6≡ 0 mod p µ− 1110
a 6= p− 2, p− 6, b = p− 3, c = 1 µ− 0121
a 6= 4, p− 1, a+ c = p, b+ c+ 2 ≡ 0 mod p µ− 0121

(a, b, 0, 0, e, 0) a = 1, b = p− 1, e = p− 1 µ− 0011
a = p− 4, b = p− 3, e = 1 µ− 0011

(a, 0, c, d, 0, 0) a = 1, c+ d = p− 1, c 6= 2 µ− 0111
(a, 0, c, 0, e, 0) a = 2, c = p− 3, e = 1 µ− 0010
(a, 0, c, 0, 0, f) a+ c = p− 1, f = 1 µ− 0001
(a, 0, 0, d, e, 0) a = 1, d+ e = p− 1, e 6= 1, p− 2 µ− 0011
(0, b, c, d, 0, 0) b = c and c+ d = p− 1 undetermined

c+ d = p− 1, b 6= c, 2b+ d+ 3 6= 0 mod p µ− 1110
(a, b, c, d, 0, 0) a = 1, c+ d = p− 1, c 6= 2, b = c µ− 0111
(a, b, c, 0, e, 0) a = 2, b = 1, c = p− 3, e = 1 µ− 0010
(a, b, 0, d, e, 0) a = 1, b = e, d+ e = p− 1 and e 6= 1, p− 2 µ− 0011
(a, b, c, 0, 0, f) a+ c = p− 1, b = a− 1, f = 1 µ− 0001

Table 2.35: The weights to consider.
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By Lemma 1.4.9, it is enough to consider µ − 2464. The JSF applied to λ, µ and ν yields
chL(λ)2464 = λ− (λ− 424420), chL(µ)2464 = µ and

chL(ν)1232 = ν, (2.3)

respectively. Hence, we have

(mL(λ)|X ,mL(µ),mL(ν))(µ− 2464) = (37, 32, 5),

which implies that X acts on LY (λ) with exactly two composition factors.

2.5.1.2 λ = bλ2. — By Table 2.35, we have b = 1, p−2 and ν = µ−1110 = (b−1, 0, 0, 1) affords
the highest weight of a second composition factor for X acting on LY (λ).

If b = 1, then dim(L(λ), L(µ), L(ν)) = (78, 52, 26) and X acts on LY (λ) with exactly two
composition factors.

If b = p− 2, we prove that X acts on LY (λ) with exactly two composition factors by applying
Corollary 1.4.7. By Propositions 1.5.3 and 2.3.1, it is sufficient to prove that none of the weights
listed below affords the highest weight of a composition factor for X acting on LY (λ).

µ− 2110 = (p− 5, 1, 0, 1)
µ− 2220 = (p− 4, 0, 0, 2)
µ− 2221 = (p− 4, 0, 1, 0)
µ− 2342 = (p− 3, 0, 0, 0)

By Lemma 1.4.9, it is enough to consider µ − 2342. Applying the JSF to λ, µ and ν yields
chL(λ)2342 = λ− (λ− 021210), chL(µ)2342 = µ and chL(ν)1232 = ν − (ν − 1111), respectively. We
have

(mL(λ)|X ,mL(µ),mL(ν))(µ− 2342) = (12, 8, 4),

which proves that X acts on LY (λ) with exactly two composition factors.

2.5.1.3 λ = cλ3. — By Table 2.35, we have c = 1 or c = p − 1. Let c = 1. By Table 2.35, a
second composition factor for X acting on LY (λ) is given by ν = µ− 0121 = (1, 0, c− 1, 0). Note
that VY (λ) is irreducible by [Lüb07] and the multiplicities in Table 2.104 imply that X acts on
LY (λ) with more than two composition factors.

Let c = p − 1. We first find the highest weight of a second composition factor for X acting
on LY (λ). Computing the multiplicity of µ − 1231 in LY (λ)|X and LX(µ) using Tables 2.36
and 2.37, we get that µ − 1231 affords the highest weight of a second composition factor. Set
ν = µ − 1231 = (0, 0, p − 2, 1). We prove that X acts on LY (λ) with exactly two composition
factors by applying Corollary 1.4.7. By Propositions 1.5.3 and 2.3.1, it is sufficient to prove that
none of the weights listed below affords the highest weight of an additional composition factor for
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X acting on LY (λ).
µ− 1231 = (0, 0, p− 2, 1)
µ− 1241 = (0, 1, p− 4, 2)
µ− 1351 = (1, 0, p− 4, 3)
µ− 1242 = (0, 1, p− 3, 0)
µ− 1352 = (1, 0, p− 3, 1)
µ− 2462 = (0, 0, p− 3, 2)
µ− 2463 = (0, 0, p− 2, 0)
µ− 2473 = (0, 1, p− 4, 1)

(2.4)

By Lemma 1.4.9, it is enough to consider µ− 2473. The computation of chL(λ)2473, chL(µ)2473
and chL(ν)1242 are summarized in Tables 2.36 to 2.38. Note that we need to determine the value
of [µ : C], [λ : G] and [ν : J ].

[µ : C] Let [µ : C] = 2− ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ))(µ− 0363) = (10, 9 + ζ). By
Remark 1.5.4 and Theorem 2.1.1, we have ζ = 1.

[λ : G] Let [λ : G] = 2 − ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ − 2471) =
(38 + ζ, 35, 4), hence ζ = 1.

[ν : J ] Let [ν : J ] = 2− ζ with ζ ∈ {0, 1}. We have

(mL(λ)|X ,mL(µ),mL(ν))(µ− 1473) = (57, 51, 5 + ζ). (2.5)

We compute the multiplicities of all the weights greater than µ − 1473 in LY (λ)|X , LX(µ)
and LX(ν), and then deduce that none of the weights greater than µ − 1473 affords the
highest weight of a third composition factor for X acting on LY (λ). Let us consider the
weight J = µ− 1473. Recall that our goal is to determine the weights greater than or equal
to µ− 2473 which afford the highest weight of a composition factor for X acting on LY (λ).
Note that from Table 2.38, we get

chL(ν)1242 = ν −G−H − I + ζJ.

We have to study the following two cases depending on the value of ζ.

ζ = 1 We are in the case [ν : J ] = 1. By (2.5), the weight J does not afford the highest
weight of a third composition factor for X acting on LY (λ). Then, we use the following
partial character of LX(ν) in order to compute the multiplicities in LX(ν) of the weights
greater than or equal to µ− 2473.

chL(ν)1242 = ν −G−H − I + J (2.6)

ζ = 0 We are in the case [ν : J ] = 2. Note that

chL(ν)1242 = ν −G−H − I.
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By (2.5), the weight J affords the highest weight of a third composition factor for X
acting on LY (λ). Therefore, in order to determine which weights between J and µ−2473
afford the highest weight of a composition factor for X acting on LY (λ), we need to take
into account the contribution of LX(µ), LX(ν) and LX(J) when computing multiplicities.
We combine the contribution of LX(ν) and LX(J) in the same partial character formula
as follows.

chL(ν)1242 + chL(J)1000 = ν −G−H − I + J (2.7)

Since the right-hand side of (2.6) and the right-hand side of (2.7) are equal, we can assume
without loss of generality, for the purpose of further character and multiplicity computations,
that we are in the case ζ = 1. In the case ζ = 0, the weight J affords the highest weight of a
composition factor for X acting on LY (λ). Since our goal is to prove that X acts on LY (λ)
with exactly two composition factors, we should also explain why the case ζ = 0 does not
conflict with our goal. Note that the weight J does not appear in (2.4), the list of weights
which can afford the highest weight of a third composition factor generated by a maximal
vector for L (BX). By Corollary 1.4.7, if X acts on LY (λ) with more than two composition
factors, then there exists a weight in (2.4) which affords the highest weight of a composition
factor for X acting on LY (λ). Thus, even if ζ = 0 and J affords the highest weight of a
composition factor, another weight apart from µ, ν and J also affords the highest weight of a
composition factor if X acts on LY (λ) with more than two composition factors, so we can
assume ζ = 1 for this purpose too.

Using the partial character formulas we have computed, we get

(mL(λ)|X ,mL(µ),mL(ν))(µ− 2473) = (95, 83, 12),

which proves that X acts on LY (λ) with exactly two composition factors and implies that [ν : J ] = 1.

2.5.1.4 λ = dλ4. — By Table 2.35, we have d = 1 or p− 1 and ν = µ− 0110 = (1, d− 1, 0, 1)
affords the highest weight of a second composition factor for X acting on LY (λ).

If d = 1, then VY (λ) is irreducible by [Lüb07] and comparing the multiplicities appearing in
Table 2.104 implies that X acts on LY (λ) with more than two composition factors.

If d = p− 1, we prove that X acts on LY (λ) with exactly two composition factors by applying
Corollary 1.4.7. By Propositions 1.5.3 and 2.3.1, it is sufficient to prove that none of the weights
listed below affords the highest weight of a composition factor for X acting on LY (λ).

µ− 1210 = (0, p− 3, 2, 1)
µ− 1220 = (0, p− 2, 0, 2)
µ− 1330 = (1, p− 3, 0, 3)
µ− 1221 = (0, p− 2, 1, 0)
µ− 1331 = (1, p− 3, 1, 1)
µ− 1342 = (1, p− 2, 0, 0)
µ− 1452 = (2, p− 3, 0, 1)

(2.8)
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λ = (0, 0, p− 1, 0, 0, 0)E6

ch L(λ)2473 = λ− A+ B + C −D − E − F + 2G+H

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)2473 = A− B − C +D + E + F −G−H JSF(λ)2473 = A+1
0 D + F + 2G+1

0 H

JSF(A)2473 = B + C − E +G JSF(A)2473 = B + C + 2D +G+1
0 H

JSF(B)2473 = D −G−H JSF(B)2473 = D

JSF(C)2473 = D + E −G JSF(C)2473 = D + E + 2H

JSF(D)2473 = G+H JSF(D)2473 = G+H

JSF(E)2473 = H JSF(E)2473 = H

JSF(F )2473 = G JSF(F )2473 = G

A = λ− 102100 = (0, 1, p− 3, 0, 1, 0) 0121 E = λ− 104321 = (2, 3, p− 5, 0, 0, 0) 0362

B = λ− 113200 = (1, 0, p− 4, 0, 2, 0) 1231 F = λ− 024420 = (4, 0, p− 5, 0, 0, 2) 2460

C = λ− 103210 = (1, 2, p− 4, 0, 0, 1) 0241 G = λ− 125420 = (3, 0, p− 6, 1, 0, 2) 2471

D = λ− 114310 = (2, 1, p− 5, 0, 1, 1) 1351 H = λ− 115421 = (3, 2, p− 6, 0, 1, 0) 1472

Table 2.36: JSF of λ up to µ− 2473

µ = (0, 0, p− 1, 0)F4

ch L(µ)2473 = µ− A+ B −D + E − F

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)2473 = A− B + C +D − E + F JSF(µ)2473 = A+ 2C +D +1
0 F

JSF(A)2473 = B + C + E JSF(A)2473 = B + C + E + 2F

JSF(B)2473 = F JSF(B)2473 = F

JSF(E)2473 = F JSF(E)2473 = F

A = µ− 0131 = (1, 1, p− 4, 1) D = µ− 2460 = (0, 0, p− 5, 6),

B = µ− 1251 = (0, 2, p− 6, 3) E = µ− 0241 = (2, 0, p− 4, 2),

C = µ− 0363 = (3, 0, p− 4, 0) F = µ− 1361 = (1, 1, p− 6, 4)

Table 2.37: JSF of µ up to µ− 2473

By Lemma 1.4.9, it is enough to consider µ− 1452. The computations to determine chL(λ)1452,
chL(µ)1452 and chL(ν)1342 are summarized in Tables 2.39 to 2.41, respectively. We still need to
solve several problematic cases, treated successively below.

[λ : F ] Let [λ : F ] = 2−ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ−1320) = (3+ζ, 3, 1),
hence ζ = 1.
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ν = (0, 0, p− 2, 1)F4

ch L(ν)1242 = ν −G−H − I + J

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(ν)1242 = G+H + I JSF(ν)1242 = G+H + I + 2J

JSF(G)1242 = J JSF(G)1242 = J

JSF(I)1242 = J JSF(I)1242 = J

G = ν − 0011 = (0, 1, p− 3, 0) I = ν − 0132 = (1, 1, p− 4, 0),

H = ν − 1230 = (0, 0, p− 4, 4) J = ν − 0242 = (2, 0, p− 4, 1)

Table 2.38: JSF of ν up to ν − 1242

[ν : H] By Proposition 1.5.2, we have [ν : H] = [(1, p− 2, 0) : (1, p− 3, 0)]B3 . By Table 2.42, we
have [(1, p− 2, 0) : (1, p− 3, 0)]B3 = [(3, p− 4, 0) : (2, p− 5, 2)]B3 . Moreover in B3, we have
(3, p− 4, 0)− (2, p− 5, 2) = 110 and Lemma 2.1.4 implies that [ν : H] = 1.

[ν : I] Let [ν : I] = 2−ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ−1321) = (6, 3, 2+ζ).
Noticing that I = µ − 1321 = ν − 1211 does not appear in (2.8), the list of weights which
afford the highest weight of a composition factor generated by a maximal vector for L (BX),
we apply the same reasoning as for the problematic case [ν : J ] in Subsection 2.5.1.3. We
check, by computing multiplicities, that there is no weight greater than I, apart from the
weights µ and ν, which affords the highest weight of a composition factor. Then, either ζ = 1
and I does not afford the highest weight of a third composition factor for X acting on LY (λ)
or ζ = 2 and I affords the highest weight of a third composition factor for X acting on
LY (λ). As in Subsection 2.5.1.3, for the purpose of further character computations, we can
assume without loss of generality that ζ = 1, so that I does not afford the highest weight of
composition factor for X acting on LY (λ).

It remains to settle the problematic cases [λ : I], [λ : K] and [ν : J ]. The upcoming argument is
technical and relies on a repetitive application of the reasoning which was conducted in order to
solve the problematic case [ν : I]. The idea is as follows and relies on Corollary 1.4.7: Whenever we
try to solve a problematic case for a weight which does not lie in (2.8), the list of weights which
could afford the highest weight of a third composition factor generated by a maximal vector for
L (BX), we can add as many composition factors as we need in order to match the multiplicities and
continue the argument until we reach a contradiction. Recall that by Propositions 1.5.3 and 2.3.1,
there is no weight of the form µ− 0xyz with x, y, z ∈ Z≥0 apart from µ and ν which affords the
highest weight of a composition factor for X acting on LY (λ).

[λ : I] & [λ : K] Note that by symmetry [λ : I] = [λ : K]. Let [λ : I] = 2− ζ with ζ ∈ {0, 1, 2}.
We compute the multiplicity of the weights greater than µ − 1431 in LY (λ)|X , LX(µ) and
LX(ν), and then deduce that there is no weight greater than µ− 1431 apart from µ and ν
which affords the highest weight of a third composition factor for X acting on LY (λ). We
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have (mL(λ)|X ,mL(µ),mL(ν))(µ− 1431) = (12 + 2ζ, 6, 6), hence µ− 1431 affords the highest
weight of 2ζ composition factors for X acting on LY (λ). Note that µ − 1431 does not lie
in (2.8), therefore if X acts on LY (λ) with more than two composition factors, then, by
Corollary 1.4.7, either µ− 1342 or µ− 1452 affords the highest weight of a composition factor
for X acting on LY (λ). Let W1431 = LX(µ− 1431)2ζ and W1431 = 0 if ζ = 0.

[ν : J ] Let [ν : J ] = 5 − ξ with ξ ∈ {0, . . . , 4}. Recall that [ν : H] = 1 and [ν : I] = 1, so using
Table 2.41, we get

chL(ν)1331 = ν − F −G+ I − (2− ξ)J.

We have (mL(λ)|X ,mL(µ),mL(ν))(µ− 1441) = (18 + 4ζ, 9, 7 + ξ) and mW1431(µ− 1441) = 2ζ.
Note that all the dominant weights greater than µ − 1441 and not of the form µ − 0xyz
with x, y, z ∈ Z≥0, are also greater than µ − 1431. Hence, we have already checked in the
previous problematic case that there is no weight greater than µ− 1441 which affords the
highest weight of a composition factor for X acting on LY (λ) apart from µ, ν and possibly
µ− 1431. Let r be the number of composition factors for X acting on LY (λ) of highest weight
µ − 1441. Taking into account the multiplicities that we have computed above, we have
r = 18 + 4ζ − 9− 7− ξ− 2ζ = 2 + 2ζ − ξ. Reasoning as in the problematic case [ν : I], we can
assume without loss of generality that ξ = 0 and r = 2 + 2ζ. Set W1441 = LX(µ− 1441)r.

We now proceed to show that neither µ − 1342 nor µ − 1452 affords the highest weight of a
composition factor for X acting on LY (λ). The only dominant weights greater than µ− 1452 and
not greater than µ − 1441 which are not of the form µ − 0xyz with x, y, z ∈ Z≥0 are µ − 1342
and µ− 1442. We have (mL(λ)|X ,mL(µ),mL(ν))(µ− 1342) = (18, 11, 7), hence µ− 1342 does not
afford the highest weight of a composition factor for X acting on LY (λ). We have (mL(λ)|X ,mL(µ),

mL(ν))(µ − 1442) = (24 + 8ζ, 14, 8), mW1431(µ − 1442) = 4ζ and mW1441(µ − 1442) = r = 2 + 2ζ.
Since 24 + 8ζ − 14 − 8 − 4ζ − 2 − 2ζ = 2ζ, we get that µ − 1442 affords the highest weight of
2ζ composition factors for X acting on LY (λ). Set W1442 = LY (µ − 1442)2ζ and W1442 = 0 if
ζ = 0. We finally compute the multiplicity of µ − 1452 in LY (λ)|X . We have (mL(λ)|X ,mL(µ),

mL(ν))(µ− 1452) = (30 + 10ζ, 15, 11), mW1431(µ− 1452) = 4ζ, mW1441(µ− 1452) = 2(2 + 2ζ) and
mW1442(µ− 1452) = 2ζ. Note that 30 + 10ζ − 15− 11− 4ζ − 4− 4ζ − 2ζ = 0. Thus, for any value
of ζ ∈ {0, 1, 2}, the weight µ− 1452 does not afford the highest weight of a composition factor for
X acting on LY (λ). Therefore, X acts on LY (λ) with exactly two composition factors. In turn,
this implies ζ = 0 and ξ = 2.

2.5.1.5 λ = aλ1 + bλ2. — By Table 2.35, we have that b = 1, p− 2 and the highest weight of a
second composition factor for X acting on LY (λ) is given by ν = µ− 1110 = (b− 1, 0, 0, a+ 1).

If b = 1 and a 6= p − 4, then the JSF applied to λ implies that chL(λ)1111 = λ and the
multiplicities listed in Table 2.104 imply that X acts on LY (λ) with more than two composition
factors.

If b = 1 and a = p− 4, we show that X acts on LY (λ) with exactly two composition factors by
applying Corollary 1.4.7. By Propositions 1.5.3 and 2.3.1, it is sufficient to prove that none of the
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λ = (0, 0, 0, p− 1, 0, 0)E6

ch L(λ)1452 = λ− A− B − C +D + E + 2F +G+H − 2I − J − 2K − L

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1452 = A+ B + C −D − E − F −G−H + I + J +K JSF(λ)1452 = A+ B + C + 2F +2
0 I +1

0 J +2
0 K +1

0 L

JSF(A)1452 = D + F −K − L JSF(A)1452 = D + F + 2I

JSF(B)1452 = F +G− I − L JSF(B)1452 = F +G+ 2K

JSF(C)1452 = E + F +H + L JSF(C)1452 = E + F +H + 2I + 2J + 2K + 2L

JSF(D)1452 = I JSF(D)1452 = I

JSF(E)1452 = I + J JSF(E)1452 = I + J

JSF(F )1452 = I +K + L JSF(F )1452 = I +K + L

JSF(G)1452 = K JSF(G)1452 = K

JSF(H)1452 = J +K JSF(H)1452 = J +K

A = λ− 011200 = (1, 0, 0, p− 3, 2, 0) 1210 G = λ− 010321 = (0, 1, 3, p− 4, 0, 0) 1321

B = λ− 010210 = (0, 0, 2, p− 3, 0, 1) 1210 H = λ− 001321 = (1, 3, 1, p− 4, 0, 0) 0331

C = λ− 001210 = (1, 2, 0, p− 3, 0, 1) 0220 I = λ− 112410 = (0, 2, 1, p− 5, 2, 1) 1431

D = λ− 112300 = (0, 1, 0, p− 4, 3, 0) 1321 J = λ− 102421 = (0, 4, 1, p− 5, 1, 0) 0442

E = λ− 102310 = (0, 3, 0, p− 4, 1, 1) 0331 K = λ− 011421 = (1, 2, 2, p− 5, 1, 0) 1431

F = λ− 011310 = (1, 1, 1, p− 4, 1, 1) 1320 L = λ− 012420 = (2, 2, 0, p− 4, 0, 2) 1440

Table 2.39: JSF of λ up to µ− 1452

µ = (0, p− 1, 0, 0)F4

ch L(µ)1452 = µ+ A− B − C −D + E

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)1452 = −A+ B + C +D − E JSF(µ)1452 = B +1
0 C +D

JSF(A)1452 = C JSF(A)1452 = C

JSF(B)1452 = A+ E JSF(B)1452 = A+ 2C + E

JSF(E)1452 = C JSF(E)1452 = C

A = µ− 1330 = (1, p− 3, 0, 3) D = µ− 0342 = (3, p− 3, 0, 0)

B = µ− 1210 = (0, p− 3, 2, 1) E = µ− 1321 = (1, p− 4, 3, 0)

C = µ− 1441 = (2, p− 4, 1, 2)

Table 2.40: JSF of µ up to µ− 1452

weights listed below affords the highest weight of a composition factor for X acting on LY (λ).

µ− 1111 = (0, 0, 1, p− 5)
µ− 1122 = (0, 1, 0, p− 6)
µ− 1232 = (1, 0, 0, p− 5)
µ− 2342 = (0, 0, 0, p− 4)
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ν = (1, p− 2, 0, 1)F4

ch L(ν)1342 = ν − F −G+ I

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(ν)1342 = F +G+H JSF(ν)1342 = F +G+ 2H + 2I +5
1 J

JSF(F )1342 = H + I JSF(F )1342 = H + I + 2J

JSF(G)1342 = I + J JSF(G)1342 = I + 2J

JSF(H)1342 = J JSF(H)1342 = J

JSF(I)1342 = J JSF(I)1342 = J

F = ν − 1100 = (0, p− 3, 2, 1) I = ν − 1211 = (1, p− 4, 3, 0)

G = ν − 0111 = (2, p− 3, 1, 0) J = ν − 1331 = (2, p− 4, 1, 2)

H = ν − 1220 = (1, p− 3, 0, 3)

Table 2.41: JSF of ν up to ν − 1342

λ′0 = (0,−1, 0) 6∈ C0

γ′ = w1·λ′0 = (1, p− 2, 0) η′ = w·λ′0 = (1, p− 3, 0)

w1 = s0s1s2s3s2s0s1 w = s0s1s2s3s2s0s2

λ0 = (0, 0, 0) ∈ C0

γ = w1·λ0 = (3, p− 3, 0) η = w·λ0 = (2, p− 5, 2)

Cη′ = (1, 1, 1, 1, 2, 3, 1, 2, 2) Cη = (1, 1, 1, 1, 2, 3, 1, 2, 2)

Proposition 1.3.10 =⇒ [γ′ : η′] = [γ : η]

s = s1

ws·λ0 = (1, p− 5, 4)

ws·λ0 − w·λ0 = 012

Proposition 1.3.9 =⇒ [w1s·λ0 : η] = [γ : η], where w1s·λ0 = (3, p− 4, 0)

Table 2.42: Computing [(1, p− 2, 0) : (1, p− 3, 0)]B3

By Lemma 1.4.9, it is enough to consider the weight µ− 2342. The JSF applied to λ and µ yields
chL(λ)2342 = λ− (λ− 111100) and chL(µ)2342 = µ− (µ− 1122), respectively. Moreover, by (2.3)
on Page 73, we have chL(ν)1232 = ν. Hence, we get

(mL(λ)|X ,mL(µ),mL(ν))(µ− 2342) = (25, 20, 5)

and X acts on LY (λ) with exactly two composition factors.
If b = p − 2, then the JSF applied to λ yields chL(λ)1111 = λ − δa,p−1(λ − 111100) and the

multiplicities in Table 2.104 imply that X acts on LY (λ) with more than two composition factors.
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2.5.1.6 λ = aλ1 + cλ3. — By Table 2.35, we have to consider the three cases which we solve
separately below.

c = 1, a 6= p − 2, p − 6. — By Table 2.35, the weight ν = µ − 0121 = (1, 0, 0, a) affords the
highest weight of a second composition factor for X acting on LY (λ). If a 6= p− 8, the JSF applied
to λ yields chL(λ)1231 = λ. If a = p−8, the JSF applied to λ yields chL(λ)1353 = λ− (λ−112210).
In both cases, the multiplicities in Table 2.104 imply that X acts on LY (λ) with more than two
composition factors.

a+ c = p, a 6= 4, p− 1. — As in the previous case, by Table 2.35, the weight ν = µ− 0121 =
(1, 0, p− a− 1, a) affords the highest weight of a second composition factor for X acting on LY (λ).

If a 6= 2, 6, then the JSF applied to λ yields chL(λ)1231 = λ. If a = 2, then the JSF applied to
λ and µ yields

chL(λ)1242 = λ− (λ− 202000)− (λ− 012210)

and chL(µ)1242 = µ − (µ − 0022) − (µ − 1230). The computations to determine the truncated
character ν appear in Table 2.43. In both cases, the multiplicities in Table 2.104 imply that X acts
on LY (λ) with more than two composition factors.

Let a = 6. The JSF applied to µ yields chL(µ)1363 = µ−(µ−0022). Moreover, the computations
to determine chL(λ)1363 and chL(ν)1242 appear in Tables 2.44 and 2.45. We determine [λ : D] and
show that we do not need to determine [ν : B] in order to prove that X acts on LY (λ) with more
than two composition factors. Let [λ : D] = 2− ζ and [ν : B] = 2− ξ with ζ, ξ ∈ {0, 1}. We have

(mL(λ)|X ,mL(µ),mL(ν))(µ− 1363) = (114 + 16ζ, 100, 22 + 7ξ)

which implies that ζ = 1. Moreover, for any value of ξ, we get that X acts on LY (λ) with more
than two composition factors.

ν = (1, 0, p− 3, 2)F4

ch L(ν)1121 = ν −D − E

To determine [ν : F ], see Table 2.8 on Page 47

JSF in Weyl characters: JSF in irreducible characters:

JSF(ν)1121 = D + E + F JSF(ν)1121 = D + E + 2F

JSF(D)1121 = F JSF(D)1121 = F

D = ν − 0011 = (1, 1, p− 4, 1) F = ν − 0121 = (2, 0, p− 4, 2)

E = ν − 1120 = (0, 1, p− 5, 4)

Table 2.43: JSF of ν up to ν − 1121

a + c = p − 1. — Let a 6= 1, since otherwise X acts irreducibly on LY (λ) by Theorem 2.1.1.
We first determine the highest weight of a second composition factor for X acting on LY (λ). The
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λ = (6, 0, p− 6, 0, 0, 0)E6

ch L(λ)1363 = λ− A+ B − C +D − E

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1363 = A− B + C JSF(λ)1363 = A+ C + 2D +1
0 E

JSF(A)1363 = B +D JSF(A)1363 = B +D + 2E

JSF(B)1363 = E JSF(B)1363 = E

JSF(C)1363 = D − E JSF(C)1363 = D

JSF(D)1363 = E JSF(D)1363 = E

A = λ− 202000 = (4, 0, p− 8, 2, 0, 0) 0022 D = λ− 213210 = (5, 0, p− 8, 1, 0, 1) 1242

B = λ− 303100 = (3, 1, p− 8, 1, 1, 0) 0133 E = λ− 314310 = (4, 1, p− 8, 0, 1, 1) 1353

C = λ− 112210 = (6, 0, p− 7, 0, 0, 1) 1231

Table 2.44: JSF of λ up to µ− 1363

ν = (1, 0, p− 7, 6)F4

Possibilities

ch L(ν)1242 = ν − A

ch L(ν)1242 = ν − A− B

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(ν)1242 = A+ B JSF(ν)1242 = A+ 2B

JSF(A)1242 = B JSF(A)1242 = B

A = ν − 0011 = (1, 1, p− 8, 5) B = ν − 1121 = (0, 1, p− 8, 6)

Table 2.45: JSF of ν up to ν − 1242

computation of chL(λ)1231 and chL(µ)1231 is summarized in Tables 2.46 and 2.47, respectively.
We solve the problematic cases as follows.

[µ : B] Let a = 2 and [µ : B] = 2 − ζ with ζ ∈ {0, 1}. Note that (mL(λ)|X ,mL(µ))(µ − 0121) =
(3, 2 + ζ). By Remark 1.5.4 and Theorem 2.1.1, we get ζ = 1.

[λ : B] Let a = 4 and [λ : B] = 2 − ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ))(µ − 1231) =
(8 + ζ, 8). The truncated JSF of λ up to µ− 1232 is computed in Table 2.50. We get

chL(λ)1232 = λ− (λ− 101000)− (λ− 202100)− (1− ζ)(λ− 112210).

Moreover, chL(µ)1232 is computed in Table 2.51. Using these characters to calculate the
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multiplicity of µ−1232 in LY (λ)|X and LX(µ), we get (mL(λ)|X ,mL(µ))(µ−1232) = (10−2ζ, 9),
which implies that ζ = 1.

Computing multiplicities, we get that ν = µ − 1231 = (0, 0, p − a − 2, a + 1) affords the highest
weight of a second composition factor for X acting on LY (λ) and that (mL(λ)|X ,mL(µ))(µ−1231) =
(9− 3δa,p−2, 8− 3δa,p−2 − δa,3).

Note that µ = (0, 0, p− a− 1, a) and ν = (0, 0, p− a− 2, a+ 1). Hence if we know the truncated
character of µ up to some weight θ ∈ X(TX)+ for a ∈ {2, . . . , p− 2}, then we know the truncated
character of ν up to θ for a ∈ {1, . . . , p− 3}.

If a = 3, then ν also affords the highest weight of a third composition factor. Assume a = p− 2,
the computations to determine chL(λ)2463 and chL(µ)2463 are summarized in Tables 2.48 and 2.49.
Assume a 6= 3, p− 2, the computations to determine chL(λ)2462 and chL(µ)2462 are summarized in
Tables 2.50 and 2.51. In both cases, the multiplicities in Table 2.104 imply that X acts on LY (λ)
with more than two composition factors.

λ = (a, 0, p− a− 1, 0, 0, 0)E6

ch L(λ)1231 = λ− A

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1231 = A+ δa,4B JSF(λ)1231 = A+ 2δa,4B

JSF(A)1231 = δa,4B JSF(A)1231 = δa,4B

A = λ− 101000 = (a− 1, 0, p− a− 2, 1, 0, 0) 0011 B = λ− 112210 = (a, 0, p− a− 2, 0, 0, 1) 1231

Table 2.46: JSF of λ up to µ− 1231

µ = (0, 0, p− a− 1, a)F4

ch L(µ)1231 = µ− A− δa,3C

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)1231 = A+ δa,2B + δa,3C JSF(µ)1231 = A+ 2δa,2B + δa,3C

JSF(A)1231 = δa,2B JSF(A)1231 = δa,2B

A = µ− 0011 = (0, 1, p− a− 2, a− 1) C = µ− 1231 = (0, 0, p− a− 2, a+ 1)

B = µ− 0121 = (1, 0, p− a− 2, a)

Table 2.47: JSF of µ up to µ− 1231

2.5.1.7 λ = aλ1 + dλ4. — By Table 2.35, we have that a = p− 3, d = 1 and ν = µ− 0110 =
(1, d− 1, 0, a+ 1) affords the highest weight of a second composition factor for X acting on LY (λ).
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λ = (p− 2, 0, 1, 0, 0, 0)E6

ch L(λ)2463 = λ− A+ B − C −D

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)2463 = A− B + C +D JSF(λ)2463 = A

JSF(A)2463 = B − C −D JSF(A)2463 = B

JSF(B)2463 = C +D JSF(B)2463 = C +D

A = λ− 101000 = (p− 3, 0, 0, 1, 0, 0) 0011 C = λ− 313200 = (p− 5, 0, 0, 0, 2, 0) 1233

B = λ− 202100 = (p− 4, 1, 0, 0, 1, 0) 0122 D = λ− 303210 = (p− 5, 2, 0, 0, 0, 1) 0243

Table 2.48: JSF of λ up to µ− 2463

µ = (0, 0, 1, p− 2)F4

ch L(µ)2463 = µ− A+ B

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)2463 = A− B JSF(µ)2463 = A

JSF(A)2463 = B JSF(A)2463 = B

A = µ− 0011 = (0, 1, 0, p− 3) B = µ− 0133 = (1, 1, 0, p− 5)

Table 2.49: JSF of µ up to µ− 2463

λ = (a, 0, p− a− 1, 0, 0, 0)E6

ch L(λ)2462 = λ− A+ B

See Table 2.46 on Page 83

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)2462 = A− B + δa,4C JSF(λ)2462 = A+ 2δa,4C

JSF(A)2462 = B + δa,4C JSF(A)2462 = B + δa,4C

A = λ− 101000 = (a− 1, 0, p− a− 2, 1, 0, 0) 0011 C = λ− 112210 = (a, 0, p− a− 2, 0, 0, 1) 1231

B = λ− 202100 = (a− 2, 1, p− a− 2, 0, 1, 0) 0122

Table 2.50: JSF of λ up to µ− 2462

The JSF applied to λ yields chL(λ)1221 = λ− (λ− 101100) and the multiplicities in Table 2.104
imply that X acts on LY (λ) with more than two composition factors.

2.5.1.8 λ = aλ1 + eλ5. — By Table 2.35, either a = 1, e = p− 1 or a = p− 4, e = 1. Moreover,
a second composition factor for X acting on LY (λ) is given by ν = µ− 0011 = (0, 1, e− 1, a− 1).
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µ = (0, 0, p− a− 1, a)F4

Possibilities

ch L(µ)2462 = µ− A− δ
a,
p+5

2
D

ch L(µ)2462 = µ− A− δa,7C − δ
a,
p+5

2
D

See Table 2.47 on Page 83 for [µ : B].

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)2462 = A+ δa,2B + δa,7C + δ
a,
p+5

2
D JSF(µ)2462 = A+ 2δa,2B + 2δa,7C + δ

a,
p+5

2
D

JSF(A)2462 = δa,2B + δa,7C JSF(A)2462 = δa,2B + δa,7C

A = µ− 0011 = (0, 1, p− a− 2, a− 1) C = µ− 1232 = (0, 0, p− a− 1, a− 1),

B = µ− 0121 = (1, 0, p− a− 2, a) D = µ− 2462 = (0, 0, p− a− 3, a+ 2)

Table 2.51: JSF of µ up to µ− 2462

Assume a = 1 and e = p− 1. The truncated character chL(λ)1231 is computed in Table 2.52.
The JSF applied to ν yields chL(ν)1220 = ν − (ν − 0120). Comparing the multiplicities appearing
in Table 2.104 implies that X acts on LY (λ) with more than two composition factors.

Assume a = p− 4 and e = 1. Applying Corollary 1.4.7, we prove that X acts on LY (λ) with
exactly two composition factors. By Propositions 1.5.3 and 2.3.1, it is enough to prove that none
of the following weights affords the highest weight of a third composition factor for X acting on
LY (λ).

µ− 1231 = (0, 0, 0, p− 3)
µ− 1232 = (0, 0, 1, p− 5)
µ− 1233 = (0, 0, 2, p− 7)
µ− 1243 = (0, 1, 0, p− 6)
µ− 1353 = (1, 0, 0, p− 5)

By Lemma 1.4.9, it is enough to consider the weight µ−1353. The truncated characters chL(λ)1353
and chL(ν)1342 are computed in Tables 2.53 and 2.54, respectively. The JSF applied to µ yields
chL(µ)1353 = µ− (µ− 1233). Therefore we have

(mL(λ)|X ,mL(µ),mL(ν))(µ− 1353) = (65, 46, 19),

which proves the result.

2.5.1.9 λ = aλ1 + fλ6. — By Table 2.35, we have that f = 1, a 6= p− 1 and ν = µ− 0001 =
(0, 0, 1, a − 1) affords the highest weight of a second composition factor for X acting LY (λ). If
a = 1, then LY (λ) = VY (λ) by the tables in [Lüb07]. Assume a 6= 1. Applying the JSF to λ yields

chL(λ)1232 = λ− δa,p−5(λ− 101111)− δa,p−3(λ− 212210).
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λ = (1, 0, 0, 0, p− 1, 0)E6

ch L(λ)1231 = λ− A+ B

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1231 = A− B JSF(λ)1231 = A

JSF(A)1231 = B JSF(A)1231 = B

A = λ− 000121 = (1, 1, 1, 0, p− 3, 0) 0121 B = λ− 010231 = (1, 0, 2, 0, p− 4, 1) 1231

Table 2.52: JSF of λ up to µ− 1231

λ = (p− 4, 0, 0, 0, 1, 0)E6

ch L(λ)1353 = λ− A+ B

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1353 = A− B JSF(λ)1353 = A

JSF(A)1353 = B JSF(A)1353 = B

A = λ− 101110 = (p− 5, 1, 0, 0, 0, 1) 0121 B = λ− 202221 = (p− 6, 2, 0, 0, 0, 0) 0243

Table 2.53: JSF of λ up to µ− 1353

ν = (0, 1, 0, p− 5)F4

ch L(ν)1342 = ν − A+ B

JSF in Weyl characters: JSF in irreducible characters:

JSF(ν)1342 = A− B JSF(ν)1342 = A

JSF(A)1342 = B JSF(A)1342 = B

A = ν − 0111 = (1, 0, 1, p− 6) B = ν − 0232 = (2, 0, 0, p− 6)

Table 2.54: JSF of ν up to ν − 1342

If a = p− 5, then the JSF applied to ν yields chL(ν)1231 = ν − (ν − 0121). In all cases, comparing
the multiplicities listed in Table 2.104 implies that X acts on LY (λ) with more than two composition
factors in all cases.

2.5.1.10 λ = bλ2+cλ3. — By Table 2.35, we have to consider the cases (b, c) ∈ {(p−3, 1), (1, p−
1), (p− 1, p− 1)}.

If b = p − 3, c = 1, then a second composition factor for X acting on LY (λ) is given by
ν = µ − 0121 = (p − 2, 0, 0, 0). The JSF applied to λ yields chL(λ)1231 = λ − (λ − 011100) and
comparing the multiplicities in Table 2.104 implies that X acts on LY (λ) with more than two
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composition factors.
If b = 1, c = p− 1, then a second composition factor is given by ν = µ− 1110 = (0, 0, p− 1, 1).

The JSF applied to λ yields chL(λ)1121 = λ− (λ− 102100) and the multiplicities in Table 2.104
imply that X acts on LY (λ) with more than two composition factors.

Let b = p− 1, c = p− 1. The computation of chL(λ)2242 and chL(µ)2242 are summarized in
Tables 2.55 and 2.56, respectively. We prove that ν = µ−1121 = (p−2, 1, p−2, 0) affords the highest
weight of a second composition factor and that X acts on LY (λ) with more than two composition
factors by studying the different possibilities for the coefficients [λ : F ], [µ : F ], [µ : A], (λ : G) and
(µ : E).

[λ : F ] & [µ : F ] Let [λ : F ] = 2− ζ with ζ ∈ {0, 1} and [µ : F ] = 2− ξ with ξ ∈ {0, 1}. We check
by computing multiplicities in LY (λ)|X , LX(µ) and LX(ν) that there is no weight greater than
µ− 1121 apart from µ which affords the highest weight of a composition factor for X acting
on LY (λ). Moreover, we have (mL(λ)|X ,mL(µ))(µ− 1121) = (6 + ζ, 6) and (mL(λ)|X ,mL(µ))
(µ− 1231) = (11 + 4ζ, 12 + ξ). Therefore ζ = 1 and ν affords the highest weight of a second
composition factor for X acting on LY (λ). If ξ = 0, then (mL(λ)|X ,mL(µ),mL(ν))(µ− 1131)
= (8, 6, 1) and X acts with more than two composition factors on LY (λ). Assume from now
on that ξ = 1.

[µ : A] Let [µ : A] = 2− ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ))(µ− 2220) = (7, 6 + ζ). By
Remark 1.5.4 and Theorem 2.1.1 we have ζ = 1.

The computation of chL(ν)1121 appears in Table 2.57. We get an additional problematic case given
by [ν : H].

[ν : H] Let [ν : H] = 2− ζ with ζ ∈ {0, 1}. We have

(mL(λ)|X ,mL(µ),mL(ν))(µ− 2231) = (22, 19, 2 + ζ).

If ζ = 0, then the weight µ− 2231 affords the highest weight of a third composition factor.
Therefore assume ζ = 1.

(λ : G) & (µ : E) Let [λ : G] = 2− ζ and [µ : E] = 2− ξ, with ζ, ξ ∈ {0, 1, 2}. We show that we
can exclude the case ξ = 0. We have (mL(λ)|X ,mL(µ),mL(ν))(µ− 2242) = (38 + 2ζ, 31 + ξ, 5),
thus if ξ = 0, then X acts on LY (λ) with more than two composition factors. Hence we can
assume that [µ : E] ∈ {0, 1} and by Lemma 1.3.17, we get (µ : E) = 1. Therefore, (mL(λ)|X ,

mL(µ),mL(ν))(µ−2242) = (38 + 2ζ, 32, 5) and X acts with more than two composition factors
on LY (λ).

Therefore, X acts on LY (λ) with more than two composition factors.

2.5.1.11 λ = cλ3 + dλ4. — Note that by Table 2.35, we have c+ d = p− 1. We first find the
highest weight of a second composition factor for X acting on LY (λ). For convenience, we give
here the truncated character formulas for the simple modules LY (λ) and LX(µ) up to the weight
µ− 1221 which will be computed over the next pages.

chL(λ)1221 = λ− (λ− 001100)− δd,1(λ− 102200)− δd,p−2(λ− 012200)
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λ = (0, p− 1, p− 1, 0, 0, 0)E6

Possibilities

ch L(λ)2242 = λ− A− B + C +D + E

ch L(λ)2242 = λ− A− B +D + E + F −G

ch L(λ)2242 = λ− A− B +D + E + F

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)2242 = A+ B − C −D − E JSF(λ)2242 = A+ B +1
0 C + 2F +2

0 G

JSF(A)2242 = −C +D + F JSF(A)2242 = D + F + 2G

JSF(B)2242 = C + E + F JSF(B)2242 = 2C + E + F + 2G

JSF(D)2242 = G JSF(D)2242 = G

JSF(E)2242 = G JSF(E)2242 = G

JSF(F )2242 = C +G JSF(F )2242 = C +G

A = λ− 102100 = (0, p, p− 3, 0, 1, 0) 0121 E = λ− 022210 = (2, p− 3, p− 3, 1, 0, 1) 2230

B = λ− 011100 = (1, p− 2, p− 2, 0, 1, 0) 1110 F = λ− 112100 = (0, p− 2, p− 3, 1, 1, 0) 1121

C = λ− 122200 = (0, p− 3, p− 2, 0, 2, 0) 2221 G = λ− 123210 = (1, p− 3, p− 4, 2, 0, 1) 2241

D = λ− 103210 = (1, p+ 1, p− 4, 0, 0, 1) 0241

Table 2.55: JSF of λ up to µ− 2242

chL(µ)1221 = µ− δd,p−2(µ− 0120)− δd,p−3(µ− 1221)− δd,p−2(µ− 1220)

Using these formulas, we get that ν = µ− 1221 = (0, d− 1, p− d, 0) affords the highest weight of a
second factor for X acting on LY (λ) and that

(mL(λ)|X ,mL(µ))(µ− 1221) = (9− δd,1, 8− δd,1 − δd,p−3).

Note that µ = (0, d, p − d − 1, 0) and ν = (0, d − 1, p − d, 0). By comparing the coefficients of µ
and ν we get that if we know truncated character of µ up to µ− 2442 for d ∈ {1, . . . , p− 2}, then
we know the truncated character of ν up to µ− 2442 for d ∈ {2, . . . , p− 1}. We solve this case by
considering the following subcases separately.

d = 1. — We summarize the computation of chL(λ)2452 and chL(µ)2452 in Tables 2.58 and 2.59,
respectively. Moreover, the JSF applied to ν yields chL(ν)1231 = ν − (ν − 0131). The multiplicities
listed in Table 2.104 imply that X acts on LY (λ) with more than two composition factors.

d 6= 1, p− 4, p− 3, p− 2. — The JSF are computed in Tables 2.60 and 2.61 and we prove that
X acts on LY (λ) by studying the problematic cases.

[µ : F ] Let d = p − 6 and [µ : F ] = 2 − ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))
(µ− 1231) = (12, 10 + ζ, 1). If ζ = 0, then X acts on LY (λ) with more than two composition
factors, hence assume ζ = 1.
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µ = (p− 1, 0, p− 1, 0)F4

Possibilities

ch L(µ)2242 = µ− B − C +D + E

ch L(µ)2242 = µ− B − C +D + 2E

ch L(µ)2242 = µ− B − C +D + F

ch L(µ)2242 = µ− B − C +D + E + F

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)2242 = A+ B + C −D − E JSF(µ)2242 = 2A+ B + C +2
0 E + 2F

JSF(B)2242 = D + F JSF(B)2242 = D + 2E + F

JSF(C)2242 = A+ E + F JSF(C)2242 = A+ 2E + F

JSF(D)2242 = E JSF(D)2242 = E

JSF(F )2242 = E JSF(F )2242 = E

A = µ− 2220 = (p− 3, 0, p− 1, 2) D = µ− 0241 = (p+ 1, 0, p− 4, 2),

B = µ− 0131 = (p, 1, p− 4, 1) E = µ− 2241 = (p− 3, 2, p− 4, 2),

C = µ− 1120 = (p− 2, 1, p− 3, 2) F = µ− 1131 = (p− 2, 2, p− 4, 1)

Table 2.56: JSF of µ up to µ− 2242

ν = (p− 2, 1, p− 2, 0)F4

Possibilities

ch L(ν)1121 = ν −G−H − I

ch L(ν)1121 = ν −G− I − J

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(ν)1121 = G+H + I JSF(ν)1121 = G+ 2H + I + J

JSF(G)1121 = H − J JSF(G)1121 = H

JSF(H)1121 = J JSF(H)1121 = J

G = ν − 1100 = (p− 3, 0, p, 0) I = ν − 0120 = (p− 1, 1, p− 4, 2),

H = ν − 1110 = (p− 3, 1, p− 2, 1) J = ν − 1121 = (p− 3, 2, p− 3, 0)

Table 2.57: JSF of ν up to ν − 1121

[λ : I] Let d = p−7 and [λ : I] = 2− ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ−1342)
= (30 + ζ, 28, 3), hence ζ = 1.

[λ : H] By Proposition 1.5.2, we can solve this case in the Levi factor LI of PI , where I =
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λ = (0, 0, p− 2, 1, 0, 0)E6

ch L(λ)2452 = λ− A+ B + C −D − E

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)2452 = A− B − C +D + E JSF(λ)2452 = A+1
0 D

JSF(A)2452 = B + C − E JSF(A)2452 = B + C + 2D

JSF(B)2452 = D JSF(B)2452 = D

JSF(C)2452 = D + E JSF(C)2452 = D + E

A = λ− 001100 = (1, 1, p− 3, 0, 1, 0) 0110 D = λ− 013310 = (3, 1, p− 5, 0, 1, 1) 1340

B = λ− 012200 = (2, 0, p− 4, 0, 2, 0) 1220 E = λ− 003321 = (3, 3, p− 5, 0, 0, 0) 0351

C = λ− 002210 = (2, 2, p− 4, 0, 0, 1) 0230

Table 2.58: JSF of λ up to µ− 2452

µ = (0, 1, p− 2, 0)F4

ch L(µ)2452 = µ+ A− B − C +D

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)2452 = −A+ B + C −D JSF(µ)2452 = 1
0B + C +1

0 E

JSF(A)2452 = B + E JSF(A)2452 = B + E

JSF(C)2452 = A+D + E JSF(C)2452 = A+ 2B +D + 2E

JSF(D)2452 = B JSF(D)2452 = B

A = µ− 0230 = (2, 0, p− 4, 3) D = µ− 1240 = (0, 2, p− 6, 4)

B = µ− 1350 = (1, 1, p− 6, 5) E = µ− 0241 = (2, 1, p− 5, 2)

C = µ− 0120 = (1, 1, p− 4, 2)

Table 2.59: JSF of µ up to µ− 2452

{αi}{1≤i≤4}. Note that LI is of type A4. Let θ, θ0 ∈ X(TA4)+ be two weights given by
θ = (0, p− d− 1, d, 0) and θ0 = (0, p− d− 3, d− 2, 0). Let [θ : θ0] = 2− ζ, with ζ ∈ {0, 1}.
Note that for d ∈ {2, . . . , p− 4}, the weight θ0 lies in the upper closure of the fundamental
alcove and

s0s1s4s0·θ0 = θ

By Proposition 1.3.10, the value of ζ is independent of d ∈ {2, . . . , p − 4}. Let d = 2. The
argument in Table 2.62 implies that [λ : H] = [A : H] and by Table 2.60, we know that
[A : H] = 1. For later use, note that this argument also holds if d = p− 4.

Comparing the multiplicities in Table 2.104 implies that X acts on LY (λ) with more than two
composition factors. Note that for d = 2, we have already computed chL(ν)1221 in the case d = 1.
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λ = (0, 0, p− d− 1, d, 0, 0)E6

ch L(λ)2442 = λ− A+ B + C +D − E − F −G+H

See argument

In order for the table to fit in the margins, we omitted JSF(−) = in the second column.

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)2442 = A− B − C −D + E + F +G+ δd,p−7I A+1
0 E +1

0 F +1
0 G+ 2H + 2δd,p−7I +1

0 δd,p−5J

JSF(A)2442 = B + C +D +H + δd,p−7I + δd,p−5J B + C +D + 2E + 2F + 2G+H + δd,p−7I + 2δd,p−5J

JSF(B)2442 = E + F −H E + F

JSF(C)2442 = E +G−H E +G

JSF(D)2442 = F +G+ δd,p−5J F +G+ δd,p−5J

JSF(E)2442 = H H

A = λ− 001100 = (1, 1, p− d− 2, d− 1, 1, 0) 0110 F = λ− 103310 = (1, 3, p− d− 3, d− 2, 1, 1) 0341

B = λ− 102200 = (0, 2, p− d− 2, d− 2, 2, 0) 0221 G = λ− 013310 = (3, 1, p− d− 4, d− 1, 1, 1) 1340

C = λ− 012200 = (2, 0, p− d− 3, d− 1, 2, 0) 1220 H = λ− 224400 = (0, 0, p− d− 3, d− 2, 4, 0) 2442

D = λ− 002210 = (2, 2, p− d− 3, d− 1, 0, 1) 0230 I = λ− 112321 = (0, 1, p− d− 1, d− 1, 0, 0) 1342

E = λ− 113300 = (1, 1, p− d− 3, d− 2, 3, 0) 1331 J = λ− 012321 = (2, 1, p− d− 2, d− 1, 0, 0) 1341

Table 2.60: JSF of λ up to µ− 2442

µ = (0, d, p− d− 1, 0)F4

Possibilities

ch L(µ)2442 = µ− A+ B + C + δd,2D − δ
d,
p−5

2
E

ch L(µ)2442 = µ− A+ B + C + δd,2D − δ
d,
p−5

2
E − δd,p−6F

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)2442 = A− B − C − δd,2D + δ
d,
p−5

2
E + δd,p−6F JSF(µ)2442 = A+ δ

d,
p−5

2
E + 2δd,p−6F

JSF(A)2442 = B + C + δd,2D + δd,p−6F JSF(A)2442 = B + C + δd,2D + δd,p−6F

A = µ− 0120 = (1, d, p− d− 3, 2) D = µ− 0340 = (3, d− 2, p− d− 3, 4),

B = µ− 1240 = (0, d+ 1, p− d− 5, 4) E = µ− 2442 = (0, d− 2, p− d+ 1, 0),

C = µ− 0241 = (2, d, p− d− 4, 2) F = µ− 1231 = (0, d, p− d− 2, 1)

Table 2.61: JSF of µ up to µ− 2442

d = p − 4. — The computation of chL(λ)2452 and chL(µ)2452 are summarized in Tables 2.63
and 2.64, respectively. We prove that X acts on LY (λ) with more than two composition factors by
studying the different possibilities for the values of [µ : D], [λ : K], (λ : M), (λ : J), (λ : I), (λ : N).

[µ : D] Let [µ : D] = 2 − ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ − 1342) =
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λ0 = (0, p− 5, 0, 0) ∈ C0

γ = w1·λ0 = (0, p− 3, 2, 0) η = w·λ0 = (0, p− 5, 0, 0)

w1 = s0s1s4s0 w = id

s = s0

ws·λ0 = (1, p− 5, 0, 1)

ws·λ0 − w·λ0 = 1111

Proposition 1.3.9 =⇒ [w1s·λ0 : η] = [γ : η], where w1s·λ0 = (1, p− 4, 1, 1)

Table 2.62: Computing [(0, p− 3, 2, 0) : (0, p− 5, 0, 0)]A4

(31, 27 + ζ, 3), hence assume ζ = 1, since otherwise X acts on LY (λ) with more than two
composition factors.

[λ : K] Arguing as in Subsection 2.5.1.11 for solving the case [λ : H] implies that [λ : K] = 1.

We obtain the following possibilities for chL(λ)2452

chL(λ)2452 = λ−A+B +C +D−E −F −G−H + (1 + ζI)I + (−1 + ζJ)J +K + ζNN + ζMM,

with ζI , ζJ , ζN , ζM ∈ Z≥0. We prove that X acts on LY (λ) with more than two composition factors
for any choice of the ζ’s.

(λ : M) We have (mL(λ)|X ,mL(µ),mL(ν))(µ− 2441) = (40 + ζM , 35, 5), hence if ζM > 0, we get a
third composition factor. Hence assume that ζM = 0.

(λ : J) We have (mL(λ)|X ,mL(µ),mL(ν))(µ − 2442) = (59 + ζJ , 51, 8), hence if ζJ > 0, we get a
third composition factor. Hence assume that ζJ = 0.

(λ : I) & (λ : N) We have (mL(λ)|X ,mL(µ),mL(ν))(µ − 1451) = (32 + ζI + ζN , 29, 3), hence if
either ζN > 0 or ζI > 0, then X acts with more than two factors on LY (λ). We assume that
ζI = ζN = 0.

Therefore, the last possibility for chL(λ)2452 is

chL(λ)2452 = λ−A+B + C +D − E − F −G−H + I − J +K. (2.9)

Using (2.9), we get (mL(λ)|X ,mL(µ),mL(ν))(µ − 2452) = (80, 70, 11) which is impossible. Hence
(2.9) does not yield the correct truncated character, which proves that X acts on LY (λ) with more
than two composition factors.

d = p− 3. — The JSF applied to µ yields

chL(µ)1221 = µ− (µ− 0120)− (µ− 1221)

The result of the JSF applied to λ appears in Table 2.65 and we need to determine [λ : D]. Let
[λ : D] = 2− ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ))(µ− 1220) = (4 + ζ, 5), hence ζ = 1. The
multiplicities in Table 2.104 imply that X acts on LY (λ) with more than two composition factors.
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λ = (0, 0, 3, p− 4, 0, 0)E6

See argument

JSF in Weyl characters: JSF in irreducible characters:1

JSF(λ)2452 = A− B − C −D + E + F +G+H − I + J A+1
0 E +1

0 F +1
0 G+5

0 I + 2J + 2K +1
0 L+4

0 M +4
0 N

JSF(A)2452 = B + C +D −H +K + L B + C +D + 2E + 2F + 2G+6
1 I + J +K + 2L+5

1 M +5
1 N

JSF(B)2452 = E + F − J −K + L E + F + 2I + L+ 2M + 2N

JSF(C)2452 = E +G−K +M E +G+ 2I + 2M

JSF(D)2452 = F +G+H +N F +G+H + 2I + 2N

JSF(E)2452 = I +K +M I +K +M

JSF(F )2452 = I +N I +N

JSF(G)2452 = I I

JSF(L)2452 = J +M +N J +M +N

A = λ− 001100 = (1, 1, 2, p− 5, 1, 0) 0110 H = λ− 003321 = (3, 3, 0, p− 5, 0, 0) 0351

B = λ− 102200 = (0, 2, 2, p− 6, 2, 0) 0221 I = λ− 114410 = (2, 2, 0, p− 6, 2, 1) 1451

C = λ− 012200 = (2, 0, 1, p− 5, 2, 0) 1220 J = λ− 122421 = (0, 0, 4, p− 6, 1, 0) 2442

D = λ− 002210 = (2, 2, 1, p− 5, 0, 1) 0230 K = λ− 224400 = (0, 0, 1, p− 6, 4, 0) 2442

E = λ− 113300 = (1, 1, 1, p− 6, 3, 0) 1331 L = λ− 112310 = (0, 1, 3, p− 6, 1, 1) 1331

F = λ− 103310 = (1, 3, 1, p− 6, 1, 1) 0341 M = λ− 123410 = (1, 0, 2, p− 6, 2, 1) 2441

G = λ− 013310 = (3, 1, 0, p− 5, 1, 1) 1340 N = λ− 113420 = (1, 2, 2, p− 6, 0, 2) 1451

Table 2.63: JSF of λ up to µ− 2452

µ = (0, p− 4, 3, 0)F4

Possibilities

ch L(µ)2452 = µ− A+ B + C −D

ch L(µ)2452 = µ− A+ B + C

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)2452 = A− B − C +D JSF(µ)2452 = A+ 2D

JSF(A)2452 = B + C +D JSF(A)2452 = B + C +D

A = µ− 0120 = (1, p− 4, 1, 2) C = µ− 1351 = (1, p− 4, 0, 3),

B = µ− 0241 = (2, p− 4, 0, 2) D = µ− 1342 = (1, p− 5, 3, 0)

Table 2.64: JSF of µ up to µ− 2452

d = p− 2. — We compute chL(λ)2442 and chL(µ)2442 in Tables 2.66 and 2.67. We show that X
acts on LY (λ) with more than two composition factors for both possible values of [µ : D]. Indeed, if
[µ : D] = 2, then (mL(λ)|X ,mL(µ),mL(ν))(µ− 1331) = (19, 16, 2) and if [µ : D] = 1, then (mL(λ)|X ,
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λ = (0, 0, 2, p− 3, 0, 0)E6

ch L(λ)1221 = λ− A+ B + C

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1221 = A− B − C +D JSF(λ)1221 = A+ 2D

JSF(A)1221 = B + C +D JSF(A)1221 = B + C +D

A = λ− 001100 = (1, 1, 1, p− 4, 1, 0) 0110 C = λ− 012200 = (2, 0, 0, p− 4, 2, 0) 1220

B = λ− 102200 = (0, 2, 1, p− 5, 2, 0) 0221 D = λ− 011210 = (1, 0, 2, p− 4, 0, 1) 1220

Table 2.65: JSF of λ up to µ− 1221

mL(µ),mL(ν))(µ− 2442) = (60, 51, 7).

λ = (0, 0, 1, p− 2, 0, 0)E6

ch L(λ)2442 = λ− A+ B + C +D − E − F −G

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)2442 = A− B − C −D + E + F +G JSF(λ)2442 = A+1
0 E +1

0 G

JSF(A)2442 = B + C +D − F JSF(A)2442 = B + C +D + 2E + 2G

JSF(B)2442 = E JSF(B)2442 = E

JSF(C)2442 = E + F +G JSF(C)2442 = E + F +G

JSF(D)2442 = G JSF(D)2442 = G

A = λ− 001100 = (1, 1, 0, p− 3, 1, 0) 0110 E = λ− 113410 = (1, 2, 0, p− 5, 2, 1) 1441

B = λ− 102200 = (0, 2, 0, p− 4, 2, 0) 0221 F = λ− 022420 = (2, 0, 1, p− 4, 0, 2) 2440

C = λ− 012310 = (2, 1, 0, p− 4, 1, 1) 1330 G = λ− 012421 = (2, 2, 1, p− 5, 1, 0) 1441

D = λ− 002321 = (2, 3, 0, p− 4, 0, 0) 0341

Table 2.66: JSF of λ up to µ− 2442

2.5.1.12 λ = aλ1 + bλ2 + cλ3. — By Table 2.35, we have to consider the following cases.

b 6= a− 1 or a + c 6= p− 1. — By Table 2.35, either a 6= p− 2, p− 6, b = p− 3 and c = 1 or
a 6= 4, p− 1, a+ c = p and b+ c+ 2 ≡ 0 mod p or a+ c = p− 1 and b 6= a− 1.

If a 6= p− 2, p− 6, b = p− 3 and c = 1, then again by Table 2.35, ν = µ− 0121 = (p− 2, 0, 0, a)
affords the highest weight of a second composition factor for X acting on LY (λ). The computation of
chL(λ)1121 is summarized in Table 2.68. Let us determine [λ : B] for a = p−1. By Proposition 1.2.2,
we have that chL(µ)1121 = µ. Set [λ : B] = 2− ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))
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µ = (0, p− 2, 1, 0)F4

Possibilities

ch L(µ)2442 = µ− A− B + C

ch L(µ)2442 = µ− A− B +D

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)2442 = A+ B − C JSF(µ)2442 = A+ B +1
0 C + 2D

JSF(A)2442 = C +D JSF(A)2442 = 2C +D

JSF(B)2442 = −C +D JSF(B)2442 = D

JSF(D)2442 = C JSF(D)2442 = C

A = µ− 1220 = (0, p− 3, 1, 2) C = µ− 2441 = (0, p− 4, 2, 2),

B = µ− 0231 = (2, p− 3, 0, 1) D = µ− 1331 = (1, p− 4, 2, 1)

Table 2.67: JSF of µ up to µ− 2442

(µ− 1121) = (10 + ζ, 10, 1), hence ζ = 1 and [λ : B] = 1. Comparing the multiplicities appearing in
Table 2.104 implies that X acts on LY (λ) with more than two composition factors.

If a 6= 4, p− 1, a+ c = p and b+ c+ 2 ≡ 0 mod p, then by Table 2.35, the highest weight of a
second composition factor for X acting on LY (λ) is given by ν = µ− 0121 = (b+ 1, 0, c− 1, a). The
JSF applied to λ yields chL(λ)1111 = λ− (λ− 011100). The multiplicities in Table 2.104 imply
that X acts on LY (λ) with more than two composition factors.

If a+ c = p− 1 and b 6= a− 1, then by Table 2.35, the highest weight of a second composition
factor for X acting on LY (λ) is given by ν = µ−1110 = (b−1, 0, p−a−1, a+ 1). The computation
of chL(λ)1111 and chL(µ)1111 is summarized in Tables 2.69 and 2.70, respectively. If b 6= p − 2,
then chL(λ)1111 and chL(µ)1111 are known and the multiplicities in Table 2.104 imply that X
acts on LY (λ) with more than two composition factors. Assume b = p − 2. Let [λ : B] = 2 − ζ
and [µ : B] = 2 − ξ with ζ, ξ ∈ {0, 1}. We will show that X acts on LY (λ) with more than two
composition factors for any choice of the values of ζ, ξ. Note that (mL(λ)|X ,mL(µ),mL(ν))(µ− 1111)
= (5 + ζ, 3 + ξ, 1). Therefore, we are done if ζ ≥ ξ. Assume by contradiction that ζ = 0 and ξ = 1.
Note that by Proposition 1.5.2, we can work in the Levi factor LI of PI , where I = {αi, 1 ≤ i ≤ 4}
for the computation of [λ : B]. Note that LI is of type A4. Let θ = (a, p − a − 1, 0, p − 2), then
for any value of 1 ≤ a ≤ p− 2, the weight θ − 1111 = (a− 1, p− a− 1, 0, p− 3) lies in the upper
closure of the alcove (1, 1, 1, 1, 1, 1, 1, 2, 2, 2). Moreover, if θ0 = (p− a− 2, 0,−1, 0), then

s0s1s2s4s3s2·θ0 = θ, s0s1s4s3·θ0 = θ.

By Proposition 1.5.2, we have [θ : θ − 1111]A4 = 2− ζ and by Proposition 1.3.10, the value of ζ
does not depend on a. Now set a = 2.

We compute chL(λ)1121 and chL(µ)1121 and we get the same linear combination of truncated
characters as for chL(λ)1111 and chL(µ)1111, that is

chL(λ)1121 = λ− (λ− 101000)− (λ− 111100)
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and
chL(µ)1121 = µ− (µ− 0011).

Moreover, by Proposition 1.2.2 we have chL(ν)0011 = ν. Computing the multiplicities yields
(mL(λ)|X ,mL(µ),mL(ν))(µ− 1121) = (9, 8, 2), which contradicts the choice of ζ and ξ. Therefore, X
acts on LY (λ) with more than two composition factors.

λ = (p− 1, p− 3, 1, 0, 0, 0)E6

ch L(λ)1121 = λ− A

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1121 = A+ δa,p−1B JSF(λ)1121 = A+ 2δa,p−1B

JSF(A)1121 = δa,p−1B JSF(A)1121 = δa,p−1B

A = λ− 011100 = (p, p− 4, 0, 0, 1, 0) 1110 B = λ− 111100 = (p− 2, p− 4, 1, 0, 1, 0) 1111

Table 2.68: JSF of λ up to µ− 1121

λ = (a, b, p− a− 1, 0, 0, 0)E6

Possibilities

ch L(λ)1111 = λ− A

ch L(λ)1111 = λ− A− δb,p−2B

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1111 = A+ δb,p−2B JSF(λ)1111 = A+ 2δb,p−2B

JSF(A)1111 = δb,p−2B JSF(A)1111 = δb,p−2B

A = λ− 101000 = (a− 1, b, p− a− 2, 1, 0, 0) 0011 B = λ− 111100 = (a− 1, b− 1, p− a− 1, 0, 1, 0) 1111

Table 2.69: JSF of λ up to µ− 1111

b = a − 1, a + c = p − 1. — We first determine the highest weight of a second composition
factor for X acting on LY (λ). The JSF applied to λ and µ yields

chL(λ)1111 = λ− (λ− 101000)− (λ− 011100)

and chL(µ)1111 = µ−(µ−0011), respectively. Computing multiplicities, we get that ν = µ−1111 =
(a− 2, 0, p− a, a− 1) affords the highest weight of a second composition factor. We will distinguish
between the case a 6= 2 and a = 2.

Assume a 6= 2. The computations to determine chL(λ)2222 and chL(µ)2222 are summarized
in Tables 2.71 and 2.72. Moreover, the JSF applied to ν yields chL(ν)1111 = ν − (ν − 0011). Let
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µ = (b, 0, p− a− 1, a)F4

Possibilities

ch L(µ)1111 = µ− A

ch L(µ)1111 = µ− A− δb,p−2B

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)1111 = A+ δb,p−2B JSF(µ)1111 = A+ 2δb,p−2B

JSF(A)1111 = δb,p−2B JSF(A)1111 = δb,p−2B

A = µ− 0011 = (b, 1, p− a− 2, a− 1) B = µ− 1111 = (b− 1, 0, p− a, a− 1)

Table 2.70: JSF of µ up to µ− 1111

us determine [λ : D] for a 6= p− 2. Set [λ : D] = 2− ζ with ζ ∈ {0, 1}, we have (mL(λ)|X ,mL(µ),

mL(ν))(µ− 1121) = (7 + ζ, 1, 7). Therefore ζ = 1 and comparing the multiplicities in Table 2.104
implies that X acts on LY (λ) with more than two composition factors.

λ = (a, a− 1, p− a− 1, 0, 0, 0)E6

ch L(λ)2222 = λ− A+ B − C + δa,p−2D

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)2222 = A− B + C JSF(λ)2222 = A+ C + 2δa,p−2D

JSF(A)2222 = B + δa,p−2D JSF(A)2222 = B + δa,p−2D

JSF(C)2222 = δa,p−2D JSF(C)2222 = δa,p−2D

A = λ− 101000 = (a− 1, a− 1, p− a− 2, 1, 0, 0) 0011 C = λ− 011100 = (a+ 1, a− 2, p− a− 2, 0, 1, 0) 1110

B = λ− 202100 = (a− 2, a, p− a− 2, 0, 1, 0) 0122 D = λ− 112100 = (a, a− 2, p− a− 3, 1, 1, 0) 1121

Table 2.71: JSF of λ up to µ− 2222

If a = 2, we prove that X acts on LY (λ) with exactly two composition factors by applying
Corollary 1.4.7. By Propositions 1.5.3 and 2.3.1, it is sufficient to prove that none of the following
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µ = (a− 1, 0, p− a− 1, a)F4

Possibilities

ch L(µ)2222 = µ− A− δa,p−2B − δa,p−2C

ch L(µ)2222 = µ− A− δa,p−2B − δa,p−2C − δ
a,
p−1

2
D

Multiplicity bounded above by the first possibility

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)2222 = A+ δa,p−2B + δa,p−2C + δ
a,
p−1

2
D JSF(µ)2222 = A+ δa,p−2B + δa,p−2C + 2δ

a,
p−1

2
D

JSF(A)2222 = δ
a,
p−1

2
D JSF(A)2222 = δ

a,
p−1

2
D

A = µ− 0011 = (a− 1, 1, p− a− 2, a− 1) C = µ− 1121 = (a− 2, 1, p− a− 2, a),

B = µ− 1120 = (a− 2, 1, p− a− 3, a+ 2) D = µ− 2222 = (a− 3, 0, p− a+ 1, a− 2)

Table 2.72: JSF of µ up to µ− 2222

weights affords the highest weight of a third composition factor for X acting on LY (λ).

µ− 1121 = (0, 1, p− 4, 2)
µ− 1231 = (1, 0, p− 4, 3)
µ− 1122 = (0, 1, p− 3, 0)
µ− 1232 = (1, 0, p− 3, 1)
µ− 1242 = (1, 1, p− 5, 2)
µ− 2342 = (0, 0, p− 3, 2)
µ− 2343 = (0, 0, p− 2, 0)
µ− 2353 = (0, 1, p− 4, 1)

(2.10)

By Lemma 1.4.9, it is enough to consider the weight µ− 2353. We summarize the computations to
determine chL(λ)2353 and chL(µ)2353 in Tables 2.73 and 2.74, respectively. Note that chL(ν)1242
has already been computed in Table 2.38 on Page 77 and is equal to

chL1242(ν) = ν − (ν − 0011)− (ν − 1230)− (ν − 0132) + (ν − 0242).

Let us solve the problematic cases for λ and µ.

[µ : C] Let [µ : C] = 2 − ζ. We have (mL(λ)|X ,mL(µ),mL(ν))(µ − 0121) = (3, 2 + ζ, 0) and
Remark 1.5.4 and Theorem 2.1.1 implies that ζ = 1.

[λ : F ] Let [λ : F ] = 2− ζ. Since (mL(λ)|X ,mL(µ),mL(ν))(µ− 1121) = (7 + ζ, 7, 1), we have ζ = 1.

[µ : E] Let [µ : E] = 2−ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ−1131) = (8, 6+ζ, 1).
We check that there is no weight greater than µ− 1131 apart from µ and ν which affords the
highest weight of a composition factor for X acting on LY (λ). Note that µ− 1131 does not
appear in (2.10), the list of weights which can afford the highest weight of a third composition
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factor generated by a maximal vector for BX . Therefore either we assume by contradiction
that ζ = 0 and that µ− 1131 affords the highest weight of a third composition factor or we
assume that ζ = 1 and that µ− 1131 does not afford the highest weight of a third composition
factor. Arguing as in Subsection 2.5.1.3, we can assume, without loss of generality, that ζ = 1.

(µ : F ) The possibilities for chL(µ)1241 are given by

chL(µ)1241 = µ−A−B +D + E + (ζ − 2)F,

with ζ ∈ Z≥0. We have (mL(λ)|X ,mL(µ),mL(ν))(µ− 1241) = (18, 14 + ζ, 2). Since µ− 1241
does not appear in (2.10), arguing as in the previous case we may assume that ζ = 2.

Therefore,
(mL(λ)|X ,mL(µ),mL(ν))(µ− 2353) = (78, 66, 12),

and X acts on LY (λ) with exactly two composition factors.

λ = (2, 1, p− 3, 0, 0, 0)E6

ch L(λ)2353 = λ− A+ B − C + 2D + E + F −G

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)2353 = A− B + C −D − E JSF(λ)2353 = A+ C + 2F +1
0 G

JSF(A)2353 = B +D + F JSF(A)2353 = B +D + F + 2G

JSF(B)2353 = −D +G JSF(B)2353 = G

JSF(C)2353 = D + E + F −G JSF(C)2353 = E + F

JSF(F )2353 = −D +G JSF(F )2353 = G

JSF(G)2353 = D JSF(G)2353 = D

A = λ− 101000 = (1, 1, p− 4, 1, 0, 0) 0011 E = λ− 023321 = (5, 0, p− 6, 1, 0, 0) 2351

B = λ− 202100 = (0, 2, p− 4, 0, 1, 0) 0122 F = λ− 112100 = (2, 0, p− 5, 1, 1, 0) 1121

C = λ− 011100 = (3, 0, p− 4, 0, 1, 0) 1110 G = λ− 213200 = (1, 1, p− 5, 0, 2, 0) 1232

D = λ− 324300 = (0, 0, p− 5, 0, 3, 0) 2343

Table 2.73: JSF of λ up to µ− 2353

2.5.1.13 λ = aλ1 + bλ2 + eλ5. — By Table 2.35, we have that a = 1, b = p− 1, e = p− 1 or
a = p− 4, b = p− 3, e = 1. Additionally, we have that ν = µ− 0011 = (b, 1, e− 1, a− 1) affords the
highest weight of a second composition factor for X acting on LY (λ).

If a = 1, b = p − 1 and e = p − 1, we summarize the computations to determine chL(λ)1231
and chL(ν)1220 in Tables 2.75 and 2.76, respectively. Moreover, the JSF applied to µ yields
chL(µ)1231 = µ − (µ − 1120). The following argument proves that X acts on LY (λ) with more
than two composition factors. Let [λ : C] = 2− ζ and [ν : D] = 2− ξ with ζ, ξ ∈ {0, 1}. We have

(mL(λ)|X ,mL(µ),mL(ν))(µ− 1121) = (15 + ζ, 11, 4) (2.11)
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µ = (1, 0, p− 3, 2)F4

ch L(µ)2353 = µ− A− B +D + E

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)2353 = A+ B + C −D JSF(µ)2353 = A+ B + 2C + 2E +5
1 F

JSF(A)2353 = C +D + E JSF(A)2353 = C +D + E + 2F

JSF(B)2353 = E + F JSF(B)2353 = E + 2F

JSF(C)2353 = F JSF(C)2353 = F

JSF(E)2353 = F JSF(E)2353 = F

A = µ− 0011 = (1, 1, p− 4, 1) D = µ− 0243 = (3, 0, p− 4, 0),

B = µ− 1120 = (0, 1, p− 5, 4) E = µ− 1131 = (0, 2, p− 6, 3),

C = µ− 0121 = (2, 0, p− 4, 2) F = µ− 1241 = (1, 1, p− 6, 4)

Table 2.74: JSF of µ up to µ− 2353

and
(mL(λ)|X ,mL(µ),mL(ν))(µ− 1231) = (28 + 4ζ, 22, 7 + ξ). (2.12)

By (2.12), we have ζ = 1 and we do not determine the value of ξ, since (2.11) implies that X acts
on LY (λ) with more than two composition factors.

If a = p− 4, b = p− 3 and e = 1, the JSF applied to λ yields

chL(λ)1121 = λ− (λ− 010110)− (λ− 101110)

and the multiplicities in Table 2.104 imply that X acts on LY (λ) with more than two composition
factors.

λ = (1, p− 1, 0, 0, p− 1, 0)E6

ch L(λ)1231 = λ− A− B + C

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1231 = A+ B JSF(λ)1231 = A+ B + 2C

JSF(A)1231 = C JSF(A)1231 = C

JSF(B)1231 = C JSF(B)1231 = C

A = λ− 010110 = (1, p− 2, 1, 0, p− 2, 1) 1110 C = λ− 010121 = (1, p− 2, 1, 1, p− 3, 0) 1121

B = λ− 000121 = (1, p, 1, 0, p− 3, 0) 0121

Table 2.75: JSF of λ up to µ− 1231
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ν = (p− 1, 1, p− 2, 0)F4

Possibilities

ch L(ν)1220 = ν − C −D

ch L(ν)1220 = ν − C

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(ν)1220 = C +D JSF(ν)1220 = C + 2D

JSF(C)1220 = D JSF(C)1220 = D

C = ν − 0120 = (p, 1, p− 4, 2) D = ν − 1120 = (p− 2, 2, p− 4, 2)

Table 2.76: JSF of ν up to ν − 1220

2.5.1.14 λ = aλ1 + cλ3 + dλ4. — By Table 2.35, we have that a = 1, c+ d = p− 1, c 6= 2 and
ν = µ−0111 = (1, p−c−2, c+1, a−1) affords the highest weight of a second composition factor for
X acting on LY (λ). If c = 4, then the JSF applied to µ and ν yields chL(µ)1332 = µ− (µ− 0120)
and chL(ν)1221 = ν−(ν−0120), respectively. Moreover, the computations to determine chL(λ)1332
are summarized in Table 2.77. Let us determine [λ : F ]. Set [λ : F ] = 2 − ζ with ζ ∈ {0, 1}.
We have (mL(λ)|X ,mL(µ),mL(ν))(µ − 1332) = (56 + 2ζ, 44, 13), hence ζ = 1. If c 6= 4, then the
computation of chL(λ)1221 and chL(µ)1221 is summarized in Tables 2.78 and 2.79, respectively.
In both cases, the multiplicities in Table 2.104 imply that X acts on LY (λ) with more than two
composition factors.

λ = (1, 0, 4, p− 5, 0, 0)E6

ch L(λ)1332 = λ− A+ B + C +D − E + F

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1332 = A− B − C −D + E JSF(λ)1332 = A+ E + 2F

JSF(A)1332 = B + C +D + F JSF(A)1332 = B + C +D + F

JSF(E)1332 = F JSF(E)1332 = F

A = λ− 001100 = (2, 1, 3, p− 6, 1, 0) 0110 D = λ− 002210 = (3, 2, 2, p− 6, 0, 1) 0230

B = λ− 203300 = (0, 3, 3, p− 8, 3, 0) 0332 E = λ− 111210 = (0, 0, 5, p− 6, 0, 1) 1221

C = λ− 012200 = (3, 0, 2, p− 6, 2, 0) 1220 F = λ− 112310 = (1, 1, 4, p− 7, 1, 1) 1331

Table 2.77: JSF of λ up to µ− 1332

2.5.1.15 λ = aλ1 + cλ3 + eλ5. — By Table 2.35, we have a = 2, c = p − 3, e = 1 and
ν = µ − 0010 = (0, 1, p − 4, 3) affords the highest weight of a second composition factor for X
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λ = (1, 0, c, p− c− 1, 0, 0)E6

ch L(λ)1221 = λ− δc,p−2A− B + δc,1C + δc,p−2D

Lemma 2.1.8

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1221 = δc,p−2A+ B − δc,1C JSF(λ)1221 = δc,p−2A+ B +2
1 δc,p−2D

JSF(A)1221 = δc,p−2D JSF(A)1221 = δc,p−2D

JSF(B)1221 = δc,1C + δc,p−2D JSF(B)1221 = δc,1C + δc,p−2D

A = λ− 101000 = (0, 0, c− 1, p− c, 0, 0) 0011 C = λ− 012200 = (3, 0, c− 2, p− c− 2, 2, 0) 1220

B = λ− 001100 = (2, 1, c− 1, p− c− 2, 1, 0) 0110 D = λ− 102100 = (1, 1, c− 2, p− c− 1, 1, 0) 0121

Table 2.78: JSF of λ up to µ− 1221

µ = (0, p− c− 1, c, 1)F4

ch L(µ)1221 = µ− δc,1A− δc,p−2B − δc,1C − δ
c,
p+5

2
D

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)1221 = δc,1A+ δc,p−2B + δc,1C + δ
c,
p+5

2
D JSF(µ)1221 = δc,1A+ δc,p−2B + δc,1C + δ

c,
p+5

2
D

A = µ− 0120 = (1, p− c− 1, c− 2, 3) C = µ− 1220 = (0, p− c− 2, c, 3),

B = µ− 0011 = (0, p− c, c− 1, 0) D = µ− 1221 = (0, p− c− 2, c+ 1, 1)

Table 2.79: JSF of µ up to µ− 1221

acting on LY (λ). We prove that X acts on LY (λ) with exactly two composition factors by applying
Corollary 1.4.7. By Propositions 1.5.3 and 2.3.1, it is enough to prove that none the weights listed
below affords the highest weight of a composition factor for X acting on LY (λ).

µ− 1230 = (0, 0, p− 4, 5)
µ− 1231 = (0, 0, p− 3, 3)
µ− 1241 = (0, 1, p− 5, 4)
µ− 1232 = (0, 0, p− 2, 1)
µ− 1242 = (0, 1, p− 4, 2)
µ− 1252 = (0, 2, p− 6, 3)
µ− 1352 = (1, 0, p− 4, 3)

By Lemma 1.4.9, it is enough to consider µ− 1352. We summarize the computation of chL(λ)1352
and chL(ν)1342 in Tables 2.80 and 2.81, respectively. Moreover, the JSF applied to µ yields
chL(µ)1352 = µ−(µ−0022)−(µ−1230). Note that we can apply Remark 1.5.4 and Proposition 2.3.1
in order to solve all the problematic cases, that is we solve the problematic cases by equalizing the
multiplicities.
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[λ : E] Let [λ : E] = 2−ζ with ζ ∈ {0, 1}, we have (mL(λ)|X ,mL(µ),mL(ν))(µ−0131) = (8+ζ, 6, 3),
hence ζ = 1.

[ν : E] Let [ν : E] = 2−ζ with ζ ∈ {0, 1}, we have (mL(λ)|X ,mL(µ),mL(ν))(µ−0241) = (13, 9, 3+ζ),
hence ζ = 1.

[ν : D] Let [ν : D] = 2−ζ with ζ ∈ {0, 1}, we have (mL(λ)|X ,mL(µ),mL(ν))(µ−0142) = (12, 8, 3+ζ),
hence ζ = 1.

[ν : C] Let [ν : C] = 5− ζ with 0 ≤ ζ ≤ 4. We have

chL(ν)0252 = ν −A−B − (3− ζ)C +D + E.

(mL(λ)|X ,mL(µ),mL(ν))(µ− 0252) = (24, 16, 6 + ζ) with ζ ∈ Z≥0, thus ζ = 2.

Therefore,
(mL(λ)|X ,mL(µ),mL(ν))(µ− 1352) = (78, 53, 25),

which proves that X acts on LY (λ) with exactly two composition factors.

λ = (2, 0, p− 3, 0, 1, 0)E6

ch L(λ)1352 = λ− A+ B − C +D + E − F −G

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1352 = A− B + C −D JSF(λ)1352 = A+ C + 2E +1
0 F +1

0 G

JSF(A)1352 = B + E − F JSF(A)1352 = B + E + 2G

JSF(B)1352 = G JSF(B)1352 = G

JSF(C)1352 = D + E −G JSF(C)1352 = D + E + 2F

JSF(D)1352 = F JSF(D)1352 = F

JSF(E)1352 = F +G JSF(E)1352 = F +G

A = λ− 101000 = (1, 0, p− 4, 1, 1, 0) 0011 E = λ− 102110 = (2, 1, p− 5, 1, 0, 1) 0131

B = λ− 202100 = (0, 1, p− 4, 0, 2, 0) 0122 F = λ− 103221 = (3, 2, p− 6, 1, 0, 0) 0252

C = λ− 001110 = (3, 1, p− 4, 0, 0, 1) 0120 G = λ− 203210 = (1, 2, p− 5, 0, 1, 1) 0242

D = λ− 002221 = (4, 2, p− 5, 0, 0, 0) 0241

Table 2.80: JSF of λ up to µ− 1352

2.5.1.16 λ = aλ1 + cλ3 + fλ6. — By Table 2.35, we have that a + c = p − 1, f = 1 and
ν = µ− 0001 = (0, 0, p− a, a− 1) affords the highest weight of a second composition factor.

Let a = 1. The computation of chL(λ)1232 is summarized in Table 2.82. Moreover, the JSF
applied to µ and ν yields chL(µ)1232 = µ− (µ−0022)− (µ−1230) and chL(ν)1231 = ν− (ν−0131),
respectively. The multiplicities in Table 2.104 imply that X acts on LY (λ) with more than two
composition factors.
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ν = (0, 1, p− 4, 3)F4

ch L(ν)1342 = ν − A− B − C +D + E

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(ν)1342 = A+ B + C JSF(ν)1342 = A+ B +5
1 C + 2D + 2E

JSF(A)1342 = D + E JSF(A)1342 = 2C +D + E

JSF(B)1342 = D + E JSF(B)1342 = 2C +D + E

JSF(D)1342 = C JSF(D)1342 = C

JSF(E)1342 = C JSF(E)1342 = C

A = ν − 0110 = (1, 0, p− 4, 4) D = ν − 0132 = (1, 2, p− 6, 2)

B = ν − 0011 = (0, 2, p− 5, 2) E = ν − 0231 = (2, 0, p− 5, 4)

C = ν − 0242 = (2, 1, p− 6, 3)

Table 2.81: JSF of ν up to ν − 1342

Let a = 3. The computation of chL(λ)1232, chL(µ)1232 and chL(ν)1231 is summarized in
Tables 2.83 to 2.85, respectively. We will now deduce enough information about the problematic
cases for λ, µ and ν to prove that X acts on LY (λ) with more than two composition factors.

[ν : E] By Table 2.8 on Page 47, we have [ν : E] = 1.

[λ : D] & [µ : C] Let [λ : D] = 2− ζ and [µ : C] = 2− ξ with ζ, ξ ∈ {0, 1}. We have,

(mL(λ)|X ,mL(µ),mL(ν))(µ− 0132) = (9 + ζ, 6 + ξ, 3).

By Remark 1.5.4 and Proposition 2.3.1, we have ζ = ξ. If (ζ, ξ) = (1, 1), then

(mL(λ)|X ,mL(µ),mL(ν))(µ− 1232) = (26, 17, 8).

If (ζ, ξ) = (0, 0), then

(mL(λ)|X ,mL(µ),mL(ν))(µ− 1232) = (24, 15, 8).

Therefore, X acts on LY (λ) with more than two composition factors.
Let a = 4. The JSF applied to µ and ν yields chL(µ)1232 = µ− (µ− 0022) and chL(ν)1231 =

ν − (ν − 0011)− (ν − 1231). Moreover, the computation of chL(λ)1232 is summarized in Table 2.86.
We prove that X acts on LY (λ) with more than two composition factors without determining the
value of [λ : C]. Let [λ : C] = 2− ζ with ζ ∈ {0, 1}. We have

(mL(λ)|X ,mL(µ),mL(ν))(µ− 1232) = (30 + 2ζ, 21, 7),

which implies that X acts on LY (λ) with more than two composition factors.
Let a 6= 1, 3, 4. The JSF applied to λ yields chL(λ)1231 = λ− (λ−101000) and the multiplicities

in Table 2.104 imply that X acts on LY (λ) with more than two composition factors.
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λ = (1, 0, p− 2, 0, 0, 1)E6

ch L(λ)1232 = λ− A+ B − C

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1232 = A− B + C JSF(λ)1232 = A+ C

JSF(A)1232 = B JSF(A)1232 = B

A = λ− 101000 = (0, 0, p− 3, 1, 0, 1) 0011 C = λ− 012210 = (3, 0, p− 4, 0, 0, 2) 1230

B = λ− 213200 = (0, 0, p− 4, 0, 2, 1) 1232

Table 2.82: JSF of λ up to µ− 1232

λ = (3, 0, p− 4, 0, 0, 1)E6

Possibilities

ch L(λ)1232 = λ− A+ B − C

ch L(λ)1232 = λ− A+ B − C +D

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1232 = A− B + C JSF(λ)1232 = A+ C + 2D

JSF(A)1232 = B +D JSF(A)1232 = B +D

JSF(C)1232 = D JSF(C)1232 = D

A = λ− 101000 = (2, 0, p− 5, 1, 0, 1) 0011 C = λ− 001111 = (4, 1, p− 5, 0, 0, 0) 0121

B = λ− 202100 = (1, 1, p− 5, 0, 1, 1) 0122 D = λ− 102111 = (3, 1, p− 6, 1, 0, 0) 0132

Table 2.83: JSF of λ up to µ− 1232

2.5.1.17 λ = aλ1 + dλ4 + eλ5. — By Table 2.35, we have that a = 1, d+ e = p− 1, e 6= 1, p− 2
and ν = µ− 0011 = (0, p− e, e− 1, 0) affords the highest weight of a second composition factor for
X acting on LY (λ).

Let e 6= 2, 4. We summarize the computation of chL(λ)1221 in Table 2.87. Moreover, the JSF
applied to µ yields chL(µ)1221 = µ− (µ− 0120)− δe, p−5

2
(µ− 1221).

Let e = 2. The truncated characters chL(λ)1232 and chL(µ)1232 are computed in Tables 2.88
and 2.89. Moreover, the JSF applied to ν yields chL(ν)1221 = ν − (ν − 1220). We solve the
problematic cases for λ and µ as follows.

[λ : F ] Let [λ : F ] = 2−ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ−1220) = (4+ζ, 5, 0),
hence ζ = 1.

[λ : G] Let [λ : G] = 2−ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ−0221) = (7+ζ, 6, 2),
hence ζ = 1 .
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µ = (0, 0, p− 4, 4)F4

Possibilities

ch L(µ)1232 = µ− A− B

ch L(µ)1232 = µ− A− B + C

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)1232 = A+ B JSF(µ)1232 = A+ B + 2C

JSF(A)1232 = C JSF(A)1232 = C

JSF(B)1232 = C JSF(B)1232 = C

A = µ− 0022 = (0, 2, p− 6, 2) C = µ− 0132 = (1, 1, p− 6, 3)

B = µ− 0121 = (1, 0, p− 5, 4)

Table 2.84: JSF of µ up to µ− 1232

ν = (0, 0, p− 3, 2)F4

ch L(ν)1231 = ν −D

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(ν)1231 = D + E JSF(ν)1231 = D + 2E

JSF(D)1231 = E JSF(D)1231 = E

D = ν − 0011 = (0, 1, p− 4, 1) E = ν − 0121 = (1, 0, p− 4, 2)

Table 2.85: JSF of ν up to ν − 1231

[µ : D] If [µ : D] = 2−ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ−0231) = (11, 7+ζ, 3).
By Remark 1.5.4 and Proposition 2.3.1, we get that ζ = 1.

Let e = 4. The JSF applied to µ and ν yields chL(µ)1231 = µ− (µ− 0120) and chL(ν)1220 =
ν − (ν − 0120), respectively. Moreover, the computation of chL(λ)1231 is summarized in Table 2.90.
Let us determine [λ : E]. Set [λ : E] = 2 − ζ. We have (mL(λ)|X ,mL(µ),mL(ν))(µ − 1231)
= (24 + 2ζ, 21, 5), hence ζ = 1.

In all three cases, the multiplicities listed in Table 2.104 imply that X acts on LY (λ) with more
than two composition factors.

2.5.1.18 λ = bλ2 + cλ3 + dλ4. — By Table 2.35, we have that c + d = p − 1, b 6= c and
2b+ d+ 3 6≡ 0 mod p, or b = c and c+ d = p− 1. We solve both of these cases separately.
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λ = (4, 0, p− 5, 0, 0, 1)E6

Possibilities

ch L(λ)1232 = λ− A+ B − C

ch L(λ)1232 = λ− A+ B

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1232 = A− B + C JSF(λ)1232 = A+ 2C

JSF(A)1232 = B + C JSF(A)1232 = B + C

A = λ− 101000 = (3, 0, p− 6, 1, 0, 1) 0011 C = λ− 112210 = (4, 0, p− 6, 0, 0, 2) 1231

B = λ− 202100 = (2, 1, p− 6, 0, 1, 1) 0122

Table 2.86: JSF of λ up to µ− 1232

λ = (1, 0, 0, p− e− 1, e, 0)E6

ch L(λ)1221 = λ− A+ B + C

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1221 = A− B − C JSF(λ)1221 = A

JSF(A)1221 = B + C JSF(A)1221 = B + C

A = λ− 000110 = (1, 1, 1, p− e− 2, e− 1, 1) 0110 C = λ− 000221 = (1, 2, 2, p− e− 3, e− 1, 0) 0221

B = λ− 010220 = (1, 0, 2, p− e− 2, e− 2, 2) 1220

Table 2.87: JSF of λ up to µ− 1221

c + d = p− 1, b 6= c, 2b + d + 3 6≡ 0 mod p. — By Table 2.35, the weight ν = µ− 1110 =
(b− 1, d, c, 1) affords the highest weight of a second composition factor for X acting on LY (λ). The
computation of chL(λ)1121 and chL(µ)1121 is summarized in Tables 2.91 and 2.92, respectively.
Comparing the multiplicities in Table 2.104 implies that X acts on LY (λ) with more than two
composition factors.

b = c, c+ d = p− 1. — Note that by Theorem 2.1.1 this case comes from an irreducible case
for both embeddings (C3, A5) (B3, D4). Let us find a second composition factor for X acting on
LY (λ). The JSF applied to λ yields

chL(λ)1121 = λ− (λ− 010100)− (λ− 001100).

Moreover, the computation of chL(µ)1121 is summarized in Table 2.93. In order to determine
[µ : B] for c = p− 2, let [µ : B] = 2− ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ− 1110)
= (3, 2 + ζ, 0), which implies that ζ = 1 by Theorem 2.1.1 and Remark 1.5.4. Now, computing
multiplicities for all the values of c, we get

(mL(λ)|X ,mL(µ))(µ− 1121) = (7− δc,1, 6− δc,1 − δc,p−2).
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λ = (1, 0, 0, p− 3, 2, 0)E6

ch L(λ)1232 = λ− A− B + C +D + E +G

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1232 = A+ B − C −D − E + F JSF(λ)1232 = A+ B + 2F + 2G

JSF(A)1232 = C +D + E + F +G JSF(A)1232 = C +D + E + F +G

JSF(B)1232 = G JSF(B)1232 = G

A = λ− 000110 = (1, 1, 1, p− 4, 1, 1) 0110 E = λ− 000221 = (1, 2, 2, p− 5, 1, 0) 0221

B = λ− 101100 = (0, 1, 0, p− 4, 3, 0) 0111 F = λ− 011210 = (2, 0, 0, p− 4, 2, 1) 1220

C = λ− 010220 = (1, 0, 2, p− 4, 0, 2) 1220 G = λ− 101210 = (0, 2, 1, p− 5, 2, 1) 0221

D = λ− 001220 = (2, 2, 0, p− 4, 0, 2) 0230

Table 2.88: JSF of λ up to µ− 1232

µ = (0, p− 3, 2, 1)F4

ch L(µ)1232 = µ− A− B − C +D

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)1232 = A+ B + C JSF(µ)1232 = A+ B + C + 2D

JSF(A)1232 = D JSF(A)1232 = D

JSF(B)1232 = D JSF(B)1232 = D

A = µ− 0120 = (1, p− 3, 0, 3) C = µ− 1230 = (0, p− 3, 0, 4),

B = µ− 0111 = (1, p− 4, 3, 0) D = µ− 0231 = (2, p− 4, 1, 2)

Table 2.89: JSF of µ up to µ− 1232

Therefore, ν = µ− 1121 = (c− 1, p− c, c− 1, 0) affords the highest weight of a second composition
factor and if c = p− 2, then ν also affords the highest weight of a third composition factor.

Let c = 1. The computation of chL(λ)1231 is summarized in Table 2.94. Moreover, the JSF
applied to µ yields chL(µ)1231 = µ− (µ−1100)− (µ−0231). The multiplicities listed in Table 2.104
imply that X acts on LY (λ) with more than two composition factors.

Let 2 ≤ c ≤ p − 3. Recall that µ = (c, p − c − 1, c, 0) and ν = (c − 1, p − c, c − 1, 0). By
comparing the coefficients of µ and ν, we deduce that if we know the truncated character of µ up to
a weight θ ∈ X(TX)+ for c ∈ {1, . . . , p− 3}, then we know the truncated character of ν up to θ for
c ∈ {2, . . . , p− 2}. The computation of chL(λ)2242 and chL(µ)2242 is summarized in Tables 2.95
and 2.96, respectively. We deduce enough information about the problematic cases in order to
prove that X acts on LY (λ) with more than two composition factors.
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λ = (1, 0, 0, p− 5, 4, 0)E6

ch L(λ)1231 = λ− A+ B + C +D

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1231 = A− B − C −D + E JSF(λ)1231 = A+ 2E

JSF(A)1231 = B + C +D + E JSF(A)1231 = B + C +D + E

A = λ− 000110 = (1, 1, 1, p− 6, 3, 1) 0110 D = λ− 000221 = (1, 2, 2, p− 7, 3, 0) 0221

B = λ− 010220 = (1, 0, 2, p− 6, 2, 2) 1220 E = λ− 111210 = (0, 0, 1, p− 6, 4, 1) 1221

C = λ− 001220 = (2, 2, 0, p− 6, 2, 2) 0230

Table 2.90: JSF of λ up to µ− 1231

λ = (0, b, p− d− 1, d, 0, 0)E6

ch L(λ)1121 = λ− A

Lemma 2.1.8

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1121 = A+ δb,p−1B JSF(λ)1121 = A+ 2δb,p−1B

JSF(A)1121 = δb,p−1B JSF(A)1121 = δb,p−1B

A = λ− 001100 = (1, b+ 1, p− d− 2, d− 1, 1, 0) 0110 B = λ− 011100 = (1, b− 1, p− d− 2, d, 1, 0) 1110

Table 2.91: JSF of λ up to µ− 1121

µ = (b, d, p− d− 1, 0)F4

Possibilities

ch L(µ)1121 = µ− A

ch L(µ)1121 = µ− A− δb,p−1B

Multiplicity bounded above by the first possibility

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)1121 = A+ δb,p−1B JSF(µ)1121 = A+ 2δb,p−1B

JSF(A)1121 = δb,p−1B JSF(A)1121 = δb,p−1B

A = µ− 0120 = (b+ 1, d, p− d− 3, 2) B = µ− 1120 = (b− 1, d+ 1, p− d− 3, 2)

Table 2.92: JSF of µ up to µ− 1121

[µ : D] Let c = p − 3 and [µ : D] = 2 − ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))
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(µ− 1242) = (25, 21 + ζ, 3). Hence assume ζ = 1, since otherwise X acts on LY (λ) with more
than two composition factors.

[λ : F ] By Lemma 2.1.8, we have [λ : F ] = 1.

[λ : G] Let c = p−4 and [λ : G] = 2−ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ−1231)
= (16 + ζ, 15, 2), hence ζ = 1.

[µ : E] Let c = p − 5 and [µ : E] = 2 − ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))
(µ− 1231) = (17, 14 + ζ, 2) and X acts on LY (λ) with more than two composition factors if
ζ = 0. Assume ζ = 1, then (mL(λ)|X ,mL(µ),mL(ν))(µ− 2242) = (38, 31, 6), which also implies
that X acts on LY (λ) with more than two composition factors.

µ = (c, p− c− 1, c, 0)F4

ch L(µ)1121 = µ− A− δc,1C − δc,p−2D

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)1121 = A+ δc,p−2B + δc,1C JSF(µ)1121 = A+ 2δc,p−2B + δc,1C + δc,p−2D

JSF(A)1121 = δc,p−2B − δc,p−2D JSF(A)1121 = δc,p−2B

JSF(B)1121 = δc,p−2D JSF(B)1121 = δc,p−2D

A = µ− 1100 = (c− 1, p− c− 2, c+ 2, 0) C = µ− 0120 = (c+ 1, p− c− 1, c− 2, 2),

B = µ− 1110 = (c− 1, p− c− 1, c, 1) D = µ− 1121 = (c− 1, p− c, c− 1, 0)

Table 2.93: JSF of µ up to µ− 1121

λ = (0, 1, 1, p− 2, 0, 0)E6

ch L(λ)1231 = λ− A− B + C +D

Lemma 2.1.8

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1231 = A+ B − C JSF(λ)1231 = A+ B + 2D

JSF(A)1231 = D JSF(A)1231 = D

JSF(B)1231 = C +D JSF(B)1231 = C +D

A = λ− 010100 = (0, 0, 2, p− 3, 1, 0) 1100 C = λ− 102200 = (0, 3, 0, p− 4, 2, 0) 0221

B = λ− 001100 = (1, 2, 0, p− 3, 1, 0) 0110 D = λ− 011200 = (1, 1, 1, p− 4, 2, 0) 1210

Table 2.94: JSF of λ up to µ− 1231
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λ = (0, c, c, p− c− 1, 0, 0)E6

ch L(λ)2242 = λ− A− B + C +D + E + F

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)2242 = A+ B − C −D − E + δc,p−4G JSF(λ)2242 = A+ B + 2F + 2δc,p−4G

JSF(A)2242 = D + F JSF(A)2242 = D + F

JSF(B)2242 = C + E + F + δc,p−4G JSF(B)2242 = C + E + F + δc,p−4G

A = λ− 010100 = (0, c− 1, c+ 1, p− c− 2, 1, 0) 1100 E = λ− 002210 = (2, c+ 2, c− 2, p− c− 2, 0, 1) 0230

B = λ− 001100 = (1, c+ 1, c− 1, p− c− 2, 1, 0) 0110 F = λ− 011200 = (1, c, c, p− c− 3, 2, 0) 1210

C = λ− 102200 = (0, c+ 2, c− 1, p− c− 3, 2, 0) 0221 G = λ− 112210 = (0, c, c− 1, p− c− 1, 0, 1) 1231

D = λ− 020210 = (0, c− 2, c+ 2, p− c− 2, 0, 1) 2210

Table 2.95: JSF of λ up to µ− 2242

µ = (c, p− c− 1, c, 0)F4

Possibilities

ch L(µ)2242 = µ− A− B + δc,2C − δ
c,
p−3

2
F

ch L(µ)2242 = µ− A− B + δc,2C − δc,p−3D − δ
c,
p−3

2
F

ch L(µ)2242 = µ− A− B + δc,2C − δc,p−5E − δ
c,
p−3

2
F

ch L(µ)2242 = µ− A− B + δc,2C − δc,p−3D − δc,p−5E − δ
c,
p−3

2
F

See argument

In order for the table to fit in the margins, we omitted JSF(−) = in the second column.

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)2242 = A+ B − δc,2C + δc,p−3D + δc,p−5E + δ
c,
p−3

2
F A+ B +2

1 δc,p−3D +2
1 δc,p−5E + δ

c,
p−3

2
F

JSF(B)2242 = δc,2C + δc,p−3D + δc,p−5E δc,2C + δc,p−3D + δc,p−5E

A = µ− 1100 = (c− 1, p− c− 2, c+ 2, 0) D = µ− 1242 = (c, p− c, c− 2, 0),

B = µ− 0120 = (c+ 1, p− c− 1, c− 2, 2) E = µ− 1231 = (c, p− c− 1, c− 1, 1),

C = µ− 0241 = (c+ 2, p− c− 1, c− 3, 2) F = µ− 2242 = (c− 2, p− c+ 1, c− 2, 0)

Table 2.96: JSF of µ up to µ− 2242

2.5.1.19 λ = aλ1 + bλ2 + cλ3 +dλ4. — By Table 2.35, we have that a = 1, b = c, c+d = p− 1
and c 6= 2. Moreover, we get that ν = µ − 0111 = (c + 1, p − c − 2, c + 1, 0) affords the highest
weight of a second composition factor for X acting on LY (λ).

Let c 6= p− 2. The computation of chL(λ)1121 and chL(µ)1121 are summarized in Tables 2.97
and 2.98. Let us determine [λ : C] for c = p − 3. Set [λ : C] = 2 − ζ with ζ ∈ {0, 1}. We have
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(mL(λ)|X ,mL(µ))(µ − 1111) = (6 + ζ, 6). Since c 6= p − 1, ν is p-restricted which implies that
mL(ν)(µ− 1111) = 1 and thus ζ = 1 The multiplicities in Table 2.104 imply that X acts on LY (λ)
with more than two composition factors.

Let c = p− 2. The computation of chL(λ)1232 and chL(µ)1232 are summarized in Tables 2.99
and 2.100. Moreover, the JSF applied to ν yields chL(ν)1121 = ν − (ν − 1120). Denote by LI the
Levi factor of PI , where I = {αi}{1≤i≤4}. Note that LI is of type A4. We solve the problematic
cases for λ and µ as follows.

[λ : F ] By Lemma 2.1.8, we have [λ : F ] = 1.

[F : G] Note that [F : G] = 1 + [A : G]. We solve the problematic case [A : G] to get the value of
[F : G]. We work in LI . By Proposition 1.5.2 and Table 2.101,

[A : G] = [(0, p− 4, 3, p− 4) : (0, p− 5, 1, p− 2)]A4

and (0, p− 4, 3, p− 4)− (0, p− 5, 1, p− 2) = 1220 in A4. The JSF applied to (0, p− 4, 3, p− 4)
in A4 shows that [(0, p− 4, 3, p− 4) : (0, p− 5, 1, p− 2)]A4 = 0, which implies that [A : G] = 0
and [F : G] = 1.

[µ : P ] Let [µ : P ] = 2−ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ−0131) = (5, 3+ζ, 1).
By Remark 1.5.4 and Proposition 2.3.1, we get that ζ = 1.

[µ : L] Let [µ : L] = 2−ζ with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ−1110) = (3, 2+ζ, 0).
By Remark 1.5.4 and Theorem 2.1.1, we get that ζ = 1.

[µ : N ] Let [µ : N ] = 2 − ζ, with ζ ∈ {0, 1}. We have (mL(λ)|X ,mL(µ),mL(ν))(µ − 1230) =
(7, 7 + ζ, 0), hence ζ = 0.

[λ : G] We work in LI . By Proposition 1.5.2 and Table 2.102,

[λ : G] = [(2, p− 2, 1, p− 4) : (0, p− 5, 1, p− 2)]A4

and (2, p− 2, 1, p− 4)− (0, p− 5, 1, p− 2) = 3420 in A4. By Proposition 1.3.7, we have that
[λ : G] 6= 0. We can apply again Proposition 1.5.3 along with Lemma 2.1.8 in order to deduce
that [λ : G] = 1.

Comparing the multiplicities appearing in Table 2.104 implies that X acts on LY (λ) with more
than two composition factors.

2.5.1.20 λ = aλ1 + bλ2 + cλ3 + eλ5. — By Table 2.35, we have a = 2, b = 1, c = p− 3, e = 1
and ν = µ− 0010 = (1, 1, p− 4, 3) affords the highest weight of a second composition factor for X
acting on LY (λ). The JSF applied to λ yields

chL(λ)1111 = λ− (λ− 101000)− (λ− 011100).

Comparing the multiplicities listed in Table 2.104 implies that X acts on LY (λ) with more than
two composition factors.
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λ = (1, c, c, p− c− 1, 0, 0)E6

ch L(λ)1121 = λ− A− B

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1121 = A+ B + δc,p−3C JSF(λ)1121 = A+ B + 2δc,p−3C

JSF(A)1121 = δc,p−3C JSF(A)1121 = δc,p−3C

A = λ− 010100 = (1, c− 1, c+ 1, p− c− 2, 1, 0) 1100 C = λ− 111100 = (0, c− 1, c, p− c− 1, 1, 0) 1111

B = λ− 001100 = (2, c+ 1, c− 1, p− c− 2, 1, 0) 0110

Table 2.97: JSF of λ up to µ− 1121

µ = (c, p− c− 1, c, 1)F4

Possibilities

ch L(µ)1121 = µ− A− B − δ
c,
p−5

2
D

ch L(µ)1121 = µ− A− B − δc,p−4C − δ
c,
p−5

2
D

Multiplicity bounded above by the first possibility

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)1121 = A+ B + δc,p−4C + δ
c,
p−5

2
D JSF(µ)1121 = A+ B + 2δc,p−4C + δ

c,
p−5

2
D

JSF(A)1121 = δc,p−4C JSF(A)1121 = δc,p−4C

A = µ− 1100 = (c− 1, p− c− 2, c+ 2, 1) C = µ− 1111 = (c− 1, p− c− 1, c+ 1, 0),

B = µ− 0120 = (c+ 1, p− c− 1, c− 2, 3) D = µ− 1121 = (c− 1, p− c, c− 1, 1)

Table 2.98: JSF of µ up to µ− 1121

2.5.1.21 λ = aλ1 + bλ2 +dλ4 + eλ5. — By Table 2.35, we have a = 1, b = e, e+d = p−1, e 6=
1, p− 2 and ν = µ− 0011 = (b, p− b, b− 1, 0) affords the highest weight of a second composition
factor for X acting on LY (λ). Assume b 6= p− 4. The JSF applied to λ and µ yields

chL(λ)1121 = λ− (λ− 010100)− (λ− 000110)− δb,2(λ− 101100)

and
chL(µ)1121 = µ− (µ− 1100)− (µ− 0120)− δb,2(µ− 0111)− δb, p−5

2
(µ− 1121),

respectively. Assume b = p− 4. The JSF applied to λ and ν yields

chL(λ)1132 = λ− (λ− 010100)− (λ− 000110)− (λ− 111110)

and chL(ν)1121 = ν − (ν − 0120), respectively. Moreover, in Table 2.103, we determine two
possibilities for chL(µ)1132. In both cases, comparing the multiplicities appearing in Table 2.104
implies that X acts on LY (λ) with more than two composition factors.
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λ = (1, p− 2, p− 2, 1, 0, 0)E6

ch L(λ)1232 = λ− A− B − C − 2D + E + F +G

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1232 = A+ B + C +D − E JSF(λ)1232 = A+ B + C +D + 2F +4
1 G+1

0 H

JSF(A)1232 = −D + F JSF(A)1232 = F +1
0 G

JSF(B)1232 = G JSF(B)1232 = G

JSF(C)1232 = −D + E + F +H JSF(C)1232 = E + F +1
0 G+ 2H

JSF(D)1232 = G JSF(D)1232 = G

JSF(E)1232 = H JSF(E)1232 = H

JSF(F )1232 = D +G JSF(F )1232 = D + 2G

A = λ− 101000 = (0, p− 2, p− 3, 2, 0, 0) 0011 E = λ− 002210 = (3, p, p− 4, 0, 0, 1) 0230

B = λ− 010100 = (1, p− 3, p− 1, 0, 1, 0) 1100 F = λ− 102100 = (1, p− 1, p− 4, 1, 1, 0) 0121

C = λ− 001100 = (2, p− 1, p− 3, 0, 1, 0) 0110 G = λ− 213200 = (0, p− 2, p− 4, 1, 2, 0) 1232

D = λ− 203200 = (0, p, p− 4, 0, 2, 0) 0232 H = λ− 012210 = (3, p− 2, p− 4, 1, 0, 1) 1230

Table 2.99: JSF of λ up to µ− 1232

µ = (p− 2, 1, p− 2, 1)F4

ch L(µ)1232 = µ− I + J −K −M −N −O + P

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)1232 = I − J +K + L+M JSF(µ)1232 = I +K + 2L+M +2
1 N +O + 2P

JSF(I)1232 = L−N −O JSF(I)1232 = L

JSF(J)1232 = N JSF(J)1232 = N

JSF(K)1232 = P JSF(K)1232 = P

JSF(L)1232 = N +O JSF(L)1232 = N +O

JSF(M)1232 = J +N + P JSF(M)1232 = J + 2N + P

I = µ− 1100 = (p− 3, 0, p, 1) M = µ− 0120 = (p− 1, 1, p− 4, 3),

J = µ− 0230 = (p, 0, p− 4, 4) N = µ− 1230 = (p− 2, 1, p− 4, 4),

K = µ− 0011 = (p− 2, 2, p− 3, 0) O = µ− 1132 = (p− 3, 3, p− 4, 0),

L = µ− 1110 = (p− 3, 1, p− 2, 2) P = µ− 0131 = (p− 1, 2, p− 5, 2)

Table 2.100: JSF of µ up to µ− 1232

2.5.1.22 λ = aλ1+bλ2+cλ3+fλ6. — By Table 2.35, we have that b = a−1, a+c = p−1, f = 1
and ν = µ− 0001 = (a− 1, 0, p− a, a− 1) affords the highest weight of a second composition factor
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λ′0 = (p− 4, 0, 0,−1) 6∈ C0

γ′ = w1·λ′0 = (0, p− 3, 2, p− 2) η′ = w·λ′0 = (0, p− 4, 1, p− 2)

w1 = s0s1s2s4s3s0 w = s0s1s2

λ0 = (p− 5, 0, 0, 0) ∈ C0

γ = w1·λ0 = (1, p− 4, 3, p− 3) η = w·λ0 = (0, p− 5, 1, p− 2)

Cη′ = (1, 1, 1, 1, 1, 1, 2, 1, 2, 2) Cη = (1, 1, 1, 1, 1, 1, 2, 1, 2, 2)

Proposition 1.3.10 =⇒ [γ′ : η′] = [γ : η]

s = s3

ws·λ0 = (0, p− 5, 0, p)

ws·λ0 − w·λ0 = 0001

Proposition 1.3.9 =⇒ [w1s·λ0 : η] = [γ : η], where w1s·λ0 = (0, p− 4, 3, p− 4)

Table 2.101: Computing [(0, p− 3, 2, p− 2) : (0, p− 4, 1, p− 2)]A4

λ′0 = (p− 4, 0, 0,−1) 6∈ C0

γ′ = w1·λ′0 = (1, p− 2, 1, p− 2) η′ = w·λ′0 = (0, p− 4, 1, p− 2)

w1 = s0s1s2s4s3s2s0 w = s0s1s2

λ0 = (p− 5, 0, 0, 0) ∈ C0

γ = w1·λ0 = (2, p− 3, 2, p− 3) η = w·λ0 = (0, p− 5, 1, p− 2)

Cη′ = (1, 1, 1, 1, 1, 1, 2, 1, 2, 2) Cη = (1, 1, 1, 1, 1, 1, 2, 1, 2, 2)

Proposition 1.3.10 =⇒ [γ′ : η′] = [γ : η]

s = s3

ws·λ0 = (0, p− 5, 0, p)

ws·λ0 − w·λ0 = 0001

Proposition 1.3.9 =⇒ [w1s·λ0 : η] = [γ : η], where w1s·λ0 = (2, p− 2, 1, p− 4)

Table 2.102: Computing [(1, p− 2, 1, p− 2) : (0, p− 4, 1, p− 2)]A4

for X acting on LY (λ). If a 6= p− 3, then the JSF applied to λ yields

chL(λ)1111 = λ− (λ− 101000)− (λ− 011100).

If a = p− 3, then the JSF applied to λ and ν yields

chL(λ)1112 = λ− (λ− 101000)− (λ− 011100)− (λ− 010111)

and chL(ν)1111 = ν− (ν− 0011), respectively. In both cases, the multiplicities in Table 2.104 imply
that X acts on LY (λ) with more than two composition factors.



116 II. THE EMBEDDING (F4, E6)

µ = (p− 4, 3, p− 4, 1)F4

Possibilities

ch L(µ)1132 = µ− A− B

ch L(µ)1132 = µ− A− B − C

Multiplicity bounded above by the first possibility

JSF in Weyl characters: JSF in irreducible characters:

JSF(µ)1132 = A+ B + C JSF(µ)1132 = A+ B + 2C

JSF(A)1132 = C JSF(A)1132 = C

A = µ− 1100 = (p− 5, 2, p− 2, 1) C = µ− 1111 = (p− 5, 3, p− 3, 0)

B = µ− 0120 = (p− 3, 3, p− 6, 3)

Table 2.103: JSF of µ up to µ− 1132
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Table 2.104: Multiplicities for the proof of Proposition 2.5.1

λ Conditions Multiplicities

a c d e f

b

ν θ λ(θ) µ(θ) ν(θ) Details

(a, 0, 0, 0, 0, 0) a = 1 1232 two composition factors Subsection 2.5.1.1

a = 2, 3 1232 more than two composition factors, compare dimensions Subsection 2.5.1.1

a = p− 2 1232 two composition factors Subsection 2.5.1.1

a ≥ 4, a 6= p− 3, p− 2 1232 2464 38 ≤V 32 ≤V 5 Subsection 2.5.1.1

a = p− 3 irreducible Table 2.2

(0, b, 0, 0, 0, 0) b = 1 1110 two composition factors Subsection 2.5.1.2

b = p− 2 1110 two composition factors Subsection 2.5.1.2

(0, 0, c, 0, 0, 0) c = 1 0121 1231 7 ≤V 5 ≤V 1 Subsection 2.5.1.3

c = p− 1 1231 two composition factors Subsection 2.5.1.3

(0, 0, 0, d, 0, 0) d = 1 0110 1221 10 ≤V 4 ≤V 4 Subsection 2.5.1.4

d = p− 1 0110 two composition factors Subsection 2.5.1.4

(a, b, 0, 0, 0, 0) b = 1 a 6= p− 4 1110 1111 6 ≤V 4 ≤V 1 Subsection 2.5.1.5

a = p− 4 1110 two composition factors Subsection 2.5.1.5

b = p− 2 a = p− 1 1110 1111 5 ≤V 4 0 Subsection 2.5.1.5

a 6= p− 1 1110 1111 6 ≤V 4 ≤V 1 Subsection 2.5.1.5

(a, 0, c, 0, 0, 0) c = 1, a 6= p− 2, p− 6 a 6= p− 8 0121 1231 10 ≤V 8 ≤V 1 Subsection 2.5.1.6

a = p− 8 0121 1353 61 ≤V 48 ≤V 12 Subsection 2.5.1.6

a + c = p, a 6= 4, p− 1 a 6= 2, 6 0121 1231 18− δa,p−2 ≤V 14− δa,p−2 ≤V 3 Subsection 2.5.1.6

a = 2 0121 1242 39 31 7 Subsection 2.5.1.6

a = 6 0121 1363 130 100 ≤BS 29 Subsection 2.5.1.6

a + c = p− 1 a = 1 irreducible Table 2.2

a = 3 1231 1231 9 7 1 Subsection 2.5.1.6

a = 7 1231 1232/2462 10/62 8/53 1/8 Subsection 2.5.1.6

a = p− 4 1231 2462 55 46 8 Subsection 2.5.1.6



118
II.

T
H
E

E
M
B
E
D
D
IN

G
(F

4
,
E

6 )
a = p− 3 1231 2462 37 31 5 Subsection 2.5.1.6

a = p− 2 1231 2463 38 32 ≤V 5 Subsection 2.5.1.6

a ≤ p− 5, a 6= 1, 3, 7 1231 2462 62 ≤BC 53 ≤BC 8 Subsection 2.5.1.6

(a, 0, 0, d, 0, 0) a = p− 3, d = 1 0110 1221 14 ≤V 9 ≤V 4 Subsection 2.5.1.7

(a, 0, 0, 0, e, 0) a = 1, e = p− 1 0011 1231 19 ≤V 14 4 Subsection 2.5.1.8

a = p− 4, e = 1 0011 two composition factors Subsection 2.5.1.8

(a, 0, 0, 0, 0, f) a 6= p− 1, f = 1 a = 1 0001 1232 12 ≤V 5 ≤V 5 Subsection 2.5.1.9

a 6= 1, p− 3, p− 5 0001 1232 15 ≤V 5 ≤V 8 Subsection 2.5.1.9

a = p− 3 0001 1232 14 ≤V 5 ≤V 8 Subsection 2.5.1.9

a = p− 5 0001 1232 13 ≤V 5 7 Subsection 2.5.1.9

(0, b, c, 0, 0, 0) b = p− 3, c = 1 0121 1231 12 ≤V 10 ≤V 1 Subsection 2.5.1.10

b = 1, c = p− 1 1110 1121 10 ≤V 7 ≤V 2 Subsection 2.5.1.10

b = p− 1, c = p− 1 1121
1131/2231

2242

8/22

≥ 38

6/19

≤ 32

1/2

5
Subsection 2.5.1.10

(0, 0, c, d, 0, 0) c + d = p− 1 d = 1 1221 2452 61 52 8 Subsection 2.5.1.11

d = 2 1221 2442 52 44 7 Subsection 2.5.1.11

d = 3 1221 2442 59 50 8 Subsection 2.5.1.11

4 ≤ d ≤ p− 7, d = p− 5 1221 2442 60 ≤BC 51 8 Subsection 2.5.1.11

d = p− 6 1221 1231/2442 12/60 10/51 1/8 Subsection 2.5.1.11

d = p− 4 1221 more than two composition factors, see argument Subsection 2.5.1.11

d = p− 3 1221 1221 9 7 1 Subsection 2.5.1.11

d = p− 2 1221 1331/2442 19/60 16/51 2/7 Subsection 2.5.1.11

(a, b, c, 0, 0, 0) a + c = p− 1, b 6= a− 1 2b + c + 4 6≡ 0 mod p 1110 1111 6 ≤BC 4 ≤V 1 Subsection 2.5.1.12

a + c = p− 1, b = a− 1 a 6= 2, p− 2 1111 2222 21 ≤BS 16 4 Subsection 2.5.1.12

a = p− 2 1111 2222 21 16 4 Subsection 2.5.1.12

a = 2 1111 two composition factors Subsection 2.5.1.12

b = p− 3, c = 1 a 6= p− 2, p− 6 0121 1111 7 ≤V 6 ≤V 0 Subsection 2.5.1.12

b + c + 2 ≡ 0 mod p a + c = p, a 6= 4, p− 1 0121 1111 7 ≤V 6 ≤V 0 Subsection 2.5.1.12

(a, b, 0, 0, e, 0) a = 1, b = p− 1, e = p− 1 0011 1121 16 11 4 Subsection 2.5.1.13
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a = p− 4, b = p− 3, e = 1 0011 1121 13 ≤V 10 ≤V 2 Subsection 2.5.1.13

(a, 0, c, d, 0, 0) a = 1, c + d = p− 1, c 6= 2 c = 4 0111 1332 58 44 13 Subsection 2.5.1.14

c = p− 2 0111 1221 14 10 ≤V 3 Subsection 2.5.1.14

otherwise 0111 1221 20 ≤BC 15 ≤V 4 Subsection 2.5.1.14

(a, 0, c, 0, e, 0) a = 2, c = p− 3, e = 1 0010 two composition factors Subsection 2.5.1.15

(a, 0, c, 0, 0, f) a + c = p− 1, f = 1 a = 1 0001 1232 29 20 8 Subsection 2.5.1.16

a = 3 0001 1232 {24, 26} {15, 17} 8 Subsection 2.5.1.16

a = 4 0001 1231/1232 19/30 14/21 4/7 Subsection 2.5.1.16

a = 2 or 5 ≤ a ≤ p− 3 0001 1231 19− δa,p−3 ≤V 14− δa,p−3 ≤V 4 Subsection 2.5.1.16

a = p− 2 0001 1231 12 ≤V 8 ≤V 3 Subsection 2.5.1.16

(a, 0, 0, d, e, 0) a = 1, d + e = p− 1, e 6= 1, p− 2 e 6= 2, 4 0011 1221 19 ≤BC 15 ≤V 3 Subsection 2.5.1.17

e = 2 0011 1232 32 23 8 Subsection 2.5.1.17

e = 4 0011 1221 19 15 ≤V 3 Subsection 2.5.1.17

(0, b, c, d, 0, 0) c + d = p− 1, b 6= c, 2b + d + 3 6≡ 0 mod p 1110 1121 10− δc,1 ≤BS 7− δc,1 ≤V 2 Subsection 2.5.1.18

b = c, c + d = p− 1 c = 1 1121 1231 16 14 ≤V 1 Subsection 2.5.1.18

c = 2 1121 2242 33 27 5 Subsection 2.5.1.18

c = 3 1121 2242 37 30 6 Subsection 2.5.1.18

c = p− 2 1121 1121 7 5 ≤V 1 Subsection 2.5.1.18

c = p− 3 1121 1242/2242 25/38 21/31 3/6 Subsection 2.5.1.18

c = p− 5 1121 1231/2242 17/38 14/31 2/6 Subsection 2.5.1.18

otherwise 1121 2242 38 ≤BC 31 6 Subsection 2.5.1.18

(a, b, c, d, 0, 0) a = 1, b = c, c + d = p− 1, c 6= 2, p− 2 0111 1121 13− δc,1 ≤BC 11− δc,1 ≤V 1 Subsection 2.5.1.19

a = 1, b = c, c + d = p− 1, c = p− 2 0111 1232 31 24 6 Subsection 2.5.1.19

(a, b, c, 0, e, 0) a = 2, b = 1, c = p− 3, e = 1 0010 1111 9 ≤V 6 ≤V 2 Subsection 2.5.1.20

(a, b, 0, d, e, 0) a = 1, b = e, d + e = p− 1, e 6= 1, p− 2, b 6= p− 4 0011 1121 16− δb,2 ≤BC 11− δb,2 ≤V 4 Subsection 2.5.1.21

a = 1, b = e, d + e = p− 1, e 6= 1, p− 2, b = p− 4 0011 1132 24 ≤BS 16 7 Subsection 2.5.1.21

(a, b, c, 0, 0, f) a + c = p− 1, b = a− 1, f = 1, a 6= p− 3 0001 1111 10 ≤V 6 ≤V 3 Subsection 2.5.1.22

a + c = p− 1, b = a− 1, f = 1, a = p− 3 0001 1112 11 ≤V 6 4 Subsection 2.5.1.22





Chapter 3

The other embeddings

The goal of this chapter is to answer Question 3 for (X,Y ) as in Tables 3.1 and 3.2, excluding
the case (X,Y ) = (F4, E6) which has already been solved in Chapter 2 and the cases (X,Y, p) ∈
{(A2, G2, {2, 3}), (B4, F4, {2, 3, 5, 7, 11}), (C4, F4, 2)} which we do not consider in this thesis.

G X simple
G2 A2 (1 class if p 6= 3, 2 classes if p = 3)
F4 B4 (p ≥ 0), C4 (p = 2)
E7 A7 (p ≥ 0)
E8 D8 (p ≥ 0), A8 (p ≥ 0)

Table 3.1: Maximal closed connected simple subgroups of maximal rank

G X simple
G2 A1 (p 6= 2, 3, 5)
F4 A1 (p = 0 or p ≥ 13), G2 (p = 7)
E6 A2 (p 6= 2, 3), G2 (p 6= 7), F4 (p ≥ 0), C4 (p 6= 2)
E7 A1 (2 classes, p = 0 or p ≥ 17, 19, resp.), A2 (p 6= 2, 3)
E8 A1 (3 classes, p = 0 or p ≥ 23, 29, 31, resp.), B2 (p 6= 2, 3)

Table 3.2: Maximal closed connected simple subgroups of non-maximal rank

Proposition 3.0.1. Let k be an algebraically closed field of characteristic p ≥ 0. Let (X,Y, p)
be as in Table 3.2 and Table 3.1. Assume in addition (X,Y ) 6= (F4, E6) and (X,Y, p) 6∈
{(A2, G2, {2, 3}), (B4, F4, {2, 3, 5, 7, 11}), (C4, F4, 2)}. Let λ ∈ X(TY )+ be a p-restricted weight.
Then X acts on LY (λ) with exactly two composition factors if and only if λ is listed in Table A up
to graph automorphism. Moreover, LY (λ)|X ∼= LX(µ)⊕ LX(ν) with µ and ν given as in Table A.

121
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Throughout this chapter, let Y be a simply connected simple algebraic group of exceptional
type and let X be a maximal closed connected simple subgroup of Y as in the statement of
Proposition 3.0.1. Let BY = UY TY be a Borel subgroup of Y and let BX = BY ∩X be a Borel
subgroup of X with UX = UY ∩X and TX = TY ∩X.

For λ, µ and ν as in Table A, we first show that if LY (λ)|X ∼= LX(µ)/LX(ν), then LY (λ) ∼=
LX(µ) ⊕ LX(ν). If Y 6= E6, then LY (λ) is self-dual, since −1 ∈ WY , the Weyl groups of Y . If
(X,Y ) = (G2, E6), then −w0λ = λ with w0 the longest element of WY and so LY (λ) is self-dual.
Now, by Lemma 1.4.1, we have that LY (λ)|X is self-dual and by Lemma 1.4.3, we get LY (λ) ∼=
LX(µ) ⊕ LX(ν). If (X,Y ) = (C4, E6), then using the tables in [Lüb07] and Proposition 1.2.1,
we check that [VX(µ) : LX(ν)] = 0, hence Ext1(LX(µ), LX(ν)) = 0 by Proposition 1.1.7 and so
LY (λ) ∼= LX(µ)⊕ LX(ν). The second part of Proposition 3.0.1 follows.

From now on, we focus on proving the first part of the statement. Let λ ∈ X(TY )+ be a
p-restricted weight. In most cases, to prove that X acts on LY (λ) with more than two composition
factors, we bound the multiplicity of a weight in LY (λ)|X by the number of weights in Λ(VY (λ))
which restrict to it. When it is not straightforward, we list these weights. By Theorem 1.1.10,
this argument does not depend on p, unless (Y, p) ∈ {(F4, 2), (G2, 2), (G2, 3)}. Note that we have
excluded the latter cases in Proposition 3.0.1.

In other cases, we compare the dimensions of the irreducible modules using the tables from
[Lüb07] or Weyl’s degree formula. When it is not necessary to provide the exact dimension, we bound
the dimension by an inequality. An inequality with subscript V (i.e. ≤V ) indicates the dimension
of the corresponding Weyl module, an inequality with subscript LB (i.e. ≤LB or ≥LB) gives a
bound using the data in [Lüb07]. It has two meanings: Either the dimension of the corresponding
module does not appear in [Lüb07] and we bound it below by the bound stated in [Lüb07], or the
dimension of the module depends on the characteristic and we bound the dimension below by the
smallest possibility or above by the greatest possibility. This type of argument implicitly takes into
account the characteristic of k.

Finally, we need to keep the choice of p in mind when we apply Proposition 1.2.2 and the
JSF. In order to apply Proposition 1.2.2, we need to assume p 6= 2 and additionally p 6= 3 for
Y = G2. For the JSF, in view of Remark 1.3.2, we assume p ≥ h, which is the reason for excluding
p = 2, 3, 5, 7, 11 for (X,Y ) = (C4, F4) in Proposition 3.0.1.

Notation 3.0.2. Let ∆(Y ) = {αi} be a base of Φ(Y ) corresponding to BY and ∆(X) = {βi}
be a base of Φ(X) corresponding to BX . Let {λi}, {µi}, denote a set of fundamental weights
with respect to ∆(Y ),∆(X), respectively. As in Notation 2.1.3, let a sequence of digits abbreviate
a linear combination of simple roots, where each digit corresponds to a coefficient in the linear
combination. From now on, we allow the coefficients to be negative which yields signed sequences.
For example, if |∆(Y )| = 4, we abbreviate α1 − 2α3 = α1 + 0α2 − 2α3 + 0α4 ∈ Z∆(Y ) by 10(−2)0.

3.1 Preliminary lemmas

Let γ, θ ∈ X(TX). Assume γ − θ =
∑|∆(X)|
i=1 niβi ∈ Z∆(X). Define the level of θ with respect to

γ, denoted levγ(θ), as
∑|∆(X)|
i=1 ni. Let λ ∈ X(TY )+ and set µ = λ|TX . Let ν1, . . . , νr ∈ X(TX)+

be distinct weights such that LY (λ)|X = LX(ν1)i1/ . . . /LX(νr)ir for some i1, . . . , ir ∈ Z≥0. Let
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θ ∈ Λ(LY (λ)|X)+. Set

mλ,θ =
∑

ζ∈X(TY )
ζ|TX=θ

mLY (λ)(ζ)−
∑
νs s.t.
νs�θ

ismLX(νs)(θ).

Clearly, mλ,θ 6= 0 if and only if θ = νj for some 1 ≤ j ≤ r, in which case mλ,θ = ij . Let ` = levµ(θ).
Note that we can rewrite mλ,θ as

mλ,θ =
∑

ζ∈X(TY )
ζ|TX=θ

mLY (λ)(ζ)−
∑
νs s.t.

levµ(νs)<`

ismLX(νs)(θ).

Remark 3.1.1. For α ∈ ∆(Y ), write α|TX =
∑|∆(X)|
j=1 njβj with nj ∈ Z. Assume

∑|∆(X)|
j=1 nj ≥ 0

for all α ∈ ∆(Y ), that is levα|TX (0) ≥ 0. Then it is clear that the following holds.

1) For γ ∈ Λ(LY (λ)|X)+, we have levµ γ ≥ 0.

2) If γ ∈ Λ(LY (λ)|X)+ and levµ γ = 0, then γ = νj for some 1 ≤ j ≤ r.

The next two lemmas are easy and tell us in specific cases when a weight appears with nonzero
multiplicity in a Weyl module.

Lemma 3.1.2. Let Y be of type An for n ≥ 1. Let λ ∈ X(TAn)+ and write λ as λ =
∑n
i=1 aiλi.

1) Let 1 ≤ i ≤ n, then λ− rα ∈ Λ(VY (λ)) for 0 ≤ r ≤ ai, where α =
∑n
j=i αj.

2) If ai1ai2 6= 0 for some 1 ≤ i1 < i2 ≤ n, then λ− 2α ∈ Λ(VY (λ)), where α =
∑j2
k=j1 αk and

1 ≤ j1 ≤ i1 < i2 ≤ j2 ≤ n.

Lemma 3.1.3. Let Y be of type En for n ∈ {6, 7, 8}. Let λ ∈ X(TY )+ and write λ as λ =
∑n
i=1 aiλi.

If aiaj 6= 0 for some 1 ≤ i < j ≤ n, then λ− 2
∑n
r=1 αr ∈ Λ(VY (λ)).

Proof. We prove the lemma using Proposition 1.1.12 and a computer program.

3.2 Maximal subgroups of non-maximal rank

The goal of this section is to prove Proposition 3.0.1 for the pairs (X,Y ) with rank(X) < rank(Y).

3.2.1 (G2, E6). — Let (X,Y ) = (G2, E6) and note that by Table 3.2, we have p 6= 7. This
embedding was first constructed in [Tes89, (G.1) and (G.2)] with the additional assumption that
p 6= 2, 3. By [LS04, Theorem (6.1)], this assumption on p can be lifted. Moreover, by comparing
[Sei91, Theorem (7.1)] and [LS04, Lemma 6.2.2 and Lemma 6.3.7], we can assume up to conjugacy
that the simple roots of Φ(Y ) restrict to TX as

αi|TX = β1 for i ∈ {1, 2, 3, 5, 6} α4|TX = β2 − β1. (3.1)

Note that these restrictions imply that the hypothesis on the levels in Remark 3.1.1 is satisfied.
Performing a change of basis by multiplying the restrictions in (3.1) by the Cartan matrix, we
obtain that the fundamental weights in X(TY )+ restrict to TX as follows.

λ1|TX = λ6|TX = 2µ1 λ2|TX = µ1 + µ2
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λ3|TX = λ5|TX = 2µ1 + µ2 λ4|TX = 3µ2

Let λ ∈ X(TY )+ and write λ =
∑6
i=1 aiλi. Set µ = λ|TX . We have

µ = (2(a1 + a3 + a5 + a6) + a2, a2 + a3 + a5 + 3a4).

We start by giving a general argument and then solve the remaining cases by comparing dimensions.
Assume a4 6= 0, then ν = (λ − α4)|TX = µ − (−1)1 affords the highest weight of a second

composition factor for X acting on LY (λ) by Remark 3.1.1, since levµ(ν) = 0. Note that for α =
α4 +αi, i ∈ {2, 3, 5}, we have (α)|TX = 01 and (mL(λ)|X ,mL(µ),mL(ν))(µ−01) = (≥ 3,≤V 1,≤V 1).
Hence X acts on LY (λ) with more than two composition factors.

Assume a4 = 0. Let i, j, k ∈ {1, 2, 3, 5, 6} distinct and assume aiajak 6= 0. Then (λ− α`)|TX =
µ− 10 for ` ∈ {i, j, k}. Thus (mL(λ)|X ,mL(µ))(µ− 10) = (≥ 3,≤V 1) and µ− 10 affords the highest
weight of a second and a third composition factor for X acting on LY (λ). By symmetry, we are left
to consider the following two cases:

1) λ = aiλi, with for i ∈ {1, 2, 3},

2) λ = aiλi + ajλj , with aiaj 6= 0 and (i, j) ∈ {(1, 2), (1, 3), (1, 5), (1, 6), (2, 3), (3, 5)}.

Consider first case 2). Note that (mL(λ)|X ,mL(µ))(µ − 10) = (≥ 2,≤V 1), hence a second
composition factor is given by ν = µ− 10. Let (i, j) ∈ {(1, 5), (1, 6), (3, 5)}. Note that (mL(λ)|X ,

mL(µ),mL(ν))(µ−20) = (≥ 3,≤V 1,≤V 1), hence X acts on LY (λ) with more than two composition
factors. Let (i, j) ∈ {(1, 2), (2, 3)}. Note that for α ∈ {110100, 101100, 011100, 0101100, 001110}, we
have α|TX = 11. Hence (mL(λ)|X ,mL(µ),mL(ν))(µ− 11) = (≥ 4,≤V 2,≤V 1) and X acts on LY (λ)
with more than two composition factors. Let (i, j) = (1, 3), then for α ∈ {201100, 102100, 101110,
111100, 011110, 001111}, we have α|TX = 21. Therefore, we have (mL(λ)|X ,mL(µ),mL(ν))(µ− 21)
= (≥ 6,≤V 3,≤V 2) and X acts on LY (λ) with more than two composition factors.

Consider now case 1), that is λ = aiλi with i ∈ {1, 2, 3}. Let λ = a1λ1. If a1 = 1 and p 6= 2, then
X acts irreducibly on LY (λ) by [Tes88, Table 1]. If a1 = 1 and p = 2, using the tables in [Lüb07], we
see that X acts on LY (λ) with more than two composition factors. If a1 ≥ 2, then (mL(λ)|X ,mL(µ))
(µ − 20) = (≥ 2,≤V 1) and µ − 20 affords the highest weight of a second composition factor for
X acting on LY (λ). The cases a1 = 2, 3 are solved by comparing the dimensions appearing in
Table 3.3. Assume a1 ≥ 4, then (mL(λ)|X ,mL(µ),mL(ν))(µ− 40) = (≥ 3,≤V 1,≤V 1) and X acts
with more than two composition factors on LY (λ).

Let λ = a2λ2. Assume a2 = 1, so µ = (1, 1). The only weights in Λ(LY (λ)|X) which are
dominant and greater than µ− 21 are µ, µ− 11. Moreover, (mL(λ)|X ,mL(µ))(µ− 11) = (2, 2) and
(mL(λ)|X ,mL(µ))(µ− 21) = (3, 2). Hence µ− 21 affords the highest weight of a second composition
factor for X acting on LY (λ). Comparing dimensions in Table 3.3 implies that X acts on LY (λ)
with exactly two composition factors if and only if p 6= 3. Assume a2 ≥ 2. We have (mL(λ)|X ,mL(µ))
(µ − 11) = (≥ 3,≤V 2), hence µ − 11 affords the highest weight of a second composition factor
for X acting on LY (λ). If a2 = 2, we compare dimensions in Table 3.3. Assume a2 ≥ 3. We
have (α)|TX = 21 for α ∈ {030100, 021100, 020110, 111100, 010111}, hence (mL(λ)|X ,mL(µ),mL(ν))
(µ− 21) = (≥ 5,≤V 3,≤V 1) and X acts with more than two composition factors.

Let λ = a3λ3. Assume a3 = 1, then (mL(λ)|X ,mL(µ))(µ− 11) = (≥ 3,≤V 2) and µ− 11 affords
the highest weight of a second composition factor and we compare dimensions using Table 3.3.
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Assume a3 ≥ 2, then (mL(λ)|X ,mL(µ))(µ− 20) = (≥ 2,≤V 1) and ν = µ− 20 affords the highest
weight of a second composition factor. Moreover, (mL(λ)|X ,mL(µ),mL(ν))(µ− 11) = (≥ 4,≤V 2, 0)
and X acts on LY (λ) with more than two composition factors. This completes the argument for
the pair (G2, E6).

λ µ = λ|TX ν dim(LY (λ), LX(µ), LX(ν))

2λ1 4µ1 2µ2 (≥LB 324,≤V 182,≤V 77)
3λ1 6µ1 2µ1 + 2µ2 (≥LB 3002,≤V 714,≤V 729)
λ2 µ1 + µ2 µ2 (78− δp,3, 64− 15δp,3, 14− 7δp,3)
2λ2 2µ1 + 2µ2 3µ1 + µ2 (≥LB 2429,≤V 729,≤V 448)
λ3 2µ1 + µ2 3µ1 (≥LB 324,≤V 189,≤V 77)

Table 3.3: Some dimensions for (G2, E6)

3.2.2 (A2, E6). — Let (X,Y ) = (A2, E6) and note that by Table 3.2, we have p 6= 2, 3. The
construction in [Tes89, (A1) and (A2)] implies that up to conjugacy the restriction to TX of the
simple roots in Φ(Y ) is given by

αi|TX = β1 for i ∈ {1, 2, 3, 5, 6} α4|TX = β2 − 2β1,

which implies the following restriction to TX for the fundamental weights in X(TY )+.

λ1|TX = λ6|TX = 2µ1 + 2µ2 λ2|TX = µ1 + 4µ2

λ3|TX = λ5|TX = 2µ1 + 5µ2 λ4|TX = 9µ2

Let λ ∈ X(TY )+, write λ =
∑6
i=1 aiλi and set µ = λ|TX . Assume a4 6= 0, then ν = µ− (−2)1

affords the highest weight of second composition factor for X acting on LY (λ). Moreover, we have
(mL(λ)|X ,mL(µ),mL(ν))(µ − (−1)1) = (≥ 3, 0,≤V 1), hence establishing the existence of a third
composition factor for X acting on LY (λ). Henceforth assume a4 = 0.

Let a3 6= 0 or a2 6= 0, then ν = µ− (−1)1 affords the highest weight of a second composition
factor for X acting on LY (λ). If a2 = 1 and a3 = 0, then we have dim(LY (λ), LX(µ), LX(ν))
= (78,≤V 35,≤V 35) where µ = (1, 4) and ν = (4, 1). If a3 6= 0 or a2 ≥ 2 or a2a1 6= 0, then
(mL(λ)|X ,mL(µ),mL(ν))(µ− 01) = (≥ 3,≤V 1,≤V 1). Hence, by symmetry, X acts on LY (λ) with
more than two composition factors if either a2 6= 0 or a3 6= 0. By symmetry, this argument also
holds if a5 6= 0. Henceforth, assume a3 = a5 = a2 = 0.

Assume a1a6 6= 0, then ν = µ− 10 affords the highest weight of a second composition factor for
X acting on LY (λ). Moreover, (mL(λ)|X ,mL(µ),mL(ν))(µ − 20) = (≥ 3,≤V 1,≤V 1) and X acts
on LY (λ) with more than two composition factors.

By symmetry, the last case to consider is λ = a1λ1. If a1 = 1, then by [Tes88, Table 1], we have
that X acts irreducibly on LY (λ). Assume a1 ≥ 2. Then ν = µ − 20 affords the highest weight
of a second composition factor for X acting on LY (λ). Moreover, (mL(λ)|X ,mL(µ),mL(ν))(µ− 11)
= (≥ 3,≤V 2, 0) and X acts on LY (λ) with more than two composition factors. This completes
the argument for the pair (A2, E6).
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3.2.3 (C4, E6). — Let (X,Y ) = (C4, E6), then by Table 3.2, we have p 6= 2. Let X̃ be the
maximal closed connected simple subgroup of type C4 in Y given in the proof of [Tes88, Theorem
(5.0)] as follows1.

X̃ = 〈u±(α2+α4+α5)(−t)u±(α2+α3+α4)(t), u±α1(t)u±α6(t), u±α3(t)u±α5(t), u±α4(t) | t ∈ k〉

Let BX̃ = BY ∩ X̃ be a Borel subgroup of X̃. The simple roots with respect to a positive set
of roots corresponding to BX̃ generate a root system of type C4 and are given by the following
restriction of simple roots in Φ+(Y ).

β′1 = (α2 + α3 + α4)|TX̃ = (α2 + α4 + α5)|TX̃ β′2 = α1|TX̃ = α6|TX̃
β′3 = α3|TX̃ = α5|TX̃ β′4 = α4|TX̃

Let X denote the subgroup of Y obtained by conjugating X̃ by a coset representative of sα4sα2 in
NY (TY ). The simple roots of X corresponding to the Borel subgroup BX = X ∩BY are given by
the following restrictions.

α1|TX = α6|TX = β2 α2|TX = β4

α3|TX = α5|TX = β1 α4|TX = β3 − β1

We deduce the following restriction of the fundamental weights in X(TY )+.

λ1|TX = λ6|TX = µ2 λ2|TX = µ4

λ3|TX = λ5|TX = µ1 + µ3 λ4|TX = 2µ3

Using Proposition 1.5.3, we can reduce the number of candidates λ ∈ X(TY )+ on which X acts
with exactly two composition factors. Consider the Levi factor LI of the parabolic subgroup PI of
Y given by I = {αi}i 6=2 and note that LI ∩X = LJ , where LJ is the Levi factor of the parabolic
subgroup PJ of X given by J = {βj}j 6=4. We have that LI is of type A5 and LJ of type A3 (or
equivalently D3 up to relabelling of the Dynkin diagram). Since L′J = L′I ∩X and for α ∈ Φ(Y ),
α ∈ ZI if and only if α|TX ∈ ZJ , we can apply Proposition 1.5.3. The irreducible kL′I -modules
on which L′J acts irreducibly are given by L(λi|TL′

J

) for i ∈ {1, 3, 5, 6} by [Sei87, Theorem 1].
Moreover, the following result classifies the kL′I -irreducible modules on which L′J acts with exactly
two composition factors.

Proposition 3.2.1 ([Cav15, Theorem 5.1]). Let I, J be as above and consider an irreducible
kL′I-module LL′

I
(λ|TL′

I

) having p-restricted highest weight λ ∈ X(TLI )+. Then L′J has exactly two
composition factors on LL′

I
(λ|TL′

I

) if and only if λ and p are as in Table 3.4, where λ is given up
to graph automorphism of L′I . Moreover, LL′

I
(λ|TL′

I

) = LL′
J
(µ|TL′

J

)/LL′
J
(ν|TL′

J

) with µ and ν as in
Table 3.4.

Recall we have assumed p 6= 2. Combining the irreducible action and those with two composition
factors, we only need to consider λ ∈ X(TY )+, with λ appearing in the first column of Table 3.5,
up to graph automorphism.

1Compared to [Tes88, Theorem (5.0)], we have reordered the generators, so that they match our labelling of the
Dynkin diagram of type C4.
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λ µ = λ ν µ− ν p

λ1 + λ3 µ1 + µ2 + µ3 µ2 111 p 6= 5
λ1 + λ6 2µ2 µ1 + µ3 010 p 6= 2
2λ1 2µ2 0 121 p 6= 2, 3
2λ1 + λ6 3µ2 µ1 + µ2 + µ3 010 p = 7
3λ1 3µ2 µ2 121 p 6= 2, 3
λ3 µ1 + µ3 0 111 p = 2
λ4 2µ3 2µ1 (−1)01 p 6= 2

Table 3.4: Two composition factors for the pair (A3, A5)

λ =
∑6
i=1 aiλi µ = λ|TX ν µ− ν p

λ1 + a2λ2 + λ3 µ1 + µ2 + µ3 + a2µ4 µ2 + (a2 + 1)µ4 1110 p 6= 2, 5
λ1 + a2λ2 + λ6 2µ2 + a2µ4 µ1 + µ3 + a2µ4 0100 p 6= 2
2λ1 + a2λ2 2µ2 + a2µ4 (a2 + 1)µ4 1210 p 6= 2, 3
2λ1 + a2λ2 + λ6 3µ2 + a2µ4 µ1 + µ2 + µ3 + a2µ4 0100 p = 7
3λ1 + a2λ2 3µ2 + a2µ4 µ2 + (a2 + 1)µ4 1210 p 6= 2, 3
a2λ2 + λ4 2µ3 + a2µ4 2µ1 + (a2 + 1)µ4 (−1)010 p 6= 2
λ1 + a2λ2 µ2 + a2µ4 − − p 6= 2
a2λ2 + λ3 µ1 + µ3 + a2µ4 − − p 6= 2

Table 3.5: Cases from (A3, A5)

Let λ ∈ X(TY )+ and µ = λ|TX be as listed in Table 3.5. Let ν be as in Table 3.5 if its entry is
nonempty in the line corresponding to λ. Assume λ 6∈ {a2λ2 + λ4, λ1 + a2λ2, a2λ2 + λ3}. If a2 = 0,
then we argue by comparing dimensions, these are listed in Table 3.6. Note that in this case, X
acts on LY (λ) with exactly two composition factors if and only if λ = λ1 + λ3 and p = 3. If a2 6= 0,
then (mL(λ)|X ,mL(µ),mL(ν))(µ− (010100)|TX ) = (≥ 1, 0, 0), where (010100)|TX = (−1)011. Hence
X acts on LY (λ) with more than two composition factors.

Let λ = a2λ2 + λ4. If a2 = 0, we compare dimensions using Table 3.6. If a2 6= 0, then (mL(λ)|X ,

mL(µ),mL(ν))(µ − (010200)|TX ) = (≥ 1, 0, 0), where (010200)|TX = (−2)021. Hence X acts on
LY (λ) with more than two composition factors.

Let λ ∈ {λ1 + a2λ2, a2λ2 + λ3}. Assume a2 = 0. If λ = λ1, then X acts irreducibly on
LY (λ) by [Tes88, Table 1]. If λ = λ3, then µ = µ1 + µ3. We have that ν = µ − 0121 = 2µ1
affords the highest weight of a second composition factor for X acting on LY (λ). Indeed, by
Proposition 1.5.3, the weights which could afford the highest weight of a second composition factor
between µ and µ − 0121 are the dominant weights of the form µ − 0xy1 with x ∈ {0, 1} and
y ∈ {0, 1, 2}. However, none of these weights are dominant apart from µ and µ− 0121. Moreover,
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for α ∈ {111210, 011211, 112200}, we have α|TX = 0121 and α ∈ Λ(λ). Combining this with the
tables in [Lüb07], we get (mL(λ)|X ,mL(µ))(µ − 0121) = (3, 2 − δp,3). Therefore, µ − 0121 affords
the highest weight of a second composition factor for X acting on LY (λ). Note that it also
affords the highest weight of a third composition factor for p = 3. Comparing dimensions, we
get dim(L(λ), L(µ), L(ν)) = (351, 315, 36) if p 6= 3. Hence X acts on LY (λ3) with exactly two
composition factors if and only if p 6= 3. Assume a2 6= 0. Set ν = (λ− 010100)TX = µ− (−1)011 ∈
X(TX)+. Note that ν affords the highest weight of a second composition factor for X acting
on LY (λ). The cases with a2 = 1 are solved by comparing the dimensions listed in Table 3.6.
Assume finally that a2 ≥ 2. Then (mL(λ)|X ,mL(µ),mL(ν))(µ − (020200)|TX ) = (≥ 1, 0, 0), where
(020200)|TX = (−2)022 and so X acts on LY (λ) with more than two composition factors. This
completes the argument for the pair (C4, E6).

λ µ ν char. dim(L(λ), L(µ), L(ν))

λ1 + λ3 µ1 + µ2 + µ3 µ2 + µ4 p = 3 (2404, 1891, 513)
p 6= 2, 3, 5 (5824,≤V 4096,≤V 792)

λ1 + λ6 2µ2 µ1 + µ3 p = 3 (572, 266, 279)
p 6= 2, 3 (650,≤V 308,≤V 315)

2λ1 2µ2 µ4 p = 5 (324, 281,≤V 42)
p 6= 2, 3, 5 (351,≤V 308,≤V 42)

2λ1 + λ6 3µ2 µ1 + µ2 + µ3 p = 7 (5994,≤V 2184, 3502)
3λ1 3µ2 µ2 + µ4 p 6= 2, 3 (≥LB 3002,≤V 2184,≤V 792)
λ4 2µ3 2µ1 + µ4 p 6= 2 (≥LB 2771,≤V 825,≤V 1155)
λ1 + λ2 µ2 + µ4 2µ1 + µ2 p = 5 (1377,≤V 792, 558)

p 6= 2, 5 (≥LB 1701,≤V 792,≤V 594)
λ2 + λ3 µ1 + µ3 + µ4 3µ1 + µ3 p 6= 2 (≥LB 15822,≤V 6237,≤V 3696)

Table 3.6: Some dimensions for (C4, E6)

3.2.4 (A2, E7). — Let (X,Y ) = (A2, E7), then by Table 3.2, we have p 6= 2, 3. Using the
description of the embedding of the Lie algebra of X into the Lie algebra of Y given in [Sei91, p.
89, (5.8)] for p 6= 5 and the argument in [LS04, Lemma 4.1.3] for p = 5, we deduce that up to
conjugacy the simple roots of Φ(Y ) restrict to TX as

α1|TX = α4|TX = β2 α2|TX = α3|TX = β1 − β2 α5|TX = β2 − β1

α6|TX = 2β1 − β2 α7|TX = 2β2 − 2β1.
(3.2)

Whence the following restriction to TX of the fundamental weights in X(TY )+.

λ1|TX = 4(µ1 + µ2) λ2|TX = 7µ1 + 4µ2 λ3|TX = 9µ1 + 6µ2 λ4|TX = 11(µ1 + µ2)
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λ5|TX = 7µ1 + 10µ2 λ6|TX = 6(µ1 + µ2) λ7|TX = 6µ2

Write
∑7
j=1 ajλj and set µ = λ|TX . Recall the definition of the level of a weight and Remark 3.1.1.

Note that (3.2) implies that the hypothesis of Remark 3.1.1 on the level is satisfied. Henceforth,
we assume the level of a TX -weight to be with respect to µ. Let i, k ∈ {2, 3, 5, 7} with i 6= k.
By Remark 3.1.1, if ai 6= 0, then µ−mαi affords the highest weight of a composition factor for
m = 1, . . . , ai. Thus if aiak 6= 0 or ai ≥ 2, then X acts on LY (λ) with more than two composition
factors. We assume from now on that 0 ≤ ai ≤ 1 and aiak = 0 for i, k ∈ {2, 3, 5, 7} with i 6= k.

Let a6 6= 0. Let i ∈ {2, 3} and assume ai 6= 0. A second composition factor for X acting
on LY (λ) is given by ν = µ − 1(−1). Note that (0000010)|TX , (0111000)|TX = µ − 2(−1), hence
(mL(λ)|X ,mL(µ),mL(ν))(µ− 2(−1)) = (≥ 2, 0,≤V 1) and X acts with more than two composition
factors on LY (λ). Let i ∈ {5, 7} and suppose ai 6= 0, then both µ− αi|TX and µ− α6|TX afford a
highest weight of a composition factor for X acting on LY (λ), hence X acts on LY (λ) with more
than two composition factors. Therefore, assume ai = 0 for i ∈ {2, 3, 5, 7}. We check that there is
no composition factor with highest weight of level 0 apart from µ. Indeed, any weight in Λ(LY (λ))
different from λ is of the form λ−

∑7
j=1 rjαj ∈ Z≥0∆(Y ) and the assumption on the coefficients of

λ forces one of r1, r4, r6 to be nonzero. Hence the level of any weight different from µ in Λ(LY (λ)|X)
is strictly positive. By Section 3.1, we deduce that ν = µ − 2(−1) affords the highest weight of
second composition factor. Moreover, (mL(λ)|X ,mL(µ),mL(ν))(µ− (α5 + α6 + α7)|TX ) = (≥ 1, 0, 0),
where (α5 + α6 + α7)|TX = (−1)2 and so X acts on LY (λ) with more than two composition factors.
Note that this argument does not depend on the value of ai for i ∈ {1, 4}. Therefore, X acts on
LY (λ) with more than two composition factors if a6 6= 0. Henceforth assume a6 = 0.

Let a5 6= 0, so a2, a3, a7 = 0. The highest weight of a second composition factor is given by
ν = µ − (−1)1. Moreover, (α4 + α5)|TX , (α5 + α6 + α7)|TX = (−1)2 and (mL(λ)|X ,mL(µ),mL(ν))
(µ − (−1)2) = (≥ 2, 0,≤V 1), hence X acts on LY (λ) with more than two composition factors.
Henceforth assume a5 = 0.

Let a7 6= 0, so a2, a3, a5 = 0. The highest weight of a second composition factor is given by
ν = µ−(−2)2. Assume additionally a1 6= 0 or a4 6= 0. Note that (α1)|TX , (α4)|TX , (α6+α7)|TX = 01,
therefore (mL(λ)|X ,mL(µ),mL(ν))(µ − 01) = (≥ 2,≤V 1, 0) and X acts on LY (λ) with more
than two composition factors. Assume λ = a7λ7. We have already shown that 0 ≤ a7 ≤
1. By comparing dimensions, we get dim(LY (λ), LX(µ), LX(ν)) = (56, 28, 28) if p 6= 5 and
dim(LY (λ), LX(µ), LX(ν)) = (56, < 28, < 28) if p = 5. Therefore, X acts on LY (λ7) with exactly
two composition factors if and only if p 6= 5. Henceforth assume a7 = 0.

Let i ∈ {1, 4} and j ∈ {2, 3} and assume aiaj 6= 0. We have that a second composition factor
for X acting on LY (λ) is given by ν = µ− 1(−1). Note that α1|TX , α4|TX , (α2 + α4 + α5)|TX , (α3 +
α4 + α5)|TX = 01. Hence (mL(λ)|X ,mL(µ),mL(ν))(µ− 01) = (≥ 2,≤V 1, 0) and X acts on LY (λ)
with more than two composition factors.

We are left to consider the cases λ = a1λ1 + a4λ4 and λ = λi for i ∈ {2, 3}. Assume λ = λ2. A
second composition factor is given by ν = µ− 1(−1) = 4µ1 + 7µ2. Comparing dimensions yields
dim(LY (λ2), LX(µ), LX(ν)) = (912,≤V 260,≤V 260), which implies that X acts on LY (λ) with
more than two composition factors.

Suppose λ = λ3. A second composition factor is given by ν = µ − 1(−1). Note that (α1 +
α3)|TX , (α3 + α4)|TX , (

∑5
i=2 αi)|TX = 10, therefore (mL(λ)|X ,mL(µ),mL(ν))(µ − 10) = (≥ 3,≤V

1,≤V 1) and X acts on LY (λ) with more than two composition factors.
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Assume λ = a1λ1 + a4λ4. Reasoning as in the case a6 6= 0, we obtain that there are no weights
in Λ(LY (λ)|X) of level 0 apart from µ. Assume a1a4 6= 0. Since (1010000)|TX , (0101000)|TX ,
(0011000)|TX = 10, we have that (mL(λ)|X ,mL(µ))(µ − 10) = (≥ 3,≤V 1). Hence by Section 3.1,
µ − 10 affords the highest weight of a second and third composition factor for X acting on
LY (λ). Assume λ = a4λ4. Note that (0101000)|TX , (0011000)|TX , (0111100)|TX = 10, hence
(mL(λ)|X ,mL(µ))(µ − 10) = (≥ 3,≤V 1) and X acts on LY (λ) with more than two composition
factors. Assume λ = a1λ1, so µ = 4a1µ1 + 4a1µ2. By [Sei91, Theorem (5.1)] and [LS04, Lemma
4.1.3], if a1 = 1, then X acts with exactly two composition factors on LY (λ) and the second
composition factor is given by µ− 33. Therefore, assume a1 ≥ 2. It is a quick check to see that we
do not have any composition factors of level 1 either. Note that (2000000)|TX , (1011100)|TX = 02,
hence (mL(λ)|X ,mL(µ))(µ− 02) = (≥ 2,≤V 1) and ν = µ− 02 affords the highest weight of a second
composition factor. Moreover, (2020000)|TX , (1111000)|TX = 20. Therefore, we get that (mL(λ)|X ,

mL(µ),mL(ν))(µ− 20) = (≥ 2,≤V 1, 0), which implies that X acts on LY (λ) with more than two
composition factors. This completes the argument for the pair (A2, E7).

3.2.5 (B2, E8). — Let (X,Y ) = (B2, E8), then by Table 3.2, we have p 6= 2, 3. Using the
description of the embedding of the Lie algebra of X into the Lie algebra of Y given in [Sei91,
eq. (10) on p. 111] for p 6= 5 and the proof of [LS04, Lemma 5.1.6] for p = 5, we get that up to
conjugacy the restriction to TX of the simple roots in Φ(Y ) is given by

α1|TX = α6|TX = 0 α2|TX = α5|TX = α8|TX = β2 − β1

α3|TX = β1 − β2 α4|TX = α7|TX = β1.

From these restrictions, we deduce that the fundamental weights in X(TY )+ restrict to TX as
follows.

λ1|TX = 4(µ1 + µ2) λ2|TX = 3µ1 + 10µ2 λ3|TX = 8(µ1 + µ2) λ4|TX = 9µ1 + 16µ2

λ5|TX = 5µ1 + 16µ2 λ6|TX = 4µ1 + 12µ2 λ7|TX = 3µ1 + 8µ2 λ8|TX = 6µ2

Let λ ∈ X(TY )+, write λ =
∑8
i=1 aiλi and set µ = λ|TX . Note that the hypotheses of

Remark 3.1.1 hold for this embedding. We assume the level of all the weights to be with respect to
µ.

Consider first the cases where ai 6= 0 for some i ∈ {1, 2, 3, 5, 6, 8}. Note that ν = µ− (αi)|TX
affords the highest weight of a second composition factor. Let i ∈ {1, 3, 5, 6}, then there is 1 ≤ j ≤ 8
with 〈αi, αj〉 6= 0, such that (λ − αi − αj)|TX is of level 0. By Remark 3.1.1, we have that
(λ− αi − αj)|TX affords the highest weight of a third composition factor for X acting on LY (λ).
Let i = 2. Note that α|TX = 01 for α ∈ {01010000, 01111000, 01111100}. Hence, (mL(λ)|X ,mL(µ),

mL(ν))(µ− 01) = (≥ 3,≤V 1,≤V 1) and X acts on LY (λ) with more than two composition factors.
Henceforth assume aj = 0 for j ∈ {1, 2, 3, 5, 6}. Let i = 8 and assume a8 ≥ 2, then µ− (−2)2 affords
the highest weight of a third composition factor. If a7a8 6= 0, then (mL(λ)|X ,mL(µ),mL(ν))(µ− 10)
= (≥ 2,≤V 1, 0) and X acts with more than two composition factors on LY (λ). If a4a8 6= 0, then
(mL(λ)|X ,mL(µ),mL(ν))(µ− 01) = (≥ 3,≤V 1,≤V 1) and X acts with more than two composition
factors. If a8 = 1 and ai = 0 for 1 ≤ i ≤ 7, then by [Sei91, Theorem (6.1)] and [LS04, Lemma
5.1.6], we have that LY (λ)|X = LX((0, 2))1+δp,5/LX((0, 6))/LX((3, 2)), which implies that X acts
on LY (λ) with more than two composition factors.
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We are left to consider the cases λ = a4λ4 + a7λ7. We reason as in Section 3.1 in order to show
that X acts on LY (λ) with more than two composition factors. We check that there is no weight in
Λ(LY (λ)|X) apart from µ of level 0. Note that (α)|TX = 01 for α ∈ {01010000, 00011000, 00011100}
and if a4 6= 0, then (λ− α) ∈ Λ(LY (λ)). Thus (mL(λ)|X ,mL(µ))(µ− 01) = (≥ 3,≤V 1). Note that
(α)|TX = 01 for α ∈ {00000011, 00000111, 00001110} and if a7 6= 0, then (λ− α) ∈ Λ(LY (λ)). Thus
(mL(λ)|X ,mL(µ))(µ− 01) = (≥ 3,≤V 1). Therefore, we get that X acts on LY (λ) with more than
two composition factors. This completes the argument for the pair (B2, E8).

3.2.6 (G2, F4). — Let (X,Y ) = (G2, F4), then by Table 3.2, we have p = 7. By the construction
of this embedding in [Tes89, Proposition (F1)], we have that up to conjugacy the restriction to TX
of the simple roots in Φ(Y ) is given by

αi|TX = β1 for i ∈ {1, 3, 4} α2|TX = β2 − β1.

We deduce that the restriction to TX of the fundamental weights in X(TY )+ is as follows.

λ1|TX = µ1 + µ2 λ2|TX = 3µ2 λ3|TX = 2µ1 + µ2 λ4|TX = 2µ1

Let λ ∈ X(TY )+, write λ =
∑4
i=1 aiλi and set µ = λ|TX . Note that the hypotheses of

Remark 3.1.1 hold for this embedding and we assume the level of a weight to be with respect to µ.
If a2 6= 0, then µ− (−1)1 affords the highest weight of a composition factor for X acting on LY (λ).
If a2 ≥ 2, then µ− (−2)2 affords the highest of a composition factor as well and X acts with more
than two composition factors. Henceforth assume 0 ≤ a2 ≤ 1.

Let i, j ∈ {1, 3, 4} distinct and assume aiaj 6= 0, then µ − 10 affords the highest weight of
a composition factor for X acting on LY (λ). Let 1 ≤ i, j, k ≤ 4 distinct with aiajak 6= 0. If
i, j, k ∈ {1, 3, 4}, then µ− 10 affords the highest weight of a third composition factor for X acting
on LY (λ) and if i, j, k 6∈ {1, 3, 4}, then µ− (−1)1 does. Hence X acts on LY (λ) with more than
two composition factors. Therefore, assume λ = aiλi + ajλj , 1 ≤ i < j ≤ 4 with aiaj 6= 0. Set

ν =
{
µ− (−1)1 if a2 6= 0
µ− 10 otherwise .

By the previous considerations, ν affords the highest weight of a second composition factor for X
acting on LY (λ).

Let (i, j) = (1, 2). Recall that a2 = 1. If a1 6= p − 2, then (mL(λ)|X ,mL(µ),mL(ν))(µ − 01)
= (3,≤V 1,≤V 1) and X acts with more than two composition factors. If a1 = p−2, then α|TX = 11
for α ∈ {2100, 1110, 0111, 0120}, hence (mL(λ)|X ,mL(µ),mL(ν))(µ− 11) = (≥ 4,≤V 2,≤V 1) and X
acts with more than two composition factors.

Let (i, j) = (1, 3), then (mL(λ)|X ,mL(µ),mL(ν))(µ− 01) = (≥ 2,≤V 1, 0) and X acts with more
than two composition factors.

Let (i, j) = (1, 4). If a1 ≥ 2 or a4 ≥ 2, then (mL(λ)|X ,mL(µ),mL(ν))(µ−20) = (≥ 3,≤V 1,≤V 1)
and X acts with more than two composition factors. If a1 = a4 = 1, then comparing dimensions
yields dim(L(λ), L(µ), L(ν)) = (1053,≤V 448,≤V 286), hence X acts on LY (λ) with more than
two composition factors.
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Let (i, j) = (2, 3). Recall that a2 = 1. If a3 ≥ 2, then (mL(λ)|X ,mL(µ),mL(ν))(µ − 20)
= (≥ 2,≤V 1, 0) and X acts on LY (λ) with more than two composition factors. Note that
α|TX = 11 for α ∈ {1110, 0120, 0111}. If a3 = 1, then by applying Proposition 1.2.2, we can show that
mL(λ)(λ− 0120) = mλ(λ− 0120) = 2. Hence (mL(λ)|X ,mL(µ),mL(ν))(µ− 11) = (≥ 4,≤V 2,≤V 1)
and X acts with more than two composition factors.

If (i, j) = (2, 4), then (mL(λ)|X ,mL(µ),mL(ν))(µ − 01) = (≥ 3,≤V 1,≤V 1), hence more than
two composition factors.

Let (i, j) = (3, 4). If a3, a4 ≥ 2, then (mL(λ)|X ,mL(µ),mL(ν))(µ−20) = (≥ 3,≤V 1,≤V 1) and X
acts with more than two composition factors. If a3 ≥ 2 or a4 ≥ 2, and a3+a4 6= p−1, then (mL(λ)|X ,

mL(µ),mL(ν))(µ − 20) = (≥ 3,≤V 1,≤V 1) and X acts with more than two composition factors.
If (a3, a4) = (1, 5) or (a3, a4) = (5, 1), then (mL(λ)|X ,mL(µ),mL(ν))(µ − 30) = (≥ 3,≤V 1,≤V 1)
and X acts with more than two composition factors. If (a3, a4) = (1, 1), then µ = 4µ1 + µ2 and
ν = 2(µ1 + µ2). Comparing dimensions yields dim(L(λ), L(µ), L(ν)) = (2991,≤V 924,≤V 729),
and so X acts with more than two composition factors on LY (λ).

The last cases to consider are λ = aiλi. Let λ = a1λ1, so that µ = a1(µ1 + µ2). We check by
direct computations that there is no weight of level 0 or 1 which affords the highest weight of a
second composition factor for X acting on LY (λ). The only weights of level 2 in Λ(LY (λ)|X) are
µ− 20, µ− 02 and µ− 11. It is straightforward that µ− 20 and µ− 02 appear with multiplicity 1
in both LY (λ)|X and LX(µ). Moreover, µ− 11 appears with multiplicity 2− δa,1 in LY (λ)|X and
we check that it also the case in LX(µ) by applying Lemma 2.1.6. Therefore, there is no weight of
level 2 either which affords the highest weight of a second composition factor. Note that α|TX = 12
for α ∈ {3200, 2210, 1220}. Hence, if a1 ≥ 3, then (mL(λ)|X ,mL(µ))(µ − 12) = (≥ 3,≤V 2) and
a second composition factor for X acting on LY (λ) is given by ν = µ − 12. Moreover, we have
α|TX = 21 for α ∈ {3100, 2110, 1120, 1111}. Thus (mL(λ)|X ,mL(µ),mL(ν))(µ− 21) = (≥ 4,≤V 3, 0)
and X acts on LY (λ) with more than two composition factors. If a1 = 1, 2, then (α)|TX = 21
for α ∈ {1111, 2110, 1120} and using the tables in [Lüb07], we get (mL(λ)|X ,mL(µ))(µ − 21) =
(≥ 3− δa1,1,≤V 2− δa1,1). Thus a second composition factor for X acting on LY (λ) is given by
ν = µ− 21 = (a1 − 1)µ1 + a1µ2. Comparing dimensions yields

dim(L(λ), L(µ), L(ν)) =
{

(52, 38, 14) if a1 = 1
(755, 481, 248) if a1 = 2

which implies that X acts on LY (λ) with exactly two composition factors if a1 = 1 and with more
than two composition factors if a1 = 2.

Let λ = a2λ2. We have already proven that a2 = 1 and ν = µ − (−1)1 affords the highest
weight of a second composition factor for X acting on LY (λ). Note that µ = 3µ2 and ν = 5µ1.
Moreover, (λ− α)|TX = µ− 11 for α ∈ {1110, 0120, 0111}. Hence (mL(λ)|X ,mL(µ),mL(ν))(µ− 11)
= (≥ 3,≤V 1,≤V 1) and X acts with more than two composition factors.

If λ = a3λ3, then by a similar reasoning as in the case λ = a1λ1, we prove that there is no weight
of level 0 and 1 apart from µ which affords the highest weight of a second composition factor for X
acting on LY (λ). For α ∈ {0111, 1110, 0120}, we have α|TX = 11 and so (mL(λ)|X ,mL(µ))(µ− 11) =
(≥ 3,≤V 2,). Hence ν = µ − 11 affords the highest weight of a second composition factor for X
acting on LY (λ). Note that if a3 ≥ 2, then (mL(λ)|X ,mL(µ),mL(ν))(µ− 20) = (≥ 2,≤V 1, 0), hence
X acts on LY (λ) with more than two composition factors. If a3 = 1, then µ = (2, 1), ν = (3, 0)
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and we get by comparing dimensions dim(L(λ), L(µ), L(ν)) = (273, 189, 77), thus establishing the
existence of a third composition factor.

Let λ = a4λ4. If a4 = 1, then X acts irreducibly on LY (λ) by [Tes88, Table 1]. If a4 ≥ 2, then
a second composition factor is given by ν = µ− 20. Note that µ = (2a4, 0) and ν = (2a4 − 4, 2). If
a4 = 2, 3, then comparing dimensions yields

dim(L(λ), L(µ), L(ν)) =
{

(298,≤V 182,≤V 77) if a = 2
(2651,≤V 714,≤V 729) if a = 3,

and X acts on LY (λ) with more than two composition factors. If a4 ≥ 4, then we get that (mL(λ)|X ,

mL(µ),mL(ν))(µ− 40) = (≥ 3,≤V 1,≤V 1), and X acts with more than two composition factors on
LY (λ). This completes the argument for the pair (G2, F4).

3.2.7 Maximal A1’s. — We now solve the cases where X = A1. The construction of the
maximal subgroups of type A1 can be found in [Tes92]. We will use [Tes92, Lemma 4] which
describes the embedding of the Lie algebra of X into the Lie algebra of Y , in order to find the
restriction to TX of the simple roots of Φ(Y ).

Recall from the representation theory of A1 that the dimension of a weight space of an irreducible
representation of X is at most 1. Consequently, if there is a weight θ ∈ Λ(LY (λ))|TX of multiplicity
greater or equal to 3 in LY (λ)|X , then X acts on LY (λ) with more than two composition factors.
In this subsection, our notation for µ −mβ1 becomes µ −m. Additionally, since X(TX)+ is a
one-dimensional lattice, for a weight µ ∈ X(TX)+, there is a ∈ Z such that µ = aµ1 and we denote
µ by (a).

3.2.7.1 (A1, G2). — Let (X,Y ) = (A1, G2), then by Table 3.2, we have p 6= 2, 3, 5. The simple
roots in Φ(Y ) restrict to TX as follows.

αi|TX = β1 for i ∈ {1, 2}

Thus the fundamental weights in X(TY )+ restrict to TX as

λ1|TX = (6) λ2|TX = (10).

Let λ ∈ X(TY )+, write λ = a1λ1 + a2λ2 and set µ = λ|TX . Assume a1 ≥ 4 or a2 ≥ 4, then µ− 4
has multiplicity at least 3 in LY (λ)|X . Henceforth assume 0 ≤ a1, a2 ≤ 3.

Assume a1a2 6= 0. If a1 ≥ 2 and a2 ≥ 2, then µ− 2 is of multiplicity at least 3 in LY (λ)|TX . If
a1 ≥ 3 or a2 ≥ 3, then µ− 3 is of multiplicity at least 3 in LY (λ)|TX . If (a1, a2) ∈ {(1, 2), (2, 1)},
then Lemma 2.1.6 implies that the multiplicity of µ− 2 is at least 3 in LY (λ)|X . If (a1, a2) = (1, 1),
then the highest weight of a second composition factor for X acting on LY (λ) is given by ν = µ− 1.
The dimensions listed in Table 3.7 imply that X acts on LY (λ) with more than two composition
factors.

Let us consider the cases λ = aiλi for i ∈ {1, 2}. If a1 = 1, then X acts irreducibly on LY (λ)
by [Tes88, Table 1]. If a2 = 1, then we check that µ − 4 affords the highest weight of a second
composition factor for X acting on LY (λ). Comparing dimensions yields dim(L(λ), L(µ), L(ν)) =
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(14,≤V 11,≤V 3). Therefore, X acts with exactly two composition factors on LY (λ) if and only if
p 6= 7.

If 2 ≤ a1 ≤ 3 or 2 ≤ a2 ≤ 3, a second composition factor is given by ν = µ− 2. We solve these
cases by comparing the dimensions listed in Table 3.7.

λ µ ν dim(L(λ), L(µ), L(ν))

2λ1 (12) (8) (≥LB 26,≤V 13,≤V 9)
3λ1 (18) (14) (77,≤V 19,≤V 15)
2λ2 (20) (16) (77,≤V 21,≤V 17)
3λ2 (30) (26) (≥LB 148,≤V 31,≤V 27)
λ1 + λ2 (16) (14) (≥LB 38,≤V 17,≤V 15)

Table 3.7: Some dimensions for (A1, G2)

3.2.7.2 (A1, F4). — Let (X,Y ) = (A1, F4), then by Table 3.2, we have p = 0 or p ≥ 13. The
restriction to TX of the simple roots of Φ(Y ) is given by αi|TX = β1 for 1 ≤ i ≤ 4. We get that the
fundamental weights in X(TY )+ restrict to TX as follows.

λ1|TX = (22) λ2|TX = (42) λ3|TX = (30) λ4|TX = (16)

Let λ ∈ X(TY )+, write λ =
∑4
i=1 aiλi and set µ = λ|TX . Let 1 ≤ i, j, k ≤ 4 be pairwise distinct

with aiajak 6= 0, then the multiplicity of µ− 1 is at least 3 in LY (λ)|X and so X acts on LY (λ)
with more than two composition factors.

Let (i, j) ∈ {(1, 3), (1, 4), (2, 3), (2, 4)} with aiaj 6= 0, then the multiplicity of µ−2 in LY (λ)|X is
at least 3. Let (i, j) ∈ {(1, 2), (3, 4)} with aiaj 6= 0. If ai ≥ 2 or aj ≥ 2, then µ− 2 is of multiplicity
at least 3 in LY (λ)|X . If ai = aj = 1, then by Lemma 2.1.6 we get that µ − 2 is of multiplicity
at least 3 in LY (λ)|X . In all these cases, we have that X acts on LY (λ) with more than two
composition factors.

The last cases to consider are λ = aiλi for 1 ≤ i ≤ 4. If ai ≥ 2, then µ − 4 is of multiplicity
at least 3 in LY (λ)|X . Therefore, assume ai = 1. If λ = λ4, then we check that µ− 4 affords the
highest weight of a second composition factor for X acting on LY (λ). Comparing dimensions yields
dim(L(λ), L(µ), L(ν)) = (26, 17, 9) if p ≥ 17 and dim(L(λ), L(µ), L(ν)) = (26, < 17, 9) if p = 13.
Therefore X acts on LY (λ) with exactly two composition factors if and only if p ≥ 17.

Assume λ = λi for 1 ≤ i ≤ 3. Note that the highest weight of a composition factor for X acting
on LY (λ) has to be strictly smaller than µ. Therefore, we can bound above the dimension of a
second composition factor by the dimension of VX(µ). We solve the remaining cases in Table 3.8
by noticing that dimLY (λ) > 2 dimVX(µ).

3.2.7.3 (A1, E7). — Let (X,Y ) = (A1, E7). By Table 3.2, there are two conjugacy classes of
maximal A1 subgroups in E7. For the first conjugacy class, we have p = 0 or p ≥ 19. The restriction
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λ µ dim(LY (λ), VX(µ))

λ1 (22) (52,23)
λ2 (42) (1274,43)
λ3 (30) (273,31)

Table 3.8: Some dimensions for (A1, F4)

to TX of the simple roots of Φ(Y ) in the first class is given by αi|TX = β1 for all 1 ≤ i ≤ 7. This
implies that the fundamental weights in X(TY )+ restrict to TX as follows.

λ1|TX = (34) λ2|TX = (49) λ3|TX = (66) λ4|TX = (96)
λ5|TX = (75) λ6|TX = (52) λ7|TX = (27)

Let λ ∈ X(TY )+, write λ =
∑7
i=1 aiλi and set µ = λ|TX . If there is i ∈ {3, 4, 5} with ai 6= 0,

then µ− 3 has multiplicity at least 3 in LY (λ)|X . If there is i ∈ {2, 6} with ai 6= 0, then µ− 4 has
multiplicity at least 3 in LY (λ)|X .

We are left with the cases λ = a1λ1 + a7λ7. If a1a7 6= 0, then µ − 2 has multiplicity at least
3 in LY (λ)|X . Assume λ = a1λ1. If a1 ≥ 2, then µ − 5 has multiplicity at least 3 in LY (λ). If
a1 = 1, then using the tables in [Lüb07], we get that LY (λ) has a weight with multiplicity at least
3, hence X acts with more than two composition factors of LY (λ). Assume λ = a7λ7. If a7 ≥ 2,
then µ− 6 has multiplicity at least 3 in LY (λ)|X . If a7 = 1, then a second composition factor is
given ν = µ− 5. Since (dim(L(λ), L(µ), L(ν)) = (56,≤V 28,≤V 18), we get that X acts on LY (λ)
with more than two composition factors.

For the second conjugacy class, we have by Table 3.2 that p = 0 or p ≥ 17. The simple roots of
Φ(Y ) restrict to TX as αi|TX = β1 for 1 ≤ i ≤ 7 and i 6= 4, and α4|TX = 0. This implies that the
fundamental weights in X(TY )+ restrict to TX as follows.

λ1|TX = (26) λ2|TX = (37) λ3|TX = (50) λ4|TX = (72)
λ5|TX = (57), λ6|TX = (40), λ7|TX = (21).

Let λ ∈ X(TY )+, write λ =
∑7
i=1 aiλi and set µ = λ|TX . Assume a4 6= 0, then µ − 1 has

multiplicity at least 3 in LY (λ)|X . Let i ∈ {3, 5} and assume ai 6= 0, then µ− 2 has multiplicity
at least 3 in LY (λ)|X . Let i ∈ {2, 6} and assume ai 6= 0, then µ − 3 has multiplicity at least 3
in LY (λ)|X . Assume a1 6= 0, then µ − 4 has multiplicity at least 3 in LY (λ)|X . Assume a7 6= 0,
then µ− 5 has multiplicity at least 3 in LY (λ)|X . Therefore, X acts on LY (λ) with more that two
composition factors.

3.2.7.4 (A1, E8). — Assume (X,Y ) = (A1, E8). By Table 3.2, there are three classes of maximal
A1-subgroups in E8. For the first, we have p = 0 or p ≥ 31. The simple roots of Φ(Y ) restrict to
TX as αi|TX = β1 for 1 ≤ i ≤ 8 and the fundamental weights in X(TY )+ restrict to TX as follows

λ1|TX = (92) λ2|TX = (136) λ3|TX = (182) λ4|TX = (270)
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λ5|TX = (220) λ6|TX = (168) λ7|TX = (114) λ8|TX = (58)

Note that the restriction to TX of αi for 1 ≤ i ≤ 7 is the same as in the first case of Subsection 3.2.7.3.
By Proposition 1.5.2 and the reasoning in Subsection 3.2.7.3, we can assume that λ ∈ X(TY )+ is
of the form λ = a1λ1 + a7λ7 + a8λ8, with 0 ≤ a1, a7 ≤ 1, if X acts on LY (λ) with at most two
composition factors.

If a7 = 1, then µ− 4 has multiplicity at least 3 in LY (λ), hence X acts on LY (λ) with more
than two composition factors. Henceforth assume a7 = 0. If a1a8 6= 0, then µ− 2 has multiplicity at
least 3 in LY (λ). Let λ = a8λ8. If a8 ≥ 2, then µ− 5 has multiplicity at least 3 in LY (λ). Assume
λ = λi for i ∈ {1, 8}. Using the tables in [Lüb07], we get that in both of these cases LY (λ) has a
weight of multiplicity at least 3. Hence X acts on LY (λ) with more than two composition factors.

For the second class, we have p = 0 or p ≥ 29. The restriction to TX of the simple roots of Φ(Y )
is given by αi|TX = β1 for 1 ≤ i ≤ 8 and i 6= 4, and α4|TX = 0. We thus get that the fundamental
weights in X(TY )+ restrict to TX as follows.

λ1|TX = (72) λ2|TX = (106) λ3|TX = (142) λ4|TX = (210)
λ5|TX = (172) λ6|TX = (132) λ7|TX = (90) λ8|TX = (46)

Let λ ∈ X(TY )+, write λ =
∑8
i=1 aiλi and set µ = λ|TX . Notice that as for the first class, the

restriction to TX of αi for 1 ≤ i ≤ 7 is the same as in the second class of Subsection 3.2.7.3. By
Proposition 1.5.2 and the reasoning in Subsection 3.2.7.3, if X acts on LY (λ) with exactly two
composition factors, then λ = a8λ8. Note that if a8 6= 0, then µ− 6 has multiplicity at least 3 in
LY (λ)|X , hence X acts on LY (λ) with more than two composition factors.

For the third class, we have p = 0 or p ≥ 23. The restriction to TX of the simple roots of Φ(Y )
is given by αi|TX = β1 for 1 ≤ i ≤ 8 and i 6= 4, 6, and α4|TX = α6|TX = 0. This implies that the
fundamental weights in X(TY )+ restrict to TX as follows.

λ1|TX = (60) λ2|TX = (88) λ3|TX = (118) λ4|TX = (174)
λ5|TX = (142) λ6|TX = (108) λ7|TX = (74) λ8|TX = (38)

Let a4 6= 0 or a6 6= 0, then µ− 1 has at least multiplicity 3 in LY (λ)|X . Let i ∈ {1, 2, 3, 5, 7}
and assume ai 6= 0, then µ− 3 has at least multiplicity 3 in LY (λ)|X . Let a8 6= 0, then µ− 5 has
at least multiplicity 3 in LY (λ)|X . Therefore, X acts on LY (λ) with more than two composition
factors.

3.3 Maximal subgroups of maximal rank

The goal of this section is to prove Proposition 3.0.1 for the pairs (X,Y ) as in Table 3.1, excluding
the cases (Y, p) ∈ {(F4, {2, 3, 5, 7, 11}), (G2, {2, 3})}. Let BY = UY TY be a Borel subgroup of Y .
We fix BX = UXTY to be the Borel subgroup of X, where UX = UY ∩X.

The pairs (X,Y ) are in correspondence with the maximal closed subsystems of Φ(Y ). Recall
that they can be deduced using a theorem from Borel-de Siebenthal (c.f. [MT11, Theorem 13.12]).
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For each embedding (X,Y ), we start by applying the theorem from Borel-de Siebenthal to find a
base ∆′(X) of Φ(X) ⊆ Φ(Y ). However, if ∆′(X) 6⊆ Φ+(Y ), then ∆′(X) is not equal to the base
∆(X) corresponding to our choice of BX . Nevertheless, there is an element w ∈ WX , the Weyl
group of X, which conjugates ∆′(X) to ∆(X) ⊆ Φ+(Y ). In order to distinguish between a linear
expression in terms of simple roots in ∆(Y ) and one in ∆(X), we add a subscript Y or X. For
example, if rank(Y ) = 4, then (1111)X =

∑4
i=1 βi denotes a linear expression in terms of the simple

roots in ∆(X) and (1111)Y =
∑4
i=1 αi denotes a linear expression in terms of the simple roots in

∆(Y ).
Let λ ∈ X(TY )+ and notice that since TY is a maximal torus of X, it makes sense to consider

LX(λ) and VX(λ). Denote the longest element of WX by (w0)X . Recall that by Lemma 1.4.1, the
restriction commutes with taking the dual. Therefore, if LY (λ) is self-dual, then LY (λ)|X is also
self-dual. The next lemma provides in certain cases a method to establish the existence of third
composition factor for X acting on LY (λ).

Lemma 3.3.1. Let λ ∈ X(TY )+ and assume ν ∈ X(TX)+ affords the highest weight of a second
composition factor for X acting on LY (λ). Assume LY (λ)|X is self-dual. If −(w0)X · λ 6= ν and
either −(w0)X · λ 6= λ or −(w0)X · ν 6= ν, then X acts on LY (λ) with more than two composition
factors.

Proof. The hypotheses imply that a module with composition factors LX(λ)/LX(ν) is not self-dual.
Since LY (λ)|X is self-dual, X acts on LY (λ) with more than two composition factors.

3.3.1 (A8, E8). — Assume (X,Y ) = (A8, E8). Up to conjugacy, the simple roots of a root
system of type A8 in Φ(Y ) are given by

β1 = α8 β2 = α7 β3 = α6 β4 = α5

β5 = α4 β6 = α3 β7 = α1 β8 = α1 + 3α2 + 3α3 + 5α4 + 4α5 + 3α6 + 2α7 + α8

which can be rewritten as

α1 = β7 α3 = β6 α4 = β5 α5 = β4

α6 = β3 α7 = β2 α8 = β1

and
α2 = 1

3(β8 − β1 − 2β2 − 3β3 − 4β4 − 5β5 − 3β6 − β7).

We deduce the following linear expressions relating the fundamental weights with respect to ∆(Y )
to those with respect to ∆(X).

λ1 = µ7 + µ8 λ2 = 3µ8 λ3 = µ6 + 3µ8 λ4 = µ5 + 5µ8

λ5 = µ4 + 4µ8 λ6 = µ3 + 3µ8 λ7 = µ2 + 2µ8 λ8 = µ1 + µ8

Let λ ∈ X(TY )+ and write λ =
∑8
i=1 aiλi. Note that

(λ− r1α2 + ZΦ(X)) ∩ (λ− r2α2 + ZΦ(X)) = ∅ (3.3)
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for r1, r2 ∈ {0, 1, 2} distinct. Hence by Lemma 3.1.2, if ai ≥ 2 for some 1 ≤ i ≤ 8, then X acts on
LY (λ) with more than two composition factors. Henceforth assume ai ≤ 1 for all 1 ≤ i ≤ 8.

By Lemma 3.1.2, the following set is nonempty.{
γ =

8∑
i=1

biαi | 0 ≤ bi ≤ 1, b2 = 1, λ− γ ∈ Λ(VY (λ)), support(γ) is connected
}

Let α be an element in this set such that | support(α)| is minimal. By (3.3), we have that ν = λ−α
affords the highest weight of a second composition factor for X acting on LY (λ). By Lemma 3.1.3,
if there are 1 ≤ i < j ≤ 8 such that aiaj 6= 0, then λ − (22222222)Y ∈ Λ(LY (λ)) and by (3.3),
X acts on LY (λ) with more than two composition factors. Assume λ = λi for 1 ≤ i ≤ 8. Since
−1 ∈ WY , we have that LY (λ) is self-dual and so by Lemma 1.4.1, we have that LY (λ)|X is
too. Now, we apply Lemma 3.3.1 in order to show that X acts on LY (λ) with more than two
composition factors. If LX(λi) is self-dual, then is i = 8. Note that λ8 = µ1 +µ8 and ν = µ6, hence
λ8 6= (w0)X · ν 6= ν. Therefore, X acts on LY (λ) with more than two composition factors. Assume
LX(λ) is not self-dual, that is (w0)X · λ 6= λ. If −(w0)X · λ = ν, then λ+ (w0)X · λ = α, that is
(w0)Xα = α. A case-by-case verification implies that (w0)X ·α = α never holds. Therefore, we have
(w0)X · λ 6= ν and X acts with more than two composition factors on LY (λ).

3.3.2 (D8, E8). — Assume (X,Y ) = (D8, E8). Up to conjugacy, the simple roots of a root
system of type D8 in Φ(Y ) are given by

β1 = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 β2 = α8 β3 = α7 β4 = α6

β5 = α5 β6 = α4 β7 = α2 β8 = α3

which can be written as

α1 = 1
2(β1 − β3 − 2β4 − 3β5 − 4β6 − 2β7 − 3β8)

and

α2 = β7 α3 = β8 α4 = β6 α5 = β5

α6 = β4 α7 = β3 α8 = β2.

We deduce the following linear expressions relating the fundamental weights with respect to
∆(Y ) to those with respect to ∆(X).

λ1 = 2µ1 λ2 = 2µ1 + µ7 λ3 = 3µ1 + µ8 λ4 = 4µ1 + µ6

λ5 = 3µ1 + µ5 λ6 = 2µ1 + µ4 λ7 = µ1 + µ3 λ8 = µ2

Let λ ∈ X(TY )+ with λ 6= 0 and write λ =
∑8
i=1 aiλi. Note that for r ∈ {0, 2}

(λ− rα2 + ZΦ(X)) ∩ (λ− α2 + ZΦ(X)) = ∅. (3.4)
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By Lemma 3.1.2, the following set is nonempty.{
γ =

8∑
i=1

biαi | 0 ≤ bi ≤ 1, b1 = 1, λ− γ ∈ Λ(VY (λ)), support(γ) is connected
}

Let α be an element in this set with | support(α)| minimal. It is clear that ν = λ− α affords the
highest weight of a second composition factor for X acting on LY (λ).

If ai ≥ 2 for some 1 ≤ i ≤ 8 or aiaj 6= 0 for 1 ≤ i < j ≤ 8, then by Lemma 3.1.2 or Lemma 3.1.3,
respectively, the following set is nonempty.{

γ =
8∑
i=1

2biαi | 0 ≤ bi ≤ 1, b1 = 1, λ− γ ∈ Λ(VY (λ)), support(γ) is connected
}

Let α′ be an element in this set. Then α′ 6∈ Λ(LX(λ)) and by (3.4), α′ 6∈ Λ(LX(ν)). Hence if
ai ≥ 2 for some 1 ≤ i ≤ 8 or aiaj 6= 0 for 1 ≤ i < j ≤ 8, then X acts on LY (λ) with more than
composition factors. Henceforth, we assume that λ = λi for some 1 ≤ i ≤ 8.

Consider the following linear combinations of simple roots in terms of ∆(Y ) and in terms of
∆(X).

(21221000)Y = (10(−1)(−2)(−2)(−2)(−1)(−1))X (22442222)Y = (1210(−1)001)X
(22242222)Y = (1210(−1)00(−1))X (22244222)Y = (1210100(−1))X
(22244422)Y = (1212100(−1))X (22244442)Y = (1232100(−1))X

For γ ∈ ((21221000)Y , (22442222)Y , (22242222)Y , (22244222)Y , (22244422)Y , (22244442)Y ) and for
i ∈ (1, 3, 4, 5, 6, 7), respectively, a computer verification implies that setting λ = λi, we have (mLY (λ),

mLX(λ),mLX(ν))(λ − γ) = (≥ 1, 0, 0). Hence X acts on LY (λ) with more than two composition
factors for i ∈ {1, 3, 4, 5, 6, 7}. If λ = λi for i ∈ {2, 8}, comparing dimensions yields

dim(LY (λ), LX(λ), LX(ν)) =
{

(≥LB 113243,≤V 15360,≤V 60060) if i = 2
(248, 120− 2δp,2, 128) if i = 8.

Therefore, we get that X acts on LY (λ) with exactly two composition factors if and only if i = 8
and p 6= 2. This completes the argument for the pair (A2, E6).

3.3.3 (A7, E7). — Assume (X,Y ) = (A7, E7). Up to conjugacy, the simple roots of a root
system of type A7 in Φ(Y ) are given by

β1 = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 β2 = α7 β3 = α6 β4 = α5

β5 = α4 β6 = α3 β7 = α1

which can be written as

α1 = β7 α3 = β6 α4 = β5

α5 = β4 α6 = β3 α7 = β2
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and
α2 = 1

2(β1 − β3 − 2β4 − 3β5 − 2β6 − β7).

We deduce the following linear expressions relating the fundamental weights with respect to ∆(Y )
to those with respect to ∆(X).

λ1 = µ1 + µ7 λ2 = 2µ1 λ3 = 2µ1 + µ6 λ4 = 3µ1 + µ5

λ5 = 2µ1 + µ4 λ6 = µ1 + µ3 λ7 = µ2

Let λ ∈ X(T)+ and write λ =
∑7
i=1 aiλi. By a similar reasoning as in Subsection 3.3.2, if X

acts on LY (λ) with two composition factors, then we can assume that λ = λi for 1 ≤ i ≤ 7 and that
a second composition factor for X acting on LY (λ) is given by ν = λ− α, where α is an element of
the following set with | support(α)| minimal.{

γ =
7∑
i=1

biαi | 0 ≤ bi ≤ 1, b2 = 1, λ− γ ∈ Λ(VY (λ)), support(γ) is connected
}

Assume i ∈ {1, 7}. Comparing dimensions, we get

dim(LY (λi), LX(λi), LX(ν)) =
{

(133− δp,2, 63− δp,2, 70) if i = 1
(56, 28, 28) if i = 7.

Hence X acts on LY (λ1) with exactly two composition factors if i ∈ {1, 7}. Assume i 6= 1, 7. Note
that −1 ∈WY , hence LY (λ) is self-dual. Applying Lemma 3.3.1, a simple case-by-case calculation
shows that LX(λ) is not self-dual and that −(w0)X · λ 6= ν, hence establishing the existence of a
third composition factor for X acting on LY (λ).

3.3.4 (B4, F4). — Assume (X,Y ) = (B4, F4). Recall that we have assumed p 6= 2, 3, 5, 7, 11. Up
to conjugacy, the simple roots of a root system of type B4 in Φ(Y ) are given by

β1 = α2 + 2α3 + 2α4 β2 = α1 β3 = α2 β4 = α3

which can be written as

α1 = β2 α2 = β3 α3 = β4 α4 = 1
2(β1 − β3)− β4.

We deduce the following linear relation between the fundamental weights with respect to ∆(Y ) and
those with respect to ∆(X).

λ1 = µ2 λ2 = µ1 + µ3 λ3 = µ1 + µ4 λ4 = µ1

Remark 3.3.2. Let λ ∈ X(TY )+. Note that hypotheses 1) and 4) of Corollary 1.4.7 are satisfied.
Indeed, since −1 belongs to the Weyl group of Y , we have that LY (λ) is self-dual, hence LY (λ)|X
is too by Lemma 1.4.1. Moreover, we check using the embedding of Φ(X) ⊆ Φ(Y ) that eβ0 = d0eα0

with d0 ∈ k∗, where β0, α0 denote the largest root in Φ(X),Φ(Y ), respectively.
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Recall the notations introduced in (1.6), (1.7) and Notation 2.1.3. Let λ ∈ X(TY )+ and write
λ =

∑4
i=1 aiλi. Set ν = λ−

∑4
max {i | ai 6=0} αi and note that ν ∈ Λ(VY (λ)). Since

(λ+ ZΦ(X)) ∩ (λ− α4 + ZΦ(X)) = ∅,

we get that ν affords the highest weight of a second composition factor for X acting on LY (λ).
Now, if a3 ≥ 2 or a4 ≥ 2, then (mLY (λ),mLX(λ),mLX(ν))(λ − (0022)Y ) = (≥ 1, 0, 0) or

(mLY (λ),mLX(λ),mLX(ν))(λ − (0002)Y ) = (≥ 1, 0, 0), respectively. Hence X acts on LY (λ) with
more than two composition factors and we assume from now on that 0 ≤ a3, a4 ≤ 1.

Let i ∈ {1, 2, 3}. If aia4 6= 0, then (mLY (λ),mLX(λ),mLX(ν))(λ− (1112)Y ) = (≥ 1, 0, 0), which
implies that X acts with more than two composition factors. Henceforth assume aia4 = 0 for
1 ≤ i ≤ 3.

Let a2a3 6= 0 (and 0 ≤ a1). Recall that a3 = 1 and a4 = 0, so ν = µ − 1
2 (β1 − β3). Note

that (0111)Y = 1
2 (β1 + β3). If a2 6= p−3

2 , then by Proposition 1.2.2 and Lemma 2.1.6, we
have that (mLY (λ),mLX(λ),mLX(ν))(λ − (0111)Y ) = (2, 0, 1), which establishes the existence of
a third composition factor for X acting on LY (λ). The case a1 = 0 and a2 = p−3

2 is solved in
Subsection 3.3.4.2.

Assume a1a2a3 6= 0. As in the previous paragraph, a3 = 1, a4 = 0, ν = µ − (0011)Y and
moreover, we may assume a2 = p−3

2 if X acts on LY (λ) with at most two composition factors.
Let a1 = p+1

2 . By Proposition 1.2.2 and Lemma 2.1.6, we have

chLY (λ)(1121)Y = λ− (λ− (0110)Y )− (λ− (1100)Y ).

Note that ν = p−3
2 µ1 + p+1

2 µ2 + p−1
2 µ3. By Proposition 1.2.2, we have chLX(ν)(0111)X = ν,

hence (mLY (λ),mLX(λ),mLX(ν))(λ− (1121)Y ) = (3, 0, 2) and X acts on LY (λ) with more than two
composition factors.

Let a1 6= p+1
2 and set a = a1. Note that λ− (1111)Y = ν − (0110)X . The computations related

to the JSF of VY (λ) up to λ− (1111)Y appear in Table 3.9. Let us determine [VY (λ) : LY (B)] for
a = p− 1, where B = λ− (1110)Y .

λ = (a,− 3
2 + p

2 , 1, 0)F4

ch L(λ)1111 = λ− A

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1111 = A+ δa,p−1B JSF(λ)1111 = A+ 2δa,p−1B

JSF(A)1111 = δa,p−1B JSF(A)1111 = δa,p−1B

A = λ− 0110 = (a+ 1,− 5
2 + p

2 , 1, 1) B = λ− 1110 = (a− 1,− 3
2 + p

2 , 1, 1)

Table 3.9: JSF of λ up to µ− 1111

Let a = p−1 and [VY (λ) : LY (B)] = 2−ζ, with ζ ∈ {0, 1}. We havemLY (λ)(λ−(1110)Y ) = 2+ζ.
In order to compute ζ, we show that the dimension of the weight space LY (λ)B is at least 3, which
will imply that it is equal to 3. Recall Theorem 1.1.9 and let us use the kL (Y )-module structure of
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LY (λ). Let v+ be a maximal vector for BY of weight λ and let {eα, fα, hαi} be a Chevalley basis
of L (Y ). One checks that mλ(λ− (1110)Y ) = 4 and

{f1 = fα1fα2fα3v
+, f2 = fα1+α2fα3v

+, f3 = fα1+α2+α3v
+, f4 = fα2+α3fα1v

+}

is a basis of VY (λ)B. We prove that {f1, f2, f3} is linearly independent in LY (λ), which in turn
implies that ζ = 1. Note that we do not need to specify structure constants for the upcoming
computation. Let ci ∈ k be such that

c1f1 + c2f2 + c3f3 = 0. (3.5)

Applying eα2 to (3.5), we deduce that c1 = r′c2 with r′ ∈ k∗. Note that {fα1fα2v
+, fα1+α2v

+}
is linearly independent since mLY (λ)(λ − 1100) = 2. Applying eα3 to (3.5) and using the linear
independence of {fα1fα2v

+, fα1+α2v
+}, we deduce that c1 = 0 and c2 = r′′c3 with r′′ ∈ k∗. There-

fore, the trivial solution is the only solution to (3.5) and so ζ = 1. Hence (mLY (λ),mLX(λ),mLX(ν))
(λ− (1111)Y ) = (3, 0,≤V 2), and X acts on LY (λ) with more than two composition factors.

Let a1a3 6= 0. We may assume a2 = a4 = 0 and a3 = 1. Note that µ = µ1 +a1µ2 +µ4, ν = a1µ2 +
µ3 and that λ− (0121)Y = ν − (0011)X . By Proposition 1.2.2, we have (mLY (λ),mLX(λ),mLX(ν))
(λ− (0121)Y ) = (2, 0, 1) and X acts with more than two composition factors.

Assume a1a2 6= 0. Let a1 + a2 6= p− 1. Note that λ− (1111)Y = ν − β2. By Proposition 1.2.2
and the JSF, we have chLY (λ)(1111)Y = λ, hence (mLY (λ),mLX(λ),mLX(ν))(λ− (1111)Y ) = (2, 0, 1)
and X acts with more than two composition factors.

Let a1 + a2 = p− 1. Assume a2 ≥ 2. Note that (0222)Y = (1010)X . Using Proposition 1.2.2
and the JSF, we get that if a1 6= p−1

2 , then (mLY (λ),mLX(λ),mLX(ν))(λ− (1010)X) = (2,≤V 1, 0)
and X acts on LY (λ) with more than two composition factors. The case a1 = p−1

2 is solved in
Subsection 3.3.4.3.

Now, assume a2 = 1 and a1 = p− 2. Note that (1222)Y = (1110)X and λ = µ1 + (p− 2)µ2 + µ3.
The weight λ−(1222)Y is conjugate to the dominant weight λ−(1220)Y . Using Proposition 1.2.2 and
the JSF, we have chLY (λ)(1220)Y = λ− (λ− (1100)Y ), hence mLY (λ)(λ− (1220)Y ) = 3. Moreover,
using the JSF and Lemma 2.1.8, we get that chLX(λ)(1110)X = λ− (λ− (1100)X)− (λ− (0110)X).
Therefore, we get that (mLY (λ),mLX(λ),mLX(ν))(λ− (1110)X) = (3, 2, 0) and X acts with more
than two composition factors.

We now consider the cases λ = aiλi for 1 ≤ i ≤ 4 and 0 ≤ ai ≤ 1 if i ∈ {3, 4}. Assume λ = λi
for 1 ≤ i ≤ 4. Comparing the dimensions appearing below implies that X acts on LY (λ) with
exactly two composition factors if and only if i = 1.

dim(LY (λi), LX(λi), LX(ν)) =


(52, 36, 16) if i = 1
(≥LB 1222,≤V 594,≤V 432) if i = 2
(273, 128, 84) if i = 3
(26, 9, 16) if i = 4

Let a2 6= 0 and a2 ≥ 2. Recall ν = (a2 − 1)(µ1 + µ3) + µ2 + µ4. Assume a2 6= p−1
2 . Note

that (0222)Y = (1010)X . The weights in Λ(VY (λ))+ greater than λ− (0222)Y are given by λ− α
for α ∈ {(0100), (0200), (0110)Y , (0210)Y , (0220)Y , (0221)Y }. Since for α 6= (0220)Y , (0221)Y , the
multiplicity of λ − α in VY (λ) is 1, the weight λ − α does not afford the highest weight of a
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composition factor for VY (λ). For α = (0220)Y , we apply Proposition 1.2.2 in order to deduce
that λ− α does not afford the highest weight of a composition factor for VY (λ). For α = (0221)Y ,
we apply Proposition 1.2.2 along with the JSF in order to deduce that λ− α does not afford the
highest weight of a composition factor for VY (λ) either. Hence, chLY (λ)(0222)Y = λ. Therefore,
(mLY (λ),mLX(λ),mLX(ν))(λ − (0222)Y ) = (2,≤V 1, 0) and X acts on LY (λ) with more than
two composition factors. Assume a2 = p−1

2 . Note that λ − (1221)Y = ν − (0111)X . Applying
Propositions 1.2.2 and 1.2.5, we get chLY (λ)(1221)Y = λ− (λ− (0220)Y ) and chLX(ν)(0111)X =
ν − (ν − (0011)X). Hence (mLY (λ),mLX(λ),mLX(ν))(λ− (1221)Y ) = (4, 0, 3) which establishes the
existence of a third composition factor for the action of X on LY (λ).

Let λ = a1λ1 and a1 ≥ 2. Recall that ν = (a1 − 1)µ2 + µ4. The case a1 = p−3
2 requires more

work and is solved in Subsection 3.3.4.1. Assume a1 6= p−3
2 . Note that (2222)Y = (1210)X and that

λ− (2222)Y is conjugate to the dominant weight λ− (2220)Y . The weights in Λ(VY (λ))+ which are
greater than λ− (2220)Y are λ− α for α ∈ {(1000)Y , (2000)Y , (1100)Y , (2100)Y , (1110)Y , (2110)Y }.
Since for any α in the previous list, the multiplicity of λ− α in VY (λ) is 1, the weight λ− α does
not afford the highest weight of a composition factor for VY (λ) by Theorem 1.1.10. Moreover, since
we have assumed a1 6= p−3

2 , we have by Proposition 1.2.2 that λ − (2220)Y does not afford the
highest weight of a composition factor for VY (λ). Hence (mLY (λ),mLX(λ),mLX(ν))(λ− (1210)X)
= (3,≤V 2, 0) and X acts with more than two composition factors on LY (λ).

To complete the case B4 < F4, it remains to consider the three special cases left aside in the
above arguments. These are treated one by one below.

3.3.4.1 λ = p−3
2 λ1. — Let a = p−3

2 . Note that λ = aλ1 = aµ2. Recall Remark 3.3.2 and that
ν = λ − (1111)Y = (a − 1)µ2 + µ4 affords the highest weight of a second composition factor for
X acting on LY (λ). We prove that X acts on LY (λ) with exactly two composition factors by
applying Corollary 1.4.7. We prove that none of the following weights afford the highest weight
of a composition factor for X acting on LY (λ). The right-hand side of the equalities correspond
to the coefficients appearing in the linear combination of the weights in terms of the fundamental
weights µ1, µ2, µ3 and µ4.

λ− (1000)Y = (1, a− 2, 1, 0) λ− (1110)Y = (1, a− 1, 0, 0)
λ− (1111)Y = (0, a− 1, 0, 1) ν − (1000)Y = (1, a− 3, 1, 1)
ν − (1110)Y = (1, a− 2, 0, 1) ν − (1111)Y = (0, a− 2, 0, 2)
ν − (1121)Y = (0, a− 2, 1, 0) ν − (1231)Y = (0, a− 1, 0, 0)

We check that for each weight θ appearing in the list above, we have either ν − (1231)Y ∈ Λ(LX(θ))
or ν − (1110)Y ∈ Λ(LX(θ)). Hence by Lemma 1.4.9, it is enough to consider ν − (1110)Y and
ν − (1231)Y . In fact, the reader should keep in mind that ν − (1231)Y = λ− (2342)Y ≺X λ and
that ν − (1110)Y ≺X ν. Therefore by Corollary 1.4.7, we have that X acts on LY (λ) with exactly
two composition factors if

mLY (λ)(ν − (1231)Y ) = mLX(λ)(λ− (2342)Y )

and
mLY (λ)(ν − (1110)Y ) = mLX(ν)(ν − (1110)Y ).
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Applying the JSF to VY (λ) yields chLY (λ)(2342)Y = λ− (λ− (2220)Y ). Observe that (1110)Y =
(0111)X and (2342)Y = (1222)X . Applying the JSF to VX(µ) and VX(ν) yields chLX(λ)(1222)X =
λ − (λ − (0222)X) and chLX(ν)(0111)X = ν − (ν − (0111)X). Hence (mLY (λ),mLX(λ),mLX(ν))
(λ− (2221)Y ) = (2, 0, 2) and (mLY (λ),mLX(λ),mLX(ν))(λ− (2342)Y ) = (5, 5, 0), which proves the
result.

3.3.4.2 λ = p−3
2 λ2 + λ3. — Let a = p−3

2 . Note that λ = aλ2 + λ3 = (a + 1)µ1 + aµ3 + µ4
Recall that ν = λ − (0011)Y = aµ1 + (a + 1)µ3. We prove that X acts on LY (λ) with exactly
two composition factors by applying Corollary 1.4.7. The hypotheses of Corollary 1.4.7 hold by
Remark 3.3.2. We prove that none of the following weights afford the highest weight of a composition
factor for X acting on LY (λ). The right-hand side of the equalities correspond to the coefficients
appearing in the linear combination of the weights in terms of the fundamental weights µ1, µ2, µ3
and µ4.

λ− (0100)Y = (a+ 1, 1, a− 2, 3) λ− (0110)Y = (a+ 1, 1, a− 1, 1)
λ− (0011)Y = (a, 0, a+ 1, 0) λ− (0111)Y = (a, 1, a− 1, 2)
λ− (0121)Y = (a, 1, a, 0) λ− (1220)Y = (a+ 2, 0, a− 1, 1)
λ− (0122)Y = (a− 1, 1, a, 1) λ− (1221)Y = (a+ 1, 0, a− 1, 2)
λ− (1231)Y = (a+ 1, 0, a, 0) λ− (1222)Y = (a, 0, a− 1, 3)
λ− (1232)Y = (a, 0, a, 1) λ− (1342)Y = (a, 1, a− 1, 1)
ν − (0122)Y = (a− 2, 1, a+ 1, 0) ν − (1222)Y = (a− 1, 0, a, 2)
ν − (1232)Y = (a− 1, 0, a+ 1, 0) ν − (1342)Y = (a− 1, 1, a, 0)

(3.6)

We check that for each weight θ appearing in the list above, we have either λ− (1342)Y ∈ Λ(LX(θ))
or ν − (1342)Y ∈ Λ(LX(θ)). By Lemma 1.4.9, it is enough to consider λ− (1342)Y and ν − (1342)Y .
The reader should keep in mind that λ− (1342)Y ≺X λ and ν − (1342)Y ≺X ν. Now, we have that
X acts on LY (λ) with exactly two composition factors if

mLY (λ)(λ− (1342)Y ) = mLX(λ)(λ− (1342)Y )

and
mLY (λ)(ν − (1342)Y ) = mLX(ν)(ν − (1342)Y ).

The partial characters chLY (λ)(1353)Y and chLX(λ)(1122)X are computed in Tables 3.10 and 3.11.

Observe that λ− (1342)Y = λ− (1122)X and ν − (1342)Y = ν − (1122)X . In order to obtain
chLX(µ)(1122)X , we need to solve the problematic case [VX(λ) : LX(C)] appearing in Table 3.11.
Note that λ − (1332)Y = λ − (1121)X and λ − (1332)Y cannot afford the highest weight of a
third composition factor generated by a maximal vector for L (BX), since it is not listed in (3.6).
We check by computing multiplicities in LY (λ) and LX(λ) that there is no weight apart from λ

in Λ(VY (λ))+ greater than λ− (1121)X (with respect to the order involving the roots in ∆(X)),
which affords the highest weight of a composition factor for X acting on LY (λ). Reasoning as
in Subsection 2.5.1.3, we can assume that [VX(λ) : LX(C)] = 1. Computing the multiplicity of
λ− (1342)Y in LY (λ) and LX(λ) yields (mLY (λ),mLX(λ),mLX(ν))(λ− (1342)Y ) = (5, 5, 0).
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λ = (0, a, 1, 0)F4

ch L(λ)1353 = λ− A+ B + C

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1353 = A− B − C JSF(λ)1353 = A

JSF(A)1353 = B + C JSF(A)1353 = B + C

A = λ− 0110 = (1, a− 1, 1, 1) C = λ− 0221 = (2, a− 2, 2, 0)

B = λ− 1330 = (1, a− 2, 1, 3)

Table 3.10: JSF of λ up to µ− 1353

λ = (a+ 1, 0, a, 1)B4

ch L(λ)1122 = λ− A− B + C

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1122 = A+ B JSF(λ)1122 = A+ B + 2C

JSF(A)1122 = C JSF(A)1122 = C

JSF(B)1122 = C JSF(B)1122 = C

A = λ− 1110 = (a, 0, a− 1, 3) C = λ− 1121 = (a, 1, a− 2, 3)

B = λ− 0011 = (a+ 1, 1, a− 1, 1)

Table 3.11: JSF of λ up to µ− 1122

Applying the JSF to VX(ν) yields chLX(ν)(1122)X = ν − (ν − (0022)X)− (ν − (1110)X), hence
(mLY (λ),mLX(λ),mLX(ν))(λ− (1353)Y ) = (5, 0, 5). Therefore, we have that X acts on LY (λ) with
exactly two composition factors.

3.3.4.3 λ = p−1
2 (λ1 + λ2). — Let a = p−1

2 and note that λ = a(λ1 + λ2) = a(µ1 + µ2 + µ3).
We apply Corollary 1.4.7 in order to prove that X acts on LY (λ) with exactly two composition
factors. Recall that ν = λ − (0111)Y = (a − 1)µ1 + (a + 1)µ2 + (a − 1)µ3 + µ4. We prove that
none of the weights listed below afford the highest weight of a composition factor for X acting on
LY (λ). The right-hand side of the equalities correspond to the coefficients appearing in the linear
combination of the weights in terms of the fundamental weights µ1, µ2, µ3 and µ4.

λ− (1000)Y = (a+ 1, a− 2, a+ 1, 0) λ− (0100)Y = (a, a+ 1, a− 2, 2)
λ− (0110)Y = (a, a+ 1, a− 1, 0) λ− (1100)Y = (a+ 1, a− 1, a− 1, 2)
λ− (1110)Y = (a+ 1, a− 1, a, 0) λ− (0111)Y = (a− 1, a+ 1, a− 1, 1)
λ− (1111)Y = (a, a− 1, a, 1) λ− (1220)Y = (a+ 1, a, a− 1, 0)
λ− (0122)Y = (a− 2, a+ 1, a, 0) λ− (1221)Y = (a, a, a− 1, 1)
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λ− (1122)Y = (a− 1, a− 1, a+ 1, 0) λ− (1222)Y = (a− 1, a, a− 1, 2)
λ− (1232)Y = (a− 1, a, a, 0) λ− (1342)Y = (a− 1, a+ 1, a− 1, 0)
ν − (0100)Y = (a− 1, a+ 2, a− 3, 3) ν − (0001)Y = (a− 2, a+ 1, a− 1, 2)
ν − (1100)Y = (a, a, a− 2, 3) ν − (0110)Y = (a− 1, a+ 2, a− 2, 1)
ν − (0111)Y = (a− 2, a+ 2, a− 2, 2) ν − (0121)Y = (a− 2, a+ 2, a− 1, 0)
ν − (1220)Y = (a, a+ 1, a− 2, 1) ν − (0122)Y = (a− 3, a+ 2, a− 1, 1)
ν − (1221)Y = (a− 1, a+ 1, a− 2, 2) ν − (1122)Y = (a− 2, a, a, 1)
ν − (1222)Y = (a− 2, a+ 1, a− 2, 3) ν − (1232)Y = (a− 2, a+ 1, a− 1, 1)
ν − (1342)Y = (a− 2, a+ 2, a− 2, 1)

We check that each weight θ in the list above, we have either λ − (1342)Y ∈ Λ(LX(θ)) or
ν − (1342)Y = λ − (1453)Y ∈ Λ(LX(θ)). Hence, by Lemma 1.4.9, in order to prove that X
acts on LY (λ) with exactly two composition factors, we need to show that

mLY (λ)(λ− (1342)Y ) = mLX(λ)(λ− (1342)Y ),

and
mLY (λ)(λ− (1453)Y ) = mLX(ν)(λ− (1453)Y ).

Note that (1342)Y = (1122)X . The partial JSF applied to VX(λ) up to λ− (1122)X yields

chLX(λ)(1122)X = λ− (λ− (1100)X)− (λ− (0110)X)− (λ− (0022)X).

The partial JSF of ν up to ν − (1122)X is computed in Table 3.12. There is a problematic case,

ν = (a− 1, a+ 1, a− 1, 1)B4

ch L(ν)1122 = ν − A− B − C

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(ν)1122 = A+ B + C JSF(ν)1122 = A+ B + C + 2D

JSF(B)1122 = D JSF(B)1122 = D

JSF(C)1122 = D JSF(C)1122 = D

A = ν − 1100 = (a− 2, a, a, 1) C = ν − 0011 = (a− 1, a+ 2, a− 2, 1),

B = ν − 0110 = (a, a, a− 2, 3) D = ν − 0121 = (a, a+ 1, a− 3, 3)

Table 3.12: JSF of ν up to ν − 1122

namely ν − (0121)X . We solve it using Proposition 1.3.9 and working in the Levi factor LI of
the parabolic subgroup PI of X of type B3, where I = {β2, β3, β4}. For a weight θ ∈ X(TY )+,
we denote by θB3 the restriction of θ to TL′

I
. Set w = s0s1s2s3 and ν0 = (p−7

2 , 0, 1). Note that
ν0 lies in the interior of the fundamental alcove. We have ν = ws2s0·ν0, BB3 = ws0·ν0, CB3 =
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ws2·ν0, DB3 = w·ν0. We have BB3 − DB3 = 011 and Proposition 1.3.9 implies [VL′
I
(νB3) :

LL′
I
(DB3)] = [VL′

I
(CB3) : LL′

I
(DB3)]. By Table 3.12, we have [VL′

I
(CB3) : LL′

I
(DB3)] = 1, which

settles the problematic case.
The result of the partial JSF applied to VY (λ) appears in Table 3.13. We need to solve

λ = (a, a, 0, 0)F4

ch L(λ)1453 = λ− A− B + C −D + E − F

See argument

JSF in Weyl characters: JSF in irreducible characters:

JSF(λ)1453 = A+ B − C +D JSF(λ)1453 = A+ B + 2E +1
0 F

JSF(A)1453 = E − F JSF(A)1453 = E

JSF(B)1453 = C −D + E JSF(B)1453 = C + E + 2F

JSF(C)1453 = D + F JSF(C)1453 = D + F

JSF(E)1453 = F JSF(E)1453 = F

A = λ− 1100 = (a− 1, a− 1, 2, 0) D = λ− 0452 = (a+ 4, a− 3, 0, 1),

B = λ− 0220 = (a+ 2, a− 2, 0, 2) E = λ− 1320 = (a+ 1, a− 3, 2, 2),

C = λ− 0331 = (a+ 3, a− 3, 1, 1) F = λ− 1431 = (a+ 2, a− 4, 3, 1)

Table 3.13: JSF of λ up to µ− 1453

the problematic case [VY (λ) : LY (E)]. Let [VY (λ) : LY (E)] = 2 − ζ with ζ ∈ {0, 1}. We have
mLY (λ)(λ − (1342)Y ) = 2 + 3ζ and mLX(λ)(λ − (1342)Y ) = 5. Hence mLY (λ)(λ − (1342)Y ) is at
least 5, which implies that ζ = 1 and both multiplicities agree.

Moreover, mLY (λ)(λ− (1453)Y ) = 5 and mLX(λ)(λ− (1453)Y ) = 5, which proves that X acts
on LY (λ) with exactly two composition factors.

3.3.5 (A2, G2). — Let (X,Y ) = (A2, G2) and recall we have assumed p ≥ 5. Up to conjugacy,
the simple roots of a root system of type A2 in Φ(Y ) are given by

β1 = 3α1 + α2 β2 = α2

which can be written as
α1 = 1

3(β1 − β2) α2 = β2.

We deduce the following linear expressions relating the fundamental weights with respect to ∆(Y )
to those with respect to ∆(X).

λ1 = µ1 λ2 = µ1 + µ2

Let λ ∈ X(TY )+ with λ = a1λ1 + a2λ2 = (a1 + a2)µ1 + a2µ2. If a1 6= 0, then ν = λ − (10)Y
affords the highest weight of a second composition factor for X acting on LY (λ). Moreover,
(mLY (λ),mLX(λ),mLX(ν))(λ − (21)Y ) = (≥ 1, 0, 0) and X acts on LY (λ) with more than two
composition factors. So assume a1 = 0 and a2 6= 0. Then ν = λ − (11)Y affords the highest
weight of a second composition factor for X acting on LY (λ). Moreover, (mLY (λ),mLX(λ),mLX(ν))
(λ− (21)Y ) = (≥ 1, 0, 0), hence X acts on LY (λ) with more than two composition factors.





Table A

(X,Y ) L(λ)|X = LX(µ)/LX(ν) λ ∈ X(TY )+ p

(F4, E6)
1

1

(F4, E6)
p− 2

p− 2p− 3

(F4, E6)
1 1

1

(F4, E6)
p− 2 p− 2

p− 3 1

(F4, E6)
p− 1

p− 1p− 2 1

(F4, E6)
p− 1

p− 11 p− 2 1

(F4, E6)
1 p− 4

p− 4

1

p− 3
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(F4, E6)
1 p− 4

p− 4 11 p− 5

(F4, E6)
1 p− 3 2

2

1

p− 3p− 2 1

(F4, E6)
p− 2 2

2 p− 3 11 p− 4 3

(G2, E6)
11 1

p 6= 31

(A2, E7)
44

11 1

(A2, E7)
6

1 p 6= 56

(G2, F4)
1 1

1
1

(C4, E6)
1 1

1 p 6= 32

(C4, E6)
1 1 1

1 1 p = 31 1

(A1, G2)
10

1 p 6= 72
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(A1, F4)
16

1 p 6= 138

(D8, E8)

1

1 p 6= 21

(A7, E7)
1 1

11

(A7, E7)
1

11

(B4, F4)
1

1
1

(B4, F4)

p−3
2

p−3
2

p−5
2 1

(B4, F4)

p−1
2

p−3
2 1

p−3
2 1

p−3
2

p−1
2

(B4, F4)

p−1
2

p−1
2

p−1
2

p−1
2

p−1
2

p−3
2

p+1
2

p−3
2 1





Chapter B

Root system data

B.1 Fixing an ordering on the set of positive roots

Type Roots

A4 (1000, 0100, 0010, 0001, 1100, 0110, 0011, 1110, 0111, 1111)
B3 (100, 010, 001, 110, 011, 111, 012, 112, 122)
C3 (100, 010, 001, 110, 011, 111, 021, 121, 221)

Table B.1: Fixing an ordering on the set of positive roots
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