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Verification of the numerical scheme: benchmark for the non-dilatant case

The governing problem is uncoupled when elasticity does not affect fluid flow along the

fault and vice-versa. This scenario occurs for a non dilatant fault, i.e. when the fault

hydraulic aperture does not change during crack propagation, i.e. wh = ωo. The pore

pressure evolution in such a case is given by the solution of the linear diffusion equation

in a fault characterized by constant hydraulic diffusivity α =
kf
µβ

[Carslaw and Jaeger,

1959]:

p (x, t) = po + ∆P · Erfc

∣∣∣∣ x√
4αt

∣∣∣∣ (1)

This pore pressure evolution along the fault is linked to elasticity through the shear weak-

ening Mohr-Coulomb criterion (one way coupling): the change of local effective normal

stress associated with pore pressure increment reduces locally the fault frictional strength,

affecting in turn elasticity.
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Garagash and Germanovich [2012] investigated extensively this particular case. Semi-

analytical results are thus available, allowing to verify the numerical scheme. This is of

great importance for these kind of non-linear (coupled) problems. Indeed, the dynamic

instability that may occur during shear crack propagation due to weakening nature of

friction coefficient may lead to numerical errors.

We show in Figure S1 the benchmark of our numerical results against the semi-analytical

ones of Garagash and Germanovich [2012], both in terms of dimensionless half-crack

length a/aw and dimensionless peak slip accumulated in the middle of the fault δ|x=0/δw.

Notably, we chose three scenarios by changing the stress criticality τo/τp, while keeping

a moderate over-pressure
∆P

σ′o
= 0.5 and a friction weakening ration of fr/fp = 0.6, in

order to test the numerical solver for different regimes of propagation: i) purely aseismic

slip (τo/τp = 0.51), ii) aseismic crack propagation with nucleation and arrest of dynamic

event (τo/τp = 0.555) and iii) aseismic slip followed by an unabated dynamic rupture

(τo/τp = 0.75). We can observe in Figure S1 that our numerical results match perfectly

with the semi-analytical ones of Garagash and Germanovich [2012]. The discrepancy in

terms of half-crack length a/aw between the numerical solutions and the semi-analytical

ones is of the order of the element size h, the latter adopted such to have 25 elements

within the frictional weakening zone (i.e. aw/h = 25 - see the mesh convergence study

reported in the following pages for relative error estimation). In Figure S2, the benchmark

in terms of normalized slip δ/δw and shear stress τ/τp profile is reported (only for the case

of aseismic crack propagation with nucleation and arrest of dynamic event). Again, we

observe that the numerical results match the semi-analytical results of Garagash and

Germanovich [2012] with good accuracy.
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All the numerical results in terms of time evolution of half crack length a/aw show

a step-like behavior. This is intrinsically related to the modeling of the fault as a sum

of adjacent finite elements of equal size h. Indeed, in one increment of time, the pore

pressure perturbation might not be enough to activate further elements - i.e. to induce

z (τ, σ′n) = 0. Time-stepping management as well as mesh resolution play an important

role on this kind of step-like crack propagation. For a given increment of time ∆t, the

finer is the mesh the smaller are these steps. A local dynamic mesh refinement at the

crack tips can reduce significantly this behavior, although the computational cost might

considerably increase.
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Mesh convergence study In order to check the accuracy of our numerical results, we

have performed a mesh convergence study. Similarly to cohesive zone models for fracture

propagation, the non linearity of the problem lies in a small zone near the crack tips.

As already mentioned in section 2.1.2, such a small zone is approximately defined by the

characteristic nucleation length-scale aw, over which the friction coefficient weakens from

a peak value to its residual value during crack propagation. It is of great importance,

therefore, to have enough mesh resolution within that length-scale so as to be able to cap-

ture the non-linearity with good accuracy. A local dynamic mesh refinement at the crack

tips can help in doing it, although the computational cost might considerably increase.

Since semi-analytical results of Garagash and Germanovich [2012] for non-dilatant fric-

tional weakening fault are available, we have performed a mesh convergence study for the

following test case: ultimately stable fault τo/τp = 0.55 (for a friction weakening ratio of

fr/fp = 0.6), subjected to moderate overpressure
∆P

σ′o
= 0.5 (and

εd
βσ′o

= 0. - no dilatancy,

uncoupled problem). Notably, we run bunch of simulations with the same initial config-

uration, while changing the total number of equal-sized elements (of size h) in a given

mesh. The nucleation length-scale aw is thus fixed for all the simulations (as it depends

on friction weakening length-scale δw, initial stress conditions and elastic property of the

medium, which are kept constant for all the simulations), while the element size h varies.

In this way, we investigated the fault response in terms of half-crack length a/aw and peak

slip at the middle of the fault δ|x=0/δw as a function of the ratio aw/h, which indicates

the number of elements within the non-linear length-scale.

Figure S3 shows the relative error in terms of normalized peak slip δ|x=0/δw at a given

normalized time
√

4αt/aw = 2., between the numerical results and the semi-analytical

February 11, 2019, 4:45pm



: X - 5

result of Garagash and Germanovich [2012], as a function of the number of elements

within the nucleation length-scale aw. We observe, not surprisingly, that the higher is

the number of elements withing aw, the lower is the relative error. For aw/h > 25, the

relative error is below 1%, up to reach 0.1% for aw/h = 50. The non-monotonic decrease

of the relative error for increasing values of aw/h is related to step-like behavior of the

numerical solutions that inevitably appear for low values of aw/h (already discussed in

section 1 of Supplemental Materials). This intrinsic behavior is, in fact, more pronounced

for decreasing values of aw/h, for which the accuracy deteriorates considerably.
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Case of otherwise unstable fault τo > τr - Nucleation and Arrest

In the case of zero dilatancy, for unstable fault with relatively low stress criticality,

under moderate over-pressure (region 4,b in Figure 3), a finite seismic episode occurs

prior to the nucleation of dynamic rupture. We investigate the effect of different dilatancy

in such a configuration (τo/τp = 0.65, ∆P/σ′o = 0.5, fr/fp = 0.6). Figure S4 displays the

time evolution of crack length and peak slip for different level of dilatancy.

Interestingly, the ’transient’ seismic episode which is linked to the fact that the fluid

front is initially ahead of the slipping patch (see Figure S5 - comparison between pore

pressure and slip profile at
√

4αt/aw = 0.5) does not disappear even for a dilatancy

larger than the theoretical critical value εd,c/βσ
′
o = 1/12 in this case. Indeed such a

seismic episode occurs with little accumulated slip and its nucleation is not influenced by

residual friction: in such cases, the maximum dilatancy is not mobilized and no undrained

strengthening of the fault occur. This can well be grasped by looking at the pore pressure

profiles in Figure S5 at dimensionless time
√

4αt/aw = 1, i.e. at a given time after the

arrest of the seismic episode. The pore pressure drop is not fully developed due to the

limited slip rate associated with crack propagation. However, the subsequent re-nucleation

is increasingly delayed as the dilatancy increases (see Figure S4 for
εd
βσ′o

= 0.05) and

do not occur for values of dilatancy equal of above the critical value (case of
εd
βσ′o

=

1/10). Note that for such configurations, the nucleation of the unabated dynamic rupture

occurs when a significant portion of the crack size is at residual friction, the weakening

zone is small and confined near the tip (see friction coefficient profile in Figure S5 at

√
4αt/aw = 2.2 - case of

εd
βσ′o

= 0.05). In such cases, the s.s.y assumption is valid,
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the maximum dilatancy is active and the theoretical estimate for the critical dilatancy /

undrained shear strength is valid.
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Case of an ultimately stable fault even without dilatancy (τo < τr)

Normalized pressure, slip, friction & effective stress profiles

Dilatancy effect on purely aseismic crack propagation
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Approximated solution for quasi-static growth assuming a ∝
√

4αt

The numerical results showed in section 5.1 and 5.2 suggest that when the shear crack

propagation is stable for large crack length, it appears to be synchronized with the fluid

front position: i.e. a = γ
√

4αt for a � aw - at least for the constant permeability

case. Following the approximated small scale yielding solution obtained for the non-

dilatant case [Garagash and Germanovich, 2012], we make some further assumptions in

order to extend it to account for dilatancy. The main difficulty lies in the determination

of the pore-pressure changes in the dilatant case. With an approximated pore-pressure

perturbation solution in hand, we can use the small scale yielding approximation of the

fracture energy (23) and the expression of the stress intensity factor (25) to estimate γ

from the quasi-static propagation condition.

We make from the onset the hypothesis that a = γ
√

4αt, and that the permeability

remains constant with slip. We further assume that the increment of hydraulic width

with dilatancy is rather small such that wkf ≈ wokf . In other words, we assume the fault

hydraulic conductivity to remain constant. Under the small scale yielding approximation,

we approximate the sink term due to dilatancy by two moving sink of intensity εd at the

crack tips.

By scaling the variables of equation (14) with the following characteristic scales

Π = p(x,t)
∆P

, ξ = x
`d(t)

, γ = a
`d(t)

where `d =
√

4αt, the fluid flow equation reduces to the following ODE when γ is

assumed to remain constant

−1

4

∂2Π

∂ξ2
− 1

2
ξ
∂Π

∂ξ
+

1

2
ξ · εd

β ·∆P
· (δdirac (ξ − γ) + δdirac (ξ + γ)) = 0 (2)
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We note in the previous equation (2) the presence of two moving sink terms that represent

the undrained fault response occurring at small end zone of crack tips. With the following

dimensionless boundary conditions

Π (0) = 1, Π (∞) = 0, (3)

equation (2) can be solved analytically:

Π(ξ, γ) = 1− Erf(ξ)− eγ2
√
πγΓd·

(−Erf(γ) (1 + Erf(ξ)) + (Erf(γ)− Erf(ξ)) ·H(−γ + ξ) + (Erf(γ) + Erf(ξ)) ·H(γ + ξ)) ,
(4)

where H is the Heaviside step function and Γd =
εd

β ·∆P
=

εd
βσ′o

σ′o
∆P

is a dimensionless

parameter capturing the effect of the undrained pore pressure drop with respect to the

injection fluid over-pressure. Note that the dimensionless over-pressure at the tip simplify

to:

Π(γ, γ) = Erfc (γ)
(

1− γ
√
π eγ

2

ΓDErf (γ)
)

(5)

Equation (4) thus allows to calculate analytically the SIF (through equation (25)):

KII = τp
√
`d ×

(√
π

(
τo
τp
− fr
fp

)
+
fr
fp

∆P

σ′o
∆kII(γ,Γd)

)
(6)

∆kII(γ,Γd) =
√
π − 4γ

π

(
1 + γ

√
π eγ

2

ΓDErfc (γ)
)

pFq({1/2, 1}, {3/2, 3/2},−γ2) (7)

where pFq denotes the generalized hypergeometric function. Note that interestingly, in

the limit of large crack length (i.e. large γ`d), we recover the exact same limit than the

simpler approximation of the superposition of a point source with an uniform undrained

pore-pressure drop used in section 3.2.2:

lim
a→∞

KII =∞
(
τo −

εd
βσ′o

fr − τr
)

=∞ (τo − τur ) , (8)
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and therefore the same critical value of dilatancy (27) required to stabilize an otherwise

unstable fault.

Under such a small scale yielding approximation, assuming that the over-pressure is

uniform in the weakening zone and equal to its value at the crack tip, the fracture energy

Gc (see eq. (23)) can be approximated as

Gc = (fp − fr)
δrσ
′
o

2

(
1− ∆P

σ′o
× Π(γ, γ)

)
(9)

The quasi static propagation condition (24) can thus be re-written as:

aw
`d

(
fp − fr
fp

)2(
1− ∆P

σ′o
× Π(γ, γ)

)
=

{√
π

(
τo
τp
− fr
fp

)
+
fr
fp

∆P

σ′o
∆kii(γ,Γd)

}2

(10)

The previous equation can be solved for γ for a given set of problem parameters

(τo/τp, fr/fp, ∆P/σ′o, εd/(βσ
′
o)) and a given value of aw/`d. Although, we made the as-

sumption of a time-independent γ to obtain the pore-pressure profile, we can relax it to

see its evolution with aw/`d. The obtained approximated solution captures the order of

magnitude of the aseismic shear crack propagation as can be seen on Figure S8. How-

ever, it is not precise enough essentially due to i) the impact of the change of hydraulic

conductivity with slip which prevent to properly captured the pore-pressure profile (as

can be seen on Figure S9) and ii) the fact that the pore-pressure is clearly not uniform in

the weakening zone which impact the estimation of the fracture energy in the small scale

assumption.
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Effect of shear-induced permeability changes: case of slip-dependent perme-

ability

Normalized pressure, slip, friction & effective stress profiles.
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Effect of shear-induced permeability changes: case of effective stress-

dependent permeability

Time evolution of normalized half crack length & peak slip.

Normalized pressure, slip, friction & effective stress profiles.
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Comparison between quasi-static and quasi-dynamic crack propagation on

critically stressed dilatant fault

Time evolution of normalized half crack length & peak slip.
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Figure S1. Benchmark of numerical results against semi-analytical ones of Garagash

and Germanovich [2012] in terms of time evolution of normalized half crack length a/aw

and normalized peak slip δ/δw at x = 0, for a non-dilatant fault subjected to moderate

overpressure ∆P/σ′o = 0.5 and three initial stress conditions: i) τo/τp = 0.75 (unstable

fault), ii) τo/τp = 0.55 (ultimately stable fault) and iii) τo/τp = 0.51 (ultimately stable

fault). The friction weakening ratio is
fr
fp

= 0.6, so that
δr
δw

= 0.4. The red dots denote

the nucleation/onset of an unabated dynamic rupture, whereas the red arrows denote the

nucleation of dynamic event followed by an arrest.
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Figure S2. Benchmark of numerical results against semi-analytical ones of Garagash

and Germanovich [2012] in terms of normalized slip δ/δw and shear stress τ/τp profiles, for

a non-dilatant ultimately stable fault subjected to moderate over-pressure ∆P/σ′o = 0.5.

The stress criticality is τo/τp = 0.55 and the friction weakening ratio is fr/fp = 0.6.
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Figure S3. Evolution of relative error in terms of normalized peak slip δ|x=0/δw at

normalized time
√

4αt/aw = 2, as a function of number of elements within the nucleation

length scale aw. The test case investigated is a non-dilatant ultimately stable fault (τo/τp =

0.55 and fr/fp = 0.6), subjected to moderate overpressure
∆P

σ′o
= 0.5. Semi-analytical

results of Garagash and Germanovich [2012] in terms of normalized half crack length and

peak slip at the fault center are available, allowing to calculate the relative error.
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Figure S4. Evolution of normalized half crack length a/aw and normalized peak slip

δ|x=0/δw with normalized time
√

4αt/aw for a frictional weakening dilatant fault. The

fault is subjected to an initial uniform background shear stress τo/τp = 0.65 (unstable

fault in the non-dilatant case for a friction weakening ratio of fr/fp = 0.6 - with relative

low stress criticality though) and a moderate constant over-pressure
∆P

σ′o
= 0.5 applied in

the middle of the fault. Two dimensionless dilatancy parameters are considered:
εd
βσ′o

=

0.05 <
τo
τr
− 1 =

εd,c
βσ′o

and
εd
βσ′o

= 0.1 >
τo
τr
− 1 =

εd,c
βσ′o

. Grey dotted lines denote

semi-analytical results of Garagash and Germanovich [2012], whereas red dots denote

nucleation of dynamic rupture.
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Figure S5. Spatial profiles of dimensionless pore pressure (a), friction coefficient

(b), slip (c) and effective normal stress (d) at different (normalized) time snapshots, for

an otherwise unstable fault (τo/τp = 0.65 - relative low stress criticality for fr/fp =

0.6), subjected to a moderate over-pressure
∆P

σ′o
= 0.5. Two dimensionless dilatancy

parameters are considered:
εd
βσ′o

= 0.05 <
τo
τr
− 1 =

εd,c
βσ′o

and
εd
βσ′o

= 0.1 >
τo
τr
− 1 =

εd,c
βσ′o

.

Red lines refer to numerical results at nucleation time of an unabated dynamic rupture.
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Figure S6. Spatial profiles of dimensionless pore pressure (a), friction coefficient (b),

slip (c) and effective normal stress (d) at different (normalized) time snapshots, for an

otherwise ultimately stable fault (τo/τp = 0.55 - fr/fp = 0.6), subjected to a moderate

over-pressure
∆P

σ′o
= 0.5. Two dimensionless dilatancy parameters are considered:

εd
βσ′o

=

0.1 and
εd
βσ′o

= 0.3. Red lines refer to numerical results at nucleation time of a dynamic

rupture. Since the background shear stress τo is lower than the residual fault strength τr

at ambient conditions, the dynamic event is always followed by an arrest.
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Figure S7. Dilatancy effect on normalized crack length a/aw and peak slip δ/δw at

x = 0 for a frictional weakening fault subjected to large overpressure ∆P/σ′o = 0.75.

The fault is ultimately stable in the hypothetical absence of dilatancy as the uniform

background shear stress τo = 0.55 · τp is lower than the fault residual strength at ambient

conditions τr, for a friction weakening ratio of fr/fp = 0.6. Under such stress criticality

and large over-pressure, the fault always exhibits seismic crack propagation (zone 3 of

Figure 3). However, the crack velocity slows down for increasing values of dimensionless

dilatancy parameters.
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Figure S8. Comparison between numerical results and results associated with ap-

proximated solution for quasi-static crack growth (a ∝
√

4αt) in terms of time evolution

of normalized half-crack length a/aw. The case investigated is a critically stressed fault

(τo/τp = 0.75), subjected to moderate over-pressure ∆P/σ′o = 0.5 and two values of

dimensionless dilatancy parameter
εd
βσ′o

= 0.25− 0.3.
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Figure S9. Comparison between numerical results and results associated with ap-

proximated solution for quasi-static crack growth (a ∝
√

4αt) in terms of pore pressure

profiles. The case investigated is a critically stressed fault (τo/τp = 0.75), subjected to

moderate over-pressure ∆P/σ′o = 0.5 and a dimensionless dilatancy parameter
εd
βσ′o

= 0.3.

The relative (and constant) position between crack tip and fluid front (γ =
a

`d(t)
) is 2.48

and 3, which correspond to a dimensionless time of
√

4αt/aw = 1 and
√

4αt/aw = 2,

respectively

.
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Figure S10. Spatial profiles of dimensionless pore pressure, friction coefficient, slip,

effective normal stress and fault longitudinal permeability (in linear-log scale) at a given

normalized time snapshot
√

4αt/aw = 0.27, for unstable fault (τo/τp = 0.75 - fr/fp = 0.6),

subjected to a moderate over-pressure
∆P

σ′o
= 0.5 and a dimensionless dilatancy parameter

equal to the critical value, i.e.
εd,c
βσ′o

= 0.25. The different numerical results are obtained

with different fault permeability evolution laws: i) constant permeability kf =
ω2
o

12
, ii)

slip-dependent permeability law kf =
ω2
o

12

(
1 + a

w(δ)

ωo

)b
, with a = 1&b = 2 (cubic law for

fault transmissivity) and a = 2&b = 3, 5, 8, 10.
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Figure S11. Effect of permeability increase on a critically stressed (τo/τp =

0.75, fr/fp = 0.6) dilatant fault in terms of time evolution of normalized half

crack length a/aw and peak slip δ|x=0/δw. The dimensionless dilatancy param-

eter εd/(βσ
′
o) is taken here equal to the critical stabilizing value 0.25. Under

such conditions a fault with constant fault permeability kf = ω2/12, subjected

to moderate overpressure ∆P/σ′o = 0.5, never exhibit seismic slip. An effective

stress-dependent permeability law has been considered (kf = k∗e
(−σ′/σ∗)), with

four different ratios of σ′o/σ∗ spanning low and large permeability increase.
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Figure S12. Spatial profiles of dimensionless pore pressure, friction coefficient, slip,

effective normal stress and fault longitudinal permeability (in linear-log scale) at a given

normalized time snapshot
√

4αt/aw = 0.4, for unstable fault (τo/τp = 0.75 - fr/fp = 0.6),

subjected to a moderate over-pressure
∆P

σ′o
= 0.5 and a dimensionless dilatancy parameter

equal to the critical value, i.e.
εd,c
βσ′o

= 0.25. The different numerical results are obtained

with different fault permeability evolution laws: i) constant permeability kf =
ω2
o

12
, ii)

effective stress-dependent permeability law kf = k∗ · e(−σ′/σ∗), with σ′o/σ∗ = 1− 2− 5− 8.

February 11, 2019, 4:45pm



: X - 27

Figure S13. Time evolution of normalized half crack length and peak slip under

quasi-static (QS) and quasi-dynamic (QD) approximation of elastic equilibrium. The

latter is obtained by adding a seismic radiation damping term proportional to slip rate

to elasticity equations in order to take into account energy dissipation through seismic

waves orthogonal to fault plane during high slip rate [Rice, 1993]. The radiation damping

term in normalized form reads
Gδw4α

2csτpa2
w

, being cs the shear wave speed and G the shear

modulus. We use here a very large value of 40 for such a dimensionless damping term,

therefore over-damping the dynamic rupture.
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