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Abstract—Current Approximate Query Processing (AQP) en-
gines are far from silver-bullet solutions, as they adopt sev-
eral static design decisions that target specific workloads and
deployment scenarios. Offline AQP engines target deployments
with large storage budget, and offer substantial performance
improvement for predictable workloads, but fail when new query
types appear, i.e., due to shifting user interests. To the other
extreme, online AQP engines assume that query workloads are
unpredictable, and therefore build all samples at query time,
without reusing samples (or parts of them) across queries.
Clearly, both extremes miss out on different opportunities for
optimizing performance and cost. In this paper, we present
Taster, a self-tuning, elastic, online AQP engine that synergis-
tically combines the benefits of online and offline AQP. Taster
performs online approximation by injecting synopses (samples
and sketches) into the query plan, while at the same time it
strategically materializes and reuses synopses across queries, and
continuously adapts them to changes in the workload and to the
available storage resources. Our experimental evaluation shows
that Taster adapts to shifting workload and to varying storage
budgets, and always matches or significantly outperforms the
state-of-the-art performing AQP approaches (online or offline).
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I. INTRODUCTION

AQP engines trade accuracy for better response time and
lower resource usage, by executing analytical queries over
small data samples and providing an approximate result within
a few percents of the actual value. State-of-the-art AQP
engines are classified into two categories, depending on the
assumptions they make about the query workload. Offline
AQP engines (e.g. STRAT [10] and BlinkDB [4]) target
applications where the query workload is known a priori,
e.g., aggregate dashboards that compute summaries over a
few fixed columns. Offline AQP engines analyse the expected
workload to identify the optimal set of synopses (summaries
of the data, such as samples, sketches, and histograms) that
should be generated to provide fast responses to the queries at
hand, subject to a predefined storage budget and error tolerance
specification. Since this analysis is time-consuming, both due
to the computational complexity of the analysis task, as well
as the I/O overhead in generating the synopses, AQP engines
perform the analysis offline each time the query workload or
the storage budget changes.

While offline AQP engines substantially improve query
execution time under predictable query workloads, their need
for a priori knowledge of the queries makes them unsuitable
for unpredictable workloads. Data exploration is one such

example, where future queries are determined based on the re-
sults obtained from past queries. These workloads benefit from
online AQP techniques, where approximation is introduced
to query execution at runtime. State-of-the-art online AQP
engines achieve this by introducing samplers during query
execution. By reducing the input tuples, samplers improve
performance of the operators higher in the query plan. In this
way, online AQP techniques can boost unknown query work-
loads. However, query-time sampling is limited in the scope
of a single query, as the generated samples are not constructed
with the purpose of reuse across queries – they are specific to
the query, and are not saved. Thus, online AQP engines offer
substantially constrained performance gains compared to their
offline counterparts for predictable workloads.

In summary, all state-of-the-art AQP engines force end-
users to pick an extreme point in the generality–performance
spectrum, as they make static, design-time decisions based
on a fixed set of assumptions about the query workload and
the available resources. However, workload in modern data
analytics clusters is complex, far from homogeneous, and
often contains a mix of queries that vary widely with respect
to the degree of approximability [4]. Similarly, the available
hardware resources are also non-static and time-varying. For
instance, an administrator might elastically provision storage
space for storing synopses based on the expected system load.
Hence, in the ideal case, an AQP engine should be self-tuning
and adaptive. It should automatically pick the right point in the
design spectrum based on the workload, and adapt its decision
on-the-fly with each change in workload or storage capacity.

In this work, we present Taster, a self-tuning, adaptive,
online AQP engine. Taster inherits ideas from (adaptive)
database systems, such as intermediate result materialization,
query subsumption, materialized view tuning and index tuning,
and adapts these in the context of AQP, enabling a combination
and extension of the benefits of both offline and online approx-
imation engines. First, by injecting approximation operators
in the query plan, Taster supports a broad range of queries
over unpredictable workloads. Taster extends prior work by
showing that the technique of injecting sampling operators
can also be generalized to sketch-based approximations. Sec-
ond, by performing online materialization of synopses as a
byproduct of query execution, Taster provides performance
on-par with offline AQP engines under predictable workloads,
yet without an expensive offline preparation phase. Taster also
extends prior work by supporting synopses materialization at



intermediate stages in the query plan, and not only for summa-
rizations of base tables. Third, by using a cost:utility greedy
algorithm to determine the right set of synopses to maintain,
Taster adapts to changes in the workload and available storage.
Contributions. This paper makes the following contributions:
• We present Taster, an online adaptive approximate query

engine that enables materialization of synopses during
query execution, and their reuse across queries. Taster
uses synopses for summarizing both base tables and inter-
mediary results of query subplans. We show how to in-
tegrate synopses as first-class citizens in query planning,
which leads to better plans and improved performance.

• We formalize a utility metric to capture the performance
benefit of a synopsis. The metric drives an online tuning
algorithm that determines the optimal set of synopses to
maintain.

• We consider the question: what other optimizations are
possible if we have additional knowledge of user’s inten-
tions, e.g., some frequent queries, on which attributes,
and on which files? We sketch the space of possible
optimizations in the presense of additional user hints,
and demonstrate how Taster integrates these hints by pre-
constructing some samples using state-of-the-art offline
sampling algorithms (e.g., variational subsampling).

• We integrate our techniques into SparkSQL. We compare
Taster to vanilla SparkSQL, a representative offline AQP
approach called BlinkDB, and an online approximation
approach called Quickr. Our experiments with industry-
standard benchmarks demonstrate that Taster offers sub-
stantially improved performance compared to online AQP
engines (2.9×), and comparable performance to offline
AQP engines without requiring the excessive sample pre-
generation cost. Speed-up compared to the baseline is
over 3× on average (20× when additional hints are
provided, reaching to 30× for some queries).

The rest of this paper is organized as follows. Section II
presents an overview of the used approximation methods.
Section III discusses the architecture of Taster, along with an
example of its execution workflow. Section IV details on the
query planning process, whereas Section V discusses the self-
tuning nature of the system. Section VI presents a thorough
experimental evaluation. We discuss related work in Section
VII, and conclude in Section VIII.

II. APPROXIMATION METHODS

Taster utilizes two types of synopses: sketches and samples.
Both satisfy the following requirements, which are imperative
for high performance: (a) they are partitionable, i.e., they can
be constructed over massively parallel platforms such as Spark,
and (b) they are pipelineable, such that they can be built with
a single pass over the data.
Samples. Taster generates samples using two types of sam-
plers – uniform and distinct. Each sampler goes over all input
rows, and lets only a subset of them to pass through. Relational
operators are then executed over the available sample(s), and
the aggregates are scaled to get the final estimates. To be able

to perform this scaling, each sampler appends an additional
attribute that represents the weight associated with the row.
For example, given a query calculating the SUM of a column,
for every tuple of the sample with value ti and weight wi,
Taster returns ti × wi.

Uniform sampler. The uniform sampler ΓU
p samples without

replacement, letting a row pass through with probability p at
random. For every row, the weight is set to 1/p. This sampler
is both pipelineable and partitionable, and its memory footprint
during construction is approximately equal to the memory
footprint of the desired sample size.

Distinct sampler. Even though the uniform sampler has low
execution overhead, it does not have good statistical properties
in more complex workloads, e.g., in join queries, it may miss
an arbitrary large number of join keys. Prior works cope by
generating stratified samples. Stratified sampling guarantees
the existence of all groups for specific attributes (stratifica-
tion attributes) and a minimum number of tuples per group.
However, stratified sampling operators are blocking operators
and require two passes over the data. The execution overhead
of such an operator is prohibitive for online approximation.
Therefore, Taster uses distinct sampler [12], [24], [25], which
guarantees that at least a certain number of rows pass per
distinct combination of values of a column set.

Distinct sampler works as follows: given a set of stratifica-
tion attributes A, a number δ, and probability p, the distinct
sampler ΓD

p,A,δ passes at least δ rows for every distinct com-
bination of values of the columns in A. Subsequent rows with
the same value are let through with probability p, uniformly-
at-random. The weight of each row is set correspondingly: If
the row passes because of the frequency check, its weight is
set to 1, whereas if it passes due to the probability check, its
weight is set to 1/p. The Taster planner extracts the parameters
{A, δ, p} automatically for each query, such that user accuracy
requirements are satisfied (details in Section IV-B). In terms of
implementation, distinct sampling is implemented efficiently
by using a heavy-hitters sketch that requires space logarithmic
to the number of rows [12].

Distinct sampler is pipelinable by design, as it requires only
a single pass over the data. To make it partitionable, given the
sampler operator distribution factor D (the number of operator
instances), we adjust the minimum number of rows required
from each operator instance from δ to δ +Dε with ε being a
variable addressing variations in data distribution. As per [25],
ε is set to δ/D, which builds on the assumption that data is
distributed uniformly across instances.
Sketches. Some queries are amenable to sketch-driven ap-
proximations. Such queries are, e.g., nested queries containing
EXISTs which can be approximated with Bloom filters [8],
distinct counts and join size estimations with Bloom fil-
ters [33], FM-sketches [17], and AMS-sketches [6].

Taster exploits count-min sketches [13] to answer several
types of these queries. A count-min sketch consists of a 2-
dimensional array (w×d) of counters (integers), accompanied
with d pairwise independent hash functions that uniformly map
each item from the domain space (each potential key) to one
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Fig. 1: The overview of Taster.

counter per array row. Let counter i at row j be denoted as
A[i][j], and hash function corresponding to row j be denoted
as hj . Adding an item x to a sketch is achieved by finding
the corresponding counters from the sketch, i.e., A[hj(x)][j]
for j = {1, . . . d}, and increasing these by one (or by the
frequency of x). The sketch has a memory footprint of a few
MB and can be constructed on-the-fly during query answering.
After construction, the sketch is used as an approximate key-
value store for estimating the frequency f̂(x) of any item x,
as follows: f̂(x) = min (A[hj(x)][j]|j = {1, . . . d}). When
d = O(1/δ) and the number of columns of the sketch is set
to O(1/ε), the estimate is within range εN of the real answer,
with probability at least 1 − δ (variable N represents the L1
norm of the frequencies). Construction of count-min sketches
is fully partitionable. Therefore, each node in the cluster builds
sketches for its own data, and all sketches for one dataset are
added pair-wise to get a sketch representing the whole RDD.

Sketch-join. Besides simple aggregations, the sketch also
supports aggregations over joins. The Sketch-Join operator
builds a sketch on the relation over which the aggregation
takes place and uses as key the join key and as a value the
executed aggregation for the tuple. This sketch is subsequently
used in a similar fashion as a hash index in the hash-join
algorithm. The reduced size of the sketch (a few MB as
opposed to possibly several GB for a sample of a large table,
or a hash index) makes sketches ideal for materialization and
re-use in subsequent queries.

III. ARCHITECTURE OF TASTER

Figure 1 presents Taster’s high-level architecture. Taster is
implemented over SparkSQL and extends Apache Catalyst
query optimizer and SparkSQL query engine with online ap-
proximation techniques, combined with synopsis materializa-
tion and self-tuning. The techniques presented are not limited
to SparkSQL, and are applicable to any query processing
system – even centralized ones. In the following we present a
high-level overview of the core concepts of Taster.
Synopses and synopsis warehouse. Taster uses a set of
automatically-constructed and tuned synopses to summarize
both the raw data (the base relations) and intermediary results
of subplans (e.g., join results). Currently, it exploits two types
of synopses, samples and sketches, each being appropriate
for answering different query families (cf. Section II). All
synopses are constructed as byproducts of query answering,
and are saved in the synopsis warehouse, in HDFS. Along with
synopses, Taster stores statistics of the dataset (distribution
of values, number of distinct values), which are calculated
on-the-fly during the first access to any table. To control

monetary cost, the synopsis warehouse is subject to space
quota, which is set at initialization and can also be modified
at runtime from the administrator. More details for the process
of selecting synopses for the synopsis warehouse will be
presented in Section V.
Synopsis buffer. The plan chosen for execution may require
generation of a new synopsis (i.e., if the synopsis is not already
in the synopsis warehouse). Generation of a new synopsis on-
the-fly may still be beneficial for the query at hand, in order to
reduce CPU usage of operators higher in the plan. In this case,
the new synopsis will be temporarily stored in the synopsis
buffer – a fixed-size buffer implemented as a sequence of in-
memory RDDs in Spark. The buffer offers two main benefits:
(a) it serves as a fast main-memory cache, which offers
significant boost for workloads exhibiting temporal locality,
and, (b) it decouples the decision of writing the synopsis
in the HDFS-based synopsis warehouse – an I/O expensive
operation – with the process of query answering which needs
to be executed with a very small latency. When the buffer is
full, the tuner decides which synopses should be permanently
stored in the synopsis warehouse (cf. Section V).
Cost-based planner. Taster’s query engine decides automat-
ically on the exploitation of supported synopses to speed-up
user queries. This automation relies on a cost-based planner,
which is currently built into the Catalyst optimizer. Upon
receiving the query, the planner generates a set of approximate
execution plans. These plans utilize synopses that may, or
may not yet exist, and they all satisfy the approximation
requirements of the query. The next step is to estimate the cost
of each plan and the performance gain by the use of synopses,
compared to the best plan without synopses that will return
exact answers. The plans and their costs are then passed to
the tuner, for further optimizations and the final execution.
The cost-based planner is discussed in Section IV.
Tuner. The primary purpose of the tuner is to choose the
best plan out of the ones proposed by the planner. However,
when ranking the plans, the tuner focuses on maximizing long-
term throughput, i.e., over the future workload, as opposed to
minimizing the cost for the query at hand. This holistic op-
timization translates to decisions in two levels: (a) promoting
the plans that generate reusable synopses, pertinent to many
different queries, and, (b) deciding which of the generated
synopses will be stored in the synopsis warehouse, and which
will be deleted, to satisfy the space quota. Tuning involves
two major challenges: (a) holistic optimization can be CPU-
intensive, and (b) the future queries, over which the tuner
needs to optimize, are of course not yet known. We explain
how these issues are addressed in Section V.
Physical plan generator. The plan chosen by the tuner
is subsequently passed to the physical plan generator, for
extraction of the physical plan and execution over Spark. The
physical plan generator is now implemented within the tuner
to avoid additional synchronization overhead. Fault tolerance,
distribution, partitioning-related details, and the actual task
execution are handled transparently by Spark.
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Fig. 2: Example execution of Taster. The dotted ellipses
depict prospective synopses, the normal-line ellipses depict
chosen synopses. Yellow boxes are used to denote reuse of
existing synopses. Γgroup,aggr denotes aggregation operator
with group grouping attributes and aggr aggregation function.

Metadata store. Effectiveness of both the planner and tuner
depends on the existence of metadata that characterizes the
past workload and the synopses that could speed-up this
workload. The metadata store is a main-memory, synopses-
centric metadata repository that keeps rich statistics about
the properties, impact, and popularity of each synopsis. In
particular, the store keeps details for all synopses contained
in all plans generated by the planner – even the ones that
are not chosen for execution. These details include: (a) the
logical definition of the synopsis (the logical subplan whose
results are summarized by this synopsis), (b) stratification
and accuracy requirements of the synopsis, (c) whether the
synopsis is saved in the synopsis warehouse or not, and, (d) the
list of recent queries that could utilize this synopsis to improve
performance, their estimated cost when this synopsis exists,
and their cost if an exact query plan (without synopses) would
be chosen instead. The purpose of this metadata is twofold:
(a) to assist the planner to estimate the cost of each candidate
plan (cf. Section IV-A), and (b) to enable the tuner to decide
which synopses will maximize throughput, i.e., because they
will improve many different subplans (cf. Section V).
Example. Figure 2 presents an overview of Taster running
three queries over three relations R, S, T . For simplicity,
we assume that the synopsis buffer fits one synopsis, and the
warehouse fits three synopses.1 Just before arrival of Q1, the
synopsis warehouse already contains synopses S1, S2, and S3.
S1 is a sample of relation T . Synopses S2 and S3 refer to
another table W , not relevant to the three queries.

During Q1, the planner proposes two candidate plans (cf.,
Fig. 2a). The first one contains synopsis S4, which summarizes
R on S, and the second contains synopsis S5 of R. Notice that
neither of the two synopses exist. The two plans are costed,
and the metadata store is updated with the corresponding
properties of S4 and S5. Then, the plans are sent to the
tuner. The tuner identifies the best plan (in this case, the
one with S4), and sends it for execution. During execution,
S4 is generated and saved in the in-memory synopsis buffer.
When Q2 arrives, the planner identifies two candidate plans

1This is only for illustration purposes. Since synopses have different sizes,
quotas are determined in GB, and not in number of synopses.

(cf., Fig. 2b), which rely on the nonexistent synopses S6 and
S7 respectively (synopses S1 and S4 cannot be used because
of different grouping attributes). Again, the planner updates
the metadata store with the corresponding properties of the
two candidate synopses, and the plans are sent to the tuner.
Now, as the synopsis buffer is full, the tuner first needs to
free up space, so that either of the candidate synopses can be
generated. The synopsis warehouse is also full. By estimating
the long-term benefit of each synopsis, the tuner decides to
keep S1, S3, and S4 in the warehouse, and to execute the plan
that requires S5. The plan is executed, and S7 is stored in the
synopsis buffer. During Q3, the planner proposes two plans
(cf., Fig. 2c), the first replacing the scanning of relation T
with S1 which is already saved in the warehouse (the yellow
box), and the second utilizing a non-existent synopsis S8. The
plans are sent to the tuner, where the first one is chosen and
sent for execution.
Supported Queries. Taster accepts and answers all SQL
queries supported by Spark SQL. Similar to prior work,
e.g., [4], [25], it improves performance for queries containing
aggregates (e.g., COUNT, AVG, SUM). The query format for
approximate queries follows the standard syntax: “ERROR
WITHIN x% AT CONFIDENCE y%”, which corresponds to
aggregate results with relative error of at most x% at a y%
confidence level.

IV. QUERY PLANNING WITH SYNOPSES

Taster automatically decides which synopses to create, store,
and use for answering each query. Synopses are used for
summarizing both raw data (base relations) and query subplans
(e.g., the results of an aggregator over a join). Due to their
small size compared to the original data, synopses improve
both computational complexity and I/O cost during query
processing. All synopses are created on-the-fly, as byproducts
of query answering, thereby inducing no additional I/O.

Synopses in Taster are promoted to first-class citizens: they
are included as approximate operators in the logical query
plans, costed as all other logical operators, and transformed to
fully pipelined and distributable code during the physical plan
generation. This enables the planner to produce more efficient
plans, and the tuner to promote reusability of synopses by
matching synopses across different queries. In the remainder of
this section we will explain how the Taster planner integrates
synopses into planning. The discussion explains the plan
generation process, how synopses are configured to satisfy the
query’s accuracy requirements, and how they are matched to
existing synopses from the synopses warehouse.

A. Query Planning

The planner generates auxiliary logical plans, replacing the
aggregator operators with approximate aggregators (whenever
these are beneficial for performance), costing the plans, and,
passing them to the tuner for further optimizations. In the
following, we describe this process in detail.

Upon receiving query qi, the planner generates candidate
logical plans P(qi) = {p1, p2, . . .}, which integrate synopses.



The key observation to limit the search space is that prospec-
tive synopses are used for approximating aggregators and
joins. Focusing on aggregations, the planner first identifies
all query subplans rooted on (partial/eager) aggregators. For
each, it injects a generic synopsis operator just below the
aggregator operator, and modifies the aggregator to account for
the synopsis (e.g., a SUM over a sample would require scaling
to account for the full dataset). The synopsis operator repre-
sents the potential to efficiently approximate the underlying
subplan by the use of a (possibly not yet existent) synopsis.
Subsequently, Taster tweaks the query plan to achieve two
goals, (i) maximize the re-use of existing synopses and (ii)
satisfy the user’s accuracy requirements. All resulting plans are
annotated with cost estimates based on their expected I/O, and
analyzed to extract all synopses, along with the subplans they
summarize. The collected data is used to update the metadata
store with the appearances of these synopses. Following, all
plans are passed to the tuner for further optimizations.

The above process entails several challenges. First, the
process of generating candidate plans is different compared
to traditional planners. Unlike traditional query planning, the
planner now also needs to take into account the required
approximation guarantees and stratification requirements while
constructing the plans. Furthermore, when pushing down a
synopsis in the plan, the synopsis, as well as its corresponding
approximate aggregation operator, may require modifications.
Second, the approximate aggregators in the plan need to be
configured. This boils down to choosing between the supported
types of sampling and sketches, and configuring the selected
synopses (e.g., for uniform sampling, setting the sampling
probability). Third, the candidate synopses contained in the
plan need to be mapped to existing synopses (if any), so that
the planner can replace the subplan with the synopses, and
estimate the execution cost. In the following we describe how
the planner handles these three challenges.
Generating the candidate plans. The planner generates
the first set of plans by injecting synopsis operators be-
low the aggregations. Particularly, given aggregation operator
ΓG,AGG(A)(c), which computes aggregation function AGG
over the data produced by operator c (the child operator in the
logical plan) by grouping over attributes A, the synopsis oper-
ator ΓS

state is injected and the aggregation operator is updated
(now denoted as Γ′G,AGG(A)(Γ

S
G(c))) to use the synopsis as

input. Subsequently, Taster starts pushing the synopses down
in the plan, closer to the raw data, as an effort to enable
executing the plan with existing synopses, or to generate more
re-usable synopses. For these, it relies on the push-down rules
for synopses introduced in [25], and adapted to enable sketch
synopses. Briefly, whenever Taster pushes a synopsis operator
under a filter σp, it needs to account for two possibilities. If
the distribution of values of predicate p is uniform, the new
operator is moved under the filter unaltered, since a uniform
sample over that attribute will not reduce the number of groups
appearing in the final result [29]. However, if the distribution
of the values of p is skewed (some groups appear infrequently),
Taster needs to stratify the underlying output on p. Thus,

Taster adds the attributes appearing in p which follow a skewed
distribution into the stratification set.

Considering pushing synopses under the joins, given a join
R onjp S with join predicates jp, the planner pushes the
synopsis below the join, to the side of the join on which the
aggregation takes place (say, the side of R), and modifies the
stratification attributes of the synopsis to include the attributes
from jp that are contained in R (i.e., ΓS

(A∪jp)∩R(R) onjp S).
Finally, if the join predicate is not a grouping attribute, Taster
introduces a partial aggregation after the join.

The above push-down process guarantees that (i) the gen-
erated physical query plan will gather sufficient samples from
each of the groups to satisfy user’s accuracy requirements,
and (ii) the overall sampling process overhead will not exceed
the performance gains. We discuss how result accuracy is esti-
mated efficiently and reused across different queries in Section
IV-B. In terms of implementation, the push-down strategies
are implemented as rules in the Catalyst optimizer, and are
executed at every query. Since Catalyst default implementation
returns only a single plan at the end, we intervene the planning
process in order to store all intermediate plans.
Choosing and configuring the synopses. The synopsis oper-
ators contained in the logical plans up to now were parameter-
ized with stratification and accuracy requirements, but omitted
configuration details, e.g., which synopsis to use, and how to
configure it for satisfying user’s accuracy requirements.

Due to the immense ratio of performance gain to storage
requirement of sketches, Taster prioritizes the use of sketch-
join when appropriate: Let R and T be two relations joined
over attributes jp and subsequently passed through aggregator
Γgrp,agg, with grp being the grouping attributes and agg the
attributes taking part in the aggregation. With attrs(R) we
denote the attributes of R which are given as input to the
join. Sketch-join can boost join queries with aggregates, when
the projected attributes from one side of the join are either join
attributes, or they are used in the aggregate function. Formally,
the following requirements must be satisfied:
• attrs(T )− jp = agg
• attrs(T ) ∩ grp = ∅ OR
attrs(T ) ∩ grp = attrs(T ) ∩ jp

Then, the synopsis operator injected between the aggregation
and the join can be pushed under the join operator, and
transformed into a sketch-join operator.

When sketch-join is not applicable, Taster falls back to
sampling. In this case, the planner needs to decide which
sampling strategy will be used. A key input for this decision
is the cardinality estimates per relational expression, and
the number of distinct values in each column (both these
statistics are computed during the first access to the table).
In particular, Taster checks (i) if the set of stratified attributes
C is empty, and, (ii) if some sampling probability p ≤ 0.1 can
ensure that, each distinct value of the columns in C receives
at least k rows w.h.p.. If both these checks are true, the
sampler is implemented using the uniform sampler. Otherwise,
if C 6= ∅, Taster chooses a distinct sampler. Finally, Taster
generates a plan without samplers if stratification and accuracy



requirements are so restrictive that they cannot be satisfied
with a reasonable sampling probability.
Matching subplans to materialized synopses. Costing of
the logical plans requires efficiently matching the synopses
contained in the query’s logical plans to the synopses stored
in the synopsis warehouse and buffer. This matching is enabled
through the metadata store.

Particularly, each synopsis (candidate or materialized) cor-
responds to a unique logical subplan – the one of which the
results it summarizes. Therefore, the subplans for the query at
hand are compared to the subplans of the synopses contained
in the metadata store. We say that a query subplan matches
a synopsis when: (i) the accuracy guarantees of the synopsis
satisfy the query requirements, and (ii) the synopsis subplan
subsumes the query subplan. For the latter, Taster ensures
that the query subplan is covered by the synopsis regarding
join and filtering predicates as well as the projected columns.
Particularly, the synopsis subplan must have identical join
predicates, its filtering predicates must be weaker than, or
equal to the filtering predicates of the query, and its output
attributes must be a superset of the corresponding parameters
of the query subplan [19]. Some mismatches are addressed
by adding filtering and projection operators directly above
the query subplan, to remove extraneous tuples and attributes.
Considering accuracy, a synopsis is a candidate for a subplan
if (i) the set of stratification attributes of the stored synopsis
is a superset of the stratification attributes of the subplan, and
(ii) the aggregation function and the aggregate columns are
identical to those of the synopsis and the accuracy requirement
of the query generating the synopsis is equal or weaker
than of the current query. By ensuring the former, Taster
guarantees group coverage i.e., Taster results will contain
all groups, whereas the latter ensures that the aggregates
will have constrained error [4]. For example Q1: “SELECT
dept, AV G(salary) FROM Employees GROUP BY dept”
will generate a sample over Employees stratified on dept.
Subsequent query Q2: “SELECT dept, AV G(salary) FROM
Employees WHERE gender = ’male’ GROUP BY dept” will
be able to use the previous sample, since, the created sample
is more general and Taster can put an additional filter in the
query plan. However to use this sample, salaries should be
uniformly distributed, irrespective of gender.

Subplan matching is expensive. Therefore, Taster utilizes
an index to speed-up this process. Specifically, all candidate
synopses contained in the metadata store are indexed using
their base relations as the key. In the case of joins, the join
attribute(s) are also included in the key. This index, although
simple, effectively limits the search space and the lookup time
to find suitable synopses for each subplan.

B. Accuracy guarantees

While generating and exploring the potential plans, the
planner needs to ensure that the user’s accuracy requirements
are satisfied. For this, Taster relies on previous analytical
results [13], [25], which we outline below.

When using sampling, Taster uses the Horvitz-Thompson
(HT) estimator [29] to calculate unbiased estimators of the true
aggregate values. Confidence intervals are computed using the
CLT. Due to the distance of the samplers to the aggregation
operators, we use the notion of dominance between query
expressions as defined in Quickr [24], which ensures that plans
resulting from transformation rules used by the optimizer have
no worse variance of estimators and no higher probability of
missing groups than the plan with only one sampler before the
aggregation operator. In terms of implementation, a naive way
to compute the HT estimator squared error requires a self-join
and can take quadratic time since it checks all pairs of tuples in
the sample [29]. However, for stratified and uniform sampling,
Taster calculates the error in a single pass by utilizing the
observation of [25] that to compute the standard error for
each group we only need to take into account the tuples with
the same stratification key (resp. grouping key). Therefore,
we estimate the expected error for each group by building
a distributed hash table, using as a key the values of the
stratification (resp. grouping) attribute, as as value the running
estimated error for that group and the corresponding list of
sampled tuples. For every sampled tuple, Taster updates the
error of that tuple’s group by using the HT estimator error
formula, leading to a single-pass, linear complexity algorithm.

CM-sketches offer error guarantees relative to the L1 norm
of the summarized relation [13]. Particularly, let f(x) denote
the real frequency of key x, and f̂(x) the frequency estimated
from the sketch. Then, the sketch is configured such that
f̂(x) − f(x) < εN w.h.p., where N represents the L1 norm
of the frequencies for all keys (cf., Section II).

V. CONTINUOUS SYNOPSIS TUNING

Taster’s self-tuning nature and ability to adapt to shifting
user interests stems from a lightweight synopsis tuner. The
tuner is invoked just after the planner, and has a goal to select
the candidate plan that will maximize the throughput over a
window of the next w queries (we will discuss about the value
of w later). That is, in contrast to the planner which generates
plans with a short term outlook (per-query performance), the
tuner looks into overlaps between queries and query subplans
in order to increase the long-term performance. The tuner’s
decisions are driven by a cost:utility model, which leads
to a formalization of the task as an optimization challenge.
Notice that the decisions made by the tuner affect solely query
performance, and not the required accuracy. Even though the
tuner has the final decision on which synopsis to build, the
considered synopses are proposed by the planner, and thus
satisfy user’s accuracy requirements (cf., Section IV-A).
The cost:utility model. Tuning is an iterative process. At
every invocation, the tuner is presented with a set of candidate
plans for query q, denoted with P(q) = {p1, p2, . . .}, and
needs to choose one for execution in order to maximize
throughput. Intuitively, the tuner will solve two problems
concurrently: (a) select the best plan and corresponding
synopses for answering the query, and (b) choose the best
set of synopses to keep, which will speed-up Taster over



a horizon of the next w queries, denoted with Q+
i , i.e.,

Q+
i = {qi, qi+1, . . . , qi+w−1}.
It is useful to define the synopsis gain metric, i.e., how much

does each set of synopses S contribute to the performance of
each query. Formally, gain(q,S) = cost(q, ∅) − cost(q,S),
where cost(q,S) denotes the minimum cost of any plan in P(q)
for answering q, given only the synopses in S. In the case of
S = ∅, this will be the cost of the most efficient plan that does
not utilize synopses and returns the exact answers. For a given
Q+
i we maximize the query throughput by minimizing the

total cost of these queries, i.e., minimize
∑
q∈Q+

i
cost(q,S),

or equivalently, by maximizing their corresponding gain:
maximize

∑
q∈Q+

i
gain(q,S). For convenience, we slightly

overload the notation by using gain(Q+
i ,S) to denote the gain

over all queries using synopses in S. Notice that the problem
contains two variables. The first one, which is latent, is the set
of plans P(q) for each query q ∈ Q+

i . The second is the set of
synopses S. Formally, the optimization problem is as follows:

maximize
S

gain(Q+
i ,S)

subject to
∑
s∈S
|s| ≤ maxSpace

where maxSpace denotes the space quota for synopses, and
S denotes the set of synopses that will maximize the objective
function. Therefore, the tuner needs to select the set of plans
(one per query) and synopses that will maximize the total gain.

Even though the problem is well-defined, it involves two
challenges. First, it turns out that the problem can be reduced
to the NP-hard knapsack constraint problem. This happens
because of correlations between synopses, i.e., each synopsis
can be used for answering more than one queries, and some
queries are answered by more than one synopses. Therefore,
we cannot hope for a tractable exact solution. Luckily, we
can approximate the solution within a constant factor, by
noticing that the objective function is a monotone submodular
function, i.e., the gain provided by each single synopsis is only
reduced as the set of synopses in S increases. For this special
case, there exist several efficient approximation algorithms.
We employ the efficient greedy algorithm of [27], which
guarantees that the gain of the constructed set will be within
a factor (1− 1/e)/2 of the maximum gain. In a nutshell, the
algorithm builds S gradually by starting from an empty set and
adding synopses one-by-one until the quota is filled. At each
step, synopses are chosen based on their marginal gain, i.e.,
how much is the additional gain each synopsis brings when
added in S. After S is created, the tuner checks all synopses
that are already stored in the synopsis buffer and warehouse,
and updates them accordingly: all synopses not contained in
the newly-computed S are deleted.

The second challenge concerns the definition of the tuner’s
horizon, Q+

i . In practice, we cannot expect to know the queries
contained in Q+

i during the tuning. We therefore employ the
standard assumption that recent queries are a good represen-
tation of the following queries [9]. For this, we keep track of
the last w queries, denoted as Q−i = {qi−w+1, qi−w+2, . . . qi},
and use their proposed plans to estimate gain(Q+

i ,S).

Storage elasticity. This cost:utility model is also used for
adapting to the available storage budget. Taster’s administrator
can modify the space quota of the synopses warehouse online.
This action will automatically invoke the tuner to re-evaluate
all synopses, and decide which ones need to be discarded, or
created at future queries.
Physical plan generation. The above algorithm will choose
both set S, and the plan that minimizes the cost for q. This
plan is then used for generating the physical plan. If the plan
refers to creation of a new synopsis, then this step is injected
in the physical plan as a new operator. The new synopsis is
then stored in the in-memory synopsis buffer. In this case, the
tuner has already freed up the required space in the buffer,
during the tuning phase.
Computational overhead of the tuner. The cost estimates
for each subplan (with and without each synopsis) are already
computed by the planner and stored in the metadata store, i.e.,
they do not need to be recomputed from the tuner. The tuner
also knows which of the synopses are already stored in the
synopsis warehouse or the synopsis buffer, in order to account
for the need to create synopses that do not yet exist. Therefore,
computation of marginal gain per synopsis is very efficient. In
practice, our single-threaded/centralized implementation of the
tuner takes ∼ 2 seconds per query.
Adapting the tuner’s horizon length. To predict usefulness of
each synopsis, Taster uses a sliding window of the previous w
queries as a good approximation of the next, unseen w queries.
The best value for w depends on the task at hand – data
exploration, verification of hypotheses, finding outliers, etc.
– which determines the repetitiveness in the query workload.
Therefore, Taster dynamically adapts w.

Initially, w is set to a small value. The tuner also identifies
(without building) the set of best synopses using a slightly
larger and a slightly smaller w value, i.e., w+ = d(1+α)×we
and w− = b(1 − α) × wc, with α ∈ (0, 1). At the next
invocation, the tuner examines which of w−, w, or w+ would
minimize execution time for the queries that arrived since
the last invokation, and sets w to that value for the next
tuning round. Since all necessary statistics for estimating
execution time are already contained in the metadata store,
this computation is very efficient.

Our experimental results signify the need to dynamically
adapt w. In our tests, we start with default values w = 10,
and α = 0.25. The results show that, for the tested query
workloads, the optimal w varies between 12 and 17. Com-
pared to a fixed w, adaptive configuration shows performance
improvement that exceeds 1.5×. A too large or too small value
of w annihilates the predictive nature of the tuner, leading to
bad choice of synopses. Value of α is also important on the
adaptation speed, and part of our current work is to vary α.
User hints. Our discussion up to now assumed that the
user is not required to (and, in most cases, cannot) offer
hints/advice to the system. This is the typical case in many
data science and data exploration scenarios, where the query
load is unpredictable – hence the importance of the online
tuner. However, several past works frequently required that the



user provides different types of hints for the optimizer. This
information includes, e.g., the whole query workload [4], or
the synopses to be constructed, such that they can be build in
a pre-processing step [34]. The natural question that arises is:
how can Taster utilize such additional knowledge and hints?

A priori knowledge of the full query workload can be
utilized from Taster, for accurate computation of the gain of
each synopsis – since the full Q+

i will be known at every
invocation of the tuner, we do not need to revert to the
past queries Q−i in order to estimate gain(Q+

i ,S). The user
can also request some synopses to be pre-built offline, and
pinned in the synopsis warehouse. In this case, Taster will
generate these synopses off-line, and the tuner will never
delete them. Still, tuner will keep optimizing the use of the
remaining available space, filling it with synopses according
to the observed queries. As we show experimentally, pre-
computed synopses can lead to significant speed-up (up to 20×
compared to baseline), since the synopsis generation time will
not be included in the query execution time.

VI. EVALUATION

We compare Taster against three state-of-the-art systems:
Quickr [25], BlinkDB [4]2, and vanilla SparkSQL which we
refer to as Baseline. We compare the systems using industry
standard benchmarks and a micro-benchmark. Specifically, we
use TPC-H with scale factor 300 (300GB before compression)
along with the TPC-H queries3, and TPC-DS with scale factor
200 (200GB before compression) along with a set of 20 TPC-
DS queries. To examine suitability of Taster under various
workloads we also use a synthetic benchmark of an online
grocery store (instacart) [1], scaled 100× (∼ 120GB before
compression). The query templates used for the instacart
benchmark are shown in Table I. All datasets were stored in
the Parquet-compressed data format.
Experimental Setup. The experiments are conducted on a
cluster of 11 nodes. Each node has a Westmere processor with
a dual socket Intel(R) Xeon(R) X5660 CPU (6 cores per socket
@ 2.80GHz), equipped with 64KB of L1 cache and 256KB L2
cache per core, 12MB of L3 cache shared, 48GB of RAM, and
a RAID-0 of seven 250GB 7500 RPM SATA disks. The cluster
runs Spark 2.1.0 and Hadoop HDFS 3.0.1. Spark launches
11 workers, each using 24 cores and 40GB of memory. We
distribute all data across the 11 nodes with replication factor 3.
All queries are configured to return relative aggregation error
per group less than 10%, and no missing groups. Finally, all
queries are run from cold OS caches.
Implementation. To have a fair comparison, we integrated all
systems to SparkSQL 2.1.0, and extended the Catalyst built-in
optimizer accordingly. For Quickr, we implemented the three
sampler operators (Distinct, Uniform, Universe) and added all

2BlinkDB requires all queries to be known a priori, in order to decide on
the samples. Therefore, we assumed the existence of an oracle that provides
all queries to BlinkDB at initialization time. Clearly, this assumption strongly
favors BlinkDB in the comparison.

3We used 18 out of the 22 TPC-H templates (Q2 is not approximable, Q4,
Q21 and Q22 include EXISTS statement which require key of dimension
relation thus no gain from approximation).

rules described in [25] to Catalyst. For BlinkDB, we followed
the algorithms described in [4] to choose the same set of
samples that the mixed integer linear program would select
for the different workloads. We then generated the samples
and executed the queries over that set of samples. Taster was
implemented in Scala, over SparkSQL. We integrated Taster’s
tuner and optimization rules, as well as rudimentary costing
capabilities into Spark Catalyst. Both query planner and tuner
are centralized and run locally on the driver node of the
Spark cluster. We implemented Taster’s sketch-join algorithm
using the serializable implementation of count-min sketch
native to Spark 2.1.0. The uniform sampler is also native to
Spark 2.1.0. The distinct sampler operator was implemented as
an additional operator over DataFrames, using the algorithm
described in Section II. The error estimator for samplers was
estimated as described in Section IV-B. For robustness and
scalability, all data, metadata, and materialized intermediate
summaries of Taster were stored in HDFS, except of the in-
memory buffer, which was implemented as persisted RDDs.

A. Evaluation with different benchmarks and comparison to
state-of-the-art AQP engines

Methodology. To compare all systems in a variety of work-
loads, we execute query sequences over all three datasets.
To emulate workload shifts and examine system adaptivity,
we instantiate 200 queries from the benchmark templates and
issue them in random order. For each benchmark we randomly
choose one of the available templates with equal probability
(uniformly) and generate a new query by randomly choosing
the predicate value. For TPC-H, both Taster and BlinkDB are
tested with storage budgets 50% and 100% of the size of the
compressed dataset. For TPC-DS and instacart, the queries
have fewer prospective stratification attribute sets and require
less space for samples. Therefore, we present results only for
the 50% storage budget.
End-to-end execution time. Figure 3 presents the required
time for executing all 200 queries for each of the workloads.
The reported time includes initialization time (i.e., the creation
of the samples for BlinkDB). As expected, BlinkDB with only
50% budget requires less time for constructing the samples,
but incurs a higher execution time since less queries are
approximable by the set of available samples. Specifically,
for TPC-H (Figure 3a), BlinkDB 50% offers 2.25× speed-up
compared to the Baseline, and requires 251 seconds for pre-
computing the sample, whereas BlinkDB 100% offers 3.36×
performance increase but spends 380 seconds on sampling.
Quickr requires no preprocessing, but offers a smaller perfor-
mance boost (1.2×). This is attributed mainly to the relevantly
shallow queries of TPC-H, as well as the small network
congestion of the cluster. Finally, Taster achieves low response
time and ∼ 3× speed-up without pre-computing the samples,
by adapting to the query workload. We also see that Taster with
50% and 100% storage budget have a similar performance
(difference is less than 10%), precisely because the system
adapts to the workload and does not require all synopses to
be present at all times.



0

200

400

600

800

1000

1200

1400

Baseline Quickr BlinkDB
(50%)

Taster
(50%)

BlinkDB
(100%)

Taster
(100%)

Ex
ec

u
ti

o
n

 t
im

e 
(m

in
) Offline sampling

Query Execution
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(c) instacart workload
Fig. 3: End-to-end execution time for different workloads.

The results with TPC-DS and instacart workloads (Fig-
ures 3b-c) were qualitatively similar, confirming the applica-
bility of Taster to different data and workload characteristics.
In particular, Taster has slightly better performance from
BlinkDB, yet without requiring any initialization time. For
TPC-DS, this performance improvement is attributed mainly
to the capability of Taster to summarize also intermediate
results (specifically, the join between tables store sales and
date dim, which appears frequently in the workload), rather
than only base relations. For instacart, the increased perfor-
mance of Taster comes from the extensive use of sketches.
Individual performance gains for TPC-H queries. Fig. 4
presents a CDF of the speed-up of Taster for TPC-H queries.
Taster slows down less than 10% (∼ 0.8×) of the queries,
mostly due to the planning and tuning overhead. However,
more than 50% of the queries are being sped-up more than
6×. The maximum speed-up (13×) is achieved using sketches.
Approximation error for TPC-H queries. We also verified
that the approximations of Taster are within the desired accu-
racy requirements, with high probability. Figure 5 presents a
CDF of the observed aggregation error, for the TPC-H queries.
The user requirements for these experiments are: (a) all groups
should be detected, and (b) aggregate error should be less
than 10%. By employing distinct sampling with stratification
guarantees, Taster misses no groups. Furthermore, more than
93% of the queries have error less than 10%, and all queries
have error less than 12%. These numbers are very close to the
accuracy achieved from BlinkDB with offline sampling.
Summary. Taster substantially outperforms Quickr and offers
comparable performance to BlinkDB, yet without requiring
a priori knowledge of the workload, and without an offline
sample pre-computation. Hence, Taster enables instant access
to data while adhering to user accuracy requirements.

B. Adapting to query workload

Methodology. In this experiment, we evaluate the robustness
of Taster to workload shifts, i.e., changes in query stratifica-
tion attributes, the accessed tables, and query predicates. To
emulate a real world scenario, we execute a sequence of 80
TPC-H queries, generated from the 18 used query templates
by varying the filtering predicates. We split the queries into 4
epochs of 20 queries each, based solely on the query execution
time, i.e., queries in each group have similar execution time
when executed using Baseline. The following templates are

used per epoch: (1): q6, q14, q17 (2): q5, q8, q11, q12 (3): q1,
q3, q16, q19 (4): q7, q9, q13, q18. As the grouping relies only
on query execution time, the queries within each epoch may
use different synopses. For example, in epoch (2) template of
q5 requires a synopsis with stratification on orderkey whereas
template of q8 requires stratification on partkey. The storage
budget for Taster is set to 35GB.

Figure 6 presents the execution time and storage require-
ments of Taster at each query. Taster’s tuner continuously re-
evaluates the synopses stored in the synopsis warehouse, and
it frequently drops and build some synopses while executing
the queries. At the beginning of each epoch, Taster quickly
recognizes the new useful synopses, and makes space for
them by evicting the older ones. During the last epoch, the
tuner decides to materialize the synopses earlier, since the new
synopses provide a higher prospective gain.
Summary. Taster adapts the available synopses to the evolving
workload. This enables better space utilization with perfor-
mance comparable to state-of-the-art offline AQP systems.

C. Adapting the sliding window length to query workload

Methodology. We now evaluate the adaptivity of the tuner in
terms of the sliding window length w used for predicting the
future queries. We execute a sequence of 200 TPC-H queries,
generated by using the 18 query templates. The queries are
executed in random order. To evaluate the impact of the
adaptive sliding window, the same query workload is executed
using three static configurations (w = 5, w = 10, and w = 50),
and the adaptive configuration where w changes according to
the queries. Storage budget is fixed to 35GB.

Figure 8 presents the cumulative execution time for all
queries, for the considered configurations. Taster with adaptive
sliding window length starts with window size 5 and increas-
es/decreases according to the correctness of prior predictions.
During this experiment the window size fluctuates between
12 and 17, but never converges. This exemplifies the need for
an adaptive sliding window length. Among the static window
configurations, Taster with window size 10 performs the best,
but it is still noticeably slower than the adaptive version.
Window sizes 5 and 50 lead to fairly bad performance, i.e., the
predictive power of the tuner for future queries is annihilated.

D. Storage elasticity

Methodology. We now investigate how Taster adapts to chang-
ing storage budget. We run a sequence of 250 TPC-H queries
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in random order, progressively changing the storage budget
configuration. To emulate a real world scenario (e.g., adapting
the budget to workload), we fluctuate storage budget a lot, to
correspond to 20%, 50%, 100%, 50%, 100% of the dataset.

Figure 9 presents the average speed-up for these configu-
rations compared to Baseline. With 20% of storage, Taster
fits only one sample and a sketch, thereby providing very
limited approximation potentials. When given 50%, Taster has
sufficient space to keep almost all synopses, whereas a budget
of 100% enables Taster to keep all synopses. When storage
allowance is reduced, Taster automatically invokes the tuner
to keep the synopses that will maximize the gain, thereby
minimizing the performance impact.

E. Utilizing user hints

The final experiment focuses on examining how Taster
utilizes user hints to improve performance. The experiment
simulates the following scenario: the user already has an idea
on the analysis that will be conducted on one part of the
database (on a subset of the tables) and she advices Taster on
the samples that need to be taken, e.g., by listing representative
queries, or even by explicitly stating the required samples.
In this case, Taster constructs and pins the synopses in the
synopsis warehouse offline, and manages the remaining quota
online for storing new synopses. We demonstrate this setup
by generating two databases – two instances of TPC-H (scale
factor 300) – and using Taster to query both, with intervening
queries. For the first database, dboff, we instruct Taster at
initialization for the synopses that need to be created offline
(in this case, samples on the lineitem table). For the second,
dbonl, we let Taster generate and handle the synopses online.
Taster is also free to create additional samples for dboff, if the
precomputed samples do not cover all queries.

Offline sampling in dboff follows the state-of-the-art vari-
ational subsampling approach of VerdictDB [34]. Notice that

this approach requires the following offline steps: (a) creating a
shuffled clone of the lineitem table (the scrambled copy), and
(b) extracting the samples. We also alter the query execution
process to apply variational subsampling. Both databases are
queried with 100 queries of TPC-H, i.e., a total of 200 queries,
in mixed order. For this experiment, Taster is given a total of
50 GB for synopsis quota.

Figure 7 presents the time spent for answering all 200
queries (denoted as Taster + hints), as well as the time spent
in the offline phase. For comparison, the figure also includes
the elapsed time for getting exact results (Baseline), and the
time for executing the same workload in Taster without hints
(Taster). Clearly, hints help Taster to increase query perfor-
mance, by taking the sampling phase offline. Furthermore,
the use of variational subsampling enables the use of smaller
samples. In particular, the average speed-up over all queries
was 12.6× compared to the baseline, and 4.98× compared to
Taster without hints. The speed-up over the queries on dboff
only (these are the queries using the pre-computed samples)
was 20.43× and 9.24× compared to Taster without hints. The
construction of the samples using variational subsampling,
however, takes a non-negligible amount of pre-processing
(116 minutes), delaying the first insights from the dataset.
Therefore, a hints-driven offline phase is beneficial when the
user knows that a database/table will be frequently queried in
the near future; it reduces both query execution time and the
size of the generated samples.

VII. RELATED WORK

We identify two lines of work related to Taster: (i) Approx-
imate query processing, (ii) DBMS physical design.
Approximate Query processing. There is a large collection of
recent work on approximate query processing. In this context,
we separate the work into three categories: (i) offline sampling,
(ii) online sampling, and (iii) online aggregation.



sketch-1 order id, count(∗) FROM orderproducts JOIN orders WHERE o order dow = day AND o order hod > hour
sketch-2 product id, count(∗) FROM orderproducts JOIN products WHERE p product name = productname
sketch-3 product id, count(∗) FROM orderproducts JOIN products JOIN departments WHERE d department = department
sketch-4 product id, count(∗) FROM orderproducts JOIN products JOIN aisles WHERE a aisle = aislename
sample-1 product id, count(∗) FROM orderproducts JOIN orders WHERE o order dow = day AND o order hod > hour
sample-2 order id, count(∗) FROM orderproducts JOIN products WHERE p product name = productname
sample-3 order id, count(∗) FROM orderproducts JOIN products JOIN departments WHERE d department = department
sample-4 order id, count(∗) FROM orderproducts JOIN products JOIN aisles WHERE a aisle = aislename

TABLE I: Instacart micro-benchmark queries. Variables starting and ending with are randomly set for query variation.

Offline Sampling. A rich vein of literature exists on sampling
strategies for approximate query processing (see, e.g., [12] for
an extensive overview). Most approaches assume some degree
of knowledge over the upcoming queries, and differ primarily
on the nature of samples that they maintain. Congressional
sampling, STRAT and BlinkDB [2], [4], [10] provide algo-
rithms to compute the best set of uniform and stratified sam-
ples, subject to a storage budget. In the same line, other works
maintain additional data structures to better support skewed
datasets and to reduce the size of samples [7], [14], [36].
AQUA [3] and VerdictDB [34] instead act as a middleware
between users and traditional database systems, by rewriting
user queries to take advantage of precomputed samples. Ver-
dictDB is particularly interesting as it proposes a novel error
estimation technique called variational subsampling, which en-
ables smaller samples. Similarly, Sample+Seek [15] introduces
measure-biased sampling which takes advantage of indexes to
create more efficient samples and provide error guarantees for
GROUP BY queries with many groups. AQP++ [35] blends
AQP with aggregate precomputation, such as data cubes, to
handle aggregate relational queries. Such a unified approach
balances preprocessing time and query runtime.

However, all offline approaches are designed based on
static assumptions about future queries. Thus, they require
workload knowledge, and they undergo a time-consuming pre-
processing operation for sample preparation. Both are limiting
properties of these methods, since in modern data analytics
setups (e.g., data exploration), the analyst typically starts with
little knowledge about data. Hence, she can hardly predict the
future workload, or the time that she will spend analyzing the
new data, in order to decide whether an extensive sampling
preparation will be beneficial. Furthermore, these methods fail
when the actual queries diverge from the predicted workload
that was used for constructing the synopses. Taster does not
suffer from these constraints since it constructs and adapts
the synopses online, during query execution. Still, as we have
shown, by integrating with VerdictDB, Taster can capitalize
on user hints – when there is such a possibility – to construct
some samples in an offline phase, using different sampling
strategies. Techniques presented in Sample+Seek [15] and
AQP++ [35] are also prime candidates for integration into
Taster, to further speed-up query execution by taking advan-
tage state-of-the-art sampling and precomputed aggregates.

Online Sampling. To address the limitations that source from
the uncertainty of the future query workload, Quickr [25]
follows an online sampling approach, where samples are taken
during query execution. In particular, samplers are injected

into the query plan to reduce network and computation load.
However, Quickr performance gains are constrained by the
I/O cost since the system still needs to read the full input
for every query. Taster extends the online approximation
techniques of Quickr in several non-trivial ways. First, it
materializes/stores some of these synopses for re-use in future
queries. The decision as to which synopses should be stored
relies on a formal model, which enables adaptivity to the
workload and to the shifting user interests, and is amenable
to efficient approximations. Second, it incorporates additional
types of synopses, beyond samples. Finally, it incorporates
hints for offline synopsis construction, thereby exhibiting the
best properties of both online and offline AQP. Galakatos
et al. [18] build and re-use samples for a data exploration
scenario. This work, however, assumes that the user builds
queries incrementally, allowing the system to generate samples
while the user is further expanding his query (e.g., adding a
filter). Furthermore, samples are built only over base relations,
not taking advantage of intermediary results.

Online aggregation (OLA) [21], [23], [32], [37] offer a
different way to approximate. Instead of sampling over data,
they estimate the answer by looking at progressively increasing
portions of the data, until a user determines that the answer
quality is sufficient. EARL [26] and ABS [39] use bootstrap-
ping to produce multiple estimators from the same sample.
Finally, iOLAP [38] models online aggregation as incremental
view maintenance with uncertainty propagation.
Physical Design. Taster’s adaptive nature is influenced by the
vast bibliography in adaptive database systems. There exist
many recent and influential works on tuning data structures,
intermediate result recycling and query matching, as well as
eager/lazy aggregation. Specifically, there has been a plethora
of work on automatic selection of materialized views [16],
[22], [28], [31], indices [30], [40], or both [5] and most modern
databases come with tuning tools. All these works, however,
assume known workloads. Since future queries are often
unknown in advance, these tools optimize for past queries as
approximations of future ones. As a result, they may produce
designs that are sub-optimal in practice. To mitigate some of
these problems, a few heuristics have been proposed to sum-
marize the workload [11] as well as adaptive approaches [9],
[20] which adjust indices and views incrementally, on demand.
Taster follows a similar adaptive approach in the context
of deciding and materializing synopses. It exploits constant
monitoring, forecasting using a sliding window approach, and
a formal model to evaluate subplans, decide on the best
subplan for each query, and materialize the required synopses.



VIII. CONCLUSIONS

Approximate query processing engines – both offline and
online – gained significant interest in the last years, as they
offer low latency data analytics in return to an acceptable,
slightly relaxed precision of the results. However, the ever-
growing data sizes combined with the need of today’s data
scientists to get immediate insights out of big data, introduce
a new set of challenges to these systems. On the one hand,
offline approximation approaches require long pre-processing
and knowledge of the expected workload, and have high
storage requirements. On the other hand, online approaches
require reading all data for each query in order to collect
samples, hence offering much smaller performance gains. In
this paper, we demonstrate Taster, a system that adaptively
combines the two approaches. Synopses in Taster summarize
both base relations and intermediary results (frequent sub-
plans). They are generated in an online fashion, as byproducts
of the queries, but they can also be saved and reused across
several queries similar to offline AQP engines. Importantly, the
stored synopses transparently adapt to the ever-shifting user
workload, without user intervention, and without requiring a
priori knowledge of the query workload. Finally, Taster can
also integrate hints, e.g., for creating some samples offline,
thereby further reducing query latency. A thorough evaluation
of Taster using three industry-standard benchmarks demon-
strates that it adapts to variations in workload and storage,
and it outperforms both online and offline AQP approaches,
without requiring a priori knowledge of the query workload.
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