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 

Abstract—High frequency electromagnetic fields such as those 

associated with EMP and IEMI can couple to overhead power lines. 

Since the height of the overhead power lines can be comparable or 

even larger than the smallest wavelength of typical EMP and IEMI 

pulses, the classical TL approximation might not be suitable for 

evaluating the line response. On the other hand, a traditional full 

wave solver (e.g. MoM) is computationally inefficient, especially 

when dealing with long lines. To address these problems, we 

propose an efficient method to handle the high frequency 

electromagnetic field coupling to overhead lines with nonlinear 

loads above a lossy ground. In the proposed method, the 

asymptotic approach is adopted and extended to the case of a lossy 

ground, which handles the problem in a semi-analytical way and 

has a much higher computational efficiency in the case of long lines. 

Although the proposed method applies in the frequency domain, 

the case of nonlinear loads can be considered through a 

combination with the time marching method. The proposed 

method is validated with several numerical examples. 

 

 
Index Terms—High frequency electromagnetic field; overhead 

transmission line, transient response; asymptotic method; 

distributed parameter circuits,  

 

I. INTRODUCTION 

VERHEAD transmission lines are one of the essential 

components in power systems. High frequency 

electromagnetic fields such as electromagnetic pulse (EMP) 

produced by a high-altitude nuclear burst (e.g., [1]- [2]) can 

induce significant overvoltage and currents, which may cause 

various effects such as short interruptions, voltage sags and 

even damage to power components, especially for distribution 

networks [3]. Furthermore, there is an increased concern about 

intentional electromagnetic interferences (IEMI) to power 

systems generated by high power transient electromagnetic 
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sources such as compact radiation systems (e.g., [4]). Therefore, 

it is important to predict the response of overhead power lines.  

The problem of high-frequency electromagnetic field 

coupling to transmission lines has been thoroughly studied in 

the past decades (see a review in [5]). One of the commonly-

used methods is the classical transmission line (TL) theory [6]-

[10]. This method is based on the transmission line 

approximation, where the line response is assumed to be the 

quasi transverse electromagnetic (TEM), and the high 

frequency effects (e.g. radiating modes or leaky modes) are 

neglected. The coupling equations resulting from the classical 

TL model [11]-[13] can be solved with a relatively low 

computational cost, and can provide the accurate solutions in 

the case when the line cross-sectional dimensions are 

electrically small, namely, smaller than about one tenth of the 

minimum wavelength of the incoming wave. This requirement 

might not be satisfied for the case of high frequency 

electromagnetic fields [14]. For example the IEC standard EMP 

waveform is characterized by a minimum significant 

wavelength of about 3 m, which is smaller than the height of 

typical overhead power lines, which is about 10 m for 

distribution lines and even higher for the high voltage 

transmission lines.  

To obtain an accurate solution in the case that the cross 

section of the line is comparable to the wavelength, the antenna 

theory is commonly used [15]. This method is based on the thin-

wire approximation, and can take into account the high 

frequency effects and provide an accurate solution for the high 

frequency field illumination. In general, a numerical full-wave 

technique, e.g., method of moment (MoM) should be applied to 

solve the mixed potential integral equation (MPIE), thus, 

leading to a high computational cost especially in the case of 

overhead power lines whose length extends typically to several 

kilometers.   
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In order to improve the computational efficiency while 

keeping the high accuracy of the solutions when modeling the 

high frequency electromagnetic field coupling to overhead lines, 

some researchers have proposed the so called enhanced or full-

wave TL method. Tkachenko et al. proposed a TL-like method 

to handle the high frequency electromagnetic field coupling to 

a finite length line with open circuit terminals above a perfectly 

conducting ground that is based on the perturbation theory [16], 

where the solutions can be obtained iteratively. Tkachenko et 

al. then proposed an asymptotic method to obtain the response 

of a finite length line terminated by arbitrary linear loads above 

a PEC ground in a semi-analytical way [17]. The singularity 

expansion method (SEM) was also adopted to obtain the 

analytical solution in time domain [18], which can be applied 

to the case when the finite length line is terminated on open 

circuit or short circuit terminations. Poljak et al. proposed a 

numerical method to handle the case of a finite line above a 

lossy ground with open circuit terminals [14].  

Since the power lines are typically terminated by nonlinear 

loads for the sake of protection, it is important to analyze the 

response behavior and the protection effects by modeling the 

transmission line with the nonlinear loads. Therefore, to 

enhance the applicability of the model to real scenarios, this 

paper aims to propose a method to solve the high frequency 

electromagnetic field coupling to overhead lines with nonlinear 

loads above a lossy ground. In the proposed method, the 

asymptotic approach, characterized by a high computational 

efficiency, is adopted and extended to the case of a lossy line. 

The general solution along the asymptotic region in the lossy 

ground case is developed. First, the scattering coefficients and 

the reflection coefficients are fitted and calculated in the 

frequency domain. Then, the response along the entire line can 

be calculated by these obtained coefficients, allowing therefore 

a higher computational efficiency than classical full-wave 

solvers. Since the asymptotic method is based on a frequency 

domain approach, the time marching method which is a mixed 

frequency domain and time domain method is adopted to handle 

nonlinear loads. The proposed method can therefore accurately 

solve the problem of high frequency uniform plane wave (e.g. 

EMP) coupling to long overhead lines terminated with 

nonlinear loads above a lossy ground. Additionally, by using 

the electric field representation method [19]-[21], the proposed 

method can also be extended to the case nonuniform wave 

excitations (e.g. compact radiation systems in IEMI). 

The remainder of this paper is organized as follows. Section 

Ⅱ describes the basic concept of the proposed approach. Section 

Ⅲ presents the results associated with several case studies to 

validate the proposed approach. Finally, Section Ⅳ presents a 

summary and general conclusions. 

II. BASIC CONCEPT OF THE PROPOSED APPROACH 

The problem to be investigated is shown in Fig. 1. We 

consider an overhead lossless conductor1 of length L, radius r 

and height of h above a lossy ground, illuminated by an external 

 
1 The conductor losses are negligible in typical overhead power lines [F. 

Rachidi, C.A. Nucci, M. Ianoz, C. Mazzetti, "Influence of a lossy ground on 

electromagnetic field. The dielectric constant, electric 

conductivity and permeability for the air are ε0, 0 and μ0, 

respectively, and the ground is characterized by its electric 

parameters, namely εg, σg and μ0. The incoming wave is a 

uniform plane wave which has a polarization angle α, azimuth 

angle θ and an elevation angle ψ. The terminal loads are Z1 in 

the left end and Z2 in the right end. Both of the loads are 

considered as lumped components connected in the vertical 

risers at a small height Δ/2 above the ground. 
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Fig. 1.  Overhead transmission line excited by an incident plane wave. 

A. Mixed Potential Integral Equation (MPIE) for the Line 

Since the conductor is considered as lossless, the x-

component of the total electric field along the line is zero. 

 ( ) ( ) 0e s
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where Ex
e is the x-component of excitation electric field, and Ex

s 

is the x-component of scattered electric field. The expression 

for Ex
e is  
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where Rv and Rh are the Fresnel ground reflection coefficients 

for vertical and horizontal polarizations, respectively. k is the 

wave number in the free space that is ω/c. The scattered electric 

field can be expressed as 

 
s
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where A is the magnetic vector potential and φ is the electric 

scalar potential. Expression (3) can be written for the x 

component as 
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where q(x) is the charge distribution along the line, I(x') denotes 

the induced current along the line, and g(x, x') is the Green’s 

function, whose expression can be found in [14]. 

The relationship of the charge distribution and the current can 

be written as 

lightning-induced voltages on overhead lines", IEEE Trans. on 

Electromagnetic Compatibility, Vol. 38, No. 3, August 1996.]. 
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Inserting (7) into (6), we obtain 
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And inserting (1) and (5) into (4), we obtain 
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Expressions (8) and (9) form the mixed potential integral 

equations that describe the induced response along the line. It is 

to be noted that expressions (8) and (9) are derived considering 

a finite line with open circuit terminals. For the case of arbitrary 

line terminations, the exact solution of the induced current can 

be determined by the solution of the complicated Pocklington’s 

equation [10], [17]. Moreover, when the ground has a finite 

conductivity, the resulting equations would be much more 

complicated [14], [22]. To obtain the exact solutions using these 

equations, numerical full-wave methods (e.g., MoM) have to be 

applied, which are computationally inefficient.  

To simplify the problem, the transmission line (TL) theory 

has been used. For a perfectly-conducting ground, and when the 

relationship between the line cross section and the incoming 

wave meets the TL assumptions, namely when kh<<1 and L>>h, 

the following integral can be approximated as [ref to Tkachenko 

et al] 

0 0

2
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With the approximation of (10) and considering of the 

definitions of the electric scalar potential φ and the scattered 

voltage Vs, equations (8) and (9) will reduce to 
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Equations (11) and (12) are the field-to-transmission line 

coupling equation with the TL assumption in the Agrawal et al. 

form [12]. 

For a lossy ground case, equations (11) and (12) become 
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where Y' and Z' are the per-unit-length (p.u.l.) transverse 

admittance and longitudinal impedance of the line [10], 

respectively. 
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The Sunde [23] approximation can be used to evaluate the 

ground impedance Zg'  
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              (16) 

B. Asymptotic Method and Its Extension to the Case of a 

Lossy Ground 

When we consider a uniform plane wave coupling to an 

infinitely-long lossless conductor above a lossy ground, with 

the thin wire assumption (radius of the wire much smaller than 

the wavelength and the height of line), the current response 

along the line can be expressed analytically as [24] 

 1 1

inf 0
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e
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where Ze and I0 are the external impedance of the line and the 

current coefficient, respectively, which both depend on the line 

geometry and the frequency. Since I0 is independent of the 

location x, the current response has an exponential distribution 

along the line. 

When the line has a finite length, the problem can be solved 

iteratively and analytically using the perturbation theory [16]. 

To obtain the analytical formulation in time domain, the 

singularity expansion method can be applied [18]. This method 

adopts an iterative approach and is suitable for the more general 

case of terminals with arbitrary geometries and arbitrary linear 

loads. Moreover, to pursue a high computational efficiency, this 

problem can also be solved semi-analytically using the 

asymptotic method [17]. However, the above-mentioned 

methods are all based on the perfectly-conducting ground 

assumption. 

In this section, the asymptotic method is extended to the case 

of a lossy ground. It can be seen from (17) that the current 

response is expressed as an exponential function of x (along the 

infinite line). When the line is terminated on a load along a 

vertical riser, the solution becomes much more complicated, 

especially in the regions near the terminals. However, in the 

central part of the line, far enough from both ends, the high-

frequency effects generated from the discontinuities would 

decrease very fast, so that this region can be treated 

asymptotically as an infinite line [17]. In this way, the entire 

line can be separated into three regions, as shown in Fig. 2. 

Region Ⅰ is the region near the left terminal which contains the 

left terminal riser and a portion of the horizontal line, 0≤x<lb-h, 

Region Ⅲ is the region in the right terminal which contains the 

right terminal riser and a portion of the horizontal line, L-

lb+h<x≤L. Region Ⅱ is the asymptotic region along the line, lb-

h≤x≤L-lb+h. lb is total length of the terminal region which 

depends on the height h and the frequency. Typically, a value 

of lb of about twice of the height can be adopted [17]. 

In the asymptotic region, the induced current can be 

expressed as  

 1

0 1 2( , ) ( ) ( , ) ( , )
jk x

I x j I j e F x j F x j   
     (18) 

where F1 and F2, are unknown functions to be determined.  
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Fig. 2.  The three regions along the transmission line (from [17]). 

 

The first term in expression (18) corresponds to the response 

generated by the exciting field along an infinitely-long line that 

with the same geometry (height, radius and ground electrical 

parameters), and which can be obtained by using equation (17). 

The last two terms F1 and F2 in expression (18) represent 

forward and backward waves propagating from the terminal 

regions generated as a result of scattering and reflections. These 

two terms should have the same form as the solution for the 

same line excited by lumped voltage sources located at line ends. 

The solutions for the current along a conductor above a lossy 

ground have been presented in different forms (e.g., [25-29]). 

These methods involve the solution of the Sommerfeld integrals, 

which are computationally inefficient especially in the case of 

multiple-frequency simulation. Here we use a simplified 

approach which is described in what follows. 

For the case of a perfectly-conducting ground, the current 

along the asymptotic region can be expressed as [17] 
cos

,0 ,1 ,2( , ) ( ) ( ) ( )jk x jkx jkx

P P P PI x j I j e I j e I j e        (19) 

In order to take into account the presence of a lossy ground, 

we use the approximate approach in which the functions F1 and 

F2 are still expressed with exponential functions with x as in the 

case of lossless ground, with the propagation constant evaluated 

by using the TL theory taking into account the lossy ground. In 

this way, the current solution along the asymptotic region can 

be expressed by 
1

0 1 2( , ) ( ) ( ) ( )
jk x x xI x j I j e I j e I j e              (20) 

where γ is the line propagation constant is given by 

 ' 'Z Y       (21) 

in which the p.u.l. parameter Z' and Y' are determined by using 

(15) and (16). Although these parameters and expressions are 

to be used within the TL theory, they can still provide accurate 

solutions for the current along the asymptotic region in a broad 

frequency range, as will be shown in Section Ⅲ.  

In order now to determine the expressions for I0, I1 and I2, we 

follow the same approach adopted in [17], considering two 

semi-infinite lines. First, we consider a right semi-infinite 

length line, extending from x=0 to infinity, and having the same 

geometry as that in Fig. 2. When this line is illuminated by the 

exciting field, the induced current along the line can be 

expressed as  
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where S+ is the scattering coefficient associated with the left 

terminal, F+
S is the unknown function corresponding to the 

exact solution in the left terminal region. 

Then, we consider that there is no exciting field and a 

hypothetical current I2' flowing from right to left (homogeneous 

solution). The current along the line can be expressed as 

2
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where R+ is the reflection coefficient associated with the left 

terminal, F+
R is an unknown function corresponding to the exact 

solution in the left terminal region. 

The total solution of the right semi-infinite length line can be 

expressed as the sum of the above-mentioned two parts as 

( ) ( ) ( )S RI x I x I x                                 (24) 

Specifically, the total solution along the left terminal and the 

asymptotic region can be expressed as 
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In the same way, if we consider a left semi-infinite line along 

-∞<x≤L above a lossy ground, the solution for the total current 

in the right terminal region and in the asymptotic region can be 

expressed as 
1

1 1
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(26) 

where I1' is the hypothetical current flowing from left to right. 

S- and R- are respectively the scattering and reflection 

coefficients associated with the right terminal, F-
S and F-

R are 

unknown functions corresponding to the exact solutions in the 

right terminal region. It is to be noted that the scattering and 

reflection coefficients are intrinsic coefficients of the line 

terminals which are independent on the length of line. 

The expressions (25) and (26) are the solutions for the current 

associated with the two semi-infinite line. By imposing these 

two solutions along the asymptotic region to be equal, the 

expression for the unknown parameters I1 and I2 for a line 

length L can be formulated as 
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               (27) 

From (27), it can be seen that the expression for the current 

along the asymptotic region can be obtained as a function of the 

scattering and reflection coefficients at the two line ends. To 

determine these coefficients, we follows the same approach as 

in [17] where two short auxiliary lines with the same geometry 

except for the length are simulated by a full-wave solver (e.g. 

MoM). In the simulation, the current response along the entire 

line is calculated. If we denote L1 as the length of the auxiliary 

line 1 and Δx the discretized space step along this auxiliary line, 

the current response along the asymptotic region can be 

expressed as  
1

0 1 2( )
jk n x n x n xI n x I e I e I e                        (28) 

where 
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The coefficients I0, I1 and I2 can be obtained easily from (29) 

by using a fitting method such as the least squares method [30]. 

Since the values of I1 and I2 depend on the line length, we 

denote the obtained coefficients as I0, I1(L1) and I2(L2). Since 

there are four unknown coefficients, S+, S-, R+ and R-, that need 

to be determined, another auxiliary line with a different length 

L2 is also simulated, obtaining I0, I1(L2) and I2(L2) using the 

same fitting way. By using the two groups of the fitted 

coefficients, the unknown scattering and reflection coefficients 

can be straightforwardly determined by solving (27). In 

addition, since the scattering and the reflection coefficients are 

independent of the line length, when determining these 

coefficients, the two auxiliary lines can be very short to ensure 

a high computational efficiency. 

With the obtained coefficients, the expressions for the current 

at both terminal regions can also be formulated. In the case of 

the auxiliary line of length L1, according to (25), the solution in 

the left terminal region is 
1

left 0 2 1( ) ( ) ( ) ( )
L S RI x I F x I L F x                    (30) 

In the case of the auxiliary line of length L2, the solution in 

the left terminal region is 
2

left 0 2 2( ) ( ) ( ) ( )
L S RI x I F x I L F x                    (31) 

Since the current solution along the left terminal at these two 

cases are already obtained by using a full-wave approach, the 

unknown functions F+
S and F+

R can be easily determined using 

(30) and (31). Thus, the current response along the left terminal 

region of a line with any length L can be calculated analytically 

as 
2 1

2lef left

left 2 2 2 left

2 2 2 1

( ) ( )
( ) ( ( ) ( )) ( )

( ) ( )

L L

LtI x I x
I x I L I L I x

I L I L


  


   (32)  

The expression for the current along the right terminal region 

can also be obtained in the same way. 

2 1 2 1 1 1

1 2 2 1 1 1

1 1 2 2 2 1 2

( ) ( )

right 2 right 1

right

1 2 1 1

( )

1 1 2 right 2

( ) ( )
( )

( ) ( )

( ( ) ( ) ) ( )

L jk L L L jk L L

jk L L jk L L

jk L L jk L L L jk L L

I x L L e I x L L e
I x

I L e I L e

I L e I L e I x L L e

 

 

 

 

  

    




    

  

(33) 

Hence, the expressions of the current response along the 

entire line is obtained. By using these expressions, the current 

response of any line that has the same geometry but with any 

different length can be calculated analytically.  

It is worth mentioning that the incoming wave was assumed 

to be a uniform plane wave where the exciting horizontal 

electric field along the line is an exponential function with x. It 

can be seen from (20) that the first term of the general solution 

along the asymptotic region corresponds to the solution of an 

infinitely-long line excited by the exciting field, which has the 

same form of exponential function as that of the horizontal 

exciting electric field along the line (2). Based on this 

characteristic, the proposed method can also be extended into 

the case that the incoming wave is a nonuniform wave, by 

fitting the horizontal electric field along the line with 

exponential functions using the electric field representation 

technique [19]-[21]. In doing so, the proposed method can be 

applied to the problem of IEMI excitation of overhead power 

lines. Additionally, this method can also be conveniently 

extended to the case of a multi-conductor transmission line 

[31]-[33].  

C. Asymptotic Method for the Case of a Lumped Voltage 

Source Excitation  

The problem of a line excited by a lumped voltage source 

located at an arbitrary location has been thoroughly discussed 

[34]-[36]. In this paper, we present a solution to solve this 

problem based on the asymptotic method.  

Assume there are two lumped voltage sources V1 and V2 

which are located at the two line ends. Since there is no exciting 

field, the general solution along the asymptotic region becomes  

1 2( , ) ( ) ( )x xI x j I j e I j e                    (34) 

Similar to the case when the exciting source is an incoming 

wave, two semi-infinite lines are considered. The solution along 

the right semi-infinite line excited by a lumped source located 

at the left end can be expressed as 

( ) 0
( )

P

S b

x

b

F x x l h
I x

P e x l h



 



   
 

 
                    (35) 

where P+ is a coefficient that describes the current solution 

along the asymptotic region as a result of a lumped source 

excitation at the left terminal. F+
P is the unknown function 

corresponding to the exact solution in the left terminal region 

excited by a lumped voltage source. 

Assuming there is no lumped voltage source at the left end 

and a hypothetical current I2' propagating from right to left 

(homogeneous solution), the current can be expressed as 

2

2 2

' ( ) 0
( )

' '

R

R b

x x

b

I F x x l h
I x

R I e I e x l h 



 



   
 

  
            (36) 

The total solution for the right semi-infinite line can be 

obtained as the sum of the above-mentioned two parts as 

left 2

asy 2 2

( ) ( ) ' ( )

( ) ( ' ) '

P R

x x

I x F x I F x

I x R I P e I e 

  



  

 

  
              (37) 

In the same way, when a left semi-infinite line is considered, 

the total current solution along the line can be expressed as 

right 1

asy 1 1

( ) ( ) ' ( )

( ) ' ( ' )

P R

L x L L x

I x F x L I F x L

I x I e e R I e P e e    

  

  

  

   

  
   (38) 

where P- is the coefficient that describes the current solution 

along the asymptotic region as a result of a lumped source 

excitation at the right terminal, and F-
P is the unknown function 

corresponding to the exact solution in the right terminal region, 

excited by a lumped voltage source at the right terminal. 

By imposing these two solutions along the asymptotic region 

to be equal, the expressions for the unknown parameters I1 and 

I2 for line of length L can be formulated as 
2

1 22 2
( ) , ( )

1 1

L L L

L L

P P R e P e P R e
I L I L

R R e R R e

  

 

  

     

 

   

 
 

 
   (39)                     

A similar procedure as in the case of a field excitation can be 

adopted. Two short auxiliary lines of length L1 and L2 excited 
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by the two lumped sources are simulated by a full-wave solver. 

The coefficients I1(L1), I1(L2), I2(L1) and I2(L2) can be obtained 

by the least squares method. And then the coefficients P+, P-, 

R+ and R- can be calculated by using (39). The expressions for 

the current in the two terminal regions can be formulated as 
2 1

2

2 1

2 1

2 2

lef left

left 2 2 2 left

2 2 2 1

right 2 right 1

right

1 2 1 1

1 1 2 right 2

( ) ( )
( ) ( ( ) ( )) ( )

( ) ( )

( ) ( )
( )

( ) ( )

( ( ) ( ) ) ( )

L L

Lt

L L

L L

L LL

I x I x
I x I L I L I x

I L I L

I x L L I x L L
I x

I L e I L e

I L e I L e I x L L

 



 




  



    




    

   (40) 

Specifically, if there is only one lumped voltage source, the 

current solution can also be determined in a similar way. 

Assuming that there is a lumped voltage source V located at the 

right end, the coefficients F+
P and P+ would both reduce to zero. 

Since the other coefficients R+, R- and P- are all independent of 

the lumped source at the left end, they can be calculated 

assuming that the line is excited by two identical lumped 

voltage sources V located at the both ends of the line. The 

expressions of the coefficients I1 and I2 will be in this case 

1 22 2
( ) , ( )

1 1

L L

L L

P R e P e
I L I L

R R e R R e

 

 

 

  

 

   

 
 

        (41)     

And the current in the terminal regions can be expressed as 
2 1

2 1

2 1

2 2

lef left

left 2

2 2 2 1

right 2 right 1

right

1 2 1 1

1 1 2 right 2

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

( ( ) ( ) ) ( )

L L

t
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L L

L LL

I x I x
I x I L

I L I L

I x L L I x L L
I x

I L e I L e

I L e I L e I x L L

 



 








    




    

        (42) 

D. Nonlinear Load 

The above-mentioned procedure is based on a frequency-

domain approach and, therefore, cannot be directly applied to 

the case involving nonlinear loads. Methods allowing to take 

into account nonlinear loads within a frequency domain 

analysis have been discussed in the literature (e.g., [37]-[38]). 

This paper adopts a mixed frequency-time domain method that 

can be integrated into the proposed asymptotic method to solve 

the problem of a long overhead line terminated with a nonlinear 

load in an efficient manner. Assume that there is a lumped 

nonlinear load between two points Pa and Pb along the vertical 

riser of a terminal, as illustrated in Fig. 3(a). In this case, the 

Norton equivalent circuit between the two points Pa and Pb can 

be determined (see Fig. 3(b)), in which Isc is the equivalent 

Norton source which is equal to the current at the same point 

for a short-circuit termination (Z = 0), and Yin is the equivalent 

admittance of the circuit.  

εg, σg, μ0

ε0, μ0

Pa

Pb

Z

 Line

     

ZYinIsc

Equivalent Circuit IL

Pa

Pb  
                      (a) Configuration                        (b) Norton equivalent circuit 

Fig. 3.  The (a) configuration and the (b) Norton equivalent circuit of the 
nonlinear load terminated. 

The relationship of the current in Fig. 3(b) can be simply 

expressed as  

 ( ) ( ) ( ) ( )sc L in LI j I j Y j U j                   (43) 

The relationship between the voltage and current on the load 

in time domain reads 

( ) [ ( )]L Lu t F i t                               (44) 

where F is the U-I characteristic of the nonlinear load. 

The time domain formulation of (43) can be expressed as 

( ) ( ) ( ) [ ( )]

( ) ( ') [ ( ')] '

sc L in L

t

L in L

i t i t y t F i t

i t y t t F i t dt


  

  
                 (45) 

Equation (45) can be re-arranged into the following form, in 

which Δt is chosen to be sufficiently small 

( ) ( ) ( ') [ ( ')] ' ( ') [ ( ')] '

( ) ( ') [ ( ')] ' (0) [ ( )]

t t t

sc L in L in L
t t

t t

L in L in L

i t i t y t t F i t dt y t t F i t dt

i t y t t F i t dt y F i t



 





    

   

 


                 (46) 

Since the starting time of the exciting field is t=0, (46) can be 

written as 

0
( ) (0) [ ( )] ( ) ( ') [ ( ')] '

t t

L in L sc in Li t y F i t i t y t t F i t dt


       (47) 

It can be seen from (47) that if the U-I characteristic of the 

nonlinear load is determined, the current solution iL in time 

domain can be solved step by step using the time marching 

method. 

To solve the current response of the line which is terminated 

by the nonlinear load in time domain, the key step is to 

determine the Norton equivalent circuit parameters, namely isc 

and yin. In this paper, these two parameters are solved by the 

proposed asymptotic method in the frequency domain, and then 

transformed into time domain by using the IFFT method. 

III. NUMERICAL VALIDATION OF THE PROPOSED ALGORITHM  

In this section, four numerical examples are considered to 

assess the proposed algorithm.  

A. Example 1: General Solution for the Current along the 

Asymptotic Region for the Case of a Lossy Ground  

In the first example, the assumption that the general solution 

of the current response along the asymptotic region in the lossy 

ground case could be approximately expressed by the 

exponential functions, and the propagation constant γ could be 

evaluated by the TL theory is assessed. To this aim, we consider 

three cases which include both lumped and external field 

excitations. Since this example only aims at validating the 

general solution, the current along the horizontal part of the line 

(x=0~L) is entirely calculated by the general solution. 

 

In the first case, a 100-m long, 10-m high overhead conductor 

of 1 mm diameter above a lossy ground is considered. The 

conductivity and the relative dielectric constant of the ground 

are assumed to be 0.01 S/m and 10, respectively. The terminal 

loads at both ends are 50 Ω. The line is excited by two 1-V 

lumped voltage sources located at both terminals along the 
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horizontal line (points A and B in Fig. 2). The frequency of the 

lumped voltage sources is 200 MHz. It should be noted that in 

this case the wavelength is 1.5 m which is much smaller than 

the height of the line, thus the classical TL approximation is not 

valid for this case. The current response along the line is 

simulated by the Numerical Electromagnetics Code (NEC-4) 

[39] which is a full-wave solver based on the MoM. Since there 

is no exciting field, the general solution along the asymptotic 

region is assumed given by (34). The current solutions along 

the whole asymptotic region is evaluated and then the unknown 

coefficients I1 and I2 are fitted by using the least squares method. 

The bound of the asymptotic region lb is set to 20 m. When the 

unknown coefficients I1 and I2 are obtained, the current solution 

along the line are reconstructed using these fitted coefficients. 

The comparison between the original solutions obtained using 

NEC-4 and the reconstructed solutions using the fitted 

coefficients are shown in Fig. 4. The fitted coefficients are 

shown in Table Ⅰ. It can be seen that in the asymptotic region 

the reconstructed waveforms agrees well with the original 

NEC-4 solutions.  

 
(a) x=0~35 m. 

 
(b) x=35~65 m. 

 
(c) x=65~100 m. 

Fig. 4.  Comparison between the original solutions obtained using NEC-4 and 

the reconstructed solution. The line is formed by a 100-m long, 10-m high, 1-

mm diameter conductor above a ground of conductivity 0.01 S/m. Lumped 
source excitation with a frequency f = 200 MHz. 

 

In the second case, the length of the line is 40 m, the 

conductivity of the ground is 10-5 S/m and the frequency of the 

lumped voltage sources is 500 MHz, while other parameters are 

the same as those in the first case. This case aims to validate the 

general solution in a more ‘difficult’ case characterized by a 

very poor ground conductivity and for a higher frequency. Note 

that such a low conductivity ground is not typical and is only 

used for the numerical validation of the proposed method. 

In the same way, the current solution was calculated first 

using NEC-4, and the unknown coefficients were fitted by the 

least squares method, and then the current solution along the 

line was reconstructed by the obtained fitted coefficients. The 

comparison between the original NEC-4 solution and the 

reconstructed one are shown in Fig. 5. It can be seen that the 

reconstructed waveforms agree well with the NEC-4 solution in 

the asymptotic region.  
TABLE I 

THE FITTED COEFFICIENTS 

I1 I2 

11.65-4.21i 1.47+10.52i 

 

 
(a) x=0~20 m. 

 
(b) x=20~40 m. 

Fig. 5.  Comparison between the original solutions obtained using NEC-4 and 

the reconstructed solution using the fitted coefficients. The line is formed by a 
40-m long, 10-m high, 1-mm diameter conductor above a ground of 

conductivity 10-5 S/m. Lumped source excitation with a frequency f = 500 MHz. 

 

In the third case, the line is excited by an impinging field. The 

parameters of the line are the same as those in the second case, 

while the excitation is a plane wave with the amplitude of 1 V/m; 

the polarization angle, the azimuth angle and the elevation 

angle are 0o, 0o and 45o, respectively. The current response is 

calculated using both NEC-4 and the classical TL method. Then 

the reconstructed solution is also calculated by the fitted 
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coefficients obtained from the solutions of NEC-4 using (29). 

The comparison between the induced currents calculated by 

NEC-4, classical TL method, and the reconstructed solution are 

shown in Fig. 6. It can be seen that the reconstructed solution 

agrees well with the solution obtained from the NEC-4 in the 

asymptotic region, whereas the solution obtained from the 

classical TL method is inaccurate.  

These cases prove that the general solution in the asymptotic 

region expressed by (20) is an excellent approximation in the 

case of lumped and external field excitations. Moreover, the 

propagation constant estimated using the TL theory could 

provide the solutions with a high accuracy along the asymptotic 

region. The proposed approach is even reasonable for a 

‘difficult’ case characterized by an unusually poor ground 

conductivity and for a broad frequency range covering a 

spectrum which extends to frequencies much beyond those of a 

typical EMP or even some of the IEMI sources. Above all, this 

example shows that the proposed approach is sufficiently 

reasonable for the typical case of EMP coupling to a 

distribution power line above a lossy ground.  

 
(a) x=0~20 m. 

 
(b) x=20~40 m. 

Fig. 6.  Comparison between the original solutions obtained using NEC-4, the 

solution obtained using the classical TL theory and the reconstructed solution 

using the fitted coefficients. The line is formed by a 40-m long, 10-m high, 1-
mm diameter conductor above a ground of conductivity 10-5 S/m. The line is 

excited by a 1-V/m, 500-MHz plane wave. The polarization angle, the azimuth 

angle and the elevation angle are 0o, 0o and 45o, respectively.  
 

B. Example 2: Long Overhead Line above a Lossy Ground 

Illuminated by an Exciting Field 

In the second example, the proposed method is entirely 

validated for several cases. Therefore, the current in the 

terminal regions are also taken into account. 

In the first case, we consider a 200-m long, 10-m high, 1-mm 

diameter conductor above a lossy ground. The ground 

conductivity and relative permittivity are 0.01 S/m and 10, 

respectively. The terminal loads at both ends are 50 Ω.  The line 

is excited by a plane wave with an amplitude of 1 V; the 

polarization angle, the azimuth angle and the elevation angle 

are 0o, 0o and 45o, respectively. Since both vertical risers are 

taken into account, we use coordinate l that describes the 

location along the line including both risers. In this way, the 

coordinates of the load Z1 which is at x=0, y=Δ/2 corresponds 

to l=Δ/2, and that of the load Z2 which is at x=L, y=Δ/2 

corresponds to l=L+2h-Δ/2. The line response was evaluated 

using NEC-4 and the proposed method. The current responses 

along the entire line at the frequency of 100 MHz are shown in 

Fig. 7. It can be seen that the solution along the entire line 

calculated using the proposed approach agrees remarkably well 

with that the results obtained using NEC-4. The lengths of the 

two auxiliary lines used in the example were 60 m and 61.5 m, 

respectively. Figures 8-11 present similar comparisons but 

considering longer lines (400 m and 1000 m). It can be seen that 

the proposed method allows to reproduce with a reasonable 

accuracy the induced currents along the considered longer lines.  

 
(a) Real part of the solution. 

 
(b) Imaginary part of the solution. 

Fig. 7.  Comparison between the proposed approach and results obtained using 

NEC-4. Induced current on a 200-m long, 10-m high, 1-mm diameter conductor 

above a ground of conductivity 10-2 S/m and relative permittivity 10. The line 
is excited by a 1-V/m, 100-MHz plane wave. The polarization angle, the 

azimuth angle and the elevation angle are 0o, 0o and 45o, respectively.  

 

To quantify further the validity range of the proposed method 

as a function of the frequency, the relative error for the induced 

current at the line end with respect to the NEC results are 

evaluated using the following expression 

 
max( , )

n a

an

I I

I I



   (48) 

where In is the magnitude of the current result obtained from 

NEC-4, and Ia is the magnitude of the current result obtained 

from the proposed method.  
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The relationship between the relative error and the frequency 

is shown in Fig. 12 for the case of the 1000-m long line. It can 

be seen from the figure that the relative error increases with the 

frequency. However, the results show that the relative error 

remains relatively low up to a frequency of about 250 MHz, 

which means that the proposed method is suitable for the 

simulation of HEMP coupling to overhead lines since 

significant frequency components of HEMP are within 100 

MHz or so. To increase the accuracy for higher frequencies 

(e.g. >300 MHz), other more accurate formulas for the ground 

impedance (e.g., [40]) can be used. This issue requires more in-

depth investigations and will be the subject of future work. 

The computation time of the proposed approach for the three 

considered line lengths are reported in Table II. In the same 

table, the same figures related to NEC-4 are also reported for 

comparison. In the calculation, the discretization step along the 

line was 0.1 m. The adopted software were NEC-4 and Matlab, 

which run on a PC with 3.2 GHz CPU and 16 GB RAM. It can 

be seen that the CPU cost of NEC-4 increases geometrically 

with the line length. When the length is 1000 m, about 1650 s 

is needed to calculate the results for a single frequency, which 

can become unaffordable when it is applied to solve a time-

domain solution. At the same time, since the proposed method 

adopts a semi-analytical scheme in which numerical processes 

are only applied to two very short auxiliary lines, a much higher 

computational efficiency is obtained. It can be seen that only 

3.2 s is needed when applying the proposed method in the case 

of a 1000-m long line. 

 
(a) l=0~210 m. 

 
(b) l=210~420 m. 

Fig. 8.  Comparison between the real part solutions obtained using proposed 

approach and that using NEC-4. Same as Fig. 7 but with a line length of 400 m. 

 
(a) l=0~210 m. 

 
(b) l=210~420 m. 

Fig. 9.  Comparison between the imaginary part using proposed approach and 

that using NEC-4. Same as Fig. 7 but with a line length of 400 m. 

 
(a) l=0~200 m. 

 
(b) l=410~620 m. 
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(c) l=820~1020 m. 

Fig. 10.  Comparison between the real part solutions obtained using proposed 

approach and that using NEC-4. Same as Fig. 7 but with a line length of 1000 

m. 

 
(a) l=0~200 m. 

 
(b) l=410~620 m. 

 
(c) l=820~1020 m. 

Fig. 11.  Comparison between the imaginary part solutions obtained using 

proposed approach and that using NEC-4. Same as Fig. 7 but with a line length 
of 1000 m. 

 
Fig. 12.  Relationship between the relative error and the frequency with a line 

length of 1000 m. 
 

TABLE Ⅱ 

THE CPU COST OF THE TWO METHODS (PROPOSED APPROACH VERSUS NEC-
4) AS A FUNCTION OF LINE LENGTH WITH FREQUENCY OF 100 MHZ (UNIT: S)  

NEC-4 Proposed Approach 

200 m 400 m 1000 m 200 m 400 m 1000 m 

19.96 123.29 1650.43 3.17 3.18 3.20 

In order to investigate the solution in the time domain, the 

time-domain current solutions at the two terminal loads Z1 and 

Z2 are calculated. The IEC standard waveform is adopted as the 

waveform of the electric field of the incoming wave, which is 

defined in the IEC 61000-2-9 as 

 
0 0( ) ( )t tE t E k e e      (49) 

where E0=50 kV/m, k0=1.05, α=4×107 s-1, β=6×108 s-1. 

The full-wave approach (NEC-4), the classical TL method 

and the proposed method are adopted to calculate the current 

response at the two loads Z1 and Z2 in the frequency domain, 

and then the time domain solutions are obtained by using the 

IFFT method. The comparison among the time domain 

solutions for the induced current at the loads Z1 and Z2 is shown 

in Fig. 13. It can be seen that the results obtained using the 

proposed approach agrees very well with those obtained from 

NEC-4. On the other hand, the results calculated using the 

classical TL deviate significantly from the full-wave results. 

Moreover, it can be seen clearly that the classical TL method 

results in an underestimation of both of the gradient of the rising 

edge and the amplitude of the current response, in agreement 

with the findings of [14]. 

 
(a) 
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(b) 

Fig. 13.  Comparison between the proposed approach and results obtained using 

the classical TL approach and NEC-4. Induced current on a 1000-m long, 10-

m high, 1-mm diameter conductor above a ground of conductivity 10-2 S/m and 
relative permittivity 10. The line is excited by an IEC 61000-2-9 plane wave 

plane wave. The polarization angle, the azimuth angle and the elevation angle 

are 0o, 0o and 45o, respectively. (a) Induced current in the left-end impedance 

(b) Induced current in the right-end impedance. 

 

C. Example 3: Long Overhead Line above a Lossy Ground 

Excited by a Lumped Voltage Source 

We consider the case of a 100-m long, 10-m high, 1-mm 

diameter conductor above a lossy ground. The conductivity and 

the relative dielectric constant of the ground are assumed to be 

0.01 S/m and 10, respectively. The terminal loads at both ends 

are 50 Ω.  The line is excited by two 1-V, 100 MHz lumped 

voltage sources located at both terminal ends. The comparisons 

between the current solutions calculated using the proposed 

approach and those obtained using NEC-4 are shown in Fig. 14. 

It can be seen that the results calculated using the proposed 

method agrees very well with those obtained using NEC-4. 

 
(a) Real part of the solution. 

 
(b) Imaginary part of the solution. 

Fig. 14.  Comparison between the proposed approach and results obtained using 

NEC-4. Induced current on a 100-m long, 10-m high, 1-mm diameter conductor 
above a ground of conductivity 10-2 S/m and relative permittivity 10. The line 

is excited by a two 1-V, 100-MHz lumped voltage sources at each end of the 
line. 

In the second case, the geometry of the line is the same like 

that in the first case, while only one lumped voltage source 

which equal to 1V located at the right end of line. The 

comparison between the current solutions which calculated 

from the NEC-4 and proposed approach is shown in Figs. 15. It 

can be seen that the results calculated from the proposed method 

agrees well with that from the NEC-4. 
 

D. Example 4: Long Overhead Line above a Lossy Ground 

Terminated with a Nonlinear Load 

We consider the same line configuration of Section III.B.  

The terminal load at the left end is 50 Ω, while that at the right 

end is formed by the parallel connection of a 50 Ω load with a 

nonlinear load. The U-I characteristic of the nonlinear load is 

shown in Fig. 16 and corresponds to the behavior of n typical 

voltage limiting equipment. The line is excited by the same IEC 

plane wave. According to the proposed method in Section Ⅱ, 

the equivalent circuit source isc is calculated by using the 

asymptotic method when setting the nonlinear load as zero. The 

equivalent admittance yin is calculated when the line is excited 

by a lumped voltage source located at the right terminal. The 

current response is calculated using the proposed method, as 

well as using the classical TL method. The calculated current 

across the nonlinear load and the 50 Ω load at the right terminal 

are shown in Fig. 17. 

It can be seen from the Fig. 17 that the classical TL approach 

results in an inaccurate and underestimated induced current. In 

particular, the amplitude of the current through the nonlinear 

load calculated using the proposed method is 890 A while that 

obtained using the classical TL theory is 720 A.  

 
(a) Real part of the solution. 

 
(b) Imaginary part of the solution. 

Fig. 15.  Same as in Fig. 14 but with only one voltage source located at the line 

right-end. 
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Fig. 16.  U-I characteristic of the nonlinear load. 

 
(a) Current through the 50 Ω load. 

 
(b) Current through nonlinear load. 

Fig. 17.  Induced current in the right terminal (a) across the 50 Ω load and (b) 

the nonlinear load. 100-m long, 10-m high, 1-mm diameter conductor above a 
ground of conductivity 10-2 S/m and relative permittivity 10. The line is excited 

by an IEC 61000-2-9 plane wave. The polarization angle, the azimuth angle and 
the elevation angle are 0 o, 0 o and 45o, respectively 

 

IV. CONCLUSION 

This paper proposed an efficient method to model the high 

frequency electromagnetic field coupling to long overhead line 

terminated with nonlinear loads above a lossy ground. The 

cross-section of the line can be comparable to the wavelength 

of the incoming wave. In the proposed method, the asymptotic 

approach which is a semi-analytical method is adopted and 

extended to the case of a lossy ground. General solutions along 

the asymptotic region for the case of a lossy ground case are 

developed. The scattering and reflection coefficients of the line 

are fitted from the numerical results obtained by using a full 

wave solver to auxiliary lines with short line lengths. Once the 

coefficients are determined, the response of the entire line can 

be calculated analytically, resulting in a high computational 

efficiency compared to full wave solvers, especially for long 

lines. Since the asymptotic method is a frequency-domain 

approach, the time marching method which is a mixed 

frequency and time domain method is adopted to handle 

nonlinear loads.  

The proposed method has been validated considering 

different numerical examples, and taking as reference full-wave 

simulations obtained by a full-wave solver based on the Method 

of Moments (NEC-4). The results showed that the proposed 

method can accurately and efficiently predict the response of a 

long lines to either lumped sources or external field excitation. 

Future work will be devoted to investigate the numerical 

performance of the proposed method. The method will also be 

extended to the case of a multi-conductor transmission lines, 

inhomogeneous (multilayered) soil, and nonuniform excitation 

sources. Moreover, the use of more accurate expressions for the 

ground impedance instead of the Sunde’s formula will also be 

investigated. 
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