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Abstract In this work we present a residual based a posteriori error estimation for a
heat equation with a random forcing term and a random diffusion coefficient which is
assumed to depend affinely on a finite number of independent random variables. The
problem is discretized by a stochastic collocation finite element method and advanced
in time by the θ -scheme. The a posteriori error estimate consists of three parts
controlling the finite element error, the time discretization error and the stochastic
collocation error, respectively. These estimators are then used to drive an adaptive
choice of FE mesh, collocation points and time steps. We study the effectiveness of
the estimate and the performance of the adaptive algorithm on a numerical example.

1 Introduction

Many physical and engineering applications are modeled by partial differential
equations (PDEs) with input data often subject to uncertainty due to measurement
errors or insufficient knowledge. These uncertainties can be modeled by means of
probability theory by introducing a set of random variables into the system. The
PDEs are then solved approximately by numerical schemes, which brings along a
high interest in reliable error estimation. In this work we consider a heat equation
with random diffusion coefficient and forcing term discretized by the θ -scheme in
time, the finite element method (FEM) in physical space and a stochastic collocation
(SC) method in the random variables.
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There is a vast literature on a posteriori error estimation for deterministic problems,
mostly in the context of finite element discretizations. This subject was initiated in
[6, 7] and improved in e.g. [1, 4, 26, 38] for elliptic problems. Concerning parabolic
problems, a posteriori error estimations have been proposed in [21, 22] when using
the Discontinuous Galerkin (DG) method as a space-time discretization. In [33] an
implicit Euler scheme together with continuous, piecewise linear finite elements
is considered and an adaptive algorithm is presented. In [36] the authors present a
posteriori estimations for a more general θ−scheme and finite elements of arbitrary
order. This result is improved in [30, 2] for θ = 1/2, i.e. the Crank-Nicholson scheme,
by introducing a continuous, piecewise quadratic interpolation in time rather than a
piecewise linear one. In [30] an adaptive algorithm is presented as well.

There is much less literature available for the a posteriori error estimation for
random PDEs. When uncertainties are treated by the stochastic Galerkin method
[23, 29], a posteriori error estimations together with an adaptive algorithm have been
proposed in [27, 28] for a linear elasticity equation and in [19, 18, 20, 13, 16] for the
case of an elliptic PDE with diffusion coefficient affinely dependent on a countable
number of random variables and, recently, in [14] beyond the affine case. Concerning
parabolic equations, the only work we are aware of considers uncertainty only in the
Robin boundary condition, solved by the perturbation approach in [24].

In this work we will consider the stochastic collocation (SC) method [40, 5, 32]
as one of the ways to treat uncertainties numerically. As opposed to an intrusive
method such as stochastic Galerkin, the SC method requires only the solution of
decoupled deterministic problems and thus allows the re-use of deterministic solvers.
A priori error estimates have been derived in [5, 15, 11]. We will focus on sparse grid
collocation methods which partially cure the curse of dimensionality, especially in the
case of an anisotropic behaviour of the solution [31]. Concerning a reliable estimation
of the discretization error, the work [25] proposes a residual based a posteriori error
estimation for an elliptic problem discretized by a stochastic collocation finite element
method and presents and numerically studies an algorithm that adaptively builds the
sparse grid based on the a posteriori estimation of the SC error.

This work extends the results obtained in [25] to a heat equation with random right
hand side and random diffusion coefficient that depends affinely on a finite number
of random variables. We adopt the setting from [36] to treat the spatial and time
discretization errors. Our estimator allows spatial meshes and sparse grids to change
in time and provides estimates of the norm of the error in L2 in stochastic space,
L2 in time and H1 in physical space. The estimator naturally splits into a spatial
discretization estimator, time discretization estimator and stochastic discretization
estimator, which are then used to drive the adaptivity with respect to all three types
of discretizations. We then propose an adaptive algorithm to build a suitable time
discretization and a FE mesh and sparse gird common to all time steps, so as to
achieve a prescribed tolerance on a global norm of the error. We the apply this to a
problem with a deterministic right hand side and a diffusion coefficient depending
affinely on few random variables.

The outline of the paper is the following. In section 2 we introduce the problem,
namely a heat equation with a random diffusion coefficient and right hand side.
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Section 3 is dedicated to defining the spatial, time and stochastic discretization. In
section 4 we derive a first residual based a posteriori estimation for the general case of
sparse grids and spatial meshes that change in time and a second, simpler, estimation
for the case of spatial mesh and sparse grid kept fixed over the time iterations. Section
5 introduces an adaptive algorithm to build nonuniform time discretizations, as well
as nonuniform meshes and anisotropic sparse grids that are fixed in time for the
case of a deterministic right hand side. In section 6 we first study the behaviour and
sharpness of all three components of the estimator (spatial, temporal and stochastic)
and then apply the adaptive algorithm to propose a time discretization, mesh and
sparse grid that guarantee the error to be bellow a prescribed tolerance.

2 Problem statement

Let D⊂Rd be an open polygonal domain with Lipschitz boundary ∂D and (Ω ,F ,P)
be a complete probability space. Given a final time T , random forcing term f :
D×Ω × (0,T )→ R, initial condition u0 : D×Ω → R and a diffusion coefficient
a : D×Ω →R, the problem states: find a solution u : D×Ω × (0,T ]→R satisfying
P−almost everywhere in Ω

∂u
∂ t
−∇ · (a∇u) = f in D×Ω × (0,T ],

u = 0 on ∂D×Ω × (0,T ], (1)
u(·, ·,0) = u0 in D×Ω .

Suppose that f ∈ L2(0,T ;L2(Ω ,H−1(D))), u0 ∈ L2(Ω ,H1
0 (D)) and a is a random

variable on (Ω ,F ,P) taking values in W 1,∞(D) (random field) satisfying

∃ amin,amax : P(ω ∈Ω : 0 < amin ≤ a(x,ω)≤ amax < ∞ ∀x ∈ D) = 1. (2)

In addition we require that the diffusion coefficient as well as the forcing
term and the initial condition can be parametrized by a finite number of inde-
pendent, real-valued random variables {Ym}M

m=1 defined on Ω , i.e. f (x,ω, t) =
f (x,Y1(ω), . . . ,YM(ω), t), u0(x,ω) = u0(x,Y1(ω), . . . ,YM(ω)) and the dependence
of a on {Ym}M

m=1 is affine, i.e.

a(x,ω) = a0(x)+
M

∑
m=1

am(x)Ym(ω). (3)

The solution u then depends on the same random variables as well, i.e. u(x,ω, t) =
u(x,Y1(ω), . . . ,YM(ω), t), and we can recast the probability space (Ω ,F ,P) into
(Γ ,B(Γ ),ρ(y)dy) by introducing Γ = Γ1 × ·· · ×ΓM with Γm = Ym(Ω) for m =
1, . . . ,M. B(Γ ) denotes the Borel σ−algebra defined over Γ . The joint probabil-
ity density function of the random vector Y = (Y1, . . . ,YM) is denoted by ρ : Γ →R+
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and factorizes as ρ(y) = Π M
m=1ρm(ym) for all y = (y1, . . . ,yM) ∈ Γ .

In what follows we consider the following two Bochner spaces: for a given Banach
space (V,‖ · ‖V ) and for any t1, t2 ∈ [0,T ], t1 < t2 we define

L2(t1, t2;V ) = {v : (t1, t2)→V |v is strongly measurable and ‖v‖L2(t1,t2;V ) < ∞}

where ‖v‖2
L2(t1,t2;V )

=
∫ t2

t1 ‖v(t)‖
2
V dt and

L2
ρ(Γ ;L2(t1, t2;V )) = {v : Γ → L2(t1, t2;V )|v is strongly measurable and

‖v‖L2
ρ (Γ ;L2(t1,t2;V )) < ∞}

with ‖v‖2
L2

ρ (Γ ,L2(t1,t2;V ))
=
∫

Γ
‖v(y)‖2

L2(t1,t2;V )
ρ(y)dy. It holds

L2
ρ(Γ ;L2(t1, t2;V ))∼= L2(t1, t2;L2

ρ(Γ ;V )),

i.e. this Lebesgue-Bochner space is isometrically isomorphic to the Bochner space
L2(t1, t2;L2

ρ(Γ ;V )) [35, p. 12].

The (pointwise in Γ ) weak formulation of problem (1) then reads: Find u ∈W
where

W =
{

w ∈ L2
ρ

(
Γ ;L2(0,T ;H1

0 (D)
))

and
∂w
∂ t
∈ L2

ρ

(
Γ ;L2(0,T,H−1(D)

))}
s.t.

∫
D

∂u(x,y, t)
∂ t

v(x)dx+
∫

D
a(x,y)∇u(x,y, t) ·∇v(x)dx =

∫
D

f (x,y, t)v(x)dx

∀v ∈ H1
0 (D), ρ− a.e. y ∈ Γ , and a.e. t ∈ (0,T ) (4)

with initial and boundary conditions:

u(x,y,0) = u0(x,y) ρ-a.e. y ∈ Γ

u(x,y, t) = 0 x ∈ ∂D, ρ-a.e. y ∈ Γ ,a.e. t ∈ (0,T ).

We endow the Sobolev space H1
0 (D) with the gradient norm ‖v‖H1

0
= ‖∇v‖L2(D).

Based on the existence result of the deterministic problem [17, p.513], the assumption
(2) ensures the well-posedness of problem (4), i.e. there exists a unique solution
u ∈W which moreover satisfies

‖u‖L2
ρ (Γ ;L2(0,T ;H1

0 (D))) ≤
C
√

amin

[
‖u0‖2

L2
ρ (Γ ;H1

0 (D))
+

1
amin
‖ f‖2

L2
ρ (Γ ;L2(0,T ;L2(D)))

]1/2
.
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3 Discretization aspects

In the following sub-sections we describe the techniques used for the discretization
of problem (4) and corresponding assumptions necessary for a rigorous a posteriori
estimation. We will closely follow the techniques used in [37, 36] for the time
and space discretization and [25, 32, 31, 5] for the stochastic discretization by the
stochastic collocation method.

3.1 Time discretization

For the time discretization we divide the time interval into N subintervals 0 = t0 <
t1 < · · ·< tN = T . By τ we will denote the discretization τ = {tn}N

n=1 and τn+1 will
denote the length of the (n+1)-th interval τn+1 = tn+1− tn. We will also assume that
f is continuous w.r.t. time. We will use the abbreviations

gn(x,y) = g(x,y, tn), gnθ = (1−θ)gn +θgn+1.

The numerical scheme considered here for the time discretization is the θ−scheme
with θ ∈ [0,1].

3.2 Space discretization

The spatial discretization will be performed by the finite element method. To each
time instant tn, 0 ≤ n ≤ N, we associate a triangulation Thn of D which satisfies⋃

K∈Thn
K = D and a corresponding conforming finite element space Vhn . For a

rigorous estimation we require the following conditions to be satisfied, which are
taken from [36].

1. Affine equivalence: there is an invertible affine mapping for every element K ∈Thn

onto the standard reference d-simplex or the standard unit cube in Rd .
2. Admissibility: any two elements either share a vertex or a complete edge (d = 2)

or a complete face (d = 3) or are disjoint.
3. Shape regularity: the ratio of the diameter of any element to the diameter of its

largest inscribed ball is bounded uniformly with respect to all partitions Thn and
to N.

4. Transition condition: for every n = 1, . . . ,N there is a refinement of both Thn and
Thn−1 , denoted by T̃hn , which is an affinely equivalent, admissable and shape-
regular triangulation and such that

sup
1≤n≤N

sup
K∈T̃hn

sup
K′∈Thn ;K′⊃K

hK′

hK
< ∞. (5)
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5. For every n = 1, . . . ,N, Vhn consists of continuous functions which are piecewise
polynomials of degree ≤ pn, pn ≥ 1 where pn is uniformly bounded with respect
to N.

3.3 Stochastic discretization

The stochastic discretization is performed by a sparse grid collocation method, first
introduced in [34]. We will briefly recall this method and refer the reader to [32, 31, 5]
for more details.

Let us define a sequence of univariate polynomial interpolant operators

U
m(i j)
j : C0(Γj)→ Pm(i j)−1(Γj), j = 1, . . . ,M,

where m(i j), called a level function, denotes the number of collocation points for
level i j and Pq(Γj) is the space of polynomials over Γj with degree at most q. The
function m is a strictly increasing function satisfying m(0) = 0, m(1) = 1. For a
multi-index q = (q1, . . . ,qM) ∈ NM , we denote by Pq(Γ ) the tensor product polyno-
mial space Pq(Γ ) =

⊕M
j=1Pq j(Γj).

A sparse grid is built over a multi-index set I ⊂ NM
+ with the only assumption

being that I is downward-closed (called also admissibility condition), i.e.

∀i ∈ I, i− e j ∈ I ∀ j ∈ {1,2, . . . ,M} s.t. i j > 1,

where e j is the j−th canonical unit vector.

By setting U 0
j = 0 for j = {1, . . . ,M} we can define the sparse grid interpolant

SI : L2
ρ(Γ )∩C0(Γ )→ PI :=

⊕
i∈I Pm(i)−1(Γ ) of a continuous function f : Γ →R by

SI [ f ](y) = ∑
i∈I
4m(i)[ f ](y), (6)

where

4m(i) =
M⊗

j=1

(
U

m(i j)
j −U

m(i j−1)
j

)
.

The operator SI can be equivalently expressed as a linear combination of tensor
grid interpolations (see [31])

SI [ f ](y) = ∑
i∈I

ci

M⊗
j=1

U
m(i j)
j ( f )(y), ci = ∑

k∈{0,1}M
(i+k)∈I

(−1)|k| (7)
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with |k|= ∑
M
j=1 k j. We then call a sparse grid the collection of Nc(I) points X (I) =

{y1, . . . ,yNc(I)} that are used in (7) to build the interpolant SI [ f ]. The collocation
points are called nested if we have X (I) ⊂X (J) whenever I ⊂ J. Since SI [ f ] is
linear in the point evaluations { f (yk), yk ∈X (I)}, it can be written in the form

SI [ f ](y) =
Nc(I)

∑
k=1

f (yk)Lk(y) (8)

for suitable functions Lk. Finally, we introduce the notion of margin MI of the index
set I defined by

MI = {i ∈ NM
+ \ I : i− e j ∈ I for some j ∈ {1, . . . ,M}}. (9)

Equation (4) will be collocated on the grid X (In) = {y1, . . . ,yNc(In)} defined by
an index set In that is allowed to change between the time steps. In particular, we
allow for both refinement and coarsening of the index set. The collocation points are
assumed to be nested. This condition implies, in particular, that SIn is interpolatory,
i.e.

SIn [ f ](yk) = f (yk), k = 1, . . . ,Nc(In), n = 0, . . . ,N, (10)

see [10, p. 277]. By Ĩn+1 we will denote the index set

Ĩn+1 = In∪ In+1. (11)

The following proposition will be useful for the derivation of the error estimates.

Proposition 1. Let SI be an interpolatory sparse grid interpolant, as defined in (6).
Then

1. ∀ f ,g ∈C0(Γ ) : SI [ f g] = SI [ f SI [g]],
2. ∀ f ∈C0(Γ ) : SI [ f ] ∈ PI ,
3. ∀p ∈ PI(Γ ) : SI [p] = p.

A proof can be found in [25, p.3126] for part 1. and in [8, p.52] for part 2.,3.

If SI is interpolatory, then the functions Lk in (8) are Lagrangian, i.e. Lk(y j) = δ jk
and form a basis of PI .

3.4 Fully discrete problem

We allow the spatial and the stochastic grid to change over time and we define the
discrete solution for each n = 0, . . . ,N as a function belonging to Vhn ⊗ PIn :

un
hn,In =

Nc(In)

∑
k=1

un
hn,In,k Lk(y),
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where un
hn,In,k = un

hn,In(yk) ∈ Vhn and un+1
hn+1,In+1

satisfies for ∀vhn+1 ∈ Vhn+1 and for
∀k = 1, . . . ,Nc(In+1) the equation

∫
D

un+1
hn+1,In+1,k

(x)−un
hn,In(x,yk)

τn+1
vhn+1(x)dx

+
∫

D
a(x,yk)

(
θ∇un+1

hn+1,In+1,k
(x)+(1−θ)∇un

hn,In(x,yk)
)
∇vhn+1(x)dx (12)

=
∫

D
f nθ (x,yk)vhn+1(x)dx

with initial condition

u0
h0,I0(x,y) =

Nc(I0)

∑
k=1

Πh0u0(x,yk)Lk(y) (13)

where Πh0 is a Lagrange interpolation operator into Vh0 . The Lax Milgram lemma
implies the existence of a unique sequence of solutions {un

hn,In}
N
n=0. Based on this

sequence we build a piecewise affine function ũ on [0,T ] which equals un
hn,In at times

tn, n = 0, . . . ,N, i.e.

ũ(t) =
tn+1− t

τn+1
un

hn,In +
t− tn
τn+1

un+1
hn+1,In+1

, t ∈ [tn, tn+1]. (14)

Note that
∂ ũ
∂ t

=
1

τn+1

(
un+1

hn+1,In+1
−un

hn,In

)
on (tn, tn+1].

With this construction, for every n = 0, . . . ,N−1, the discretized solution belongs to
the space

ũ ∈ L2(tn, tn+1;PĨn+1
⊗Ṽhn+1)⊂ L2(tn, tn+1;L2

ρ(Γ ;H1
0 (D)))

where Ṽhn+1 is the FE space corresponding to the refined triangulation T̃hn+1 , see (5),
and Ĩn+1 is the union of the index sets defined in (11).

4 Residual based a posteriori error estimation

In this section we will derive an a posteriori error estimate for u− ũ which consists
of three error contributors: space, time and stochastic. First we shall start by stating
the equation satisfied by ũ.

From (12) it is easy see that the discretized solution ũ satisfies the following
equation in (tn, tn+1] and for each n = 0, . . . ,N−1
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D

SIn+1

[
∂ ũ
∂ t

]
vhn+1 +

∫
D

SIn+1

[
a∇ũ

]
∇vhn+1 =

∫
D

SIn+1

[
f
]
vhn+1

+
∫

D
SIn+1

[
a∇ũ−a∇ũnθ

]
∇vhn+1 +

∫
D

SIn+1

[
f nθ − f

]
vhn+1 (15)

∀vhn+1 ∈Vhn+1 , everywhere in Γ .

For any element, face or edge S, hS denotes its diameter. With every edge (d = 2)
or face (d = 3) E, we identify a unit vector ηE orthogonal to it and denote the jump
across E in direction ηE by [·]E . The assumption (2) ensures that the energy norm
and the H1

0 norm are equivalent for every y ∈ Γ , i.e. there exists 0 < cmin ≤ cmax s.t.

cmin‖∇v‖L2(D) ≤ ‖a
1/2(y)∇v‖L2(D) ≤ cmax‖∇v‖L2(D), ρ− a.e. in Γ

for any v ∈ H1
0 (D). The constants cmin, cmax can be bounded by cmin ≥ 1√

amin
and

cmax ≤
√

amax.
Now we can proceed to state the a posteriori error estimate.

Theorem 1. Let u be the solution of (4) and ũ be defined as in (14). Then there exists
a constant C > 0 independent of the time step, mesh size, the sparse grid index set
such that

‖(u− ũ)(T )‖2
L2

ρ (Γ ;L2(D))+ c2
min ‖u− ũ‖2

L2(0,T ;L2
ρ (Γ ;H1

0 (D)))

≤ ‖(u− ũ)(0)‖2
L2

ρ (Γ ;L2(D))+ ε
2
spa + ε

2
tem + ε

2
sto,

where

ε
2
spa =

C
c2

min

N−1

∑
n=0

ΛIn+1

Nc(In+1)

∑
k=1(

∑
K∈T̃hn+1

h2
K

∥∥∥∥ f (yk)−
∂ ũ
∂ t

(yk)+∇ ·
(
a(yk)∇ũ(yk)

)∥∥∥∥2

L2(tn,tn+1;L2(K))

+ ∑
E⊂∂K

hE

∥∥∥∥1
2
[a(yk)∇ũ(yk) ·ηE ]E

∥∥∥∥2

L2(tn,tn+1;L2(E))

)
‖Lk‖L1

ρ (Γ )

(16)

and

ε
2
tem =

C
c2

min

N−1

∑
n=0

ΛIn+1

Nc(In+1)

∑
k=1

2
(
‖ f (yk)− f nθ (yk)‖2

L2(tn,tn+1;L2(D))

+ τn+1
θ 3 +(1−θ)3

3
‖a(yk)∇(un+1

hn+1,In+1
−un

hn,In)‖
2
L2(D)

)
‖Lk‖L1

ρ (Γ )

(17)

and
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ε
2
sto =

C
c2

min

N−1

∑
n=0

τn+1

(
∑

i∈IC
n+1∩(In∪MIn )

∥∥∥4m(i)(a∇un
hn,In)

∥∥∥2

L2
ρ (Γ ;L2(D))

+ ∑
i∈MIn+1

∥∥∥4m(i)(a∇un+1
hn+1,In+1

)
∥∥∥2

L2
ρ (Γ ;L2(D))

)
+ ∑

i∈IC
n+1

∥∥∥4m(i)( f )
∥∥∥2

L2(tn,tn+1;L2
ρ (Γ ,L2(D)))

+
1

τn+1
∑

i∈Ĩn+1\In+1

∥∥∥4m(i)(un
hn,In)

∥∥∥2

L2
ρ (Γ ;L2(D))

.

(18)

where ΛIn+1 denotes the Lebesgue constant corresponding to the index set In+1.

Proof. In what follows all equations hold a.e. in (tn, tn+1), n = 0, . . . ,N−1 and ρ-a.e.
in Γ and we will omit the dependence on the variables x,y, t. We will start by dividing
the estimate into a stochastic and a deterministic part. For every v ∈ H1

0 (D) we have∫
D

(∂u
∂ t
− ∂ ũ

∂ t

)
v+

∫
D

a∇
(
u− ũ

)
∇v =

∫
D

f v−
∫

D

∂ ũ
∂ t

v−
∫

D
a∇ũ∇v =

= SIn+1

[∫
D

f v−
∫

D

∂ ũ
∂ t

v−
∫

D
a∇ũ∇v

]}
︸ ︷︷ ︸

=:Adet

+SIn+1

[∫
D

a∇ũ∇v+
∫

D

∂ ũ
∂ t
−
∫

D
f v
]
−
(∫

D
a∇ũ∇v+

∫
D

∂ ũ
∂ t
−
∫

D
f v
)

︸ ︷︷ ︸
=:Asto

.

We analyze Adet and Asto separately. The term Adet accounts for both spatial and
temporal error contribution and we can use standard techniques for a posteriori error
estimation of deterministic heat equations, see [37, 36].

For any vhn+1 ∈Vhn+1 we have

Adet = SIn+1

[∫
D

f (v− vhn+1)−
∫

D

∂ ũ
∂ t

(v− vhn+1)−
∫

D
a∇ũ∇(v− vhn+1)

]
+SIn+1

[∫
D

f vhn+1 −
∫

D

∂ ũ
∂ t

vhn+1 −
∫

D
a∇ũ∇vhn+1

]
= SIn+1

[∫
D

f (v− vhn+1)−
∫

D

∂ ũ
∂ t

(v− vhn+1)−
∫

D
a∇ũ∇(v− vhn+1)

]
︸ ︷︷ ︸

=:Aspa

+SIn+1

[∫
D

(
a∇ũnθ −a∇ũ

)
∇vhn+1

]
+SIn+1

[∫
D

(
f − f nθ )

)
vhn+1

]
︸ ︷︷ ︸

=:Atem

(19)
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where in the second equality we employed the equation (15) for ũ. Now we have
divided Adet into a spatial Aspa and a temporal Atem error contributor.

For the spatial part we will follow the estimation provided in [36]. We denote by
Jhn any of the quasi interpolation operators of [39] defined on H1

0 (D) and with values
in the space of continuous, piecewise linear finite element functions corresponding
to Thn . Then, combining the interpolation error estimates of [39], a standard trace
theorem [39, Lemma 3.2] and the condition 4. stated in (5), the following estimates
hold for every v ∈ H1

0 and for any element K ∈ T̃hn and interior edge/face E ∈ Ẽhn

‖∇(v− Jhnv)‖L2(K) ≤ ‖∇(v− Jhnv)‖L2(K′) ≤ c0 ‖∇v‖L2(ω̃K)
,

‖v− Jhnv‖L2(K) ≤ ‖v− Jhnv‖L2(K′) ≤ c1hK′ ‖∇v‖L2(ω̃K)
≤ c̃1hK ‖∇v‖L2(ω̃K)

,

‖v− Jhnv‖L2(E) ≤ c2
{

h−1/2
E ‖v− Jhnv‖L2(K)+h1/2

E ‖∇(v− Jhnv)‖L2(K)

}
≤ c̃2h1/2

E ‖∇v‖L2(ω̃K)
,

(20)

where K′ denotes the element of Thn that contains K and ω̃K denotes the subset
that consists of all elements of T̃hn sharing at least a vertex with K′. The constants
c0,c1,c2 only depend on the maximal ratio of the diameter of any element to the
diameter of its largest inscribed ball. The constants c̃1, c̃2 in addition depend on the
maximal ratio hK′/hK .

With ηK denoting a unit outward pointing normal we further derive

Aspa(y, t) =
Nc(In+1)

∑
k=1

[∫
D

f (yk)(v− vhn+1)−
∫

D

∂ ũ
∂ t

(yk)
(
v− vhn+1

)
−
∫

D
a(yk)∇ũ(yk)∇(v− vhn+1)

]
Lk(y)

=
Nc(In+1)

∑
k=1

[
∑

K∈T̃hn+1

∫
K

[
f (yk)−

∂ ũ
∂ t

(yk)+∇ ·
(
a(yk)∇ũ(yk)

)]
(v− vhn+1)

]
−
[

∑
E∈Ẽhn+1

∫
E
[a(yk)∇ũ(yk) ·ηE ]E(v− vhn+1)

]
Lk(y).

Considering vhn+1 = Jhn+1(v) leads us to

Aspa(y, t)≤
Nc(In+1)

∑
k=1

[
∑

K∈T̃hn+1

c̃1hK

∥∥∥∥ f (yk)−
∂ ũ
∂ t

(yk)+∇ ·
(
a(yk)∇ũ(yk)

)∥∥∥∥
L2(K)

‖∇v‖L2(ω̃K)
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+ ∑
E∈Ẽhn+1

c̃2h1/2
E ‖[a(yk)∇ũ(yk) ·ηE ]E‖L2(E) ‖∇v‖L2(ω̃K)

]∣∣Lk(y)
∣∣.

Now, using the discrete Cauchy–Schwarz inequality and the fact that the domains
ω̃K only consist of a finite number of elements, this number being bounded by the
maximal ratio of the diameter of any element to the diameter of its largest inscribed
ball and on the ratios hK′/hK , we derive

Aspa(y, t)≤C1

Nc(In+1)

∑
k=1

[(
∑

K∈T̃hn+1

h2
K

∥∥∥∥ f (yk)−
∂ ũ
∂ t

(yk)+∇ ·
(
a(yk)∇ũ(yk)

)∥∥∥∥2

L2(K)

)1/2

+
(

∑
E∈Ẽhn+1

hE ‖[a(yk)∇ũ(yk) ·ηE ]E‖2
L2(E)

)1/2]∣∣Lk(y)
∣∣ ‖∇v‖L2(D)

=C1

Nc(In+1)

∑
k=1

E n+1
spa,k(t)

∣∣Lk(y)
∣∣ ‖∇v‖L2(D) .

As for the temporal part Atem, we proceed in a similar manner

Atem(y, t) =
Nc(In+1)

∑
k=1

[∫
D

a(yk)
(
∇ũnθ (yk)−∇ũ(yk)

)
∇vhn+1

+
∫

D

(
f (yk)− f nθ (yk)

)
vhn+1

]
Lk(y)

≤C2

Nc(In+1)

∑
k=1

[ ∥∥∥a(yk)∇
(
ũnθ (yk)− ũ(yk)

)∥∥∥
L2(D)

+
∥∥∥( f (yk)− f nθ (yk)

)∥∥∥
L2(D)

]∣∣Lk(y)
∣∣ ‖∇v‖L2(D)

=C2

Nc(In+1)

∑
k=1

E n+1
tem,k(t)

∣∣Lk(y)
∣∣ ‖∇v‖L2(D) ,

(21)

where C2 depends on the Jhn+1 interpolation operator norm and the Poincaré constant.

Now we focus on the term Asto describing the stochastic part of the error. We will
use the fact that SIn+1 [a∇uhn+1 ] = SIn+1 [a∇SIn+1 [uhn+1 ]] given by Proposition 1. We
derive

Asto(y, t) = SIn+1

[∫
D

a∇ũ∇v+
∫

D

∂ ũ
∂ t
−
∫

D
f v
]
−
(∫

D
a∇ũ∇v+

∫
D

∂ ũ
∂ t
−
∫

D
f v
)
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=
∫

D

(
SIn+1 [a∇ũ]−a∇ũ

)
∇v+

∫
D

(
f −SIn+1 [ f ]

)
v

+
∫

D

(SIn+1 [u
n+1
hn+1,In+1

−un
hn,In ]− (un+1

hn+1,In+1
−un

hn,In)

τn+1

)
v

=
∫

D

(
SIn+1 [a∇ũ]−a∇ũ

)
∇v+

∫
D

(
f −SIn+1 [ f ]

)
v

+
∫

D

SĨn+1
[un

hn,In ]−SIn+1 [u
n
hn,In ]

τn+1
v

≤

∥∥∥∥∥∥ ∑
i∈IC

n+1

4m(i)(a∇ũ)

∥∥∥∥∥∥
L2(D)

‖∇v‖L2(D)+

∥∥∥∥∥∥ ∑
i∈IC

n+1

4m(i)( f )

∥∥∥∥∥∥
L2(D)

‖v‖L2(D)

+
1

τn+1

∥∥∥∥∥∥ ∑
i∈Ĩn+1\In+1

4m(i)(un
hn,In)

∥∥∥∥∥∥
L2(D)

‖v‖L2(D)

≤C3

(∥∥∥∥∥∥ ∑
i∈(In\In+1)∪MĨn+1

4m(i)(a∇ũ)

∥∥∥∥∥∥
L2(D)

+

∥∥∥∥∥∥ ∑
i∈IC

n+1

4m(i)( f )

∥∥∥∥∥∥
L2(D)

+
1

τn+1

∥∥∥∥∥∥ ∑
i∈Ĩn+1\In+1

4m(i)(un
hn,In)

∥∥∥∥∥∥
L2(D)

)
‖∇v‖L2(D)

=C3 E n+1
sto ‖∇v‖L2(D).

In the last inequality we used the affine dependence of a on the random variables,
stated in the assumption (3), which allows us to restrict the sum over IC

n+1 to the
index set MĨn+1

∪ (In \ In+1) = IC
n+1 ∩ (Ĩn+1 ∪MĨn+1

). This comes from the fact that
ũ ∈ PĨn+1

which implies a∇ũ ∈ PĨn+1∪MĨn+1
. Since SĨn+1∪MĨn+1

is exact on PĨn+1∪MĨn+1
(Proposition 1.3), we obtain

4m(i)(a∇ũ) = 0, ∀i 6∈ Ĩn+1∪MĨn+1
.

Altogether we obtained for every n = 0, . . . ,N−1∫
D

∂ (u− ũ)
∂ t

v+
∫

D
a∇(u− ũ) ·∇v

≤C4

(
E n+1

sto +
Nc(In+1)

∑
k=1

(E n+1
tem,k +E n+1

spa,k)
∣∣Lk(y)

∣∣)‖∇v‖L2(D).

Taking v = u− ũ ∈ H1
0 and using the Young inequality we have
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1
2

d
dt
‖u− ũ‖2

L2(D)(y, t)+ c2
min‖∇(u− ũ)‖2

L2(D)(y, t)

≤ 1
2c2

min
C2

4

(
E n+1

sto (y, t)+
Nc(In+1)

∑
k=1

(
E n+1

tem,k(t)+E n+1
spa,k(t)

)∣∣Lk(y)
∣∣)2

+
c2

min
2
‖∇(u− ũ)‖2

L2(D)(y, t)

which holds for a.e. t ∈ (tn, tn+1]. The last step is to integrate the last inequality w.r.t
t over (0,T ) and w.r.t y over Γ . Using the discrete Cauchy-Schwarz inequality we
derive

N−1

∑
n=0

∫ tn+1

tn

∫
Γ

(Nc(In+1)

∑
k=1

E n+1
tem,k(t)

∣∣Lk(y)
∣∣)2

ρ(y)dydt

≤
N−1

∑
n=0

∫ tn+1

tn

∫
Γ

Nc(In+1)

∑
k=1

E n+1
tem,k(t)

2|Lk(y)|
Nc(In+1)

∑
k=1

∣∣Lk(y)
∣∣ρ(y)dydt

≤
N−1

∑
n=0

(Nc(In+1)

∑
k=1

∫ tn+1

tn
E n+1

tem,k(t)
2 dt

∫
Γ

∣∣Lk(y)
∣∣ρ(y)dy

)(
sup
y∈Γ

Nc(In+1)

∑
k=1

|Lk(y)|
)

≤
N−1

∑
n=0

ΛIn+1

(Nc(In+1)

∑
k=1

2
(
‖ f (yk)− f nθ (yk)‖2

L2(tn,tn+1;L2(D))

+ τn+1
θ 3 +(1−θ)3

3
‖a(yk)∇(un+1

hn+1,In+1
−un

hn,In)‖
2
L2(D)

)
‖Lk‖L1

ρ (Γ )

)
,

where in the last inequality we employed the observation

ũnθ − ũ =
(
θ − t− tn

τn+1

)
(un+1−un).

Analogously for the spatial part

N−1

∑
n=0

∫ tn+1

tn

∫
Γ

(Nc(In+1)

∑
k=1

E n+1
spa,k(t)

∣∣Lk(y)
∣∣)2

ρ(y)dydt

≤
N−1

∑
n=0

∫ tn+1

tn

∫
Γ

Nc(In+1)

∑
k=1

E n+1
spa,k(t)

2∣∣Lk(y)
∣∣Nc(In+1)

∑
k=1

∣∣Lk(y)
∣∣ρ(y)dydt

≤
N−1

∑
n=0

ΛIn+1

(Nc(In+1)

∑
k=1

(
∑

K∈T̃hn+1

h2
K

∥∥∥∥ f (yk)−
∂ ũ
∂ t

(yk)+∇ ·
(
a(yk)∇ũ(yk)

)∥∥∥∥2

L2(tn,tn+1;L2(K))

+ ∑
E⊂∂K

hE

∥∥∥∥1
2
[a(yk)∇ũ(yk) ·ηE ]E

∥∥∥∥2

L2(tn,tn+1;L2(E))

)
‖Lk‖L1

ρ (Γ )

)
As for the stochastic part we derive
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N−1

∑
n=0

∫ tn+1

tn

∫
Γ

E n+1
sto (y, t)2

ρ(y)dydt

≤ 3
N−1

∑
n=0

∫ tn+1

tn

∫
Γ

∑
i∈(In\In+1)∪MĨn+1

∥∥∥4m(i)(a∇ũ)
∥∥∥2

L2(D)

+ ∑
i∈IC

n+1

∥∥∥4m(i)( f )
∥∥∥2

L2(D)
+ ∑

i∈Ĩn+1\In+1

1
τ2

n+1

∥∥∥4m(i)(un
hn,In)

∥∥∥2

L2(D)
ρ(y)dydt

≤C5

N−1

∑
n=0

[∫ tn+1

tn

( t− tn
τn+1

)2
dt ∑

i∈IC
n+1∩(In∪MIn )

∥∥∥4m(i)(a∇un
hn,In)

∥∥∥2

L2
ρ (Γ ;L2(D))

+
∫ tn+1

tn

( tn+1− t
τn+1

)2
dt ∑

i∈MIn+1

∥∥∥4m(i)(a∇un+1
hn+1,In+1

)
∥∥∥2

L2
ρ (Γ ;L2(D))

+ ∑
i∈IC

n+1

∥∥∥4m(i)( f )
∥∥∥2

L2(tn,tn+1;L2
ρ (Γ ,L2(D)))

+
τn+1

τ2
n+1

∑
i∈Ĩn+1\In+1

∥∥∥4m(i)(un
hn,In)

∥∥∥2

L2
ρ (Γ ;L2(D))

]
=C5

N−1

∑
n=0

[
τn+1

3

(
∑

i∈IC
n+1∩(In∪MIn )

∥∥∥4m(i)(a∇un
hn,In)

∥∥∥2

L2
ρ (Γ ;L2(D))

+ ∑
i∈MIn+1

∥∥∥4m(i)(a∇un+1
hn+1,In+1

)
∥∥∥2

L2
ρ (Γ ;L2(D))

)
+ ∑

i∈IC
n+1

∥∥∥4m(i)( f )
∥∥∥2

L2(tn,tn+1;L2
ρ (Γ ,L2(D)))

+
1

τn+1
∑

i∈Ĩn+1\In+1

∥∥∥4m(i)(un
hn,In)

∥∥∥2

L2
ρ (Γ ;L2(D))

]
ut

The spatial and time estimators in (16), (17) depend on the Lebesgue constant
Λn+1. The growth of the Lebesgue constant depends on the choice of the level
function m and the type of the collocation points, which for the nested Clenshaw-
Curtis points yields an estimate ΛI ∼ |I|2 and for the projected Leja points an estimate
ΛI ∼ |I|3+ε for any ε > 0 (see [15]). Such estimation can cause the estimator to be
too conservative. This issue was addressed in [25, Rem 4.4]. The following theorem
provides an alternative way of estimating the spatial and time estimator without
involving the Lebesgue constant and is an extension of the results from [25, Rem
4.4].

Theorem 2. The spatial estimator εspa from (16) and the time estimator εtem from
(17) can be alternatively expressed as
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ε
2
tem =

C
c2

min

N−1

∑
n=0

[∥∥∥∥∥Nc(In+1)

∑
k=1

[(
f (yk)− f nθ (yk)

)]
Lk(y)

∥∥∥∥∥
2

L2(tn,tn+1;L2
ρ (Γ ;L2(D)))

+ τn+1

∥∥∥∥∥Nc(In+1)

∑
k=1

[
a(yk)∇

(
un+1

hn+1,In+1
(yk)−un

hn,In(yk)
)]

Lk(y)

∥∥∥∥∥
2

L2
ρ (Γ ;L2(D))

]
(22)

and

ε
2
spa =

N−1

∑
n=0

∑
K∈T̃hn+1

(εn
spa,K)

2 (23)

with

(εn
spa,K)

2 =
C

c2
min

h2
K

∥∥∥∥∥Nc(In+1)

∑
k=1

[
f (yk)−

∂ ũ
∂ t

(yk)+∇ ·
(
a(yk)∇ũ(yk)

)]
Lk(y)

∥∥∥∥∥
2

L2(tn,tn+1;L2
ρ (Γ ;L2(K)))

+ ∑
E⊂∂K

hE

∥∥∥∥∥Nc(In+1)

∑
k=1

(1
2
[a(yk)∇ũ(yk) ·ηE ]E

)
Lk(y)

∥∥∥∥∥
2

L2(tn,tn+1;L2
ρ (Γ ;L2(E)))

.

Proof. We follow by estimating the term Atem from (21) by

Atem(y, t) =
∫

D

Nc(In+1)

∑
k=1

a(yk)
(
∇ũnθ (yk)−∇ũ(yk)

)
Lk(y)∇vhn+1

+
∫

D

Nc(In+1)

∑
k=1

(
f (yk)− f nθ (yk)

)
Lk(y) vhn+1

≤C
(∥∥∥∥∥Nc(In+1)

∑
k=1

a(yk)
(
∇ũnθ (yk)−∇ũ(yk)

)
Lk(y)

∥∥∥∥∥
L2(D)

+

∥∥∥∥∥Nc(In+1)

∑
k=1

(
f (yk)− f nθ (yk)

)
Lk(y)

∥∥∥∥∥
L2(D)

)
‖∇v‖L2(D)

=CE n+1
tem ‖∇v‖L2(D)

where we applied the same interpolation results as proposed in (20). Analogously for
the spatial estimation we derive

Aspa(y, t) = ∑
K∈T̃hn+1

[∫
K

Nc(In+1)

∑
k=1

[
f (yk)−

∂ ũ
∂ t

(yk)+∇ ·
(
a(yk)∇ũ(yk)

)]
Lk(y)

(v− vhn+1)
]
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− ∑
E∈Ẽhn+1

∫
E

Nc(In+1)

∑
k=1

[a(yk)∇ũ(yk) ·ηE ]E Lk(y)(v− vhn+1)

≤ ∑
K∈T̃hn+1

∥∥∥∥∥Nc(In+1)

∑
k=1

[
f (yk)−

∂ ũ
∂ t

(yk)+∇ ·
(
a(yk)∇ũ(yk)

)]
Lk(y)

∥∥∥∥∥
L2(K)

∥∥v− vhn+1

∥∥
L2(K)

+ ∑
E∈Ẽhn+1

∥∥∥∥∥Nc(In+1)

∑
k=1

[a(yk)∇ũ(yk) ·ηE ]E Lk(y)

∥∥∥∥∥
L2(E)

∥∥v− vhn+1

∥∥
L2(E) .

Using again the interpolation results (20) and the discrete Cauchy-Schwarz inequality
we obtain

Aspa(y, t)≤C
[(

∑
K∈T̃hn+1

h2
K

∥∥∥∥∥Nc(In+1)

∑
k=1

[
f (yk)−

∂ ũ
∂ t

(yk)+∇ ·
(
a(yk)∇ũ(yk)

)]
Lk(y)

∥∥∥∥∥
2

L2(K)

)1/2

+
(

∑
E∈Ẽhn+1

hE

∥∥∥∥∥Nc(In+1)

∑
k=1

[a(yk)∇ũ(yk) ·ηE ]E Lk(y)

∥∥∥∥∥
L2(E)

)1/2]
‖∇v‖L2(D)

=CE n+1
spa ‖∇v‖L2(D)

The rest of the proof follows the same steps as in the proof of Theorem 1. ut

Remark 1. Note that the spatial estimator from Theorem 1 allows for different FE
meshes for different collocation points. This property is sacrificed in the spatial
estimator from Theorem 2. We shall also note that the error estimator derived in
this work is of suboptimal order in the case θ = 1/2, which corresponds to the
Crank-Nicolson scheme. In order to restore the second order convergence one shall
work with a piecewise quadratic polynomial function in time instead of the linear
one defined in (14). We refer an interested reader to [30, 2].

5 Adaptive algorithm

The estimators from the preceding section provide us with an upper bound of the
error that is naturally localized in all variables - time, space and stochastics. There are
many possible choices of adaptive algorithms that can be constructed starting from
these estimators. One could drive the adaptive choice of time-varying finite element
and stochastic grids by a local in time error estimator, as was proposed in [33, 9] for
time varying FE or DG meshes in the case of a deterministic heat equation. Also, the
spatial estimator εspa in Theorem 1 is naturally localized over the collocation points
so it allows for different adapted FE meshes in different collocation points. This idea
has been explored e.g. in [18] in the context of a stochastic Galerkin polynomial
chaos approximation of an elliptic problem with random coefficients. There are,
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however, many problems whose behaviour does not require FE meshes and sparse
grids that dramatically change in time. Considering fixed in time FE meshes and
sparse grids simplifies the estimators and the adaptive process. In this work we will
restrict to adapted FE meshes and sparse grids which are fixed in time with the goal
to obtain the overall error

ε = ‖(u− ũ)(T )‖2
L2

ρ (Γ ;L2(D))+ c2
min ‖u− ũ‖2

L2(0,T ;L2
ρ (Γ ;H1

0 (D)))

under a prescribed tolerance TOL. We will apply the global spatial and time estima-
tors from Theorem 2, i.e. (22), (23) by localizing the spatial estimator into elements,
the time estimator into time steps and the stochastic estimator (18) into indices. For a
deterministic right hand side the corresponding error estimators become

ε
2
spa,K =

c1

c2
min

h2
K

∥∥∥∥∥Nc(I)

∑
k=1

[
f (yk)−

∂ ũ
∂ t

(yk)+∇ ·
(
a(yk)∇ũ(yk)

)]
Lk(y)

∥∥∥∥∥
2

L2(0,T ;L2
ρ (Γ ;L2(K)))

+
c2

c2
min

∑
E⊂∂K

hE

∥∥∥∥∥Nc(I)

∑
k=1

(1
2
[a(yk)∇ũ(yk) ·ηE ]E

)
Lk(y)

∥∥∥∥∥
2

L2(0,T ;L2
ρ (Γ ;L2(E)))

(24)

for every element K ∈Th,

ε
2
tem,n =

c3

c2
min

∥∥∥∥∥Nc(I)

∑
k=1

[(
f (yk)− f nθ (yk)

)]
Lk(y)

∥∥∥∥∥
2

L2(tn,tn+1;L2
ρ (Γ ;L2(D)))

+
c4

c2
min

τn+1

∥∥∥∥∥Nc(I)

∑
k=1

[
a(yk)∇

(
un+1

h,I (yk)−un
h,I(yk)

)]
Lk(y)

∥∥∥∥∥
2

L2
ρ (Γ ;L2(D))

(25)

for every subinterval [tn, tn+1], n = 0, . . . ,N−1, and

ε
2
sto,i =

1
c2

min

N−1

∑
n=0

τn+1

(∥∥∥4m(i)(a∇un
h,I)
∥∥∥2

L2
ρ (Γ ;L2(D))

+
∥∥∥4m(i)(a∇un+1

h,I )
∥∥∥2

L2
ρ (Γ ;L2(D))

)
(26)

for every multi index i ∈MI .

Then the overall error ε can be bounded by

ε
2 ≤ ∑

K∈Th

ε
2
spa,K +

N−1

∑
n=0

ε
2
tem,n + ∑

i∈MI

ε
2
sto,i.

The algorithm will start with fairly coarse grids and index set Th, τ, I, compute the
numerical solution ũ and compute the estimators (24), (25), (26) for every cell, time
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subinterval and index from the margin. Let N = |Th|+N + |MI | denote the total
number of elements in {Th, τ, MI}, i.e. number of cells + number of subintervals (N)
+ number of indices in the margin MI . Then we will refine a cell K whenever ε2

spa,K >

(α TOL/N )2, divide a time interval [tn, tn+1] into 2 equal subintervals whenever
ε2

tem,n > (α TOL/N )2 and add an index i ∈MI into the index set I whenever ε2
sto,i >

(α TOL/N )2, where α > 1. Note that adding an index i might result in adding more
indices since we need to keep the index set I downward closed. With the new refined
mesh, time grid and sparse grid we need to compute a new solution ũ and continue
until the stopping criterion

ε
2
Th,τ,I := ∑

K∈Th

ε
2
spa,K +

N−1

∑
n=0

ε
2
tem,n + ∑

i∈MI

ε
2
sto,i < TOL2

is satisfied. This procedure is described in Algorithm 1. We shall note that there is no
proof of convergence for this algorithm.

Algorithm 1: Adaptive algorithm
Data: TOL > 0
Result: τ, I,Th and ũ s.t. εTh,τ,I < TOL
Initialize τ, I,Th;
compute ũ on τ, I,Th;
compute εspa,K , εtem,n, εsto,i;
while εTh,τ,I ≥ TOL do

set N = |Th|+N + |MI |;
for K ∈Th do

if εspa,K > α
TOL
N then

refine K
end

end
for n ∈ {0, . . . ,N−1} do

if εtem,n > α
TOL
N then

refine [tn, tn+1]
end

end
for i ∈MI do

if εsto,i > α
TOL
N then

I = I∪ i;
add indices s.t. I is downward closed

end
end
update τ, I,Th;
compute ũ on new τ, I,Th;
compute εspa,K , εtem,n, εsto,i;

end
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6 Numerical results

This section is dedicated to study the effectiveness of the estimators in (24), (25),
(26) and the performance of the adaptive algorithm introduced in Section 5. The
practical computation of these estimators requires some estimation of the constants
c1, . . . ,c4,cmin as well as an approximate computation of the L2

ρ(Γ ) norm. This is
discussed hereafter.

Let us consider problem (1) set in a unit square D = [0,1]2 with time domain [0,1]
and an uncertain diffusion coefficient

a(x,y) = a0 +
2

∑
m=1

cos(2πmx1)+ cos(2πmx2)

(πm)2 ym (27)

with x = (x1,x2), y = (y1,y2) and a0 > 0 set to satisfy

inf
x∈D,y∈Γ

a(x,y) = 0.01.

The random variables are independent and uniformly distributed ym ∼U([−1,1])
and the forcing term is deterministic and time-independent

f (x) = 201F(x)

with F = [0.4,0.6]× [0.4,0.6] a square in the middle of the domain.

In all of our simulations we used the spatial and time estimators provided in
Theorem 2 which do not require an explicit estimation of the Lebesgue constant. The
norm ‖g‖L2

ρ (Γ ) for g ∈C0(Γ ) is approximated using a set Θ ⊂ Γ of finite cardinality
by

‖g‖L2
ρ (Γ ) ≈

( 1
|Θ | ∑

y∈Θ

g(y)2
)1/2

.

We set Θ to consist of 500 randomly sampled points in Γ = [−1,1]2 according to the
distribution ρ , uniform on Γ . As suggested in [25], instead of setting cmin =

√
amin,

which may be too conservative, we will rather approximate it by

cmin := min
v∈U⊂L2

ρ (Γ ;H1
0 (D))

min
y∈Ξ

‖a1/2(y)∇v(y)‖L2(D)

‖∇v(y)‖L2(D)

,

where we take U = {un
h,I , n = 0, . . . ,N} and Ξ is a set of random samples of small

cardinality (different from Θ ). For the specific diffusion coefficient in (27) we
estimated cmin ≈ 0.41. The norm ‖g‖L2(0,T ) is computed using the trapezoidal rule
as suggested in [33]. We have considered P1 finite elements without fitting the FE
mesh to the subdomain F and θ = 1, namely the implicit Euler method. The sparse
grid consists of Leja points built as symmetric Leja sequences within [−1,1] (see
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e.g. [15]) with level function m(i) = i. This combination satisfies the interpolatory
condition (10). For a sharp behaviour of the estimators and an efficient performance
of the adaptive algorithm one needs a good estimation of the constants c1,c2,c3,c4 in
(24), (25), (26). This requires a good estimation of the interpolation constants from
(20) which is not an easy task and we refer the reader to [39] for ways to bound the
interpolation constants. In our case, we adopted the strategy proposed in [33], i.e.
estimated the constants by observing the behaviour of the estimators vs. the behaviour
of the true error when refining individually uniform spatial grids, uniform time grids
and isotropic sparse grids for different solutions u. This is done on relatively coarse
FE meshes, sparse grids and time discretizations so that the overall cost of estimating
the constants is much smaller than the cost of the adaptive process. We obtained the
estimates c1 = 0.016,c2 = 0.023,c4 = 0.078. The term including the constant c3 is
in our case equal to 0. Our simulations were done using the FEniCS library [3].

6.1 Numerical study of the performance of the estimators

This part is dedicated to study the effectiveness of the error estimator considering
different non uniform FE meshes, time discretizations and index sets. We proceed
by studying first a “marginalized” error and estimator, where by “marginalized”
spatial error we mean an error caused by only spatial discretization, i.e. the numer-
ical solution and the “true” solution are computed using the same (“overkilling”)
discretization for time and random variables. Analogously, for the marginalized time
and stochastic errors.
In Figure 1 we show the convergence results for the marginalized time estimator. The
numerical and true solution were computed on a uniform spatial grid consisting of
6400 triangles, with diameter 0.025 and a sparse grid having 113 collocation points.
We considered both uniform and non uniform time discretizations for the numerical
solution specified in Figure 1 (left). The true solution was computed on a much finer
time grid. Figure 1 (right) shows the “true” error as well as the error estimator over
the sequence of time grids obtained by refinement of the three grids shown in the left
plot.

The convergence study of the stochastic estimator was performed on a triangula-
tion with 6400 triangles with diameter 0.025 and with 200 uniform time steps. The
results are shown in Figure 2. We considered sequences of anisotropic sparse grids
with the index sets defined as

I(w) = {i ∈ NM
+ : ∑

n
βn(in−1)≤ w}

with w = 1, . . . ,8 and β = (β1, . . . ,βM), βm ≥ 1. The weights β were fixed to
(1,2),(1,1),(2,1). Examples of such sparse grids with w = 5 can be seen in Figure
2 (left). The reference solution was computed with w = 15. Figure 2 (right) shows
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(a) Time discretization 1

(b) Time discretization 2

(c) Time discretization 3

Fig. 1: Time error and estimator with respect to the number of time steps (right) for
solutions computed on refinements of 3 time grids (left).

the error and the estimator for the 3 considered choices of sparse grids.

Concerning the spatial estimator, we fixed the number of collocation points to
113 built as an isotropic sparse grid, the number of uniform time steps to 200 and
computed the numerical solution on non uniform triangulations specified in Figure 3
(left). The convergence in Figure 3 was achieved by uniformly refining every cell, i.e.
halving the diameter of every cell at each iteration of the convergence study with the
use of refinement by longest edge bisection [12].

We now focus on the total error and consider several combinations of uniform
refinements in the different components (spatial, temporal, stochastic). We report in
Table 1 the behaviour of the estimator in all cases. From these results we conclude
that the three components of the estimator behave in a fairly independent way. The
only dependency we can observe is the stochastic estimator being dependent on the
spatial discretization. If the stochastic error is negligible compared to the spatial
error, the stochastic estimator grows as the spatial estimator decreases while refining
the spatial grid. When they reach a similar magnitude, decreasing the spatial error
does not influence the stochastic estimator anymore. All the numerical solutions were
computed on uniform triangulations, uniform time grids and isotropic sparse grids.
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(a) β = (1,2), w = 5

(b) β = (1,1), w = 5

(c) β = (2,1), w = 5

Fig. 2: Stochastic error and estimator with respect to the number of collocation points
(right) for solutions computed on anisotropic sparse grids (left) of levels w = 1, . . . ,8.

6.2 Numerical study of the performance of the adaptive algorithm

In this part we study the performance of the Algorithm 1 applied to problem (27). We
set the tolerance to TOL = 0.1, α = 1.5 and initialize the spatial grid as a uniform tri-
angulation having 25 points and 100 triangles. The initial time discretization was set
to have 25 equally spaced subintervals and the initial sparse grid was isotropic with 13
collocation points built over the index set I = {(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)}.
The initial discretizations are depicted in Figure 4 (left) with their corresponding error
indicators (right). In Figure 5 (left) we show the final grids, the spatial triangulation
having 7490 triangles, the time grid consisting of 155 steps and the stochastic sparse
grid having 57 collocation points. As we can see, the algorithm was able to detect
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(a) Triangulation 1

(b) Triangulation 2

(c) Triangulation 3

Fig. 3: Spatial error and estimator with respect to the number of cells (right) for
solutions computed on refinements of 3 triangulations (left).

the location and discontinuity of the forcing term. The final time discretization is
clearly consistent with the dissipative behaviour of this problem and the algorithm is
also able to identify the dominant random variable Y1. In Figure 5 (right) we can as
well observe that the estimator provides a good control over the error throughout the
whole process. As a last result we report in Table 2 the number of cells, time steps
and collocation points in the final discretizations for different tolerances. We can see
that halving the tolerance results in approximately twice more time steps and four
times more cells which agrees with the expected order of convergence.



A posteriori estimation for a random heat equation 25

(a) Initial triangulation (b) Error indicators for every triangle

(c) Initial time discretization (d) Error indicator for every time step

(e) Initial sparse grid

1 2 3 4

4

3

2

1

1.7e−13

5.7e−7

2.4e−4

3.45e−5

index in the set I
index in the margin MI

(f) Error indicator for every index in the
margin

Fig. 4: Initial discretizations (left) when running the Algorithm 1 applied to problem
(27) and corresponding error indicators (right) for elements, time intervals and multi-
indices.
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Table 1: Error and error estimation when using different combinations of uniform
triangulations, uniform time steps and isotropic sparse grids

h τ coll. pts εspa εtem εsto εTh,τ,I ε

0.2 0.025 13 0.73 0.13 0.017 0.74 0.66
0.1 0.025 13 0.38 0.13 0.1 0.42 0.39
0.04 0.025 13 0.16 0.13 0.18 0.27 0.2
0.02 0.025 13 0.08 0.13 0.2 0.25 0.16
0.01 0.025 13 0.04 0.13 0.2 0.24 0.157

0.02 0.05 13 0.08 0.26 0.2 0.33 0.22
0.02 0.025 13 0.08 0.13 0.2 0.25 0.16
0.02 0.0125 13 0.081 0.068 0.2 0.22 0.15

0.02 0.025 5 0.08 0.13 0.34 0.37 0.18
0.02 0.025 13 0.08 0.13 0.2 0.25 0.16
0.02 0.025 25 0.08 0.13 0.07 0.15 0.11

(a) Final triangulation

(b) Final time discretization

(c) Final sparse grid

Fig. 5: Final discretizations (left) resulting from the Algorithm 1 applied to problem
(27) and the evolution of the overall error and error estimation (right).
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Table 2: Number of cells, time steps and collocation points when using the Algorithm
1 with different tolerances.

TOL no. of cells no. of time steps no. of coll. points εTh,τ,I

0.4 492 36 17 0.3676
0.2 1808 70 33 0.1927
0.1 7490 155 57 0.0947
0.05 29106 357 89 0.0487

7 Conclusion

We have derived a residual based a posteriori error estimation for a heat equation
with a random forcing term and a random diffusion coefficient dependent on a finite
number of independent random variables. The dependency of the diffusion coefficient
is, moreover, assumed to be affine. This problem was discretized by a θ -scheme in
time, FEM in physical space and sparse grid collocation method in stochastic space
which required the use of nested collocation points. The estimate consisted of three
parts accounting for the FEM error, time discretization error and the stochastic error,
respectively. The derivation is valid for the case of time-varying FE meshes and
time-varying sparse grids allowing for both refinement and coarsening. We proposed
an adaptive algorithm for the choice of time discretization, FE mesh and sparse grid,
where the mesh and sparse gird are fixed in time which simplifies the computation
of the estimators. The estimators are localized on each element of the FE mesh,
each time step and each index from the margin of the sparse grid index set and we
perform a refinement whenever the localized estimate is higher than a prescribed
condition (see Algorithm 1). We studied the effectiveness of the estimators over
non-uniform time discretizations, non-uniform meshes and anisotropic sparse grids,
fixed in time and applied the adaptive algorithm to a problem with a deterministic,
time independent forcing term. This algorithm is one possible strategy. Several
other versions could be considered as well, for instance, to allow for coarsening in
the adaptive process for a more uniform distribution of the error. We believe that
the derived error estimates could provide a reliable basis for error estimation and
adaptation strategies that include time-varying FE meshes and sparse grids. One
could, for example, drive an adaptive choice of time-varying meshes and sparse girds
by localizing the spatial and stochastic estimator for a specific time step, as was
proposed in [33, 9] for time varying FE or DG meshes in the case of a deterministic
heat equation.
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4. I. Babuška, R. Duran, and R. Rodriguez. Analysis of the efficiency of an a posteriori error
estimator for linear triangular finite elements. Siam Journal on Numerical Analysis - SIAM J
NUMER ANAL, 29, 1992.
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7. I. Babuška and W. Rheinboldt. A posteriori error estimates in the finite element method. Int. J.
Numer. Methods Engrg., 12:1597–1615, 1978.
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